The effect of stoichiometry on vortex flame interactions

PDF Version Also Available for Download.

Description

The interaction of a vortex pair with a premixed flame serves as an important prototype for premixed turbulent combustion. In this study, the authors investigate the interaction of a counter-rotating vortex pair with an initially flat premixed methane flame. The authors focus on characterizing the mechanical nature of the flame-vortex interaction and on the features of the interaction strongly affected by fuel equivalence ratio. The authors compare computational solutions obtained using a time-dependent, two-dimensional adaptive low Mach number combustion algorithm that incorporates GRI-Mech 1.2 for the chemistry, thermodynamics and transport of the chemical species. The authors find that the circulation ... continued below

Physical Description

vp.

Creation Information

Bell, John B.; Brown, Nancy J.; Day, Marcus S.; Frenklach, Michael; Grcar, Joseph F. & Tonse, Shaheen R. December 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The interaction of a vortex pair with a premixed flame serves as an important prototype for premixed turbulent combustion. In this study, the authors investigate the interaction of a counter-rotating vortex pair with an initially flat premixed methane flame. The authors focus on characterizing the mechanical nature of the flame-vortex interaction and on the features of the interaction strongly affected by fuel equivalence ratio. The authors compare computational solutions obtained using a time-dependent, two-dimensional adaptive low Mach number combustion algorithm that incorporates GRI-Mech 1.2 for the chemistry, thermodynamics and transport of the chemical species. The authors find that the circulation around the vortex scours gas from the preheat zone in front of the flame, making the interaction extremely sensitive to equivalence ratio. For nearly stoichiometric cases, the peak mole fraction of CH across the flame is relatively insensitive to the vortex whereas for richer flames they observe a substantial and rapid decline in the peak CH mole fraction, commencing early in the flame-vortex interaction. The peak concentration of HCO is found to correlate, in both space and time, with the peak heat release across a broad range of equivalence ratios. The model also predicts a measurable increase in C{sub 2}H{sub 2} as a result of interaction with the vortex, and a marked increase in the low temperature chemistry activity.

Physical Description

vp.

Notes

OSTI as DE00764363

Source

  • Twenty-Eighth International Symposium on Combustion, Edinburgh, Scotland (GB), 07/30/2000--08/04/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--44730
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 764363
  • Archival Resource Key: ark:/67531/metadc725160

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1999

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 4, 2016, 4:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bell, John B.; Brown, Nancy J.; Day, Marcus S.; Frenklach, Michael; Grcar, Joseph F. & Tonse, Shaheen R. The effect of stoichiometry on vortex flame interactions, article, December 1, 1999; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc725160/: accessed August 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.