A Real-Time Atmospheric Dispersion Modeling System

PDF Version Also Available for Download.

Description

This paper describes a new 3-D multi-scale atmospheric dispersion modeling system and its on-going evaluation. This system is being developed for both real-time operational applications and detailed assessments of events involving atmospheric releases of hazardous material. It is part of a new, modernized Department of Energy (DOE) National Atmospheric Release Advisory Center (NARAC) emergency response computer system at Lawrence Livermore National Laboratory. This system contains coupled meteorological data assimilation and dispersion models, initial versions of which were described by Sugiyama and Chan (1998) and Leone et al. (1997). Section 2 describes the current versions of these models, emphasizing new features. ... continued below

Physical Description

186 Kilobytes pages

Creation Information

Nasstrom, J.; Sugiyama, G.; Leone, J.M. & Ermak, D.L. September 29, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper describes a new 3-D multi-scale atmospheric dispersion modeling system and its on-going evaluation. This system is being developed for both real-time operational applications and detailed assessments of events involving atmospheric releases of hazardous material. It is part of a new, modernized Department of Energy (DOE) National Atmospheric Release Advisory Center (NARAC) emergency response computer system at Lawrence Livermore National Laboratory. This system contains coupled meteorological data assimilation and dispersion models, initial versions of which were described by Sugiyama and Chan (1998) and Leone et al. (1997). Section 2 describes the current versions of these models, emphasizing new features. This modeling system supports cases involving both simple and complex terrain, and multiple space and time scales from the microscale to mesoscale. Therefore, several levels of verification and evaluation are required. The meteorological data assimilation and interpolation algorithms have been previously evaluated by comparison to observational data (Sugiyama and Chan, 1998). The non-divergence adjustment algorithm was tested against potential flow solutions and wind tunnel data (Chan and Sugiyama, 1997). Initial dispersion model results for a field experiment case study were shown by Leone et al. (1997). A study in which an early, prototype version of the new modeling system was evaluated and compared to the current NARAC operational models showed that the new system provides improved results (Foster et al., 1999). In Section 3, we show example results from the current versions of the models, including verification using analytic solutions to the advection-diffusion equation as well as on-going evaluation using microscale and mesoscale dispersion field experiments.

Physical Description

186 Kilobytes pages

Source

  • 11th Joint Conference on the Applications of Air Pollution, Long Beach, CA (US), 01/09/2000--01/14/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-135120
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 790881
  • Archival Resource Key: ark:/67531/metadc723942

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 29, 1999

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • May 6, 2016, 1:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Nasstrom, J.; Sugiyama, G.; Leone, J.M. & Ermak, D.L. A Real-Time Atmospheric Dispersion Modeling System, article, September 29, 1999; California. (digital.library.unt.edu/ark:/67531/metadc723942/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.