
X%,
,’> c1 (-,

--v-
.

-.-./’P---(’

\

SANDIA REPORT
SAND98-2664
Unlimited Release
Print&l December 1998
Seco<~Printing.Oc~ber 2000 .

~;; $$ ‘y~ ~ L

Multimedia Feedback Systems fors! \-[

/ \ ‘-,..-./-’”’ /’
Michaefi’McDonald)Eric J. Gottlieb, Scott.Gla~ell and Cara L. Slutter

// \{
P}epared by

/

andia National Labor tories
/

Albuquerque, New Me?ico 87185 and Livermore, California 94550
/ /

Sandia is a mul~program laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the U~fied States Department of
Energy und~{Contract DE-AC04-94)L85000.

/

fl~’Approved for public release; further dissemination unlimited.

m
, Sandia National laboratories

i

a

oCT20 ~

,

—— —~,. ry–-,~,i.pil,7,,.,,,:.,:,, ;.. ,:,.;.=.?-y<>::v.:.,.,.,,.....,..r,4..-...k-., -: --?wmlT.,+W:,:<,.U,-,.... .,,,., ..,!........, , - , ;,--- —---~—..— -—-.—--

— .

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Government,
nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government,
any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. BOX 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@,adonis .osti.gov

Online ordering: http:f /www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Ma.ik orders@~ tis.fedworld.gov

Online orde~ http:/ /www.ntis.gov/ordering. htm

I

I

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

-. ,, ,, -,..-,-~.~ .. , . . , ,mT,- , —.,.-,--- -.

,

t

,

Page 1

. ,,;.,,,~---..,. ,. z , ...?..,.sm.-~,,,.-,., ,,.<, ., ..., —~-..-<.~-,.~ ,..+- .,.~.,.,”.. ---- -— --

Fortunately, the web can also be a useful tool for collecting peer and customer review information. When
properly formed, web reports, movies, and VRML animations can be readily linked to review notes. This paper
describes three multimedia feedback systems that Sandia National Laboratories has developed to tap that
potential. Each system allows people to make context-sensitive comments about specific web content and
electronically ties the comments back to the web content being referenced. The first system ties comments to
specific web pages, the second system ties the comments to specific frames of digital movies, and the third ties
the comments to specific times and viewpoints within 3D animations. In addition to the technologies, this paper
describes how they are being used to support intelligent machine systems design at Sandia.

SAND98-2664
Unlimited Release

Printed December 1998 Qsxl

Second Printing October 2000

The only change to this report is the distribution limitation, which has changed from
Internal Distribution Only, Patent Caution and Sandia Commercially Valuable
Information to Unlimited Release

Multimedia Feedback Systems for Engineering

Michael J. McDonald, Eric J. Gottlieb,
Scott Gladwell and Cara L. Slutter

Intelligent Systems and Robotics Center
Sandia National Laboratories

P.O. BOX 5800-1004
Albuquerque, NM 87185-1004

Abstract

The world wide web has become a key tool for information sharing. Engineers and scientists are finding that
the web is especially suited to publishing the graphical, multi-layered information that is typical of their
work. Web pages are easier to distribute than hardcopy. Web movies have become more accessible, in many
offices, than videos. Good VRML viewing software, bundled with most new PCs, has sufficient power to
support many engineering needs.

In addition to publishing information, science and engineering has an important tradition of peer and customer
review. Reports, drawings and graphs are typically printedj distribute~ reviewe~ marked up, and returned to
the author. Adding review comments to paper is easy. whe~ however, the information is in electronic form,
this ease for review goes away. It’s hard to write on videos. It’s even harder to write comments on animated
3D models. These feedback limitations reduce the value of the information overall.

Contents

I. Introduction . Page 3
2. Web Page Commenting ...5
2.1 Passing URLs From Sourceto Comment Page ...5
2.2 Remembering UserData and OtherTricks ...7
2.3 Storing and Retrieving Comments 9 ...9
3. Digital Movie Commenting ...13
3.1 Connecting the Applet to a Database through the Network13
3.2 Applet Support for Movie Playback ..14
4. 3DAnimation Commenting ...16
4.1 VRML Model Construction ...16
4.2 Controlling VRMLModels through the EIA . 18
4.3 Adding and Reviewing Animation Comments . 20
5.Testing ..21
6. Conclusions ...22
7. End Notes ...23

Figures

l: Order ofpages userseeswhen making acommentvia theweb.Page5
2: Basic elements ofcommenting system ...6
3: Web to DatabaseArchitecture ...9
4: Connecting a MicrosoftAccess database to an ODBC data source10
5: Sandia’s Digital Movie Commenting System ..12
6: Network Diagram ofSandia’s Digital Movie Commenting System14
7: VRMLrouting required foranimation control . 17
8: VRMLto Java Mapping viaElA Interface ...19
9: VRMLCommenting System User Interface .21

I

Page 2

1 Introduction
The purpose of Computer Aided Design (CAD) and Computer Aided Engineering (CAE -- including simula-
tion) tools are to help the engineer develop and refine design concepts and generate information that others
can use to produce the designs or further the concept. As a resul~ the tools are oflen built to be result-oriented.
That is, the tools are typically designed to allow the engineer to develop an idea and pass the result on to oth-
ers.

Conversely, in collaborative, multi-person efforts, the need is to allow several people to review the work while
it is still in process. This means that the data must be accessible at various stages of completion. For example,
CAE models must be reviewed before they are ready to produce answers or machine tool programs.

Traditionally, engineers who wish to review models must use the software used to create the data.
Unfortunately, as the Computer Aided Design Report’ (CAD Report) points out

Modem manufacturing organizations employ many types of CAD, graphics and text files in
hundreds of different formats. People-including planners, purchasing agents, production
workers and component suppliers – need to view and use these files . .. CAD and engineer-
ing software is too complex and too costly to put on every worker’s desk just to view design
data.

Several commercial software packages have been developed to allow people to view various forms of CAD
data, These basically fall under the categories of general viewing software and data-specific codes. For exam-
ple, Adobe Exchange and Acrobat are often used to generate and share electronic paper copies of CAD draw-
ings (as well as to share electronic paper versions of output fkom other programs.) The CAD Report provides a
good description of the state of the art in this domaim

There are dozens, if not hundreds, of document and model viewers available. Some propri-
etary viewers will interpret only one type of file. Most viewing soflsvare used in conjunction
with engineering systems must handle many different formats Unfortunately, no one pro-
gram handles all available formats If your engineering drawings are filly dimensioned
and workers are not supposed to scale them, then the best formats are compressed raster or
Adobe PDF. Both have been used successfidly by a number of companies. Both formats are
diflicult to alter. Both can be marked up using various viewing and markup programs. Both
PDF and raster are derivatives of printer- and plotter-output formats, so most CAD systems
can produce them.
.. .
Some proprietary viewers allow workers to measure entities on CAD drawings. Native CAD
viewers also have the advantage of not requiriig conversion or processing before distribu-
tion. And recipients with the right software can modi~ them. The disadvantages of native
CAD formats are several. First, CAD files can be altered by anyone with the right software.
Second, CAD files are hard to read accurately (Third) is that few companies use one
CAD system anymore. Supporting a multiplicity of file formats adds to the cost of electronic
document distribution while providing few benefits to users of the data.
.. .
Some makers of viewing software are now trying to provide ways to view 3D CAD data, but
accurate presentation of 3D data is an order of magnitude more dXllcuh than 2D viewing
It also is diflicult to associate comments and edits with 3D geometry. AutoVue . .. and
Myriat 4.0 ..., for example, can display 3D da~ but comments and notations are done on
2D views of the data. It may take a large number of these 3D snapshots to document needed
changes on a model IntraVkion 3.0 lets users attach a comment to a 3D model, rotate the
part, and attach another comment to another view. (SolidWorks gives its viewer away.
Parametric Technology charges nearly $1,000 for its viewer).

