Results of High Harmonic Fast Wave Heating Experiments on NSTX

by

August 2001
PPPL Reports Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Availability

DOE and DOE Contractors can obtain copies of this report from:

U.S. Department of Energy
Office of Scientific and Technical Information
DOE Technical Information Services (DTIS)
P.O. Box 62
Oak Ridge, TN 37831
Telephone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@adonis.osti.gov

This report is available to the general public from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Telephone: 1-800-553-6847 or
(703) 605-6000
Fax: (703) 321-8547
Internet: http://www.ntis.gov/ordering.htm
Results of High Harmonic Fast Wave Heating Experiments on NSTX

1. Introduction

The study of high harmonic fast wave (HHFW) heating and current drive is being conducted on the NSTX device to determine the physics of applying RF waves at high harmonics (~ 10-20) of the ion cyclotron frequency in this high β plasma regime and to extend the performance of the NSTX plasma. The magnetic field of this low aspect ratio device is lower (\leq 0.35 T for this work) than that for the typical moderate aspect ratio tokamak regime by about an order of magnitude and the plasma densities achieved are typically in the mid 10^{19} m$^{-3}$ range. Thus, the dielectric constant of the plasma, $\varepsilon \equiv \omega_{pe}^2/\omega_{ce}^2$, is of order ~ 50-100 resulting in wave physics properties which favor electron heating by TTMP and Landau damping [1]. RF power is applied on NSTX at 30 MHz using an antenna array with 12 current straps aligned in the poloidal direction. The antenna can be phased to launch waves with toroidal wave numbers, k_T, between 2 m$^{-1}$ and 14 m$^{-1}$ and can be phased for current drive with peak toroidal directionality at 7 m$^{-1}$. To date most of the HHFW experiments have been carried out using $k_T = 14$ m$^{-1}$ with $0-\pi-0-\pi-...$ phasing of the strap currents. The diagnostic complement on NSTX includes a 30-Hz, 10-spatial-channel Thomson scattering (MPTS) system for measuring profiles of electron temperature T_e and density n_e every 33 msec and a charge-exchange recombination spectroscopy (CHERS) system for measuring profiles of the impurity ion temperature T_i and toroidal rotation V_T during a neutral beam blip. Strong electron and ion heating are observed in helium discharges whereas the heating efficiency is noticeably reduced for deuterium discharges. A detailed comparison between helium and deuterium discharge responses at $k_T = 14$ m$^{-1}$ is presented here. Also, initial results for different RF phasing and start-up assist experiments will be discussed briefly.

2. Helium and Deuterium Heating with $k_T = 14$ m$^{-1}$

Electron response: The HHFW heating results reported earlier for helium discharge conditions on NSTX showed very strong electron heating [2]. With $P_{RF} = 2.3$ MW applied during the current flat top of a discharge with $I_p = 0.7$ MA, $B_T = 0.3$ T and $n_e(0) \approx 4 \times 10^{19} \text{m}^{-1}$, the central electron temperature, $T_e(0)$, was observed to increase from ~ 400 eV to ~ 900 eV with very little change in plasma density and only ~ 10% power radiated. At somewhat higher RF power, magnetic equilibrium measurements showed values of plasma stored
energy up to 59 kJ as compared with 43 kJ for the ohmic case, corresponding to a toroidal \(\beta_T = 10\% \) and a \(\beta_N = 2.7 \). Noticeably less efficient electron heating was observed for deuterium discharges.

In the earlier results, an \(m = 1/n = 1 \) MHD instability persisted throughout the flat top of the discharge current. This caused a flattening of the \(T_e \) and \(n_e \) profiles in both the ohmic and RF heated discharges. This instability effect made it difficult to determine if RF power deposition, which is predicted to peak at \(\sim 2/3 \) of the plasma minor radius [3,4,5], is also contributing to the flattening in the RF heated case. More recently, better control of the discharge conditions and operation in a single-null divertor configuration has provided discharges with the \(m = 1 \) mode onset pushed to much later in the current flat top phase. Figure 1 demonstrates that prior to the onset of the \(m = 1 \) mode, \(T_e(0) \) peaks up to \(\sim 1.15 \) keV at \(t = 0.197 \) sec from the ohmic value of \(\sim 0.5 \) keV with \(P_{RF} = 1.8 \) MW. The corresponding electron temperature profiles [6] are peaked for the RF case and flat in the core for the ohmic case. The density profile is broadened in the RF case. Outboard RF power deposition may be contributing to the density broadening but the peaking of the temperature profiles suggest a possible pinch effect in the energy transport. Further experimentation and analysis are planned to directly measure the RF deposition profile and to determine the underlying transport properties of the discharge.

