MÖSSBAUER SPECTRA AND MAGNETIC SUSCEPTIBILITIES OF Cs₂NpCl₆, (TMA)₂NpCl₆, and (TEA)₂NpCl₆

by

D. G. Karraker and J. A. Stone

Savannah River Laboratory
E. I. du Pont de Nemours and Company
Aiken, South Carolina 29801

A paper proposed for publication in Physical Review B

This paper was prepared in connection with work under Contract No. DE-AC09-76SR00001 with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available for sale to the public, in paper, from: U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161, phone: (800) 553-6847, fax: (703) 605-6900, email: orders@ntis.fedworld.gov online ordering: http://www.ntis.gov/ordering.htm

Available electronically at http://www.doe.gov/bridge

MÖSSBAUER SPECTRA AND MAGNETIC SUSCEPTIBILITIES
OF Cs₂NpCl₆, (TMA)₂NpCl₆, AND (TEA)₂NpCl₆*

by

D. G. Karraker and J. A. Stone

Savannah River Laboratory
E. I. du Pont de Nemours and Company
Aiken, South Carolina 29801

ABSTRACT

Magnetic susceptibility measurements of Cs₂NpCl₆,
[(C₄H₅)₄N]₂NpCl₆, and [(CH₃)₄N]₂NpCl₆ from 2.5 to 70 K show
that the T₈ ground level of the Np⁺ ion is split by 5-10 cm⁻¹
in the first two compounds because of distortions from octahedral
symmetry in these crystals. The T₈ level in [(CH₃)₄N]₂NpCl₆ is
not split, and the measurements agree well with first-order
theory for x = 0.39 and g₁ = 0.60. The Mössbauer spectra at
4.2 K of [(CH₃)₄N]₂NpCl₆ and [(C₂H₅)₄N]₂NpCl₆ are magnetically
split, with a small quadrupole interaction. The spectrum of
[(CH₃)₄N]₂NpCl₆ shows deviations from isotropic magnetic
splitting that may be caused by interactions within the
degenerate T₈ level. The Mössbauer spectrum of [(C₂H₅)₄N]₂NpCl₆
is consistent with two nonequivalent Np⁺⁺ sites. The Mössbauer
spectrum of Cs₂NpCl₆ is obscured by intermediate relaxation
effects.

* The information contained in this article was developed during
the course of work under Contract No. DE-AC09-76SR00001 with
the U.S. Department of Energy.
INTRODUCTION

The neptunium(IV) ion in an octahedral field has been studied extensively by optical spectra1-4 and electron paramagnetic resonance.5,6 The major interest is in the properties of the Γ_8 quartet ground crystal field level that was identified in earlier work.1-6 This paper reports additional information obtained from low-temperature magnetic susceptibilities and Mössbauer spectra on Cs$_2$NpCl$_6$, [(CH$_3$)$_4$N]$_2$NpCl$_6$, and [(C$_2$H$_5$)$_4$N]$_2$NpCl$_6$. The structures of these compounds are inferred from their isostructural uranium and plutonium analogues and the infrared spectral studies.7

The Np$^{4+}$ ion is located at the body center of an octahedron of six Cl$^-$ ions in these three compounds. (TMA)$_2$NpCl$_6$ [TMA refers to (CH$_3$)$_4$N$^+$] has a face-centered cubic cell (O$_h$) with the Np$^{4+}$ ion at a point of full cubic symmetry.8 (TEA)$_2$NpCl$_6$ has an orthorhombic (D$_{3d}$) cell that differs from (TMA)$_2$NpCl$_6$ by the greater space occupied by the (C$_2$H$_5$)$_4$N$^+$ cations.9 Cs$_2$NpCl$_6$ has a trigonal cell (D$_{3d}$), and the NpCl$_6^{2-}$ octahedron is slightly elongated on one axis.8,10 The distortions in the structures of Cs$_2$NpCl$_6$ and (TEA)$_2$NpCl$_6$ may be expected to cause a slight splitting of the Γ_8 quartet into Γ_6 and Γ_7 doublets.2,3,7 The splitting can be observed by magnetic measurements.
EXPERIMENTAL

