Kinetics and Mechanism of Metal Retention/Release in Geochemical Processes in Soil - Final Report

PDF Version Also Available for Download.

Description

Effective, remediation of soils contaminated with heavy metals requires a better understanding of the mechanisms by which the metals are retained/released in soils over a long period of time. Studies on reaction of Cr(VI) with iron-rich clays indicated that structural iron (II) in these surfaces is capable of reducing chromate to chromium (III). We found that iron (II) either found naturally or produced by treatment of clay with sodium dithionite, effectively reduced Cr (VI) to Cr (III). Thus, in situ remediation of chromium combines reduction of Cr (VI) to Cr (III) and immobilization of chromium on mineral surfaces. During this ... continued below

Physical Description

vp.

Creation Information

Taylor, Robert W. December 29, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Effective, remediation of soils contaminated with heavy metals requires a better understanding of the mechanisms by which the metals are retained/released in soils over a long period of time. Studies on reaction of Cr(VI) with iron-rich clays indicated that structural iron (II) in these surfaces is capable of reducing chromate to chromium (III). We found that iron (II) either found naturally or produced by treatment of clay with sodium dithionite, effectively reduced Cr (VI) to Cr (III). Thus, in situ remediation of chromium combines reduction of Cr (VI) to Cr (III) and immobilization of chromium on mineral surfaces. During this study, lead sorption on a kaolin surface was found to be a rapid and a pH dependant process in which lead sorption significantly increased with the amount of phosphate on the clay surface. This study verifies that methylmercury cation remains intact when it binds to humic acids, forming a monodentate complex with some sub-population of humic thiol ligands .

Physical Description

vp.

Notes

OSTI as DE00775037

Source

  • Other Information: PBD: 29 Dec 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/14718
  • Grant Number: FG07-96ER14718
  • DOI: 10.2172/775037 | External Link
  • Office of Scientific & Technical Information Report Number: 775037
  • Archival Resource Key: ark:/67531/metadc723928

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 29, 2000

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 21, 2016, 7:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Taylor, Robert W. Kinetics and Mechanism of Metal Retention/Release in Geochemical Processes in Soil - Final Report, report, December 29, 2000; United States. (digital.library.unt.edu/ark:/67531/metadc723928/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.