The response of the electrons for deuterium discharges in the absence of the \(m = 1 \) instability is shown in Fig. 2. The experimental conditions are essentially the same as in the helium case of Fig. 1 except for a somewhat higher density level and a slightly larger antenna gap (\(\delta_A = 4 \) cm). It is clear that the \(T_e(0) \) is less for deuterium at the same \(P_{RF} \), peaking up to \(\sim 0.55 \) keV from \(\sim 0.4 \) keV at \(t = 0.197 \) sec. The \(T_e \) and \(n_e \) profiles in this case [6] are peaked for the ohmic and RF cases but both profiles broaden with the application of RF power. This broadening may indicate more peripheral RF power deposition for deuterium and/or the absence of a strong pinch effect in the electron energy transport.
The kinetic measurements of stored electron energy at $t = 0.197$ sec show an increase of ~ 11 kJ for helium and 6 kJ for deuterium. Thus, with regard to electron heating, HHFW heating appears to be ~ 2 times as efficient for helium as for deuterium for these results.

Ion response: The CHERS system has come on line and has enabled ion temperature profiles to be measured for the conditions of Figs. 1 and 2 as shown in Fig. 3. (Note that for the helium RF heated case the RF power is reduced from that for Fig. 1 to 1.4 MW.) Short 10 msec neutral beam pulses were injected at $t = 0.21$ sec to permit these measurements (see Figs. 1 and 2). Due to low carbon levels for the ohmic cases, error bars are large in the plasma periphery so that ohmic T_i values are shown only in the core plasma for comparison to the RF heated cases. A T_i increase comparable to the T_e increase is observed for both helium and deuterium, taking into account that T_e is measured at $t = 0.197$ sec and T_i at $t = 0.21 - 0.22$ sec with the beam power added. (The next T_e profile at $t = 0.230$ sec brackets the T_i profile.) Thus it would appear that the overall plasma stored energy increase measured kinetically is also about a factor of 2 higher for helium.

It is interesting to note that there appears to be a steepening of the T_i profiles in the vicinity of $R = 130$ cm in Fig. 3 and that toroidal rotation V_T peaks there.

Possible energy loss mechanisms: The reduced stored energy for deuterium relative to that for helium may be due to different confinement properties. However, possible RF effects are also being considered: hydrogen minority ion heating ($\omega_{\text{CH}} \sim 7 \times \omega$), turbulence scattering of the HHFW [7], and possibly surface wave/sheath excitation/damping due to the large magnetic field pitch at the antenna. Future research will be directed toward discerning the dominant mechanism(s) involved.

3. **Other Heating Experiments**

Heating with a fast wave spectrum $k_T = 7$ m$^{-1}$ in deuterium: Preliminary kinetic electron and magnetic plasma stored energy results have been obtained for $P_{RF} = 2.5$ MW applied to a deuterium discharge using a fast spectrum $k_T = 7$ m$^{-1}$ with symmetrical (heating) phasing and with directed co – CD phasing, and compared with the slow spectrum $k_T = 14$ m$^{-1}$ heating case. Whereas the magnetic stored energy increase is found to be the same for the three cases, the electron energy increase is significantly larger for the slower toroidal phase velocity case: $T_e(0)$ up to ~ 0.6 keV for $k_T = 14$ m$^{-1}$ versus ~ 0.5 keV for both the 7 m$^{-1}$ cases. The linear theory predicts strong absorption for all three cases and does not predict strong ion
absorption. Again, further study is required to discern the causes for this difference in electron response.

Heating during **\(I_p \) **ramp-up:

HFFW power has been applied during the plasma current ramp-up in an attempt to slow down the current diffusion and improve the MHD properties [8]. It is observed that when the antenna gap is large, \(\delta_A \approx 12 \text{ cm} \), a large increase in the plasma density results with central values reaching NSTX record levels of \(8 \times 10^{19} \text{ m}^{-3} \).

Figure 4 shows the time evolution of such a discharge. As the density increases by a factor of \(\sim 8 \), \(T_e(0) \) nearly doubles from 130 to 240 eV. The density rise occurs without gas injection. Spectroscopy and x ray measurements indicate that \(Z_{\text{eff}} \) remains at a value of \(\sim 1.75 \) during the RF pulse. The desired effect of slowing the current penetration is observed. The central \(q \) remains above 1.4 instead of dropping below 1 and the plasma internal inductance \(l_i \) remains at \(\sim 0.5 \) instead of increasing with time.

