Assessment of General Atomics accelerator transmutation of waste concept based on gas-turbine-modular helium cooled reactor technology.

PDF Version Also Available for Download.

Description

An assessment has been performed for an Accelerator Transmutation of Waste (ATW) concept based on the use of the high temperature gas reactor technology. The concept has been proposed by General Atomics for the ATW system. The assessment was jointly conducted at Argonne National Laboratory (ANL) and Los Alamos national laboratory to assess and to define the potential candidates for the ATW system. This report represents the assessment work performed at ANL. The concept uses recycled light water reactor (LWR)-discharge-transuranic extracted from irradiated oxide fuel in a critical and sub-critical accelerator driven gas-cooled transmuter. In this concept, the transmuter operates ... continued below

Physical Description

55 pages

Creation Information

Gohar, Y.; Taiwo, T. A.; Cahalan, J. E. & Finck, P. J. May 8, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

An assessment has been performed for an Accelerator Transmutation of Waste (ATW) concept based on the use of the high temperature gas reactor technology. The concept has been proposed by General Atomics for the ATW system. The assessment was jointly conducted at Argonne National Laboratory (ANL) and Los Alamos national laboratory to assess and to define the potential candidates for the ATW system. This report represents the assessment work performed at ANL. The concept uses recycled light water reactor (LWR)-discharge-transuranic extracted from irradiated oxide fuel in a critical and sub-critical accelerator driven gas-cooled transmuter. In this concept, the transmuter operates at 600 MWt first in the critical mode for three cycles and then operates in a subcritical accelerator-driven mode for a single cycle. The transmuter contains both thermal and fast spectrum transmutation zones. The thermal zone is fueled with the TRU oxide material in the form of coated particles, which are mixed with graphite powder, packed into cylindrical compacts, and loaded in hexagonal graphite blocks with cylindrical channels; the fast zone is fueled with TRU-oxide material in the form of coated particles without the graphite powder and the graphite blocks that has been burned in the thermal region for three critical cycles and one additional accelerator-driven cycle. The fuel loaded into the fast zone is irradiated for four additional cycles. This fuel management scheme is intended to achieve a high Pu isotopes consumption in the thermal spectrum zone, and to consume the minor actinides in the fast-spectrum zone. Monte Carlo and deterministic codes have been used to assess the system performance and to determine the feasibility of achieving high TRU consumption levels. The studies revealed the potential for high consumption of Pu-239 (97%), total Pu (71%) and total TRU (64%) in the system. The analyses confirmed the need for burnable absorber for both suppressing the initial excess reactivity and ensuring a negative temperature coefficient under all operating conditions. Additionally, current results suggest that it may be preferable to use a double strata thermal critical system and fast subcritical system to achieve nearly complete destruction of the TRU oxide fuel. The report gives a general description of the system proposed by General Atomics. The major design parameters (degrees of freedom), which can be altered to optimize the system design, and the constraints, which guide the design and the optimization studies are described. The deterministic and the Monte Carlo neutronics codes and models used for the neutronics analysis and assessment are presented. The results of fuel block and whole-core parametric studies performed to understand the physics are given including the effect of various fuel management schemes on the system performance. A point design is described including the system performance results for a single-batch and three-batch loading schemes. The major design issues, which need to be addressed during further studies, are discussed.

Physical Description

55 pages

Source

  • Other Information: PBD: 8 May 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ANL/TD/TM01-16
  • Grant Number: W-31-109-ENG-38
  • DOI: 10.2172/781270 | External Link
  • Office of Scientific & Technical Information Report Number: 781270
  • Archival Resource Key: ark:/67531/metadc725196

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 8, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 24, 2016, 5:18 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Gohar, Y.; Taiwo, T. A.; Cahalan, J. E. & Finck, P. J. Assessment of General Atomics accelerator transmutation of waste concept based on gas-turbine-modular helium cooled reactor technology., report, May 8, 2001; Illinois. (digital.library.unt.edu/ark:/67531/metadc725196/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.