Cleanroom energy benchmarking in high-tech and biotech industries

PDF Version Also Available for Download.

Description

Cleanrooms, critical to a wide range of industries, universities, and government facilities, are extremely energy intensive. Consequently, energy represents a significant operating cost for these facilities. Improving energy efficiency in cleanrooms will yield dramatic productivity improvement. But more importantly to the industries which rely on cleanrooms, base load reduction will also improve reliability. The number of cleanrooms in the US is growing and the cleanroom environmental systems' energy use is increasing due to increases in total square footage and trends toward more energy intensive, higher cleanliness applications. In California, many industries important to the State's economy utilize cleanrooms. In California ... continued below

Physical Description

vp.

Creation Information

Tschudi, William; Benschine, Kathleen; Fok, Stephen & Rumsey, Peter April 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Cleanrooms, critical to a wide range of industries, universities, and government facilities, are extremely energy intensive. Consequently, energy represents a significant operating cost for these facilities. Improving energy efficiency in cleanrooms will yield dramatic productivity improvement. But more importantly to the industries which rely on cleanrooms, base load reduction will also improve reliability. The number of cleanrooms in the US is growing and the cleanroom environmental systems' energy use is increasing due to increases in total square footage and trends toward more energy intensive, higher cleanliness applications. In California, many industries important to the State's economy utilize cleanrooms. In California these industries utilize over 150 cleanrooms with a total of 4.2 million sq. ft. (McIlvaine). Energy intensive high tech buildings offer an attractive incentive for large base load energy reduction. Opportunities for energy efficiency improvement exist in virtually all operating cleanrooms as well as in new designs. To understand the opportunities and their potential impact, Pacific Gas and Electric Company sponsored a project to benchmark energy use in cleanrooms in the electronics (high-tech) and biotechnology industries. Both of these industries are heavily dependent intensive cleanroom environments for research and manufacturing. In California these two industries account for approximately 3.6 million sq. ft. of cleanroom (McIlvaine, 1996) and 4349 GWh/yr. (Sartor et al. 1999). Little comparative energy information on cleanroom environmental systems was previously available. Benchmarking energy use allows direct comparisons leading to identification of best practices, efficiency innovations, and highlighting previously masked design or operational problems.

Physical Description

vp.

Notes

OSTI as DE00785283

Source

  • 2001 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA (US), 07/24/2001--07/27/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--47729
  • Report No.: HT-428
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 785283
  • Archival Resource Key: ark:/67531/metadc725325

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 5, 2016, 1:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Tschudi, William; Benschine, Kathleen; Fok, Stephen & Rumsey, Peter. Cleanroom energy benchmarking in high-tech and biotech industries, article, April 1, 2001; California. (digital.library.unt.edu/ark:/67531/metadc725325/: accessed September 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.