4. Summary

Significant HFFW heating has been observed under several conditions on NSTX. The strongest heating has been observed for helium plasmas with the RF antenna phased to launch a slow antenna spectrum \(k_T = 14 \text{ m}^{-1} \). A peaked \(T_e \) profile, with \(T_e(0) \) more than doubling to 1.15 keV at \(n_e(0) = 2.8 \times 10^{19} \text{ m}^{-3} \), is obtained at \(P_{\text{RF}} = 1.8 \text{ MW} \) when the \(m = 1 \) MHD instability is avoided. The lower stored energy increases observed in deuterium suggest the power may be being deposited in the periphery of the plasma in addition to the confinement being generally lower. Heating during the plasma current ramp-up has been used successfully to slow the current penetration and surprisingly to dramatically raise \(n_e(0) \) to \(\sim 8 \times 10^{19} \text{ m}^{-3} \) while doubling \(T_e(0) \) from \(\sim 140 \text{ eV} \) to 240 eV. Future work will focus on direct experimental determination of the RF power deposition characteristics and comparison with theory/modeling to help separate transport and RF effects on heating, and on studies of HFFW driven plasma current.

* Work supported at PPPL under U.S. DOE Contract DE-AC02-76CH03073

References

External Distribution

Plasma Research Laboratory, Australian National University, Australia
Professor I.R. Jones, Flinders University, Australia
Professor João Canalle, Instituto de Fisica DEQ/IF - UERJ, Brazil
Mr. Gerson O. Ludwig, Instituto Nacional de Pesquisas, Brazil
Dr. P.H. Sakanaka, Instituto Fisica, Brazil
The Librarian, Culham Laboratory, England
Library, R61, Rutherford Appleton Laboratory, England
Mrs. S.A. Hutchinson, JET Library, England
Professor M.N. Bussac, Ecole Polytechnique, France
Librarian, Max-Planck-Institut für Plasmaphysik, Germany
Jolan Moldvai, Reports Library, MTA KFKI-ATKI, Hungary
Dr. P. Kaw, Institute for Plasma Research, India
Ms. P.J. Pathak, Librarian, Insitute for Plasma Research, India
Ms. Clelia De Palo, Associazione EURATOM-ENEA, Italy
Dr. G. Grosso, Instituto di Fisica del Plasma, Italy
Librarian, Naka Fusion Research Establishment, JAERI, Japan
Library, Plasma Physics Laboratory, Kyoto University, Japan
Research Information Center, National Institute for Fusion Science, Japan
Dr. O. Mitarai, Kyushu Tokai University, Japan
Library, Academia Sinica, Institute of Plasma Physics, People's Republic of China
Shih-Tung Tsai, Institute of Physics, Chinese Academy of Sciences, People's Republic of China
Dr. S. Mirnov, TRINITI, Troitsk, Russian Federation, Russia
Dr. V.S. Strelkov, Kurchatov Institute, Russian Federation, Russia
Professor Peter Lukac, Katedra Fyziky Plazmy MFF UK, Mlynska dolina F-2, Komenskeho
 Univerzita, SK-842 15 Bratislava, Slovakia
Dr. G.S. Lee, Korea Basic Science Institute, South Korea
Mr. Dennis Bruggink, Fusion Library, University of Wisconsin, USA
Institute for Plasma Research, University of Maryland, USA
Librarian, Fusion Energy Division, Oak Ridge National Laboratory, USA
Librarian, Institute of Fusion Studies, University of Texas, USA
Librarian, Magnetic Fusion Program, Lawrence Livermore National Laboratory, USA
Library, General Atomics, USA
Plasma Physics Group, Fusion Energy Research Program, University of California at San
 Diego, USA
Plasma Physics Library, Columbia University, USA
Alkesh Punjabi, Center for Fusion Research and Training, Hampton University, USA
Dr. W.M. Stacey, Fusion Research Center, Georgia Institute of Technology, USA
Dr. John Willis, U.S. Department of Energy, Office of Fusion Energy Sciences, USA
Mr. Paul H. Wright, Indianapolis, Indiana, USA
The Princeton Plasma Physics Laboratory is operated by Princeton University under contract with the U.S. Department of Energy.

Information Services
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543

Phone: 609-243-2750
Fax: 609-243-2751
e-mail: pppl_info@pppl.gov
Internet Address: http://www.pppl.gov