RECEIVED NOV 0 1 2000 OSTI

INTEC High-Level Waste Studies Universal Solvent Extraction Feasibility Study

Jila Banaee
Charles M. Barnes
Terry Battisti
Steve Herrmann
Sylvester J. Losinski
Scott McBride

Published September 2000

Idaho National Engineering and Environmental Laboratory
High-Level Waste Department
Idaho Falls, Idaho 83415

Prepared for the
U.S. Department of Energy
Assistant Secretary for
Environmental Management
Under DOE Idaho Operations Office
Contract DE-AC07-99ID13727

18624 -ON 13 VO V ----

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ABSTRACT

This report summarizes a feasibility study that has been conducted on the Universal Solvent Extraction (UNEX) Process for treatment and disposal of 4.3 million liters of INEEL sodium-bearing waste located at the Idaho Nuclear Technology and Engineering Center. This feasibility study covers two scenarios of treatment. The first, the UNEX process, partitions the actinides and Cs/Sr from the SBW and forms remote-handled TRU and contact-handled LLW forms. The second process, known as the Modified UNEX Process, partitions the Cs/Sr from the SBW and creates remote-handled LLW and contact-handled TRU waste forms. Phase one of this study, covered in the 30% review document, dealt with defining the processes and defining the major unit operations. The second phase of the project, contained in the 60% review, expanded on the application of the UNEX processes and included facility requirements and definitions. Two facility options were investigated for the UNEX process, resulting in a 2 x 2 matrix of process/facility scenarios as follows: Option A, UNEX at Greenfield Facility, Option B, Modified UNEX at Greenfield Facility, Option C, UNEX at NWCF, and Option D, Modified UNEX at NWCF. Phase three of this study, included in this document, covers life-cycle costs for all options presented along with results and conclusions determined from the study.

SUMMARY

A feasibility study for the processing of 4.3 million liters of sodium-bearing waste (SBW) through the Universal Solvent Extraction (UNEX) process has been completed. Four different processing options pertaining to the UNEX process were addressed. These options include Option A, UNEX process in a Greenfield Facility, Option B, Modified UNEX in a new (Greenfield) Facility, Option C, UNEX in NWCF, and Option D, Modified UNEX in NWCF.

This study covers the Design Basis and Assumptions for the project, Process Descriptions, Facility Descriptions, Cost Estimates, Project Schedule, Requirements and Assessments, and is concluded with Uncertainties and Recommended Resolutions.

Two options for processing the SBW have been evaluated. The first was the UNEX process, which separates the actinides, Cesium (Cs) and Strontium (Sr), from the SBW and creates a remote-handled TRU along with a contact handled LLW. The second separation option evaluated was the Modified UNEX process which separates the Cs/Sr from the SBW and results in a remote-handled LLW and a contact-handled TRU waste. Results from this study show that a total of 44,700 drums of waste will be generated from the UNEX process, while 29,200 drums will be created using the Modified UNEX process.

Cost estimates for the processes and facilities have also been determined. Option A, the UNEX process in a Greenfield Facility, has an estimated life-cycle cost of \$744 million of which roughly \$514 million is allocated for capital costs. Option B, the Modified UNEX process, is estimated to cost \$890 million with \$514 million dollars associated with Capital Costs. Option C, the UNEX Process in the NWCF, has a Life Cycle Cost of roughly \$848 million dollars with \$604 million allocated for Capital Costs. Lastly, Option D, Modified UNEX in the NWCF, is estimated to cost roughly \$995 million of which \$609 million is allocated for capital costs. All cost estimates associated with this study include costs for storage of the final waste forms.

From an economics perspective, all four options are very capital intensive relative to the discounted LCC. This is largely the result of the SBW treatment facility size, its throughput requirements, and the duration of the treatment campaign. However, options that employ Greenfield construction have a lower discounted LCC. Additionally, the two options that employ the Modified UNEX Process is more resource intensive since a majority of the treated SBW is disposed at WIPP. As a result, the lowest cost alternative (Option A) employs both the advantages of a Greenfield site construction and minimizes the volume of waste disposed at WIPP by employing the UNEX Process. The next-lowest cost alternative (Option C) continues to employ the UNEX process. This suggests that the marginal cost differences in the treatment process is more of a cost driver than the marginal cost differences in facility location.

A preliminary schedule for the project was also estimated in this study. Assuming a start date of January 2001, the UNEX separations project would be completed in January 2013. This timeline includes conceptual design, project support, design, construction, facility acceptance, project management, and interim storage of waste.

ACKNOWLEDGMENTS

The following team members participated in this Feasibility Study.

