Combining Semi-Classical and Quantum Mechanical Methodologies for Nuclear Cross-section Calculations Between 1 Mev and 5 Gev

PDF Version Also Available for Download.

Description

With a goal to develop a nuclear cross-section code usable over the wide energy range of 1 MeV to 5 GeV, one option is to combine intranuclear cascade, pre-equilibrium, and Hauser-Feshbach models in existing codes. However, the first two models are semi-classical while the third one is quantum mechanical, and combining them is not straightforward because the third model requires spin and parity distributions for all excited states that cannot be supplied by either one of the first two models. Approximations to overcome this difficulty are described in this paper. Success of this combined model will allow nuclear data evaluations ... continued below

Physical Description

4 pages

Creation Information

Fu, C.Y. August 15, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

With a goal to develop a nuclear cross-section code usable over the wide energy range of 1 MeV to 5 GeV, one option is to combine intranuclear cascade, pre-equilibrium, and Hauser-Feshbach models in existing codes. However, the first two models are semi-classical while the third one is quantum mechanical, and combining them is not straightforward because the third model requires spin and parity distributions for all excited states that cannot be supplied by either one of the first two models. Approximations to overcome this difficulty are described in this paper. Success of this combined model will allow nuclear data evaluations for a large number of materials whose cross sections are needed in a wide range of applications, including the design, operation, and future upgrades of the SNS (1 GeV proton). The incident particles may be neutrons, protons, charged pions, or photons. Though only partially completed at this time, the new model compares well with experimental radionuclide production cross sections from thresholds to 2.6 GeV for proton-induced reactions on Fe.

Physical Description

4 pages

Source

  • International Conference on Nuclear Data for Science and Technology, Conference location not supplied, Conference dates not supplied

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: P01-111575
  • Grant Number: AC05-00OR22725
  • Office of Scientific & Technical Information Report Number: 788532
  • Archival Resource Key: ark:/67531/metadc725422

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 15, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 11, 2016, 5:01 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Fu, C.Y. Combining Semi-Classical and Quantum Mechanical Methodologies for Nuclear Cross-section Calculations Between 1 Mev and 5 Gev, article, August 15, 2001; Tennessee. (digital.library.unt.edu/ark:/67531/metadc725422/: accessed January 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.