Large aperture magnets for a future high power proton synchrotron

PDF Version Also Available for Download.

Description

A high intensity, high power proton synchrotron is currently under consideration at Fermilab. The machine--known as the Proton Driver--would accelerate 3 x 10{sup 13} protons from 400 MeV to 12 GeV (stage I) or 16 GeV (stage II) and ultimately deliver in excess of 1 MW of beam power. To minimize losses and insure beam stability, the space charge-induced tune shift must be kept well below 0.5. This is accomplished by spreading out bunches both longitudinally and transversely. While the former strategy favors high voltage low frequency RF, the latter leads to magnets with unconventionally large apertures. This requirement, combined ... continued below

Physical Description

69 pages

Creation Information

Mills, Jean-Francois Ostiguy and Frederick M. August 14, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A high intensity, high power proton synchrotron is currently under consideration at Fermilab. The machine--known as the Proton Driver--would accelerate 3 x 10{sup 13} protons from 400 MeV to 12 GeV (stage I) or 16 GeV (stage II) and ultimately deliver in excess of 1 MW of beam power. To minimize losses and insure beam stability, the space charge-induced tune shift must be kept well below 0.5. This is accomplished by spreading out bunches both longitudinally and transversely. While the former strategy favors high voltage low frequency RF, the latter leads to magnets with unconventionally large apertures. This requirement, combined with a 1.5 T bending field and rapid cycling operation results in a number of serious but not insurmountable challenges. In this paper, they discuss the design of the Proton Driver magnets and the rationale behind it.

Physical Description

69 pages

Source

  • Particle Accelerator Conference, Chicago, IL (US), 06/18/2001--06/22/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-Conf-01/160
  • Grant Number: AC02-76CH03000
  • Office of Scientific & Technical Information Report Number: 784340
  • Archival Resource Key: ark:/67531/metadc723827

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 14, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 1, 2016, 6:52 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Mills, Jean-Francois Ostiguy and Frederick M. Large aperture magnets for a future high power proton synchrotron, article, August 14, 2001; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc723827/: accessed April 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.