Richard D. Adams

Facility Cost Estimating

Vondell J. Balls

Project Engineer

Jila Banaee

Environmental Engineering

Charles M. Barnes

Chemical Engineering

Terry Battisti

ANLW, Process Engineering

James Benson

Mechanical Engineering

John E. Duggan

Electrical Engineering

Dennis J. Harrell

Project Manager

Alan K. Herbst

Technology Development Advisor

Ronald S. Herbst

Technology Development Advisor

Steve Herrmann

ANLW, Process Engineering

Ross E. Johnson

Architectural Engineer

Raymond R. Kimmitt

Advisor - Vitrification Technologies

Jack D. Law

Technology Development Advisor

Weck-S. Liu

Civil Engineering

Sylvester J. Losinski

Project Technical Lead Engineer

Frances M. Marshall

Nuclear Engineer

Scott McBride

ANLW, Mechanical Engineer

W. Ed May

Technical Editing

Travis Mitchell

Cost Estimating

Martin M. Plum

Life-cycle Cost Estimating

Anna K. Podgorney

Chemical Engineering

Dan Rowley

Cost Estimating

Terry A. Todd

Technology Development Advisor

David R. Tyson

Advisor- Mercury Removal Technologies

Edward P. Wagner

HLW Project - UDS Consensus Leader

Kevan Weaver

Nuclear Engineer

viii

CONTENTS

ABS'	[RAC]	Γ	. iii
SUM	MARY	<u></u>	v
ACK	NOWI	EDGMENTS	vii
ACR	ONYM	ISx	cvii
1.	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Objective and Scope of Work	1
	1.3	Concept Overview	2
2.	DESI	GN BASIS AND ASSUMPTIONS	3
	2.1	Site description	3
	2.2	Mass and Energy Balance	3
		2.2.1 Feed Composition	3
		2.2.2 SBW Filtration	
		2.2.3 UNEX Feed Adjustment	
		2.2.4 UNEX Separations	
		2.2.5 UNEX Strip Processing	
		2.2.6 LAW Evaporation and Acid Recovery	
		2.2.7 LAW Neutralization and Grouting	
		2.2.7 LITTI Notating and Growing	. 10
	2.3	Equipment Sizing and Selection	. 11
		2.3.1 SBW Feed Filtration Equipment	. 11
		2.3.2 Separation Equipment	
		2.3.3 RHTC Processing Equipment	
		2.3.4 LLW/CHT Processing Equipment	
		2.3.5 LLW Grouting Equipment.	
		2.0.0 2.2 · · · · · · · · · · · · · · · · · ·	
	2.4	Interim Storage Requirements	. 14
	2.5	Surge Capacity Requirements	. 14
	2.6	Sampling Requirements	. 15
		2.6.1 Sampling Locations, Frequency, and Duration	. 15
	2.7	Make-up Feeds	. 16
		2.7.1 UNEX Solvent	. 16

	2.8	Second	ary Waste Streams	18
		2.8.1	HEPA Filters	18
		2.8.2	Personal Protective Equipment	19
		2.8.3	Spent UNEX Solvent	19
3.	REG	JULATO	RY, PROCESS, and EQUIPMENT ASSUMPTIONS	20
	3.1	Regulat	tory Assumptions	20
	3.2	Process	and Equipment Assumptions	20
4.	PRC	CESS DI	ESCRIPTION	22
	4.1	SBW T	ransfer to Facility	22
		4.1.1	NWCF Transfers	22
		4.1.2	GFF Transfers	22
		4.1.3	Retrieval	
		4.1.4	Transport	22
	4.2	SBW F	Feed Filtration	22
		4.2.1	SBW Primary Filter	22
	4.3	UNEX	Feed Adjustment	23
		4.3.1	HF Make-Up	23
	4.4	Separa	tion Process	23
		4.4.1	UNEX Process	24
		4.4.2	Modified UNEX Process	24
	4.5	RHTC	Processing	24
		4.5.1	RHTC Evaporation and Crystallization	24
		4.5.2	RHTC Stream Characteristics	
		4.5.3	RHTC Form	29
		4.5.4	RHTC Quantity	29
	4.6	LLW/0	CH-TRU Waste Form (CHT)Processing	29
		4.6.1	LLW/CHT Evaporation	29
		4.6.2	LLW/CHT Acid Fractionation	36
	4.7	LLW/	CHT Neutralization and Grouting	3
		4.7.1	Feed Stream and Neutralization Process	
		4.7.2	Grout Characteristics	
		4.7.3	LLW/CH-TRU Form	3 [,]

		4.7.4	LLW/CH-TRU Quantity	34
5.	FACI	LITY D	DESCRIPTION	35
	5.1	Greenf	field Facility (GFF)	35
		5.1.1	GFF Processing Facility	36
		5.1.2	HAW Evaporation	
		5.1.3	•	
			Grouting	
		5.1.4	Administrative Building	38
	5.2	New W	Vaste Calcining Facility	38
		5.2.1	NWCF Cell Descriptions	39
		5.2.2	NWCF Storage Area	
	5.3	Thin F	ilm Dryer Facility (TFD)	42
	5.4	GFF G	Frouting Facility	42
		5.4.1	Modified UNEX Grouting Facility	43
		5.4.2	UNEX Grouting Facility	
	5.5	NWCF	F Grouting Facility	43
		5.5.1	GFF &TFD HVAC	
		5.5.2	Heat Recovery Systems	
		5.5.3	Heating Loads With Steam or Electric Requirements	50
		5.5.4	Ventilation Fans, HP	51
		5.5.5	Cooling, Compressor and Fan HP	
		5.5.6	Modified UNEX Facility	
		5.5.7	Thin Film Dryer Facility	
		3.3.7	Timi Film Diyer Facinty	
	5.6	Remot	te Maintenance Philosophy	53
	5.7	Hot Ce	ell Design Requirements	55
	5.8	Decon	tamination and Decommissioning	56
	5.9	Interin	n Storage	56
	5.10	Proces	ss Energy	56
	5.11	Steam	Facility	58
	5.12	Utilitie	es	58
		5.12.1	Storm Drain System	58
		5.12.2	· · · · · · · · · · · · · · · · · · ·	
		5.12.3		
			High-Pressure Air Line	

		5.12.5	Potable Water Line	59
		5.12.6	Cooling Water and Demin Waterlines	59
		5.12.7	SBW Feed & UDS Return Lines	59
		5.12.8	Electricity	
		5.12.9	Electrical Requirements	
6.	COS	T ESTIMA	ATE	62
	6.1	Life-Cyc	ele Costs	62
		6.1.1	Economic Methodology	62
		6.1.2	Operations Cost Methodology	62
		6.1.3	Schedule Methodology	63
		6.1.4	Life-Cycle Results	63
		6.1.5	Economic Recommendation	
	6.2	Capital (Costs	64
7.	PRO	JECT SCI	HEDULE	65
8.	REQ	UIREME	NTS AND ASSESSMENTS	69
	8.1	Federal	and State Regulations	69
	8.2	Waste T	reatment and Acceptance Requirements	69
9.	UNC	CERTAIN	TIES AND RECOMMENDED RESOLUTIONS	72
	9.1	Research	h	72
		9.1.1	Mercury Study	72
		9.1.2	Solvent Evaluation	
		9.1.3	Citrate Study	7
		9.1.4	Sodium Fluoride vs HF	
	9.2		bility to Calcine Treatment	8
	9.3	Researc	h and Development Needs	9
		9.3.1	Sodium Bearing Waste Filtration Characteristics	9
		9.3.2	Filtered UDS Radiological and Rheological Properties	9
		9.3.3	Feed Composition Variability	9
		9.3.4	Solvent composition Variability	
		9.3.5	Chemical/Radiological Stability of Solvents	10
		9.3.6	Hazards Analysis	
		9.3.7	Hydrogen Generation	
		9.3.8	Solvent Purity Specifications	10
		9.3.9	Solvent Commercialization	
		9.3.10	Solvent Loss Rates/Adjustment	10
		9.3.11	Alternative Scrub Reagents	
		9.3.12	Strip Product Chemical Variability	
		9.3.13	Spent Solvent Disposition	
		9.3.14	Crystallization of HAW Fraction	

	9.3.13	institution and Control Associated with Remote-level Sensing in	
		HAW 2X10 Canisters	11
	9.3.16	Criticality Analysis	11
	9.3.17	Mercury Removal from SBW	11
	9.3.18	Grout Formulation	11
	9.3.19	Grout Neutralization Reaction and Kinetics	12
	9.3.20	Grout Mixing	
	9.3.21	Grout Cure and Physical Properties	
	9.3.22	Crystallization of HAW Fraction	
10.		S	
App App App App	pendix C—Mass a pendix D—Facilit pendix E—Detaile pendix F—Proces	ss Flow Diagrams and Energy Balances sy/Mechanical Drawings	
App	endix H—Facilit	ry Personnel Estimate	
App	endix I—Radion	uclide Dose Rate Calculations	
App	endix J—Hydrog	gen Generation Analysis	
		FIGURES	
1. 7	Typical UNEX gr	outing glovebox design	13
2. E	Block flow diagra	m featuring the UNEX solvent and the make-up feed	18
3. <i>A</i>	ANL Centrifugal	Contactor	24
4. S	Schematic of Thir	n-Film Dryer	25
5. F	Projected INTEC	thermal energy demands, FY-00 through FY-40	58
6. U	JNEX/Modified I	UNEX process flow diagram	1

TABLES

1. Waste streams used for weighted average	5
2. UDS composition	7
3. Breakdown of solvent carry-over by component and effluent.	9
4. Losses of UNEX solvent components with process streams due to entrainment and solubilit	y.17
5. Distribution of RCRA metals in remote-handled waste forms	. 26
6. Radiological classification of remote-handled waste forms.	. 28
7. Comparison of RHTC waste form with WIPP WAC.	29
8. Distribution of RCRA metals in contact-handled waste forms.	32
9. Radiological classification of contact-handled waste forms	33
10. Comparison of CH-TRUcWaste Form with WIPP WAC.	34
11. Main cell equipment.	37
12. Calciner cell equipment.	39
13. Off-gas cell equipment.	40
14. Blend and hold cell equipment.	40
15. Valve cubicle equipment.	41
16. Storage Area equipment.	41
17. TFD equipment.	42
18. UNEX Area requirements	46
19. Modified UNEX Area requirements	47
20. Thin Film Dryer Area requirements.	48
21. UNEX Equipment	48
22Modified UNEX Equipment	49
23. Thin Film Dryer Equipment.	49
24. Zone pressure drops	51
1 in. w.g	51
25. Fan horsepower.	52

26.	Crystallization process requirements.	57
27.	LAW evaporation (EV-204-1) process requirements.	57
28.	Neutralization process requirements	57
29.	Life-cycle cost estimates for UNEX and MUNEX in GFF and NWCF	64
30.	Capital costs for UNEX and MUNEX in GFF and NWCF.	64
31.	Mercury inventory in the Tank Farm (before blending scheme)	73
32.	Mercury inventory in the Tank Farm (after blending scheme)	73
33.	Characteristics of the extraction solvents.	4
34.	Cost of raw materials.	6

ACRONYMS

AEA Atomic Energy Act

AHU Air Handling Units

ANLW Argonne National Laboratory – West

ANN Aluminum Nitrate Nonahydrate

ASME American Society of Mechanical Engineers

CAA Clean Air Act

cfm Cubic Feet per Minute

CFP Cross Flow Process

CFR Code of Federal Regulations

ChCoDiC Chlorinated Cobalt Dicarbollide

CH-LLW Contact-Handled Low Level Waste

CHT Contact-Handled Transuranic Wasteform

CMF Centrifugal Membrane Filtration

CMPO Diphenyl-N,N-dibutylcarbamoyl-methyl phosphine oxide

CPP Chemical Processing Plant

CsIX/TRU Cesium Ion Exchange/Transuranic

DBA Design Basis Accidents

D&D Decontamination and Decommissioning

DET Determination of Equivalent Treatment

DF decontamination factor

DOE U.S. Department of Energy

DOT Department of Transportation

DTPA Diethylenetriamine Pentaacetic Acid

EPA U.S. Environmental Protection Agency

FFCA Federal Facilities Compliance Act

FS-13 Phenyltrifluoromethyl Sulfone

GC Guanidine Carbonate

GFF Greenfield Facility

GTCC Greater Than Class C

HEPA High-Efficiency Particulate Air (filter)

HLLWE High Level Liquid Waste Evaporator

HLW high-level waste

HRA Hot Repair Area

HVAC heating, ventilation, and air conditioning

INEEL Idaho National Engineering and Environmental Laboratory

INTEC Idaho Nuclear Technology and Engineering Center

LAW Low Activity Waste

LDR Land Disposal Restrictions

LDUA Light Duty Utility Arm

LET&D Liquid Effluent Treatment and Disposal

LLW Low Level Waste

MACT Maximum Achievable Control Technology

nCi nanoCurie

NGLW Newly Generated Liquid Waste

NRC Nuclear Regulatory Commission

NWCF New Waste Calcining Facility

PaR Systems Corporation (remote equipment)

PEG 400 Polyethylene Glycol 400

PEWE Process Equipment Waste Evaporator

PFD Process Flow Diagram

PLC Program Logic Control

RCRA Resource Conservation and Recovery Act

RH-LLW remote-handled low-level waste

RHTC remote-handled TRU crystallite

RHTS remote-handled TRU solids

SBW sodium-bearing waste

SREX Strontium Extraction Process

TCLP Toxicity Characteristic Leaching Procedure

TD technology development

TF Tank Farm

TFD Thin Film Dryer

TOC Total Organic Carbons

TRU Transuranic

TRUEX Transuranic Extraction Process

TSS Total Suspended Solids

UDS Undissolved Solids

UHCs Underlying Hazardous Constituents

UNEX Universal Solvent Extraction Process

WAC Waste Acceptance Criteria

WIPP Waste Isolation Pilot Plant

WM Waste Management

XFR Transfer

Universal Solvent Extraction Feasibility Study

1. INTRODUCTION

Treatment of radioactive waste at the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL) is mandated under a Settlement Agreement signed October 16, 1995, between the U.S. Department of Energy (DOE), the U.S. Department of Navy, and the State of Idaho. A portion of the Agreement requires that liquid sodiumbearing waste (SBW) in the INTEC Tank Farm tanks be calcined (i.e., treated) by the end of 2012. Initially, the SBW was to be treated in the New Waste Calcining Facility (NWCF) at INTEC. Due to permitting considerations associated with the NWCF, development of alternative treatment options are being considered.

An April 3, 1992, Consent Order of the Notice of Noncompliance between the U.S. Environmental Protection Agency (EPA) and the State of Idaho requires that the DOE "cease use" of five of eleven tanks, which are contained in pillar and panel vaults, by March 31, 2003. As a result of the early closure of these tanks, there is a concerted effort to treat all liquid waste in preparation for tank closures.

1.1 Background

This study investigates treatment of the current INTEC tank farm liquid waste inventory, plus any newly generated liquid waste (NGLW) produced before January 2013 and stored in the INTEC tank farm. It assumes that the NWCF calciner will not be operational, and further assumes that the NWCF building can be used for Universal Solvent Extraction (UNEX) or Modified UNEX processes.

Four approaches to the UNEX and Modified UNEX treatment options are considered:

- 1. UNEX treatment process in a new (Greenfield) Facility
- 2. UNEX treatment process with a portion of the processing equipment located in the NWCF building and the remainder of the processing equipment in a new Greenfield Facility
- 3. Modified UNEX treatment process in a new Greenfield Facility
- 4. Modified UNEX treatment process with a portion of the processing equipment located in the NWCF building and the remainder of the processing equipment in a new Greenfield Facility.

