A CYLINDRICALLY SYMMETRIC UNIAXIAL PML MAXWELL SOLVER FOR TRANSIENT ATMOSPHERIC ELECTRICITY SIMULATIONS

PDF Version Also Available for Download.

Description

The recent interest in high altitude discharges known as red sprites, blue jets, and elves has stimulated the modeling of transient atmospheric electricity. The modeling of these high altitude discharges require an initiating cloud-to-ground or intracloud lightning event in order to pre-condition the electric field between the cloud tops and the ionosphere. In this short paper we describe a finite difference time domain (FDTD) numerical solution of Maxwell's equations based on the Yee (Yee 1966) algorithm coupled with a uniaxial perfectly matched layer (PML, Berenger 1994) boundary treatment. The PML theory has advanced considerably since its original formulation in cartesian ... continued below

Physical Description

2700 Kilobytes pages

Creation Information

SYMBALISTY, E. M. July 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The recent interest in high altitude discharges known as red sprites, blue jets, and elves has stimulated the modeling of transient atmospheric electricity. The modeling of these high altitude discharges require an initiating cloud-to-ground or intracloud lightning event in order to pre-condition the electric field between the cloud tops and the ionosphere. In this short paper we describe a finite difference time domain (FDTD) numerical solution of Maxwell's equations based on the Yee (Yee 1966) algorithm coupled with a uniaxial perfectly matched layer (PML, Berenger 1994) boundary treatment. The PML theory has advanced considerably since its original formulation in cartesian coordinates for lossless media, and is computationally efficient to implement. Another boundary treatment possibility for our sources that produce radiative and electrostatic fields, which we do not consider here, is a multipole expansion in the time domain for the electromagnetic fields.

Physical Description

2700 Kilobytes pages

Source

  • Conference title not supplied, Conference location not supplied, Conference dates not supplied

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-3630
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 783139
  • Archival Resource Key: ark:/67531/metadc724749

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 29, 2016, 4:26 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

SYMBALISTY, E. M. A CYLINDRICALLY SYMMETRIC UNIAXIAL PML MAXWELL SOLVER FOR TRANSIENT ATMOSPHERIC ELECTRICITY SIMULATIONS, article, July 1, 2001; New Mexico. (digital.library.unt.edu/ark:/67531/metadc724749/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.