Polycrystalline samples of R_2NpCl_6 and R_2ThCl_6 were prepared by an adaptation of the method of Ryan, and the identities of the compounds were confirmed by X-ray powder patterns. Magnetic susceptibilities were measured with a Foner-type vibrating sample magnetometer in a field of 10 kOe over the temperature range of 2.5-70 K, as previously reported in the study of Pu$^{4+}$ analogues. The Mössbauer spectra of the R_2NpCl_6 compounds were taken at 4.2 K with a constant-temperature spectrometer and from 4.2 to 70 K with a variable-temperature spectrometer. The spectrum of Cs_2NpCl_6 at 2.5 K was also recorded. Details of the techniques used for Mössbauer spectra have been published.

RESULTS AND DISCUSSION

Magnetic Susceptibilities

The inverse magnetic susceptibilities of Cs_2NpCl_6, $(\text{TMA})_2\text{NpCl}_6$, and $(\text{TEA})_2\text{NpCl}_6$ are shown graphically in Figs. 1-3. The constants were obtained by fitting the data to the Curie-Weiss expression $\chi = C/(T+\Theta)$ shown in Table 1. The data for Cs_2NpCl_6 and $(\text{TEA})_2\text{NpCl}_6$ exhibit two regions of Curie-Weiss behavior below 70 K; $(\text{TMA})_2\text{NpCl}_6$ follows a single Curie-Weiss law from 2.5 to 66 K. From group theory, a Γ_8 quartet must split into two Kramers doublets in any symmetry lower than cubic. Thus, the shapes of the reciprocal susceptibility curves for Cs_2NpCl_6 and $(\text{TEA})_2\text{NpCl}_6$ are consistent with each having a Γ_8 ground-level split by a small distortion from octahedral symmetry about the Np$^{4+}$ ion. The
breaks in the curves correspond to splittings of 5-10 cm\(^{-1}\). Additional evidence for splittings of this magnitude is found in the optical\(^3\) and infrared spectra\(^7\) of Cs\(_2\)NpCl\(_6\) and (TEA\(_2\)NpCl\(_6\) and is expected from the noncubic crystal structures. In contrast to this behavior, the reciprocal susceptibility of (TMA\(_2\)NpCl\(_6\) is linear down to 2.5 K, indicating that distortions from octahedral symmetry are very small or absent; this observation is consistent with the cubic crystal structure of the compound and with an \(O\(_h\)\) site symmetry of the Np\(^{4+}\) ion.

(TMA\(_2\)NpCl\(_6\) is inferred to have an unsplit \(\Gamma_8\) ground level, from the general similarity of the NpCl\(_{2-}\) complex in the three compounds.

The low-temperature magnetic properties of the \(^{3/2}\) ground state of Np\(^{4+}\) are determined by the crystal field. For an octahedral field, the magnetic properties can be calculated from the tables of Lea, Leask, and Wolf (LLW)\(^1\)\(^0\) and the analysis of the magnetic properties of \(\Gamma_8\) levels by Bleaney.\(^1\)\(^5\) The crystal field Hamiltonian for cubic point symmetry\(^1\)\(^6\) is

\[
H = A_4 <r^4> \beta (O^2_{\theta} + 5 \cdot O^4_{\theta}) + A_6 <r^6> \gamma (O^{\theta}_0 - 21 \cdot O^{6}_0)
\]

where \(A_4 <r^4>\) and \(A_6 <r^6>\) are the fourth- and sixth-order crystal field parameters; \(\beta\) and \(\gamma\), the fourth- and sixth-order operator equivalent factors; \(<r^n>\), expectation values for the 5f electrons; and \(O^m_n\), the equivalent tensor operators. LLW defines the parameter \(x\) by