1.2 Objective and Scope of Work

The primary objectives of this study are to determine the feasibility and costs of the UNEX and Modified UNEX processes for treating SBW and NGLW at INTEC. The following activities are being performed in this study to meet these objectives:

- Conducting literature and theoretical research of known technological issues dealing with processability and waste form properties
- Development of a design basis to include anticipated composition of waste requiring processing and the processing schedule

- Development of an integrated process strategy that includes interface with existing INTEC
 facilities, unit operations-treatment trains, startup and shutdown operational issues, process
 control strategies, radiological dose and contamination control strategies, and disposition of
 primary and secondary waste streams
- Selection, definition, and sizing of major processing equipment and materials handling systems
- Generate facility and site layouts that support and contain process equipment and site interfaces
- Generate estimates of operational labor, materials, and utilities required during process operations
- Perform regulatory compliance and permitting analysis to include facility operation and wasteform disposal
- Develop capital cost and life-cycle cost estimates supporting construction, operation, and decommissioning of the defined facility.
- Performing analysis of the overall feasibility of the process for SBW and examining the potential for applicability to processing other wasteforms.
- Develop a project schedule for each of the UNEX options.

1.3 Concept Overview

The basic UNEX and Modified UNEX processes are illustrated in the process flow diagrams included in Appendix B. Both of the processes consist of the following major steps:

- 1. Rough filtration of undissolved solids (UDS) from the liquid waste feed stream
- 2. Radionuclide extraction by liquid/liquid solvent centrifugal contactors
- 3. Processing of the high-activity fraction by evaporative drying
- 4. Processing of the low-activity fraction by neutralization and grouting
- 5. Packaging and temporarily storing the high-activity and low-activity waste products.

The UNEX and Modified UNEX processes differ by the extraction of radionuclides. In the UNEX process, over 99% of the cesium, strontium, and the actinides are extracted into a remote-handled TRU crystallite (RHTC) form. The Modified UNEX process likewise extracts over 99% of the cesium and strontium, but allows the actinides to remain with the low-activity fraction.

2. DESIGN BASIS AND ASSUMPTIONS

2.1 Site description

The design basis for this study assumes that the UNEX or Modified UNEX facility will be located within the existing boundaries of INTEC. Conceptual site layouts are included in Appendix D. The site identified in this study lies north of Cyprus Avenue and west of Lodge Pole Street. Access portals for personnel, materials delivery, and waste transport will be through existing INTEC portals.

2.2 Mass and Energy Balance

The UNEX and Modified UNEX material balances were prepared using an Excel Visual Basic model. The basis for the input parameters to the model and the calculation methods used in the model are briefly discussed below. Most of the input parameters were taken from (1) J. D. Law, "Update of Flowsheet Assumptions for Treatment of SBW with the UNEX and Modified UNEX Processes," March 14, 2000, (2) J. D. Law, "Flowsheet Assumptions for Treatment of SBW with the UNEX Process," JLAW-04-99, October 25, 1999, and (3) J. D. Law, "Flowsheet Assumptions for Treatment of SBW with a Modified UNEX Process (Cs and Sr Removal Only), JLAW-05-99, November 15, 1999.

The material balances for the UNEX and Modified UNEX processes are included in Appendix C of this study. Process equipment energy balances were performed for major process equipment, based on the flow rates defined in the material balance, and are also included in Appendix C.

2.2.1 Feed Composition

The feed volume and composition of liquid waste to be treated in the UNEX or Modified UNEX process was calculated by

- 1. Obtaining existing Tank Farm inventory volumes and compositions
- 2. Calculating volumes and compositions of tank farm wastes after concentration in the High-Level Liquid Waste Evaporator (HLLWE) for tanks that are presently dilute
- 3. Obtaining the most recent estimates of NGLW volumes for the period 2000-2012
- 4. Obtaining NGLW stream compositions
- 5. Calculating the composition of all combined NGLW streams after concentration in the PEWE and HLLWE
- 6. Calculating the total liquid waste volume and average composition of all waste, including waste presently in the tank farm that will not be further concentrated, waste presently in the tank farm after concentration in the HLLWE, and concentrated NGLW
- 7. Adjusting radionuclide concentrations to account for decay to January 1, 2008
- 8. Calculating UDS chemical and radionuclide concentrations.
- **2.2.1.1 SBW Waste Volume and Chemical Species Concentrations.** Present Tank Farm volumes were taken from the INEEL HLW Systems Engineering web page "Tank Farm Volumes," http://challenger.inel.gov/nichtt/jm/tankdata/Tankmap.htm, and are current to January 31, 2000. Each

tank volume, except for WM-188, was increased by 5%, an assumed dilution due to steam jet transfer. The steam jet dilution factor is needed both to obtain the accurate waste volume that will be received in the treatment process feed tank and for consistency with composition analyses that were obtained from steam jetted samples.

The primary source for chemical specie concentration of Tank Farm waste is the worksheet "TF Inven" in the Excel spreadsheet prepared by D. Staiger, "Clark Residual Estimate 2016 for No Action Alternative 24 Jan 2000" dated March 1, 2000. Although this spreadsheet has not been published, the data is consistent with that on the Tank Farm web pages (accessible from http://challenger.inel.gov/nichtt/jm/tankdata/Tankmap.htm, updated January 7, 2000) and is also consistent, with a few exceptions, with R. E. Schindler, "Composition of Wastes in Tank Farm," Schindler-04-99, February 11, 1999.

