13th TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

PDF Version Also Available for Download.

Description

Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a ... continued below

Physical Description

Medium: P; Size: 321 pages

Creation Information

BARNES, C. July 1, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K{sub i}. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0} {approx} 2 kG, <n{sub e}> {approx} 10{sup 13} cm{sup -3} and T{sub e} {approx} 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be {le} T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below T{sub e}. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where {omega}{sub pe} >> {Omega}{sub ce}.

Physical Description

Medium: P; Size: 321 pages

Notes

INIS; OSTI as DE00769033

Source

  • 13th Topical Conference on High Temperature Plasma Diagnostics, Tucson, AZ (US), 06/18/2000--06/22/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-00-2564
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 769033
  • Archival Resource Key: ark:/67531/metadc724842

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 2000

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 10, 2016, 11:02 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 14

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

BARNES, C. 13th TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM, article, July 1, 2000; New Mexico. (digital.library.unt.edu/ark:/67531/metadc724842/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.