<table>
<thead>
<tr>
<th>Title:</th>
<th>MAGNETORESISTANCE MEASUREMENT IN URANIUM COPPER (4+X)ALUMINUM(8-X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s):</td>
<td>Milton S. Torikachvili, Renato F. Jardim, S. Chang, Andrew Christianson, Roberto Mucillo, Alex H. Lacerda, Heinz J. Nakotte</td>
</tr>
<tr>
<td>Submitted to:</td>
<td>International Conference in Magnetism (ICM), August, 2000, Brazil Journal of Magnetism and Magnetic Matter</td>
</tr>
</tbody>
</table>
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Magnetoresistance Measurements in UCu$_{4+x}$Al$_{8-x}$ Compounds

M. S. Torikachvili, R. F. Jardim, S. Chang, A. Christianson, R. Muccillo, H. Nakotte, and A. H. Lacerda

1 Department of Physics, San Diego State Univ., San Diego, CA 92182-1233 (USA)
2 Instituto de Física, Univ. São Paulo, 05315-970, São Paulo, SP (Brazil)
3 Department of Physics, New Mexico State Univ., Las Cruces, NM 88003-8001 (USA)
4 National High Magnetic Field Laboratory, Los Alamos, NM 87545 (USA)
5 Instituto de Pesquisas Energeticas e Nucleares, 05422-970, São Paulo, SP (Brazil)

The intermetallic UCu$_{4+x}$Al$_{8-x}$ compounds (0.1 ≤ x ≤ 1.95) have remarkable electronic and magnetic properties. The Cu-poor compositions within this x-range are antiferromagnetic (AF). The Néel temperature (T$_N$) drops gradually from 36 K for x = 0.1 until AF is completely suppressed near x = 1.1, while the Sommerfeld coefficient (γ) increases dramatically with x, reaching a maximum value of 750 mJ/mole·K2 for x = 1.75. Reported in this investigation are magnetoresistance (MR) and magnetic susceptibility (χ) measurements at low temperatures (T) and high magnetic fields (B). The isothermal MR data below 40 K crosses over from positive in the low-x to negative in the high-x range. These results are interpreted in the context of spin fluctuations, hybridization, and non-magnetic atomic disorder.

Keywords: UCu$_{4+x}$Al$_{8-x}$; Magnetoresistance; Antiferromagnetism; Heavy-fermion.
The UCu$_{4+x}$Al$_{8-x}$ compounds crystallize in the tetragonal ThMn$_{12}$-type structure for $0.1 \leq x \leq 1.95$,[1] and their electronic and magnetic properties depend very strongly on the Cu/Al content ratio. The Cu-poor compounds within this x-range are AF with reported T_N near 35 K. However, the substitution of Cu for Al is accompanied by 1) a rapid suppression of AF in the $0.1 < x < 1.15$ range; and 2) an enormous increase γ from about 100 mJ/mole-K ($x = 0.25$) to 750 mJ/mole-K ($x = 1.75$).[2-3] Neutron diffraction (ND) [3] and NMR [4] results confirm the suppression of AF near $x = 1.15$. ND also indicates that the substitution of Cu for Al favors one of two inequivalent Al sites, and that the U ordered moments lie along the tetragonal c-axis. Since the ionic size of Cu is smaller than Al, it's been suggested that the suppression of AF when x increases is due to an enhancement of c-f hybridization, favoring the intra-site Kondo over the inter-site RKKY groundstate.[1] The electrical resistivity (ρ) versus T data for the Cu-rich compounds [1] as well as the MR [5] are consistent with the Kondo picture. However, an interpretation in terms of hybridization alone is oversimplified, and changes in the Fermi level need to be considered.[2] For example, the crossover from heavy fermion (HF) behavior to AF in the CeCu$_{5-x}$Al$_{x}$ system occurs for increasing Cu concentration,[6] contrary to the UCu$_{4+x}$Al$_{8-x}$ system. It has been pointed out by Gschneidner et al. that false indications of HF behavior can occur as a result of non-magnetic atomic disorder, as for example in the Cu-Al compounds CeCu$_{6.5}$Al$_{6.5}$ (NaZn$_{13}$-type structure), CeCu$_4$Al, and CeCu$_3$Al$_2$.[7] The origin of the false HF behavior is the formation of low-lying crystal field (CF) levels due to disorder, giving rise to a large Schottky anomaly contribution.[7] In order to probe further the effect of the substitution of Cu for Al in UCu$_{4+x}$Al$_{8-x}$, we performed a series of measurements of χ vs T and MR in B up to 18 T.

