MILAGRO IMPLICIT MONTE CARLO: NEW CAPABILITIES AND RESULTS

PDF Version Also Available for Download.

Description

Milagro is a stand-alone, radiation-only, code that performs nonlinear radiative transfer calculations using the Fleck and Cummings method of Implicit Monte Carlo (IMC). Milagro is an object-oriented, C++ code that utilizes classes in our group's (CCS-4) radiation transport library. Milagro and its underlying classes have been significantly upgraded since 1998, when results from Milagro were first presented. Most notably, the object-oriented design has been revised to allow for optimal stand-alone parallel efficiency and rapid integration of new classes. For example, the better design, coupled with stringent component testing, allowed for immediate integration of the full domain decomposition parallel scheme. (It ... continued below

Physical Description

262 Kilobytes pages

Creation Information

URBATSCH, T. & EVANS, T. December 1, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Milagro is a stand-alone, radiation-only, code that performs nonlinear radiative transfer calculations using the Fleck and Cummings method of Implicit Monte Carlo (IMC). Milagro is an object-oriented, C++ code that utilizes classes in our group's (CCS-4) radiation transport library. Milagro and its underlying classes have been significantly upgraded since 1998, when results from Milagro were first presented. Most notably, the object-oriented design has been revised to allow for optimal stand-alone parallel efficiency and rapid integration of new classes. For example, the better design, coupled with stringent component testing, allowed for immediate integration of the full domain decomposition parallel scheme. (It is a simple philosophy: spend time on the design, and debug early and once.) Milagro's classes are templated on mesh type. Currently, it runs on an orthogonal, structured, not-necessarily-uniform, Cartesian mesh of up to three dimensions, an RZ-Wedge mesh, and soon a tetrahedral mesh. Milagro considers one-frequency, or ''grey,'' radiation with isotropic scattering, user-defined analytic opacities and equation-of-state, and various source types: surface, material, and radiation. Tallies produced by Milagro include energy and momentum deposition. In parallel, Milagro can run on a mesh that is fully replicated on all processors or on a mesh that is fully decomposed in the spatial domain. Milagro is reproducible, regardless of number of processors or parallel topology, and it now exactly conserves energy both globally and locally. Milagro has the capability for EnSight graphics and restarting. Finally, Milagro has been well verified with its use of Design-by-Contract{trademark}, component tests, and regression tests, and with its agreement to results of analytic test problems. By successfully running analytic and benchmark problems, Milagro serves to integrally verify all of its underlying classes, thus paving the way for other service packages based on these classes.

Physical Description

262 Kilobytes pages

Source

  • Conference title not supplied, Conference location not supplied, Conference dates not supplied

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-00-6118
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 772826
  • Archival Resource Key: ark:/67531/metadc724389

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 2000

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 22, 2016, 6:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

URBATSCH, T. & EVANS, T. MILAGRO IMPLICIT MONTE CARLO: NEW CAPABILITIES AND RESULTS, article, December 1, 2000; New Mexico. (digital.library.unt.edu/ark:/67531/metadc724389/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.