- 5 -
where \(F(4) \) and \(F(6) \) are constant factors for the matrix elements of the fourth- and sixth-order operators of each \(J \) state. The parameter \(x \) specifies the ratio of the crystal field parameters, and LLW tabulates eigenvectors for the \(J = \frac{9}{2} \) state of the form

\[
A = a_1|\pm^9/2> + a_2|\pm^1/2> + a_3|\pm^7/2>
\]

\[
B = b_1|\pm^5/2> + b_2|\pm^1/2>
\]

where \(|\pm^L/2> \) specifies the \(|J_z> \) vector and \(a_L \) and \(b_L \) depend upon the value of \(x \). For a particular value of \(x \) (Reference 15),

\[
\mu_{\text{eff}} = [(\frac{5}{6})(A^2+B^2)]^{\frac{1}{2}} g_J
\]

Carrying out this calculation for values of \(x \) from 0 to 1 shows that the square root factor varies only from 3.66 to 3.82. This variation shows that the value of \(x \) has only a minor effect on the magnetic moment. If the free-ion \(g_J \) value of \(\frac{8}{11} \) is assumed, \(\mu_{\text{eff}} \) ranges from 2.7 to 2.8, compared with the experimental value for \((\text{TMA})_2\text{NpCl}_6\) of 2.28 \(\mu_B \).

Edelstein, Kolbe, and Bray,6 in their analysis of ESR spectra, allowed \(g_J \) to vary to obtain best-fit values for \(g_J \), which range from 0.55 to 0.60. For this range of \(g_J \), \(\mu_{\text{eff}} \) is calculated to be from 2.0 to 2.3 \(\mu_B \), which agrees well with the experimental \(\mu_{\text{eff}} \).

After a value for \(x \) is selected, the experimental value of \(\mu_{\text{eff}} \) can be used to obtain \(g_J \). Menzel and Gruber3 derived
a value of $x = 0.39$ from optical studies. A magnetic study of the Pu$_{4+}$ analogues12,16 found $A_4 <r^4> = 3.5 A_6 <r^6>$, which corresponds to $x = 0.34$ for the Np$_{4+}$ ion. (Since the crystal field parameters are determined by the environment of the ion, their variation between analogues Np$_{4+}$ and Pu$_{4+}$ compounds should be small.) If the value $x = 0.39$ is selected, then g_J is 0.60, which agrees well with the value obtained from ESR data.6

Mössbauer Spectra

Mössbauer spectra of Cs$_2$NpCl$_6$, (TMA)$_2$NpCl$_6$, and (TEA)$_2$NpCl$_6$, at 4.2 K, are shown in Fig. 4. The three spectra are markedly different from each other and are characteristic of their respective compounds, as determined by the reproducibility of the spectra from multiple preparations of each compound. The dominant features of the spectra (the spans of the hyperfine patterns and the number of lines) are characteristic of magnetic hyperfine splitting.17 The magnetic splitting does not result from a ferromagnetic or antiferromagnetic state, since the susceptibility data show that the compounds are paramagnetic at 4.2 K. Instead, the observed splitting at 4.2 K is attributed to slow paramagnetic relaxation rates. This phenomenon is well known in iron and rare earth Mössbauer spectra18 and has been noted previously for other neptunium compounds.19,20 The possibility of relaxation effects is confirmed by spectra at higher temperatures where faster relaxation rates are present. For each of the compounds, the magnetic splitting disappears and is replaced by a broadened
single line above 20 K. The very broad, unresolved spectrum of Cs$_2$NpCl$_6$ at 4.2 K is apparently due to an intermediate relaxation rate. For Cs$_2$NpCl$_6$, the spectrum at 2.5 K is practically identical to that at 4.2 K.

The spectrum of (TMA)$_2$NpCl$_6$ can be interpreted as magnetically split, with a small quadrupole interaction. The Mössbauer constants for this spectrum analyzed in this fashion are $\delta = -0.66 \text{ cm/sec}$, $g_0 \mu_B H_{\text{eff}} = 7.83 \text{ cm/sec}$, and $\frac{1}{3} eqQ = 0.091$. However, detailed examination of the spectrum shows deviations from an isotropic magnetic-splitting pattern. The hyperfine pattern expected for pure isotropic splitting17 is shown for comparison at the top of Fig. 4. Neither the line spacings nor the intensities of the (TMA)$_2$NpCl$_6$ spectrum are consistent with the isotropic splitting patterns, and the deviations cannot be explained by quadrupole splitting. Bleaney15 has shown theoretically that anisotropic magnetic hyperfine splitting and small quadrupole interactions can be expected in a pure Γ_8 level, particularly when unequal magnetic field splitting occurs. Unequal splitting of the Γ_8 level in the magnetic field may be the cause of the anomalies in the (TMA)$_2$NpCl$_6$ spectrum.

