Neutral Atom, Molecule and Edge-plasma Modeling for ITER

Final Progress Report
for period January 15, 1995 – February 14, 1999

David N. Ruzic
University of Illinois
Urbana, IL 61801

February 1999

Prepared for
The U.S. Department of Energy
Agreement No. DE-FG02-89ER52159
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Accomplishments in the last three years....

Over the past three years, eleven refereed journal publications[1-11] have resulted in part from this grant. These can be arranged into three categories: (1) Erosion/re-deposition calculations of current machines and proposed designs, (2) Analysis of proposed long-pulse or burning plasma operating regimes, and (3) Analysis of neutral behavior in current experiments. Each paper is listed below along with a very short synopsis of the importance or significance of the work in each category. Since refereed work in significant journals is the purest distillation of written results, the entire papers are included after these brief descriptions.

A. Erosion / Re-deposition

This work carried on in conjunction with Dr. Jeff Brooks and Argonne National Laboratory has highlighted the difficulty in attached plasma regimes using a Be surface covering. At those attachment points erosion is unacceptably high and dooms the concepts. Carbon walls were shown to have too high of tritium retention in the co-
deposited layers. Only W had acceptable erosion lifetimes and contamination for the throat of the divertors on a machine such as ITER. Validation work to DIII-D was also described.

B. Burning Plasma or Long-Pulse Operating Regimes

These papers examined various operating regimes of ITER and TPX. In ITER it was shown that the completely detached solutions were unlikely to be obtained and indeed, they were abandoned as the most likely operating scenario in favor of the impurity enhanced semi-attached regime. In TPX the vertical target plate was shown to be superior for long-pulse neutral gas handling.

C. Neutral Behavior in Current Experiments

In TFTR, the importance of including the sputtered D atoms from the D-saturated carbon walls was shown. Doppler broadening spectra could not be matched without including this component, first envisioned as a modeling result. The positive effects of Li-conditioning was also explained and the D-alpha emission matched by conducting thorough neutral modeling.