SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES

PDF Version Also Available for Download.

Description

It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO<sub>2</sub> from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO<sub>2</sub> from their flue gases. ... continued below

Creation Information

GRUTZECK, MICHAEL October 31, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO<sub>2</sub> from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO<sub>2</sub> from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150°C contained a greater proportion of zeolite and as such were more SO<sub>2</sub> adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. _100°C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with other fly ashes, ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO<sub>2</sub> adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the country.

Subjects

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE00007775
  • Report No.: DE-FG22-96PC96210--04
  • Grant Number: FG22-96PC96210
  • DOI: 10.2172/7775 | External Link
  • Office of Scientific & Technical Information Report Number: 7775
  • Archival Resource Key: ark:/67531/metadc723961

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 31, 1998

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 8, 2016, 2:02 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

GRUTZECK, MICHAEL. SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES, report, October 31, 1998; Morgantown, West Virginia. (digital.library.unt.edu/ark:/67531/metadc723961/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.