The Strength and Ductility of L1₂-Based Intermetallics

Final report

Grant No. DE-FGO2-86ER45260

E.M.Schulson
Thayer school of Engineering
Dartmouth College
Hanover, NH 03755

January 18, 2002.

For the first time a complete and systematic study has been made of the strength and ductility of the L1₂-based intermetallic compounds Ni₃X (X=Al,Ga,Ge,Ga), w/wo boron and w/wo notches. Variables included grain size, boron concentration, deviation from stoichiometry, temperature, strain rate, and notch geometry. Approaches included tensile, compression, hardness and Bauchinger tests; optical microscopy; scanning, transmission and high-resolution scanning-transmission electron microscopy; and numerical modeling. The hypothesis tested was that the increase in ductility induced by boron is caused largely by an increase in the accommodation of slip at grain boundaries. The results and interpretations were published in 41 papers (refs. below). Every result obtained over the course of the study is consistent with this hypothesis. Indeed, every result obtained by other investigators on the same alloy systems is also consistent with the hypothesis. Thus, we conclude the study by saying that the grain boundary accommodation of slip is a major factor in accounting for the beneficial effect of boron on the strength and ductility of Ni₃X-based L1₂ intermetallics.

Papers Published:


DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.


"The Fracture Toughness of A Brittle Nickel Silicide Containing the Ductile Phases Ni(Si) and Ni3Si", Z.Li and E.M.Schulson, Proc. MRS, 288 (1993), 1081-1086


