HYDROCODE SENSITIVITIES BY MEANS OF AUTOMATIC DIFFERENTIATION

PDF Version Also Available for Download.

Description

The purpose of this project has been to provide sensitivities of results from an Eulerian hydrodynamics computer code (hydrocode) for use in design-optimization and uncertainty analyses. We began by applying an equation-based sensitivity technique used successfully in the early eighties that was applied to reactor-safety thermal-hydraulics problems, which is called Differential Sensitivity Theory (DST). The methodology is as follows: the system of partial differential equations (the forward or physical PDEs) is assembled, and differentiated with respect to the model parameters of interest; the adjoint equations are then determined using the inner-product rules of Hilbert spaces; and finally, the resulting adjoint ... continued below

Physical Description

124 Kilobytes pages

Creation Information

HENNINGER, R.; CARLE, A. & MAUDLIN, P. January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The purpose of this project has been to provide sensitivities of results from an Eulerian hydrodynamics computer code (hydrocode) for use in design-optimization and uncertainty analyses. We began by applying an equation-based sensitivity technique used successfully in the early eighties that was applied to reactor-safety thermal-hydraulics problems, which is called Differential Sensitivity Theory (DST). The methodology is as follows: the system of partial differential equations (the forward or physical PDEs) is assembled, and differentiated with respect to the model parameters of interest; the adjoint equations are then determined using the inner-product rules of Hilbert spaces; and finally, the resulting adjoint PDEs are solved using straightforward numerical operators. The forward-variable solutions when needed for the adjoint solutions are provided by the original computer code that solves the physical (or forward) problem. In the present hydrocode application, acceptable results were obtained for one-material, one-dimensional problems. The DST results were then improved by means of ''compatible'' finite difference operators. We have seen, however, that DST techniques do not produce accurate values for sensitivities to all of the parameters of interest and for problems with discontinuities such as a multi-material problem. To obtain accurate sensitivities for arbitrary numerical resolution a more code-based approach was then tried. We attempted to apply automatic differentiation (AD) in the forward mode using Automatic Differentiation of Fortran (ADIFOR, version 2.0) and the Tangent-linear and Adjoint Model Compiler (TAMC) in the forward and adjoint modes. We were successful for one-dimensional problems in both modes but failed to obtain accurate sensitivities in the adjoint mode for two-dimensional problem. Here we present the successful results for two-dimensional problems in both the forward and adjoint modes using ADIFOR, version 3.0. In what follows, we describe AD methods in the context of their use for a hydrocode. We then examine setup time, results, accuracy, and computer run times for three test problems obtained by ADIFOR. Finally, we outline our plans for future work.

Physical Description

124 Kilobytes pages

Source

  • Conference title not supplied, Conference location not supplied, Conference dates not supplied

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-514
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 774349
  • Archival Resource Key: ark:/67531/metadc723976

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 21, 2016, 10:45 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

HENNINGER, R.; CARLE, A. & MAUDLIN, P. HYDROCODE SENSITIVITIES BY MEANS OF AUTOMATIC DIFFERENTIATION, article, January 1, 2001; New Mexico. (digital.library.unt.edu/ark:/67531/metadc723976/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.