Page 3

_.. ...

.

For 3D animated simulations, such as those produced by IGRIP, the situation is even worse. Currently, the
only commercially available Deneb’s IGRIP simulation viewing software is, for example, the original $70K
simulation software configured with the same options as the original, or a run-only version costing $25K plus
options. Marketing of a low-cost ($3K) “simulation viewer” is being considered. Lack of cross-platform sup-
port fi,u-therlimits the value of these viewing packages.

For most 3D simulators, the alternative is to create a movie (whether in tape or its digital equivalent). While
valuable, movies lack much of the information of the original and are, in addition, difficult to share. Beyond
the obvious loss of 3D-scene navigation, video movies, for example, have the same resolution as the smallest
available computer monitors and, for practical reasons, digital movies must often be generated at even lower
resolutions. For example, a good 30-second video-resolution (640 x 480 pixel, 30 @s) digital movie can take
several hours of computer processing to generate (compress) and the resulting movie will typically be several
to several hundred megabytes in size. As a result, most movies are generated at % or % frame resolution and
lower flame rates.

Further limiting the practicality of sharing 3D data is the related problem of generating comments in the 3D
outputs. As noted, by CAD Review,

Managers and engineers who review drawings often have to make comments or edits on
drawings or other documents After reviewing the 3D viewing sofhvare of a number of
leading companies, we’re forced to conclude that this sofhvare is not ready for mass distri-
bution We found the user interfaces to be awkward and the on-line help to be baffling
The lighting models employed by most of the 3D viewers we looked at are grotesque The
measuring tools leave much to be desired. Most don’t handle assemblies well. Most firms
will not yet find 3D model distribution to be a substitute for drawings.

Finally, engineered systems are not only about CAD and CAE models. TWically, they include descriptive text,
tabular data, pictures, sketches, and process diagrams. This combined information needs to be collected in
context and reviewed as collections, and not as individual elements. Currently, the HTML and PDF formats
are among the few electronic alternatives for producing this information as collections. Here, HTML has the
advantage of providing efilcient (smaller files, less data transfer) ways for presenting the collections while the
PDF format has the advantage of presenting the material in easy-to-print representations. Fortunately, the
openness of both PDF and HTML support easy development of hybrid complex documents.

As noted earlier, the PDF format does let reviewers make comments on specific content. The mechanisms are
very easy to use. However, because the comments are stored within the original file, it is difficult to collect
comments from several people. Here, an editor must collect the individual PDF files and then reproduce the
comments in a single “master.” In addition, electronically transfeming larger files (i.e., files with movies) just
to transfer a few bytes of comment text can be cumbersome.

The needs, therefore, are for electronic formats that can serve a broad variety of engineering purposes and be
adapted to electronic feedback systems that work as a natural extension to those forms. The remainder of this
document describes three technologies that we developed to satisfy these needs. Section 2 describes an elec-
tronic feedback system that interoperates with regular web pages to allow reviewers to comment on web page
content. Sections 3 and 4 describe a feedback tool that allows engineers to add annotated bookmarks to normal
digital movies and animated 3D VRML models. In addition, Section 4 describes unique VRML construction
techniques that allow models to be easily reviewed. Sections 5 and 6 discuss applications where these tools
have been tested and provide closing remarks about the technologies.

Page 4

2 Web Page Commenting
Sandia’s web page commenting feedback system fwst appears to reviewers as a “feedback” link on each
important web page of a report (see Figure 1). This link has a similar function as typical “mailto” links. Here,
however, clicking on this link brings the user to a highly automated “make a comment” web form where new
comments can be added or other people’s comments can be reviewed. In addition to making comments, users
can view other’s comments through a linked comment query page.

Figure 2 shows the basic process of submitting and viewing comments. When opened from a Source Page,
basic information is automatically filled into the comment form on the Make Comment Page. This information
includes the URL of the page the reviewer was viewing when they clicked the feedback button, the date, and
the reviewer’s name and email address (if the user has made comments in the past). The reviewer then writes
and categorizes the commen~ makes any necessary changes (e.g., to add or change their name or email
address), and submits the information to the web server.

Later, users submit search terms through a web form on the Report Query Page to generate custom reports of
reviewer comments (Report Pages). These reports display the comments and provide hyperlinks to the Source
Page that the comment refers to. Additional links let the reviewer respond directly to any prior comment or
send email to the reviewer. Comments about comments are entered as above. When reviewed, these comments
provide hyperlinks that generate custom reports that show the originating comment (i.e., links to generate
pseudo Source Pages), rather than the Source Page being commented on.

2.1 Passing URLS From Source To Comment Page
Specialized JavaScript code is used on the Source and Make Comment Pages of the commenting system to
automatically till in commenting data. A simple JavaScript call is used on the Source Page to attach its web
page location (URL) to the URL for the Make Comment Page. A set of JavaScript timctions are used on the
Make Comment Page to extract the Source Page URL, recall user information (tlom cookies) and copy this
data into the form fields.

The Make Comment Page URL accepts data in the same format as is generated by a “GET” form submission
that sets a variable called camefiom. For example, if the Source Page and Make Comment Page were located
at http://web_server/link/... and http://database_server/../add_commhtm.htm respectively, then calling the Make

-h -. .--.,++ Reviewer clicks “feedback” button

=m~ then

I

_. _ , -,7.-,-,.. 7*,. C-,T- :<. , ,. ., ,-,.?.-7 . . . “. ,. . . . <.4 ., -a, -. ,. ,!.. .,.! r. .-, ..-4, ---— .- --- T?:-: :- .
.- ..-7 .- . ,- —. —.... .

+

..&..*- ,-. .
~9 %

-—- ~—.
lh&4-A.t J+4a- Enters & submits comment via web

=?l:~ Others review com-
ments through cus-
tom reports and fol-
low-up via the web

,All review com-
ments are linked
to source pages

Figure 1: Order of pages user sees when making a comment via the web.

Page 5

Make Comment Page

I
4~

\
\
\

#ource Page URL Data sent to
\ \ <“ 0“ Categoty, Comment Database

#-
~.

Report Query Page
(~

Search Fields

Source page
URL links

+

Report Page
comment to

context Author, Date Data Extracted

Source Page URL & Formatted as

Category, Comment Web Page

I

Figure 2: Basic elements of commenting system

Comment Page with the following call would provide it with the Source Page location:

http: lldatabase_serverl. . /add_comment.htm?came from=http: //web_server/link/... &

Because this is a normal web call, a specific link could be generated for each web page of a report.
Unfortunately, this solution would be very diflicult to maintain. To reduce the need to generate custom HTML
code for each page, the “feedback” link can be automatically generated using a JavaScript call. This call can
then be wrapped inside an additional call to provide minimal iimctionality for users of browsers that don’t
have JavaScript. The resulting script is as follows:

<SCRIPT language =“JavaSc~ipt”> < !– –
document .write(’’<AHREF = http://database_server/.../add_comhtm?came?came from=”

+ location .href + “&>”)
//–></Script>>
feedback

Wlthinthe Make Comment Pages, aJavaScript finction calledWhereWasI() is usedto extract and parse the
Source Page URL. This function iscalled from aJavaScriptpage and executed after the page is built.
WhereWasIoisr eproduced below.

