Micromechanical Uncooled Photon Detectors

PDF Version Also Available for Download.

Description

Recent advances in micro-electro-mechanical systems (MEMS) have led to the development of uncooled infrared detectors operate as micromechanical thermal detectors or micromechanical quantum detectors. The authors report on a new method for photon detection using electronic (photo-induced) stresses in semiconductor microstructures. Photo-induced stress in semiconductor microstructures, is caused by changes in the charge carrier density in the conduction band and photon detection results from the measurement of the photo-induced bending of semiconductor microstructures. Small changes in position (displacement) of microstructures are routinely measured in atomic force microscopy (AFM) where atomic imaging of surfaces relies on the measurement of small changes … continued below

Physical Description

14 pages

Creation Information

Datskos, P. G. September 4, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 22 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recent advances in micro-electro-mechanical systems (MEMS) have led to the development of uncooled infrared detectors operate as micromechanical thermal detectors or micromechanical quantum detectors. The authors report on a new method for photon detection using electronic (photo-induced) stresses in semiconductor microstructures. Photo-induced stress in semiconductor microstructures, is caused by changes in the charge carrier density in the conduction band and photon detection results from the measurement of the photo-induced bending of semiconductor microstructures. Small changes in position (displacement) of microstructures are routinely measured in atomic force microscopy (AFM) where atomic imaging of surfaces relies on the measurement of small changes (< 10{sup -9} m) in the bending of microcantilevers. Changes in the conduction band charge carrier density can result either from direct photo-generation of free charge carriers (electrons, holes) or from photoelectrons emitted from thin metal film surfaces in contact with a semiconductor microstructure which forms a Schottky barrier. In their studies, they investigated three systems: (1) Si microstructures, (2)InSb microstructures and (3) Si microstructures coated with a thin film of Pt. They found that for Si the photo-induced stress results in a contraction of the crystal lattice due to the presence of excess electron-hole-pairs while for InSb photo-induced stress causes the crystal lattice to expand. They present their results and discuss their findings.

Physical Description

14 pages

Source

  • SPIE Photodetectors: Materials and Devices, Conference location not supplied, Conference dates not supplied

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: P01-111715
  • Grant Number: AC05-00OR22725
  • Office of Scientific & Technical Information Report Number: 788610
  • Archival Resource Key: ark:/67531/metadc725235

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 4, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • July 20, 2020, 4:53 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 22

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Datskos, P. G. Micromechanical Uncooled Photon Detectors, article, September 4, 2001; Tennessee. (https://digital.library.unt.edu/ark:/67531/metadc725235/: accessed April 19, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen