Optical spectroscopy of strongly correlated electron systems

PDF Version Also Available for Download.

Description

In this thesis, both time-resolved, nonlinear optical spectroscopy and linear spectroscopy are used to investigate the interactions and dynamics of elementary excitations in strongly correlated electron systems. In the first part, we investigate the renormalization of magnetic elementary excitations in the transition metal oxide Cr{sub 2}O{sub 3}. We have created a non-equilibrium population of antiferromagnetic spin waves and characterized its dynamics, using frequency- and time-resolved optical spectroscopy of the exciton-magnon transition. We observed a time-dependent pump-probe line shape, which results from excitation induced renormalization of the spin wave band structure. We present a model that reproduces the basic characteristics of ... continued below

Physical Description

vp.

Creation Information

Schumacher, Andreas B. February 27, 2001.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

In this thesis, both time-resolved, nonlinear optical spectroscopy and linear spectroscopy are used to investigate the interactions and dynamics of elementary excitations in strongly correlated electron systems. In the first part, we investigate the renormalization of magnetic elementary excitations in the transition metal oxide Cr{sub 2}O{sub 3}. We have created a non-equilibrium population of antiferromagnetic spin waves and characterized its dynamics, using frequency- and time-resolved optical spectroscopy of the exciton-magnon transition. We observed a time-dependent pump-probe line shape, which results from excitation induced renormalization of the spin wave band structure. We present a model that reproduces the basic characteristics of the data, in which we postulate the optical nonlinearity to be dominated by interactions with long-wavelength spin waves, and the dynamics due to spin wave thermalization. Using linear spectroscopy, coherent third-harmonic generation and pump-probe experiments, we measured the optical properties of the charge-transfer (CT) gap exciton in Sr{sub 2}CuO{sub 2}Cl{sub 2}, an undoped model compound for high-temperature superconductors. A model is developed which explains the pronounced temperature dependence and newly observed Urbach tail in the linear absorption spectrum by a strong, phonon-mediated coupling between the charge-transfer exciton and ligand field excitations of the Cu atoms. The third-order nonlinear optical susceptibility within the Cu-O plane of Sr{sub 2}CuO{sub 2}Cl{sub 2} is fully characterized in both amplitude and phase, and symmetry based conclusions are made with respect to the spatial arrangement of the underlying charge distribution. Theoretical considerations ascribe a newly reported resonance in the third-order nonlinear susceptibility at 0.7 eV to a three-photon transition from the ground state to the charge-transfer exciton. An even parity intermediate state of Cudd character, is found to contribute to the transition. Finally, preliminary results of time-resolved pump-probe spectroscopy confirm that the CT exciton or one of its constituent parts couples strongly to phonons, and we suggest ultrafast thermalization with the lattice as the dominating mechanism underlying the dynamical properties.

Physical Description

vp.

Notes

OSTI as DE00776655

Source

  • Other Information: TH: Thesis (Ph.D.); Submitted to the Technical Univ. of Karlsruhe (DE)

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: LBNL--47562
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 776655
  • Archival Resource Key: ark:/67531/metadc724882

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • February 27, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 5, 2016, 5:38 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Schumacher, Andreas B. Optical spectroscopy of strongly correlated electron systems, thesis or dissertation, February 27, 2001; California. (digital.library.unt.edu/ark:/67531/metadc724882/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.