For a few tanks and a few species, primarily As, Cd, Ni, and Zr, concentrations were either not shown in Staiger's tables or were shown as detection limit values, so data from Schindler-04-99 were used. The concentration of mercury in WM-189 in Staiger's tables and Schindler-04-99 is not correct based on an e-mail note from R. E. Schindler I received June 8, 1999. The corrected value is documented in Table 1 of R. A. Wood, "Updated Aluminum Nitrate/WM-189 Blend Calculations for 500°C and 600°C Operation During NWCF Run H4," RAW-01-00, February 14, 2000.

Chemical species compositional data for WM-188 were taken from Patterson (1999). Because the WM-188 samples were taken directly from the tank, steam jet dilution was not included in the volume of WM-188.

Concentrations of As, F, PO₄, Se, and TOC for WM-182 were taken from unpublished data from Light Duty Utility Arm samples taken in FY-2000. For a number of trace species such as Ag, Mn, and Mo, data was available for some but not all of the tanks, and so missing concentrations were assumed to be equal to the weighted average of the tanks for which data were available.

Nonradioactive cesium concentrations were obtained by using the ratio of nonradioactive cesium to ¹³⁷Cs calculated from data in D. R. Wenzel, "Calculation of 1999 Radionuclide Inventory for Sodium Bearing Waste," Wen-20-99, May 18, 1999. Wenzel's data provides total cesium, ¹³⁴Cs, ¹³⁵Cs, and ¹³⁷Cs concentrations; from these, the concentration of nonradioactive cesium can be obtained by difference. The ratio was corrected to a decay date of January 2000 and then multiplied by ¹³⁷Cs concentrations for each tank, also decayed to January 2000.

Nitrate concentrations were calculated by charge balance, and deviated from measured values by an average 0.3 moles/liter.

UDS concentrations for WM-180, WM-181, WM-185, and WM-189 were taken from R. E. Schindler, "Composition of Wastes in Tank Farm," Schindler-04-99, February 11, 1999. UDS concentrations for the other tanks were taken from K. J. Rebish/J. A. Nenni, "Tank Farm Inventory," KJR-02-94/JAN-03-94, June 23, 1994. The UDS concentration in the "average" SBW feed, used in the mass balance for this study, was derived from the above-referenced UDS values for tanks in the Tank Farm. These values ranged from a low of 0.17 g/liter for WM-181 to 5.05 g/liter for WM-186. Liquid in some of the existing tanks will be concentrated in the HLLWE, and it was assumed that the UDS concentrated by the same factor as nonvolatile species.

2.2.1.2 SBW Radionuclide Concentrations. Radionuclide concentrations were taken from three sources. Values in Dan Staiger's spreadsheet "Clark Residual Estimate 2016 for No Action Alternative 24 Jan 2000" dated March 1, 2000; worksheet "TF Inven" were decayed from July 1999 to

January, 2000. Concentrations of a few species, primarily uranium isotopes and ¹²⁹I, were not available on this spreadsheet for some of the tanks, but were shown on the Tank Farm web pages, accessible from the summary page http://challenger.inel.gov/nichtt/jm/tankdata/Tankmap.htm. Concentrations not available from either of these sources were calculated from data in D. R. Wenzel, "Calculation of July, 1999 Radionuclide Inventory for INTEC Wastes," Wen-27-99, November 7, 1999. Radionuclides concentrations were calculated by using ratios derived from Wenzel. For example, the concentration of ²⁴³Am was obtained by multiplying the concentration of ²⁴¹Am by the ratio of ²⁴³Am/²⁴¹Am shown in Wenzel, corrected to a decay date of January 2000.

2.2.1.3 NGLW Volume and Composition. Projected volumes of NGLW are given in Clark Millet's Excel spreadsheet "Baseline Option C-600-REV 4," received March 7, 2000. The following adjustments were made to the projections shown by Millet:

- 1. Tank farm flushes were deleted from the NGLW, based on the assumption that any non-water components of the tank farm flushes would be accounted for in the SBW inventory.
- 2. Waste from NWCF operations in the years 2010–2012 were deleted based on assuming no restart of the calciner in 2010.
- 3. Calciner closure flushes were moved up from 2015 to before 2012.

The composition of the NGLW was calculated from individual stream compositions shown in Appendix B of Tripp (1998) and from volume fractions of individual waste streams as determined from Clark Millet's spreadsheet. Compositions are not available for every NGLW waste stream, hence the streams were grouped into similar types. The total NGLW was calculated as the weighted average of seven waste streams as shown in Table 1.

Table 1. Waste streams used for weighted average.

Fraction	Stream
0.009	CPP-603 Deactivation
0.02	CPP-601/627/640 Deactivation
0.144	NWCF Decon Facility
0.123	CPP-601 Lab Drains
0.23	PEW De-scale
0.202	NWCF Flushes
0.48	Type 0 (NWCF-derived)

The chemical composition of the Type 0 waste was assumed equal to the average Tank Farm waste composition; compositions of the other wastes, in dilute form, were taken from Tripp (1998). Radionuclide concentrations of concentrated Type 0 waste were assumed to be equal to 20% of concentrated Tank Farm waste, except for ³H and ¹²⁹I. Because this waste is derived from processing Tank Farm waste, theoretically it would add no radioactivity to the SBW. However, to account for radionuclides in other NGLW streams for which no or incomplete radiochemical analyses are available and to allow for small amounts of radioactivity that may be present in lines and other tanks in the NWCF,

a value of 20% was assumed. However because of the volatility of 3H and ^{129}I in calcination, the Type 0 NGLW was assumed to have no 3H and ^{129}I .