// Reads the search string to figure out what link brought it here
function WhereWasI() {

// Store search string in local variable
var handyString = window.location.search;
1/ Find the beginning of the 0~ variable
var startOfSource = handyString.indexOf (“came from=”);

// If the variable is defined, find the end of it
if (startOfSource != -1) {
var endOfSource = handyString.indexOf (’’&”,startOfSource+9);
// Look for special database query terminator
var end2 = O;
end2 = handyString.indexOf(” !“, startOfSource+9);
if (endOfSource > end2)

I

Page 6

var result = handyString.substring(startOfSource+9,
endOfSource);

else
var result = handyString.substring(startOfSource+9, end2);

}
else

var result = “Unknown”; // Could not find the “came from” string
return result;

}

The WhereWasIO script is invoked, for example, within the body text to fill the FORM named MyForm’s data
lNPUTnarnedReference withthefollowing code:

<SCRIPT language =“JavaScript”> <!–
document.MyForm.Reference.value = WhereWasI()

//-></SCRIPT>>

2.2 Remembering User Data and Other Tricks

Additional JavaScript code is used to reuse user information (name and email addresses) for successive com-
ments.Theweb browsing software’s “cookie’’mechanisms areusedtostore andretrievethis user information.
Custom date andformatting functions areused to correctlyforrnat the datetoconform with databaserequire-
merits. Form filling calls, like those usedtofillURL dataabove, isused towriteuserdata anddates onto the
form for user editing. This section describes how these functions are used.

Cookies are data packets that are stored on the user’s computer and are associated with web pages, collections
of pages, or whole domains. A JavaScript can create a cookie by setting the object document.cookie to a string
that contains the name and value of the cookie. An escape function is provided for encoding special characters
including spaces. Additional dat% including how long the computer should store the cookie (after which, it’s
deleted) or whether pages served from the current or other computers can look at the cookie can be added to
the cookie string.

For example, the following line of JavaScript would set a cookie value with an expiration date and access
qualifiers.

document.cookie = “foo=” + escape (value) + expString + pathString + domainStrin

The following generalized JavaScript fimctions are used to store and extract user information. An examination
of the code shows that the User Name and Email address values are made available to all isrc.sandia.gov
domain computers and that these values expire three months after a comment was made.

II SetCookie - Adds or replaces a cookie. Use null for parameters
// that you don’ t care about
function SetCookie (name, value, expires, path, domain, secure) {

var expString = ((expires == null)
? ~~~~ : (“; exPires=” + expires. toGMW.tr@ ()))

var pathString = ((path == null) ? ““ : (“; path=” + path))
var domai.nString = ((domain == null)

? ~~Jf: (”; domain=” + domain))
var secureString = ((secure == true) ? “; secure” : ““)
document.cookie = name + “=” + escape(value)

+ expString + pathString + domainString
+ secureString;

}

function saveUserID (){
var ThreeMonths = 3 * 30 * 24 * 60 ● 60 * 1000;
var expDate = new Dateo;
expDate.setTime (expiate.getTimeo + ThreeMonths);

Page 7

SetCookie (’’UserName”,document.MyForm.Name.value, expiate,’’/”,
“isrc.sandia.gov”, null)

SetCookie (’’UserEmail”,document.MyForm.EMail.value, expiate,’’/”,“isrc.san-
dia.gov”, null)
}

Setting document.cookie adds thedatato the browsersoftware’s cookie database. It does not, asthe syntax
implies, overwrite the value ofa variable nruneddocument.cookie. Ifthe same variable is stored fiomtwo dif-
ferentcontexts (web pages), thentwo copies ofthevariable/value page will recreated.

Once stored, the browser exposes the variable/value pairs or cookie values as a single string containing all the
variable/value pairs that are available within the context of the current page. If printed, the string might, for
example, look like “UserName=Bob;UserEmail=bobbie;” However, because the escape iimction is generally
used to store data, these values might not be in a readable form.

Retrieving cookies requires inspecting (parsing) the document. cookie string, looking for the fmt or all occur-
rences of the variable name string, and extracting the variable values. The following code can be used to
extract the first occurrence of a named cookie string. It must be noted, however, that additional occurrences, if
they exist, are ignored.

I
function GetCookie (name) {

var result = null;
var myCookie = “ “ + document.cookie + “;”;
var searchName = “ “ + name + “=”;
var startOfCookie = myCookie.indexOf (searchName)
var endOfCookie;
if (startOfCookie != -1) (

startOfCookie += searchName.length; // skip past cookie name
endOfCookie = myCookie.indexOf (”;”, startOfCookie);
result = unescape (myCookie .substring(startOfCookie, endOfCookie));

)
return result;

}

As a close inspection of the code above reveals, two cookies are used in the comment book. One stores the
reviewer’s name and the other, their email address. These cookies get stored when the user clicks the submit
button. This later automation is achieved by attaching the appropriate JavaScript fimction to the onSubmit key-
word in the “FORM” tag.

<FORM NAME=’’MyForm”ACTION=”AddComment.idc”
onSubmit=’’saveUserID()” METHOD=POST>

Cookie values are retrieved while the comment page is being loaded by the browser. Just as the loader reaches
the text input box for either the name or email, a line of JavaScript is executed to get the appropriate cookie
and fill the blank in the form.

<INPUT TYpE=’’text”NAME=’’Name”VALUE=’’Anonymous”>
<SCRIPT language =“JavaScript”> < !–
document.MyForm.Name.value = GetCookie (“UserName”)
//–></SCRIPT>>

In a similar way to the reviewer name and email address values, a date value gets filled with the value
formatNowo (which means build a date that represents now). The date finction is obvious.

document.MyForm.Reference.value = WhereWasI ()
document.MyForm.Date.value = formatNow()

Page 8

3.3 Storing and Retrieving Comments.

Database interactions rely on standard HTML form SUBMIT (POST and GET) features, an SQL database sys-
tem, and special automation fictions from Microsoft’s Peer Web Server sofhvare including ODBC, SQL, and
dynamic HTML (HTX files).

The SUBMIT features in HTML (via POST or GET) provide two nearly transparent ways to send data to the
web server. Figure 3 shows and numbers the sequence of events.

(1) By clicking the SUBMIT linlGa web request is made to the IDC file with data attached via the
SUBMIT mechanism.

, (2&3) The Microsoft’s Peer Web Server software recognizes these JDC files, launches a program
module called httpodbc.dll through the Internet Server’s API, and passes it to the IDC file handle and
SUBMIT data.

“ (4& 5)Httpdodbc reads this data and forms an SQL request through the ODBC driver to the appro-
priate data source.

. (6 -9) The results of the SQL query (6) are returned through the ODBC driver (7) and then formatted
by httpodbc according to a custom HTX (8) file to produce a “regular” HTML file (9) that contains
the formatted results of the web request.

~ (10) Finally, the Peer Web Server returns this HTML file to the requesting browser (10).

The peer web server does not differentiate between data submitted by either the POST or GET methods. Thus,
for the user, the major difference between POST and GET is whether the data is hidden or exposed to the user.
[n addition, because the “GET” method can only transfer 256 characters, “POST” is required for large data
transfers. Names of data values are defined within the HTML code.

The IDC file, which Httpodbc.dll reads, contains names of an htnd template file (with an extension .htx) and
an ODBC-compliant SQL database source, as well as an SQL query that is formatted in accordance with the

-’:> Peer Web Server Application Programming Interface

WWvV Service

4

IDC File 2 9 HTX File

3 v 8
httpodbc.dll

44 7+

+

w5 6

.-

@

Access
Database

Figure 3: Web to Database Architecture

Page 9

I
.. ’-. .:... ’-1 I

,,, ,, ...

D*++!iy ~ ~{
~w .

~

,-D#AauJ ,, J&!_i....’.

————-—_- ——

Figure 4: Connecting a Microsotl Access database to an ODBC data source.

database system (here, Access). Data transfemed from the SUBMIT can be used as part of this query. The
Httpdodbc.dll program reads the file, performs the SQL queries, and returns the results according to the htx
file format.

For example, the following IDC file, named add_comment.idc, is used to store comment data from a
SourceOpening datasource.

Datasource: SourceOpening
Username: sa
Template: AddComment.htx
RequiredParameters: Name
SQLStatement:
+ INSERT INTO Review
+ (Name, email, DateOfComment, Category, Reference, Comment)
+ VALUES (‘%Name%’, ‘%email%~, ‘%Date%’, ~%category%r ,

+ ‘%Reference%’, ‘%Conunent%’);

This file, while small, contains all the essential elements to translate the data in the web SUBMIT action into a
database query, send the query to the right database, and return the results to a formatter file. The database
query is formed as an SQL statement (last item), the database is referenced as the DataSource (first item), and
the formatter file is referenced as the Template. (A usemame field is provided for high-end datasources.)

ODBC-complirmt SQL data sources can be built using Microsoft Access. Alternatively, higher-end database
tools like Microsoft SQL Server can be used for high-volume uses. The Access database files (.mdb) must be
stored on the server and the ODBC control panel must be used to create a System data source and relate it to
the database. (This is done by clicking the System DSN page, “adding” a service, and “configuring” it by
selecting the appropriate database. The appropriate actions can be seen in Figure 4.)

While SQL statements are similar between databases, some differences exist. Thus, the SQL query must con-
form to the particular database (in this case Microsoft Access) being used. The most difficult issue of using

Page 10

I

Microsoft Access as an ODBC data source is that the SQL interface is not widely documented. The book
Access 97 Developer’s Handbook, SYBEX press, is a particularly useful source of the needed information.

The datasource, SourceOpening, was built by creating a database file with Microsoft Access. The database has
a table named Review with fields named Name, email, DateOfCommenl Category, Reference, and Comment.
(Note, SQL has a bug relating to using the word “date” as a field names.) This datasource was then published
or linked on the database server by using the ODBC control panel and named SourceOpening. (See Figure 4.)

INSERT statements, as used in the add_comment.idc file, are fairly straightforward. The statement references
the Review table and its fields an~ in addition, references, through substitution, the values of data defined in
the Make Comment Page’s FORM INPUT fields (named Name, email, Date, Category, Reference, and
Comment), The ODBC agent software (httpodbc.dll) substitutes the values of the data into the SQL call and
then makes the call to the datasource.

In the Make Comment Page’s case, the SQL statement petiorms an INSERT. That is, it creates a new record
and stores the data supplied by the Make Comment Page. Because the INSERT command does not return data,
the related template file, AddComment.htx, could be any html file. In this case, the file contains a simple
JavaScript function that shows the user that the data was added and automatically backs up to the page on
which the comment originated.

A more complex interaction can be found in the Report Query web pageslidl files. Here, search values are sent
from the web page to form the search. The SQL statement (below) then extracts lists of values for Name,
email, DateOfCommen~ Category, Reference and Comment.

+SELECT Name, email, DateOfComment, Category, Reference, Comment
+FROM Review
+WHERE Name LIKE ‘%Name%’ and (Category = ~%AuthEquipment%~ or Category =
‘%AuthProcess%’ or Category = %%EquipmentCost%’ or Category = ‘%AuthCostAnalysis%t
or Category = ‘%AuthGeneral%’ or Category = 1%AuthWeb%’)
+ORDER BY DateOfComment DESC

The SELECT statement returns a series of data records from the database. These records are then formatted in
accordance with a more complex htx file.

For example, the htx file used with the Report Query to build the Report Page looks like an html file with
additional lines of code shown below. Here, the special tags <%begindetail%> and <%enddet ail%> brack-
ets the section of code that generates html for each record. Values for Name, email, DateOfComment,
Category, Reference and Comment are inserted by using tags like <%Name%>.Additional HTML tags are used
for all formatting. A conditional, <%if CurrentRecord EQ O %>,is used to break the loop. (Additional
documentation on htx formatting can be found in chapter 8 of the peer web services documentation file /iisad-
min/htmldocs/08_iis.htm.)

<%begindetail%>
<%if CurrentRecord EQ O %>
<%endif%>
<P>
 Name: <%Name%> <A HREF-~ilto: <%email%>> <%email%>
<BIO
Date <%DateOfComment%>
 .snbsp Category: <%Category%>

Reference: <A HREF=<%Reference%>> <%Reference%>

COmment: <%Comment%>

<CENTEW<A HREF = “/CommentBook/html/add_comment. htm?came from=<%Reference%>&”>
Make Follow-Up Comment </C.ENTEIO
<hr>
<%enddetail%>
<%if CurrentRecord EQ 0 %>

Page 11

,

-~,. .-~, ..,,., , 7 .:;?, ~;-,-,.--.J~
-, w ,,. . . ., ,.-, ,..-. ,- .$4, , .4 , ..-,.

~m,ry=, -..

,, \..., - ,J.L.>.. .?. : ., , , --W7”-’.---V–-” --

—.—

<h2>Sorry, no entries match those criteria.</h2>
<hr>
<%enctif%>tmbsp;

Once formatted, the peer web server returm a regular-looking html file (the Report Page) to the user’s brows-
er. For example, the htx code fragment above generated the htrnl code below for one particular data query.

<P>
 Name: Michael J. McDonald mack@sandia.gov

Date 1998-08-18 08:20:00
 Category: General Comment
<BFOReference: <A
HREF=https: //gist.isrc .sandia.gov/-mack/ISRC_ONLY/Multimedia/htti/deneb_to_movie.html
>
https://gisc .isrc.sandia.gov/-mack/ISRC_ONLY/Multimedia/html/deneb_to_movie.html
<BrOComment: ~/B~ This page should say what the optimal size should be (either
490 or 480 pixels wide by about 370 high). Verify that this is a good size for scott
gladwell.

<CENTER><A HREF = “/GDPCommentBook/html/add_cononent.htm?came
from=https://gisc .isrc.sandia.gov/-mack/ISRC_ONLY/Multimedia/htti/deneb_to_movie.html— —
L“>
Make Follow-Up Comment </CENTER>
<hr>

Ma..-, ,,nn”.knm.

,+J:-.%- .-,,.:2 “ - - ; ‘. .’ .’;ml.. :-. .,, ... -,.. ...’.’”.
.,,., .,., q.<~..&,”.. ’.-..

iin:~~.. .._-....1 , ., ,.,.. - ‘-
12ue@Modq. .’ CSelet4!d.Cmments

.-- :
@’#Jlcqe&

3.0b30ks0kwt0 me.

<-,-. .,> .,
I Q I

lMack -1 I

Web Page

.lava Client Applet

Digital Movie:

Adownloadable QuickTimemovie

Movie Controls
Implemented with Java Media

Foundation (JMF)

Data-driven movie controls

Implemented as Remote Method
[nvovation (RMI) Client

,

Figure 5: Sandia ‘s Digital Movie Commenting System

Page 12

3 Digital Movie Commenting
Sandia’s digital movie commenting system appears as a movie player program with a few added controls, a
text input are% and a scrolling text display area (see Figure 5). Clicking on the “regular” control buttons caus-
es the movie to play, stop, or index as would be expected from any movie player program. Unlike a movie,
clicking on text (usually in the form of comments) causes the movie to advance to a special place within the
movie and adding text while the movie is paused causes the text to be added (along with identifying informa-
tion) to the list of other comments. Finally, clicking a “Save” button saves the comments for others to review.

Like the page-by-page commenting system, the people who generally use this tool do so to provide or review
detailed information about individual movies. Because the commenting system uses visual real estate, the tool
is frequently used in a “stand-alone” manner, apart from the content pages. That is, the user clicks on a pro-
vide/review comments about movie link and is then brought to the web commenting page.

Within the commenting system application, the commenting area is active whenever the digital movie has
stopped. A name text box allows users to use simple monikers to identify themselves and a commenting text
box allows users to enter comments. When the user presses a return from within the comment box, the name
and comment text “move” into a scrollable list of comments.

Whhin the Java code, the movie time is stored with each comment. This data is then reused, when the com-
ment is “selected” by the user, to adjust the movie time to correspond to the stored values.

When the applet is loaded, an RMI-based interface is queried to populate the scrollable comment box with
previously saved comments. Later, reviewers (users) are allowed to upload added comments to the remote
database. This uploading fimction is provided through the same RMI interlace.

The digital movie commenting system is built on several technologies (see Figure 5). Movies are created in
any of several formats (Sandla generally uses QuickTime Cinepac format) and stored on a web server. A single
Java applet is used to display the movie, provide controls, and interact with the remote database. The Java
applet uses the Java Media Foundation (JMF) class to implement movie controls, a Remote Method
Invocation’ (RMI) interface to a remote database to interact with the database, and standard awt Java widgets
package for other controls. An RMI-based server is used to communicate with the movie commenting system
client software and the Java ODBC package is used to let the server interact with an SQL-based database
(develope& for example, in Microsoft Access). A web page (HTML) is defined to define the page’s layout as
well as pointers to the movie source and java class files.

3.1 Connecting the Applet to a Database through the Network

Two different networking protocols are used to support the movie commenting system (see Figure 6). The fwst
is standard Hypertext Transfer Protocol (HTTP) which is used to serve the web page, the movie file, and the
Java client applet. The second protocol, RMI, is used to send and retrieve individual comments between the
Java client applet and a Java server applet. Whhin the server computer, the server program communicates with
a database via SQL calls made through an ODBC service.

For Java-related security reasons, RMI client applets are typically loaded tlom the same host computer that the
server applet is run from (this allows users to preven~ for example, remotely served Java applets from com-
municating with corporate Intranet data sources). Thus, the RMI server typically runs alongside a web server.
Our implementation uses windows to allow the RMI server program to communicate with an SQL database
through an ODBC service. Conversely, for other security and efilciency reasons (i.e., because NT is a limited
less reliable OS), it is often beneficial to load the remaining web content nom a second web server. This is
particularly true when the movie content is part of a larger web site or is being served in a secure mode.

The RMI has a unique way of working across fwewalls. First it attempts to communicate via a normal socket
(over the REGISTRY_PORT which has a default value of 1099). Next it tries to use the user’s HTTP proxy

Page 13

— .

Web Browser I
Web Content (movie and text) HITP Transfers

Movie (QuickTime) and Text (HTML)
Sources served from any web server

A
movie load adivated by

applet Web Database Server
I

I I

Java Client Applet Note Objects Via RMI
Java Server 4 SQL

Program Calls

Java Source Java Source must
(uploaded and started by HITP Transfer be served from

h

ODBC

browser) here)
Service

Figure 6: Network Diagram of Sandia’s Digital Movie Commenting System

(on port 80) to forward packets to the registry port. Finally, it attempts to execute an HTTP post method (over
port 80). The server computer must have its regisby port and should have port 80 directly accessible to cus-
tomers. Router-based fwewalls (especially Sandia’s ISRC EON network) are often configured to pass port
1099 communications by default but block port 80. Special arrangements may need to be made to provide the
widest-possible access to the RMI-based application. In addition, it should be remembered that some firewalls
(especially Sandia’s IN fuewall) do not allow this, or any Java-based application to be downloaded from
Internet or Sandia-EON site. As a result, this technology cannot be made accessible to these users.

The networking portion of Sandia’s commenting system’s use of the RMI closely follows Sun’s “getting start-
ed” documentation available at http://java.sun. corn/products/jdkkmihdex.html. A server interface is defined
as an extension to remote. This server interface is implemented in a second class that extends the java RMI
UnicastRemoteObject. This server implementation is nm on a web server as a java application (i.e., run within
jav% and not as an application). Finally, the movie player program (which runs in the user’s browser) commu-
nicates with the server applet over the RMI interface.

Unlike Sun’s demonstration code, our server implementation includes java SQL functions to query and store
data in an SQL database that is accessed through the ODBC interface. In addition, a serializable “Note” class
has been defined as a vehicle for storing data and transfer it between the client to server.

3.2 App/et Support for Movie Playback
Movie playing fimctions are supported through the emerging Java Media Framework API (JMF)~ JMF speci-
fies a simple, unified architecture, messaging protocol, and programming interface for media players, media
capture, and conferencing. JMF 1.0 supports the synchronization, control, processing, and presentation of
compressed streaming and stored time-based media, including video and audio.

The commenting system relies on JMF’s ability to play digital movies at the same efllciency as native viewers
(i.e., the QuickTime plug-in) while providing hooks that allow the application to seek to a new position in the
video file and initiate playback.

Each JMF Player has a Time Base that defines the flow of time for that Player. Within the commenting applet,

Page 14

Player’s media time (which represents the current position in the media stream) is stored with each comment.
When a Player is starte~ its media time is mapped to its time-base time. When a specific comment is selected,
the media time is advanced to the stored value.

According to the JMF documentation, 4“Java Media Player applets can be in one of six states. A Clock inter-
face defines the two primary states: Stopped and Started. To facilitate resource managemen~ the Controller
breaks the Stopped state down into five standby states: Unrealize~ RealWmg, Realized, Prefetching, and
Prefetched.”

In normal operation, a Player steps through each state until it reaches the Started state:
A Player in the Unrealized state has been instantiate~ but does not yet know anything about its
media. When a media Player is fwst created, it is Unrealized.
When Realize is called, a Player moves flom the Unrealized state into the Realizing state. A
Realizing Player is in the process of determining its resource requirements. During realization, a
Player acquires the resources that it only needs to acquire once. These might include rendering
resources other than exclusive-use resources. (Exclusive-use resources are limited resources such as
particular hardware devices that can only be used by one Player at a time; such resources are acquired
during Prefetching.) A Realizing Player often downloads assets over the net.
When a Player finishes Realizing, it moves into the Realized state. A Realized Player knows what
resources it needs and information about the type of media it is to present. Because a Realized Player
knows how to render its daa it can provide visual components and controls. Its comections to other
objects in the system are in place, but it does not own any resources that would prevent another
Player from starting.
When prefetch is called, a Player moves from the Realized state into the Prefetching state. A
Prefetching Player is preparing to present its media. During this phase, the Player preloads its media
data, obtains exclusive-use resources, and anything else it needs to do to prepare itself to play.
Prefetching might have to recur if a Player’s media presentation is repositioned, or if a change in the
Player’s rate requires that additional buffers be acquired or alternate processing take place.
When a Player finishes Prefetching, it moves into the Prefetched state. A Prefetched Player is ready to
be starte~ it is as ready to play as it can be without actually being Started.
Calling start puts a Player into the Started state. A Started Player’s time-base time and media time are
mapped and its clock is running, though the Player might be waiting for a particular time to begin
presenting its media data.

The Player posts TransitionEvents as it moves from one state to another. The ControllerListener interface pro-
vides away for the applet to determine what state a Player is in and to respond appropriately. Using this event
reporting mechanism, lets the applet to ensure that the Player is in an appropriate state before calling methods
on the Player.

Page 15

4 3D Animation Commenting
Sandia’s 3D animation commenting system appears and works much like the digital movie commenting sys-
tem. Here, however, the graphical animation is played in a Virtual Reality Modeling Language (VRML)
browser while the controls and comment editing areas appear in a separate Java applet window.

Whh Sandia’s commenting system, the VRML animation is controlled much like any digital movie. In addi-
tion, the VRML scene can be navigated (i.e., the viewpoint can be changed) as with any VRML animation.
Like the digital movie commenting system, users can stop the animation at any point in time, add comments,
and have the comments stored in a central repository. Unlike with digital movies, clicking on the comments
advances the viewpoint along with the time point in the animation.

The 3D animation commenting system is built on several technologies. Some of these technologies are only
supported through proprietary software environments, others are more general. In all cases, the general, exten-
sible principals were used to allow adopting emerging VRML browsers and programming features. These
technologies include

1. VRML and browser-embedded VRML browsers.
2. A Sandia-developed way to use of VRML’s key frame animation features.
3. Cosmo 3D’s EIA interface to VRML to allow setting various parameters in the VRML environment

from a Java applet.
4. The RMI-ODBC-SQL system used in the digital movie commenting system.

VRML (often pronounced ‘vermal’) is the file format standard for 3D multimedia and shared virtual worlds on
the Internet. W provides, structured graphics, and extra dimensions (depth and time) to the online experi-
ence. VRML applications range from business graphics to entertaining web page graphics, to manufacturing,
scientific, entertainment and educational applications, to shared virtual worlds and communities. Since its
inception in 1994, VRML has been an open standard. An 1S0 Standard VRML97 has been approved. The next
generation of VRML is under development.

VRML files contain geometric, animation, and program features. For example, a VRML file might define how
geometric models should move in response to user interactions. These VRML tiles are played in VRML
browsers that are typically run within web browsers. In particular, the Cosmo 3D player: required for Sandia’s
commenting system, runs from within Netscape and Explorer 4.0 browsers.

Sandia’s commenting system uses VRML files that are mainly built on general modeling and key-frame ani-
mation approaches. Models are constructed with kinematic structures that correspond to the simulated environ-
ment. As the simulation progresses, device and joint position and orientation changes are stored as key frames.
These files are described in Section 4.1.

Sandia’s comment recording application is written as a Java applet that communicates with a VRML browser
and a Java RMI-based database (like that described in Section 3). Both the applet and VRML browser are, in
turn, run inside a web browser. The Java to VRML communications are described in Section 4.2 and the inte-
grated system is described in Section 4.3.

, I

I

4.1 VRML Model Construction

Sandia’s VRML models are typically automatically produced fi-omsimulation or other CAE software tools. As
of this writing, Sandia has developed complete translators for Deneb Inc.>sEnvision (a robot simulation and
Vial Reality application development package) and Sandia’s Umbra (a simulator developed to support tele-
robotics, vehicles, small smart machine systems and machine simulator development) codes. In addition,
Sandia has developed a partial translator for its Archimedes assembly analysis code.

Page 16

Tjq)ically, these codes use 3D models for both simulation and visualization. The simulators compute the posi-
tions and possibly shapes of various geometric elements on a continually increasing time base. While the sim-
ulations only compute position of elements at specific time steps, the underlying assumption of the simulations
is that the real devices operate on a continuous time base. Due to the geometric nature of the environments
being simulated, a significant portion of the simulation results can be conveyed as 3D graphical animations.

To enable the commenting system, Sandia’s VRML files are constructed with a few specific features. Specific
objects or nodes are defined and these nodes must be connected or routed according to standard VRML prac-
tices. Three specific nodes, a Time Sensor, a Scalar Interpolator, and a Proximi~ Sensor are used as control
nodes for animation control.

Like all animations, a Time Sensor is used to provide a time base and duration for the animation. For synchro-
nization, a single time base is used. NexL a Scalar Interpolator with a 1:1 interpolation is used to provide a
hook for drMng the simulation from the Java applet in VCR-like fahion and advancing the simulation to
specified time points. A Proximity Sensor with an attached Viewpoint is used to provide a hook for recording
and re-using viewpoints through the Java applet. Motions are defined as key tlarne animations in terms of
Position and Orientation Interpolators while color and transparency changes are defined with Scalar
Interpolators. A Touch Sensor or equivalent node is used to allow the user to initiate animation by clicking on
any graphic element.

The elements are routed or connected as
shown in Figure 7. The Touch Sensor is
connected to the Time Sensor to provide a
mechanism for starting the animation
clock. The Time Sensor’s time base (frac-
tion changed) is routed to the 1:1 Scalar
Interpolator and, in turn, its output (value
changed) is routed to each of the Position,
Orientation, and Scalar Interpolators.
(Each Interpolator has a key frame/value
pair corresponding to each time the corre-
sponding geometric property changed.)
Finally, the outputs (value changed) of
these interpolators are connected to the
various geometric properties (i.e., set
translation, rotation, transparency, and
color.) The code for the routing operations
appears as follows.

DEE’CLOCK_TIME TimeSensor {
cycleInterval 32.9

}

DE)?MOVIE_TIME
ScalarInterpolator {

key [0.0 1.0]
keyValue [0.0 1.0]

}

ROUTE
CLOCK_TIME.fraction_changed
TO MOVIE_TIME.set_fraction

When the animation is loaded into a stand-
alone browser, activating the touch sensor

1

—.. ., ..-.”—,.— — -.—..—- .-, . , =.2!9,. ,, - -- =---- - >“- - —, ---— - — ---

verysp.ad

aMOVIEJIME
(ScaladnIetpOla@

set.hch

Valuqdwnged

aPOS-Geol
(P0si6coln!e@atc4
Wm?y frame data)

setJmc5m -

tie-changed

..

,
● 00 ● 00

Figure 7: VRML routing required for animation control.

Page 17

causes the animation to play. That is, the animation starts when the user “clicks” on any geometric element in
the scene. The activation causes the touch sensor to lookup the current clock time and pass that value into the
Tme Sensor’s Start Time. The Tne Sensor then begins to compute its ii-action changed value according to the
formula f = fractionalPart((tinze - startTime) / cycleInterval) until it reaches 1 (where it stays).

This fraction changed is passed to the first Scalar Interpolator, which passes its input value, now unchanged
onto the various (i.e., scalar, rotation, or visual) interpolators. These Interpolators then use their key frame data
to compute geometric properties (position, orientation, and visual) for the various geometric elements. The ele-
ments receive this data and move or change their displays in the world model.

It is worth noting, at this point, that due to the interpolation scheme used here, geometric motion does not
identically replicate simulated motion. The simulator computes geometric positions at times TI, T2..., Tn and
generates key frame data for these points in time. The VRML clock computes the time at slightly different
intervals and computes interpolated positions for the geometric elements. (The VRML browser sets these
intervals to make the total simulation take the same amount of time to play back regardless of the speed of the
playing computer.) The result is that the motion plays more smoothly but less accurately. In Sandia’s applica-
tion, the tradeoff is desirable, as the visual quality is very important. In other applications, additional key
ffame data can be added to keep the motion jerky but accurate. For example, the Position Interpolators could
be made to produce stair-stepped transfer functions by repeating position at the beginning and end of each
time step.

Besides animation, a small set of code is used to define VRML view points and sets up the VRML model for
viewpoint tracking. Like the f~st scalar interpolator, the features for view point tracking have little, or no
functionality in the stand-alone VRML animation. Conversely, they have everything to do with the comment-
ing system described in the next section. The code is shown below. Its use is described in section 4.2.

Group (
children [

DEE’PS ProximitySensor {
center O 0 0
size 10000 10000 10000

)
DE)?DENEB Viewpoint (

position O 0.924858 2.79959
orientation O 0 0 4.21468e-08
description “last view “

}
1

}

4.2 Controlling VRML Models though the EIA

Beyond their use as stand-alone animations, these VRML animations can be played under the control of other
programs. The Cosmo Player VRML 2.0 browser, used in the commenting application, includes an External
Authoring Interface (EAI) that allows developers to easily extend the flmctionality of and thereby build com-
mercial and custom applications incorporating 3D, dynamic content. In essence, the EAI provides a method
for developing custom applications that interact with, and dynamically update a 3D scene. These outside appli-
cations “talk” to the VRML scene.

[n the Java EIA interface, browser data is accessed through the vrml.extemal package. In building EIA appli-
cations, the browser data structure is accessed and used to retrieve various VRML nodes. From this, the nodes
are accessed to retrieve various event interfaces within the nodes. These events are then exercised to store or
extract data within the VRML scene. Figure 8 shows an example of this duality between VRML and Java
developed for this application.

Page 18

Communicating with a particular node is done by fmt getting a reference to the node, using the getNode()
method. This method is passed a string corresponding to the DEF name of a node in the root VRML scene.
Only named nodes in the root world (the part of the world loaded from the HTML page) can be accessed from
the EAI. This can be done, for example, with the instruction:

root = browser. getNode (“ROOT”) ;

The root variable now contains a reference to the node named ROOT in the scene. Whh this reference to a
node, Java methods can send events to its eventIns, get the current value of its eventOuts, or register methods
to be called when the eventOuts send events. To send an event methods fwst get a reference to an eventIn of
the node using the getEventIn() method, then send events using the setValue() method. To receive events
(query the system for values), methods get a reference to the eventOut of the node using the getEventOuto
method, then query for events by using the getValueo method. For example:

class ScalarInterpolator

(
Node _node;
EventOutMFFloat _keyValue changed;
EventInSFFloat _set_fractFon;

...
// b is the browser (from a Browser.getBrowser (this))
// label is the name of the scalar interpolator (i.e., MOVIE_TIME)

ScalarInterpolator (Browser b, String label)

{
_node = _browser.getNode (label);
_keyValue_changed = (EventOutMFFloat) node.getEventOut (“keyValue_changed”);
_value_changed = (EventOutSFFloat) _no~e.getEventOut (“value_changed”);

...
)
// ‘Mis method lets You set the movie fraction while the clock is stopped
void setFracti.on(float v) { _set_fraction.setValue (v); }
II the set and get key and KeyValue methods let You invert the movie
float[] getKeyValueo { return _keyValue_changed~getValue (); }

...

❑
.CkIdr

(limeSenaw)

getfsetStsrtlime
getfset Cydelnterval

getFnsction
getlime

setEnabled
setLOOp

Java P+splet
(blocks rapreaent Java objeds)

VRML World
(blcdrarepresentVRML nodes)

m

❑
_mOvie

(Scalarlnterpolator) “

geUset KeyValue -
getfeet Key -
setFractiOn

. . n R
MOVIE_llME

(Scslartnterpchbf)

aet-fra~”on

EEiiEl

I I

Figure 8: VRML to Java Mapping via EIA Intetiace

Page 19

..———. —

. I

Animation timing or playback can be controlled through the control nodes described in section 4.1. To provide
data hiding, Java classes are defined to correspond to the VRML Time Sensor, Scalar Interpolator, and
Proximity Sensor. Instances of these classes (a clock, a movie time, and a view) are created to correspond to
each of the control nodes.

The Time Sensor contains methods to get and set the simulation clock’s Start Time and Cycle Interval as well
as methods to get the Current Time and the Fraction of the movie that has played, and methods to set the
clock’s Enabled and Loop properties. The animation is started and stopped by adjusting the clock’s Start Time.
(The animation starts when the Start Time is greater than the current Time.) The animation playback speed is
adjusted through the Cycle Interval. The Fraction is used to determine whether the movie has finished playing
and the Time is used to compute an appropriate value for starting and stopping the animation. Setting Enabled
to false stops the movie. The Loop value can be used to cause the animation to automatically loop (rather than
play until finished) and is also used as part of a trick for querying the VRML world for the current time.

I

The Scalar Interpolator contains methods to get and set the Key and Key Value pairs as well as methods to set

the Fraction value. Key Values are stored as a vector (1 dimensional array). Reversing the order of the Key

Values causes the movie to play backwards. That is, it causes the Scalar Interpolator to output a scaled time

value which is 1– the clock’s time. This time scaling must accompany a changing of the fi-action that the

clock is providing. For example, if 25’%oof the movie has been played forward, then 75’XOremains to be played

backwards.

In addition to reversing the movie, the Scalar Interpolator provides a mechanism for stopping or stepping the
animation at a given point in time. Here, the clock is stopped and the Scalar Interpolator’s Fraction is set
directly from the animation. Animations can be slowly stepped by adjusting this fraction value. This ability to
directly set the ffaction is not, however, used as a substitute to using the Time Sensor, as the EIA cannot pro-
vide as smooth and efilcient of updates as the VRML world can provide.

In VRML (as with most 3D animation systems), scenes are rendered with respect to the theoretical position of
an eye placed in the world at a specific orientation. These are called viewpoints. In the commenting tool, A
VlewPort and a View object are used to record viewpoints and later set the view position to earlier recorded
viewpoints. A ViewPort java object is connected to the Proximity Sensor (here named PS) and a View object is
connected to the viewpoint that is within the Proximity Sensor (here named DENEB). The ViewPort object
provides (through the EIA) the ability to query the current viewpoint’s position and orientation. Later, the
View object is used to set the viewpoint to past saved viewing positions.

4.3 Adding and Reviewing Animation Comments

Sandia’s VRML animation commenting system, shown in Figure 9, has a similar interface and is used for
similar reasons as the digital movie commenting tool. Clicking on the “VCR-like” control buttons causes the
movie to play, stop, or indexed as would be expected from any movie player program. In addition, clicking
and dragging within the scene window (according to interface practices developed by SGI) allows the user to
adjust the viewpoint to any position and orientation. The user can change this viewpoint at any time (while the
animation is playing or stopped). Adding text while the animation is paused causes the system to record the
text as a comment. Later, clicking on comment text causes the animation to advance the time and the view-
point to adjust to be in the place from which the comment was added. Finally, clicking a “Save” button saves
the comments (across the network) for others to review.

VCR-like recording tlmctions are implemented with the Time Sensor and Scalar Interpolator objects described
above.

A “Play” button action is implemented by querying the Current Time and then setting the Time
Sensor’s Start Time to be greater than the current time (see stop button). If the animation has been

Page 20

.

partly playe~ this start time is set
so that it will restart the anima-
tion with any stored “Current
Fraction” values (see Stop but-
ton). This button then turns into a
“Stop” button.

