Control and Elimination of Cracking of AlGaN Using Low-Temperature AlGaN Interlayers

PDF Version Also Available for Download.

Description

We demonstrate that the insertion of low-temperature (LT) AlGaN interlayers is effective in reducing mismatch-induced tensile stress and suppressing the formation of cracks during growth of AlGaN directly upon GaN epilayers., Stress evolution and relaxation is monitored using an in-situ optical stress sensor. The combination of in-situ and ex-situ. characterization techniques enables us to determine the degree of pseudomorphism in the interlayers. It is observed that the elastic tensile mismatch between AlGaN and GaN is mediated by the relaxation of interlayers; the use of interlayers offers tunability in the in-plane lattice parameters.

Physical Description

15 p.

Creation Information

Han, Jung; Waldrip, Karen Nmn; Lee, Stephen R.; Figiel, Jeffrey J.; Hearne, S. J.; Petersen, Gary A. et al. September 13, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 51 times. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We demonstrate that the insertion of low-temperature (LT) AlGaN interlayers is effective in reducing mismatch-induced tensile stress and suppressing the formation of cracks during growth of AlGaN directly upon GaN epilayers., Stress evolution and relaxation is monitored using an in-situ optical stress sensor. The combination of in-situ and ex-situ. characterization techniques enables us to determine the degree of pseudomorphism in the interlayers. It is observed that the elastic tensile mismatch between AlGaN and GaN is mediated by the relaxation of interlayers; the use of interlayers offers tunability in the in-plane lattice parameters.

Physical Description

15 p.

Notes

OSTI as DE00762145

Medium: P; Size: 15 pages

Source

  • Journal Name: Applied Physics Letters; Other Information: Submitted to Applied Physics Letters

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND2000-2261J
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 762145
  • Archival Resource Key: ark:/67531/metadc724589

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 13, 2000

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • July 30, 2020, 1:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 51

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Han, Jung; Waldrip, Karen Nmn; Lee, Stephen R.; Figiel, Jeffrey J.; Hearne, S. J.; Petersen, Gary A. et al. Control and Elimination of Cracking of AlGaN Using Low-Temperature AlGaN Interlayers, article, September 13, 2000; Albuquerque, New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc724589/: accessed April 25, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen