Title: HIGH-FIELD MAGNETIZATION IN THE MOTT-HUBBARD SYSTEM (Y,Ca)VO₃

Author(s): H. NAKOTTE AND A.M. ALSMADI
Physics Department, New Mexico State University
Las Cruces NM 88003
H. KAWANAKA
AIST, Tsukuba, Ibaraki 305, Japan
K. KINDO AND K. GOTO
Kyokugen Osaka University, Toyonaka Osaka, 560-8531, Japan

Submitted to:
HIGH-FIELD MAGNETIZATION IN THE MOTT-HUBBARD SYSTEM
(Y,Ca)VO$_3$

H. NAKOTTE AND A.M. ALSMADI

Physics Department, New Mexico State University
Las Cruces NM 88003
E-mail: hnakotte@nmsu.edu

H. KAWANAKA

AIST, Tsukuba, Ibaraki 305, Japan

K. KINDO AND K. GOTO

Kyokugen Osaka University, Toyonaka Osaka, 560-8531, Japan

We measured the magnetization of Y$_{1-x}$Ca$_x$VO$_3$ compounds with 0 \(\leq x \leq 0.6\) in pulsed magnetic fields up to 56 T. YVO$_3$ exhibits a slightly S-shaped magnetization curve with an inflection point at \(B_c = 42\) T. The critical field \(B_c\) was found to decrease with increasing calcium content, and no sign of an S-shape is seen for the compound with \(x = 0.6\), which is at the boundary of the metal-to-insulator transition. Our data provide further evidence that the metal-to-insulator transition in this system coincides with the transition from a paramagnetic to a magnetic ground state.

1 Introduction

Strong on-site Coulomb repulsion between \(3d\) electrons can cause an integer-filled \((3d^N)\) system to be insulating. This leads to a possible formation of a Mott insulator, where the charge gap is determined by the Hubbard splitting (U) of the \(d\) band [1]. YVO$_3$ is such a Mott insulator and it exhibits two magnetic transitions at about 120 and 85 K [2]. The interactions in the phase AF1 (85 K < T < 120 K) are predominantly antiferromagnetic, while an additional small but significant ferromagnetic component was established for the low-temperature magnetic phase AF2 (T < 85 K). The Mott-Hubbard compound CaVO$_3$, on the other hand, is non-magnetic and it exhibits metallic conductivity at low temperatures [3]. Substitution of calcium onto the yttrium sites in YVO$_3$ causes an insulator-to-metal transition at about 60% of calcium content [4].
2 Sample Preparation and Characterization

We prepared 11 different $\text{Y}_{1-x}\text{Ca}_x\text{VO}_3$ compounds with increasing Ca content with a step size of $x = 0.1$. All samples were prepared by mixing stoichiometric amounts of high-purity starting material of Y_2O_3, V_2O_3, CaO and VO. After subsequent annealing under Ar and H atmosphere at 1000-1300°C, the polycrystals were grown using the floating-zone method. The quality and homogeneity of the samples was checked by X-ray diffraction, and the oxygen content was determined by thermal-gravity analysis. In all cases, we found single-phase samples with the desired oxygen content close to 3 (within 2%).

Next, we measured the magnetic susceptibility and electrical resistivity of all $\text{Y}_{1-x}\text{Ca}_x\text{VO}_3$ samples. Two magnetic transitions were found in YVO_3 and $\text{Y}_{0.9}\text{Ca}_{0.1}\text{VO}_3$, while only one magnetic transition could be identified for compounds with $0.2 \leq x \leq 0.6$. No magnetic ordering was detected for compounds with $x > 0.6$. The transport measurements revealed high room-temperature resistivity values and insulating behaviour for $x \leq 0.6$, while samples with higher Ca content show a more metallic behaviour. The results are summarised in Fig. 1.

Figure 1. Concentration dependence of the ordering temperatures (circles, left axis) and room-temperature resistivity values (triangles, right axis) of $\text{Y}_{1-x}\text{Ca}_x\text{VO}_3$ compounds. Note, that a metal-to-insulator transition occurs around $x = 0.65$, which is close to a paramagnetic-to-(antiferro)magnetic transition. Lines are guides to the eye.

3 High-Field Magnetization: Procedure and Results

The magnetically-ordered $\text{Y}_{1-x}\text{Ca}_x\text{VO}_3$ compounds with $0 \leq x \leq 0.6$ were ground to fine powders, which could be considered to consist of single-crystalline particles. The magnetization experiments were performed at 4.2 K on powders with particles free to be rotated by the applied field using a pulsed magnet at the High-
Field Facility in Osaka, Japan. Data were collected on field-oriented powders during the field-down sweep. This way, the magnetic response is believed to represent the easy-axis response of the material.

Fig. 2a shows the change in the magnetic response of YVO$_3$ and Y$_{0.9}$Ca$_{0.1}$VO$_3$. Compared to YVO$_3$, Y$_{0.9}$Ca$_{0.1}$VO$_3$ exhibits a substantially large high-field susceptibility. Since only the change in magnetization is recorded, these experiments do not provide any measure of a possible spontaneous moment that is present in the AF2 phase, which is believed to be the ground state of these two compounds. Both compounds exhibit slightly S-shaped magnetization curves with inflection points B_c that we determined from the maxima in the derivative dM/dH (see inset of Fig. 2a). In Fig. 2b, the magnetic response of the other Y$_{1-x}$Ca$_x$VO$_3$ is shown. For these compounds (with an AF1 ground state), the overall magnetization decreases with increasing Ca content. Similarly to the former two compounds, we find an S-shaped magnetization curve for all samples except for Y$_{0.4}$Ca$_{0.6}$VO$_3$. For the other compounds, the inflection points B_c are found decrease approximately linear with increasing Ca content (see Fig. 3), and an extrapolation indicates that $B_c \not\geq 0$ T for Y$_{0.6}$Ca$_{0.6}$VO$_3$.

![Figure 2](image1.png)

Figure 2. Magnetic response of Y$_{1-x}$Ca$_x$VO$_3$ compounds at 4.2 K with Ca concentration x of a.) 0.0 and 0.1 and b.) 0.2, 0.3, 0.4, 0.5 and 0.6. In the inset, the derivative of the magnetization as a function of applied field is shown for the first two compounds. The arrows indicate the positions of the critical fields B_c.

4 Conclusion

We measured the magnetic response of magnetically-ordered Y$_{1-x}$Ca$_x$VO$_3$ compounds in magnetic fields up to 56 T. S-shaped magnetization curves provide evidence of a critical field B_c, at which antiferromagnetic interactions start to break up. However, these compounds show no (or little) tendency toward saturation even
Figure 3. Concentration dependence of the critical field B_c in magnetically-ordered $Y_{1-x}Ca_xVO_3$ compounds.

at the highest field applied. Increasing the Ca content decreases the critical field B_c, and no S-shape is found for $Y_{0.8}Ca_{0.2}VO_3$ which is at the boundary of the insulator-to-metal transition. Thus, we may argue that strong antiferromagnetic interactions are responsible for the insulator-to-metal transition in the $Y_{1-x}Ca_xVO_3$ system.

This work was supported by a grant from NSF (grant number: DMR-0094241). HN would also like to acknowledge some support from the Science and Technology Agency (STA), Japan.

References