. The “Stop” button is implement-
ed by saving the Current Fraction
in a local variable and setting the
Start Time to zero.
A slider widget is used to let the
user step the movie slowly or
drag the time to any point within
the movie. This widget performs
this action by stopping the anima-
tion (if running) and then adjust-
ing the Scalar Interpolator’s
Current Fraction value.

The commenting area is active whenever
the animation has stopped. A name text
box allows users to use simple monikers
to identify themselves and a commenting
text box allows users to enter comments.
When the user presses a return from with-
in the comment box, the name and com-
ment text “move” into a scrollable list of
comments.

Whhin the Java code, animation time and
viewpoint data are stored with each com-
ment. This data is then reused, when the
comment is “selected” by the user, to
adjust the animation time and viewpoint to
correspond to the stored values.

When the applet is loaded, a database is

......%.. ..-”._ .- .-.

--,,,,. ,. “., ”# ~-----+. .. ——.”.’. -. . . - - -.. . ,

B’ ~~ $@ S4 ~~*-&”_~A_w _“j.m

-’-==’’7:@’ R’ q a’ ‘ &’ : “u *: +.
&&_>;A:~.~.~.,._*..:~* _*. .S%afch Fw@M?. HieWY CJ$ccm

“—’----’2BI12&WiwJVRMLcuNUG&!4bri
, ,,.—.-.W. ~ *~.a- ..* _ _.=;A.+ *..L.A .~ - .=. *....

.-:..— ;$
~ . . ,. >’.. .>

....+—. .

anonymous Thesprayls ststing too sartf ;;

msck Canws start it (the spray) here? ;’
: ..

ROSS We’re going to need a detailed anaIYSISto get the eXSCtbuild-w In this area ~ j

mack OK Ross. Our S!XSYanalysis till require esverimental ds!a on Plume build-w f i

Ross OK macli Ill get the data from the ed sting production system. > :,
~:
~1

;~

Figure 9: VRML Commenting System User
Interface

queried via an RMI server, to populate the scrollable comment box with previously saved comments. Later,.

reviewers (users) are allowed to upload added comments to the remote database. This uploading fimction is
provided through the same RMI interface. Code for thk fiction is nearly identical with that described in
Section 3. In our implementation, the same server code and database are used for both applications.

5 Testing
The technologies described here have both been tested and validated fictionally and tested by expert user
groups for appropriateness. In addition, they are begiming to be deployed in practical engineering processes.

The web page feedback system was frst tested on a medium-sized engineering project that developed and ana-
lyzed two alternative robotic system designs for a uranium hexaflouride shipping container decontamination.
Here, web pages were used to present information and review information was collected through the web
feedback system (described in Section 2). In addition, VRML models were used to animate various solution
concepts. In this deploymen~ engineers in the field provided review information that was then used by an on-
site engineer to correct and update the published information. In addition, the need to have follow-up links

Page 21

connected to review comments (rather than referencing web page) was discovered and implemented. I

Additional testing of the revised web page feedback system was performed on a variety of projects. Currently
unresolved issues include better management and easier separation of comments between projects that utilize
the same database. Here, it has been found that it is beneficial to use one database to support several projects.
Additional coding needs to be implemented to separate comments between projects.

Deployment of the movie and VRML animation commenting tools has been hampered by the fact that these
two systems relied on new software tools that have not yet been widely deployed. (While these tools are freely
available on the web, many potential users have not installed them on their computers.) Problems included

Firewall blocking of Java throughout the study time, software had been installed on Sandia’s f~e-
walls to block Sandians from accessing Java applets.
Reliance on Internet Explorer 4.0: The Netscape products could not run our java applets. Sandia has
scheduled its Internet Explorer 4.0 deployment for CY 99.
Uncertainty of Cosmo VRML browser. In spring, 1998, SGI, who developed Cosmo, had formed a
separate company, Cosmo SofNvare, to develop and sell the Cosmo browser. By summer, 1998, SGI
dissolved the company. In the fall of 1998, the Cosmo libraries were purchased by Platinum
Technology, Inc., who announced plans to merge the Cosmo product with its existing VRML browser.
These uncertainties have slowed the wide-spread deployment of the VRML browser and slowed the
expected release of a stable browser for Macintosh platforms.

It is expected that usage will increase as these deployment issues are resolved. Thus, market maturity appears
to be the main limiting factor.

6 Conclusions
In conclusion, engineering projects generate heterogeneous collections of data that must be reviewed by a
diverse set of customers and peers. Due to the complexity of the information generated and shared, it is
becoming necessary to electronically present this data, rather than rely on traditional (i.e., paper) forms.
Sufficient electronic presentation technologies are only now becoming sufllciently advanced to support indi-
vidual presentation needs. In addition, web-based technologies have potential to provide the glue to bind a
large diversity of engineering information into unified presentations.

The problem of electronic presentation begs solving the problem of electronic review. To whit, data that is too
complex to present in paper form is often too complex to review in paper form. This paper presented three
prototype technologies for enabling the needed review. The first system ties comments to specific web pages,
the second system ties the comments to specific frames of digital movies, and the third ties the comments to
specific times and viewpoints within 3D animations. Each allows people to make context-sensitive comments
about specific web content and electronically ties the comments back to the web content being referenced. All
strongly rely on standard web sofhvare tools and development approaches.

Page 22

7 End Notes

1 Computer Aided Design Report, Vol. 18, No. 4, April 1998,

2 Whh HTML, for example, content can be reused in several places in a report without requiring that it be
duplicated within the original files. This can be significan~ for example, if the same movie is used on two
different “pages” of a report. In addition, HTML provides more natural mechanisms for separating content
on a page-by-page basis. This can be significan~ for example, if several movies are used within one report.

3 Java Remote Method Invocation Specification, Copyright 1997, Sun Microsystems (available at
ftp://ftp.javasoft.com/docs/jdkl .2/rmi-spec-JDKl .2.pdf)

4 The JMF 1.0 API was developed by Sun Microsystems, Inc., Silicon Graphics Inc., and Intel Corporation.
Srmdia’s commenting system uses Intel’s version of the API.

5 VRML Consortium (Web 3D Consortium) sources. Available at http://www.vrmLorg.

6 Cosmo 3D was developed by Silicon Graphics, was used to form the startup company Cosmo Software Inc.,
ant more recently, was purchased by Platinum Technology. The sofhvare can still be downloaded flom.
Version 2,1 was used for this development effort.

Page 23

--- y~.~,>-,,:+ r- ~->-
;p’p,-:- . . .--.,- —?7 --. — .— ,,

. I

Internal Distribution Only:

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

MS9018

MS0899

MS0619

MS0161

MS0188

MS1OO2

MS1OO4

MS1OO4

MS 1004

MS 1004

MS 1004

MS1OO4

MS1OO4

MS1OO4

MS 1004

MS1OO8

Central Technical Files, 8940-2

Technical Library, 4916

Review and Approval Desk, 15102

for DOE/OST1

Patent and Licensing Office, 11500

C. E. Meyers, 4523

P. J. Eicker, 9600

R. W. Harrigan, 9623

P. Bennett, 9623

S. Gladwell,9623

E. Gottlieb, 9623

J. M. Griesmeyer, 9623

M. J. McDonald, 9623

F. Oppel

C. Slutter, 9623

ISRC Library

J. Fahrenholtz, 9621

Second Printing, October 2000

Distribution:

1 MS9018

2 MS0899

1 MS0612

1 MS0161

1 MS 1004

5 MS 1004

Central Technical Files, 8940-2

Technical Library, 9616

Review and Approval Desk, 9612

for DOE/OSTI

Patent and Licensing Office, 11500

M. J. McDonald, 15221

ISRC Library

Page 24