The Mössbauer spectrum of (TEA)$_2$NpCl$_6$ is quite complex, with about twice the number of lines expected from a magnetically split spectrum. The optical absorption spectrum2 at 4.2 K is interpreted as showing Np$^{4+}$ ions in two nonequivalent sites. This interpretation is consistent with the Mössbauer spectrum,
analyzed in terms of two superposed magnetically split spectra with an appreciable quadrupole contribution. The following Mössbauer constants give the most satisfactory fit to the spectrum:

for one site, $\delta = 0.75 \text{ cm/sec}$, $g_{\text{eff}} = 5.78 \text{ cm/sec}$, and $\frac{1}{4} q = 0.33 \text{ cm/sec}$; for the other site, $\delta = 0.71 \text{ cm/sec}$, $g_{\text{eff}} = 6.26 \text{ cm/sec}$, and $\frac{1}{4} q = 0.27 \text{ cm/sec}$. As with $\text{(TMA)}_2\text{NpCl}_6$, the line spacings and intensities are not consistent with the isotropic splitting pattern assumed in the analysis and, therefore, may be modified by a more detailed analysis. However, the spectrum does confirm the presence of two Np$^{4+}$ sites found by optical spectroscopy.2
REFERENCES

\(g_j^2 (A^2 + B^2) \) is equivalent to Bleaney's \((5\gamma^2 + 3\delta^2) \).
16. A fortuitous system determines \(x \) directly in the \(R_2PuCl_8 \) study. The analysis of Reference 12, however, assumes a
total ground state splitting of only 145 cm$^{-1}$, probably at least a factor of five too small.

TABLE 1. Magnetic Constants for R$_2$NpCl$_6$

<table>
<thead>
<tr>
<th>Compound</th>
<th>Temperature Range (K)</th>
<th>C^α (emu/mole)</th>
<th>Θ (K)$^\alpha$</th>
<th>μ_{eff} (\mu_B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs$_2$NpCl$_6$</td>
<td>2.5 - 8</td>
<td>0.40</td>
<td>0.65</td>
<td>1.80</td>
</tr>
<tr>
<td></td>
<td>6 - 45</td>
<td>0.66</td>
<td>5.1</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td>45 - 75</td>
<td>1.18</td>
<td>40</td>
<td>3.07</td>
</tr>
<tr>
<td></td>
<td>95 - 303b</td>
<td>1.14</td>
<td>65</td>
<td>3.02</td>
</tr>
<tr>
<td>(TMA)$_2$NpCl$_6$</td>
<td>2.5 - 65</td>
<td>0.643</td>
<td>0.25</td>
<td>2.28</td>
</tr>
<tr>
<td>(TEA)$_2$NpCl$_6$</td>
<td>2.5 - 15</td>
<td>0.43</td>
<td>1.1</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td>15 - 70</td>
<td>0.73</td>
<td>11</td>
<td>2.41</td>
</tr>
</tbody>
</table>

a $\chi_m = C/(T + \Theta)$.

FIGURE 1. Inverse Magnetic Susceptibility of Cs_2NpCl_6
FIGURE 2. Inverse Magnetic Susceptibility of (TMA)$_2$NpCl$_6$
FIGURE 3. Inverse Magnetic Susceptibility of (TEA)$_2$NpCl$_6$
FIGURE 4. Mössbauer Spectra of \(\text{Cs}_2 \text{NpCl}_6 \), \((\text{TMA})_2 \text{NpCl}_6\), and \((\text{TEA})_2 \text{NpCl}_6\)