The NGLW waste streams were concentrated according to the PEW and HLLW evaporator concentration ratios in Clark Millet's spreadsheet, with one exception. The CPP-601 Lab Drains waste was only concentrated by a factor of 20 to avoid excessively high nitrate concentrations in the concentrate. When the NGLW is evaporated, a portion of the nitric acid present in these evaporator feeds will be volatilized and then be recovered in the Liquid Effluent Treatment and Disposal (LET&D) Facility bottoms, which will become a separate NGLW stream. To account for this acid return in the total NGLW, no acid was removed in the concentration calculations.

Radionuclide concentrations in NGLW were decayed from the data of analysis to January 1, 2008.

- 2.2.1.4 SBW Concentration in the HLLWE. Liquid presently in Tanks WM-181, WM-184, WM-186, and WM-187 was assumed concentrated by evaporation in the HLLWE. Approximately 50% of the waste in WM-181 was combined with the waste in WM-184 and concentrated by a factor of 1.73. The remaining WM-181 liquid was combined with the waste in WM-186 and concentrated by a factor of 2.39. The basis for these concentration factors as well as fractions of nitric acid, HCl, HF, and Hg removed from the waste are included in data provided by R. E. Schindler, "HLLWE Feed Blends for Wastes From WM-186, WM-184 and WM-181," Schi-17-98, July 28, 1998. WM-187 liquid, which is even less concentrated than the other tanks, was concentrated by a factor of 2.6. The evaporator condensate composition, and hence the amount of HNO₃, HCl, HF, and Hg removed, was based on interpolated data in Schi-17-98 based on evaporator feed composition.
- **2.2.1.5** Trace Species Concentrations. Molar concentrations of fission products and other trace species in SBW were taken from D. R. Wenzel, "Calculation of 1999 Radionuclide Inventory for Sodium Bearing Waste," Wen-20-99, May 18, 1999 and D. R. Wenzel, "Calculation of the Mass of Individual Elements in ICPP Wastes From Fission," Wen-05-98, March 2, 1998. These species include Ce, Nb, Nd, Pd, Pr, Ru, Sn, Sr, Ac, At, Be, Br, Cf, Cm, Dy, Er, Eu, Fr, Ga, Gd, Ge, Ho, In, La, Li, Pa, Pm, Po, Ra, Rb, Rh, Sb, Sm, Tb, Te, Th, Tl, Tm, Y, and Yb.
- **2.2.1.6 SBW Radionuclide Decay.** Radionuclide concentrations of SBW were decayed from January 2000 to January 2008 based on half-life data. Generation rates of ²⁴¹Am, ²⁴²Cm, ²³¹Th, ²³³U, ²³⁴U, ^{137m}Ba, and ⁹⁰Y were included in these calculations.
- **2.2.1.7 UDS Composition.** The chemical composition of UDS is based on unpublished calculations of Arlin Olson shown in Table 2.

Table 2. UDS composition.

Component	wt%	Compounds
Al	1.80%	AlPO ₄
В	2.99%	B_2O_3
Ca	0.91%	CaF ₂
Cd	0.16%	CdCrO ₄
Cr	0.23%	Cr ₂ O ₃
Cu	0.16%	CuMoO ₄
Fe	2.49%	FePO ₄ -2H ₂ O
Hg	0.59%	$HgCl_2$
K	1.60%	KCl
Li	0.16%	KNbO ₃
Mg	1.62%	Li ₃ PO ₄
Mn	0.39%	$MgSiO_3$
Mo	1.62%	MnO_2
Na	4.35%	MoO_3
Nb	0.15%	Na ₃ PO ₄
Ni	1.46%	NaCl
Pb	0.16%	NaF
Pd	0.10%	NiO
Rh	0.16%	PbSO ₄
Ru	1.62%	PdO
Si	4.09%	RhO_2
Sn	0.81%	RuO_2
Ti	0.16%	SiO_2
Zn	0.16%	SnO_2
Zr	13.95%	TiO_2
Cl	2.72%	$Zn_3(PO_4)_2$
F	2.66%	$Zr(SO_4)_2$ -4 H_2O
PO ₄	13.45%	ZrO_2
SO ₄	14.76%	
H_2O	7.12%	
0	17.41% 100.00%	

Data from three sources were used to calculate radionuclide concentrations in UDS:

- 1. M. C. Swenson, "Historical Tank Farm Sample Results," MCS-27-92, December 17, 1992
- 2. M. Patterson, Light Duty Utility Arm Deployment in Tank WM-188, INEEL/EXT-99-01302, December, 1999
- 3. Unpublished data from Light Duty Utility Arm samples of WM-182 taken in FY-2000.

Activities for solids in each tank were decayed from their date of analysis to January 1, 2008 and combined into an average based on the relative proportion of UDS in each tank. Concentrations of ²⁴¹Am, ^{137m}Ba, and ⁹⁰Y include generation rates from ²⁴¹Pu, ¹³⁷Cs, and ⁹⁰Sr.