A series of 6 polycrystalline UCu$_{4+x}$Al$_{8-x}$ samples for this study with $0 \leq x \leq 2.0$ was synthesized by arc melting, followed by annealing at 800 °C for 5 days. The phase purity of the compounds with $0.5 \leq x \leq 1.5$ was confirmed by X-ray diffraction. The $x = 0$ and 2.0 compositions showed traces of extra phases. Measurements of χ vs T, and M vs B up to $B = 7$ T were performed with a SQUID magnetometer. Transverse MR measurements to 7 T (2–40 K)
were performed at USP, and to 18 T (2–15 K) at the NHMFL, Los Alamos Facility. The \(\rho \) vs \(T \) data of Fig. 1 for \(0 \leq x \leq 1.0 \) show noticeable discontinuities at \(T_N \), which are probably due to the suppression of spin-disorder scattering. The composition dependence of \(T_N \) extracted from the \(\rho \) vs \(T \) data is shown in the inset of Fig. 1. These values of \(T_N \) are close to the values obtained from the \(\chi \) vs \(T \) measurements. The \(\chi \) vs \(T \) data (not shown) yields the high \(T \) effective moments \(\mu_{\text{eff}} \) shown in the inset of Fig. 1. The value of \(\mu_{\text{eff}} \) for \(x = 0.5-1.25 \) is about 2.9 \(\mu_B \), increasing slightly to about 3.0 \(\mu_B \) for \(x = 1.5 \). These values are somewhat reduced from the 3.58 or 3.62 \(\mu_B \) values expected for \(U^{4+} \) and \(U^{3+} \), respectively, which suggests that the 5f-orbitals are hybridized to a certain extent. The behavior of the transverse MR vs \(B \) at \(T = 2.1 \) K for the 6 samples of this study is displayed in Fig. 2. The MR of the multiphase compound \(UCu_4Al_8 \) is positive. However, as more Cu is substituted for Al forming single-phase materials, the MR becomes negative, and its magnitude grows from near zero for \(x = 0.5 \) to a maximum near \(x = 1.5 \), diminishing again for multiphase \(x = 2.0 \). The MR for the \(0.5 \leq x \leq 2.0 \) compositions follows closely a \(B^2 \) dependence. The behavior of \(\Delta \rho/\rho \) vs \(B \) at higher \(T \) is qualitatively very similar, albeit reduced in magnitude. The resistivity in strongly correlated systems at low \(T \) can usually be described by \(\rho(B,T) = \rho_0(B) + \rho_{\text{ep}} + \lambda(B)T^2 \), where \(\rho_0(B) \) is the residual \(\rho \), including the effect of imperfections and spin fluctuations; \(\rho_{\text{ep}} \) is due to the electron phonon scattering; and the \(T^2 \) term includes both the interband electron-electron scattering, and spin fluctuations.[8] The MR can then be described by

\[
\Delta \rho(B,T) = \Delta \rho_c(B,T) + \Delta \rho_{\text{sf}}(B,T)
\]

where the first term is a positive contribution due to the cyclotron motion of the charge carriers, and the second term is a negative contribution due to the suppression of spin fluctuations with \(B \). The \(\Delta \rho/\rho \) vs \(B \) data of Fig. 2 suggest that the cyclotron contribution from the impurity phase is larger than the spin-fluctuation term in \(UCu_4Al_8 \). Upon the substitution of more Cu for Al the
compounds become single-phase, and the MR becomes progressively more negative, suggesting that spin fluctuation scattering becomes more relevant when T_N is reduced or suppressed.

In conclusion, the MR data on $\text{UCu}_{4+x}\text{Al}_{8-x}$ both below T_N as well as in the non-ordered compositions is negative due to the suppression of spin fluctuations. The negative value of $\Delta \rho/\rho$, the quadratic behavior with B, and the drop in magnitude with T are consistent with the spin fluctuation theory developed by Ueda.[9] The μ_{eff} values extracted from the χ vs T data is reduced from the full U moment as expected in hybridized materials. However, μ_{eff} does not depend very much with x. The important question of whether these materials are real or false HF still remains. Although no CF excitations could be detected with neutron scattering (NS) in the high γ compositions,[10] this does not preclude false HF behavior, considering the difficulty in detecting CF excitations in U compounds using NS.[11] Although the study of the properties of this series remains a challenging problem, a better understanding of the effect of non-magnetic disorder on the band scheme, and the CF excitations are in order.

The support of NSF Grant No. INT-9725929 (MST, AHL), FAPESP Grant No. 99/10798-0 (RFJ, RM), and CNPq (Brazil) (RFJ) are gratefully acknowledged. Work at the NHMFL was performed under the auspices of the NSF, the state of Florida, and the USDOE.
References

Figure Captions

Fig. 1 - Normalized electrical resistivity ρ/ρ_{50K} in $B = 0$ for UCu$_{4+x}$Al$_{8-x}$ compounds. The inset shows T_N vs x and μ_{eff} vs x. The lines are guides to the eye.

Fig. 2 - Transverse magnetoresistance $\Delta \rho/\rho$ vs B for UCu$_{4+x}$Al$_{8-x}$ compounds at 2.1 K. The inset shows $\Delta \rho/\rho$ vs x at $B = 18$ T. The line is a guide to the eye.
Figure 1 - M. S. Torikachvili et al. - 1P-26

Graph showing the temperature dependence of resistivity for different compositions of UCu$_{4+x}$Al$_{8-x}$ with $B=0$. The x-axis represents temperature in Kelvin (K), and the y-axis represents resistivity normalized to ρ_{50K}. The inset graph illustrates the variation of T_N (K) with x. The main graph includes several curves for different compositions, indicating changes in resistivity with varying temperatures.
Figure 2 - M. S. Torikachvili et al. - 1P-26

\[\Delta \rho / \rho \]

\[\text{UCu}_{4+x} \text{Al}_{8-x} \]

\[T=2.1 \text{K} \]