2.2.2 SBW Filtration

The material balance assumes 90% removal of UDS. The basis for the UDS removal efficiency is the activity of TRU and other radionuclides in the LAW grout product. At 90% removal efficiency, the TRU activity in the LAW grout is 2.6 nCi/g, and the "sum of the fractions" is 92% of the NRC limit for Class A waste.

The UDS return composition assumes a solids concentration of 20% (in SBW liquid) in the UDS concentrate diluted to 10% by water jet transfer. The UDS return rate is 50 gpm for a period of about 16 minutes every month.

2.2.3 UNEX Feed Adjustment

3.3-molar HF is added to the filtered SBW in a volume ratio of 0.1 HF solution to 1.0 SBW feed to complex zirconium in the SBW.¹ This feed adjustment is not needed if actinides are not removed (Modified UNEX). The density of 5.2- molar HF is 1.04 g/cm³, as per Table 2-58 of Perry et al (1997).

The 3.3- molar HF solution is made up from a 50% HF solution, equivalent to 30- molar HF, and having a density of 1.198 g/cm³.

2.2.4 UNEX Separations

The basis for material balance calculations for the UNEX process, including number of extraction, scrub, and strip stages, organic to aqueous ratios, distribution coefficients, and solvent, scrub and strip compositions, is given in J. D. Law, "Update of Flowsheet Assumptions for Treatment of SBW with the UNEX and Modified UNEX Process," March 14, 2000; J. D. Law, "Flowsheet Assumptions for Treatment of SBW with the UNEX Process," JLAW-04-99, October 25, 1999; and J. D. Law, "Flowsheet Assumptions for Treatment of SBW with a Modified UNEX Process (Cs and Sr Removal Only)," JLAW-05-99, November 15, 1999.

The material balance model uses the above input parameters to iteratively calculate stage-by-stage compositions through the UNEX extraction, scrub, and strip sections until a convergence tolerance is satisfied. The convergence tolerance, equal to the maximum fractional change of a composition or rate from one iteration to the next, was set at 10^{-12} .

¹ The UNEX feed fluoride adjustment is specified in J. D. Law, "Update of Flowsheet Assumptions for Treatment of SBW with the UNEX and Modified UNEX Process," March 14, 2000.

The composition of the UNEX solvent and of scrub and strip feed solutions are given in the above letters of Jack Law. The material balance model includes make-up modules for these feed streams. Chemicals to make up the UNEX solvent and strip solutions, including Phenyltrifluoromethyl Sulfone (FS-13), Diphenyl-N,N-dibutylcarbamoyl-methyl phosphine oxide (CMPO), Polyethylene Glycol 400 (PEG-400), chlorinated cobalt dicarbolide (ChCoDiC), guanidine carbonate (GC), and Diethylenetriamine Pentaacetic Acid (DTPA) are assumed available in pure form. Aluminum nitrate for scrub feed was assumed to be procured as a 50 wt% solution of Al(NO₃)₃, equivalent to a 59.5% solution of aluminum nitrate nonahydrate (ANN). Make up water and nitric acid for these feeds are supplied by the acid fractionator condensate and bottoms.

The material balance shows a single concentration of UNEX solvent in raffinate and strip effluents, based on a total entrainment and solubility of 1g/liter. Jack Law provides a breakdown of solvent carry-over by component and effluent in "Update of Flowsheet Assumptions for Treatment of SBW with the UNEX and Modified UNEX Process," March 14, 2000, as shown in Table 3 below. The value used in the material balance was approximated from this data.

Table 3. Breakdown of solvent carry-over by component and effluent.

	Raffinate	Strip
PEG-400 solubility, mg/liter	50	250
FS-13 solubility, mg/liter	200	120
ChCoDiC solubility, mg/liter	5	5
CMPO solubility, mg/liter	5	5
Solvent entrainment, mg/liter	700	233
Total, mg/liter	960	613

The solubility of water in the UNEX solvent was assumed in the material balance to be 1 g/liter, based on data provided by Jack Law.

2.2.5 UNEX Strip Processing

The strip effluent from UNEX is concentrated and crystallized in a thin-film dryer or alternative crystallizer. The thin-film dryer would concentrate the strip solutions to a powder with a moisture content of 10 wt %. The RHTC solids were assumed to have a density of 0.58 g/cm³, based on the loose-fill density of guanadine carbonate.

2.2.6 LAW Evaporation and Acid Recovery

Material balance calculations for the LAW evaporation are based on results from ASPEN PLUS vapor-liquid equilibrium calculations. The equations used in the model are:

$F_{HNO3} = 0.025 *(VRF) - 0.045$	for UNEX with actinide removal
$F_{HNO3} = 0.03765 *(VRF) - 0.052$	for UNEX without actinide removal
$F_{HCI} = (0.072 * (VRF) - 0.148)$	for actinide removal
$F_{HCI} = (0.1094 * (VRF) - 0.1695)$	for no actinide removal
$F_{Hg} = 8.35 \times 10^{-8} * (VRF) - 1.48 \times 10^{-7}$	for both cases

For HF, ASPEN PLUS results show only ~0.005 % of the fluoride in the feed carrying into the overhead. Based on data for the PEWE, the HF carryover was set to 0.5%.

The LAW evaporator concentrates the feed to a total solids content of 600 g/liter. The density of the bottoms is assumed to be 1.35 and of the overhead 1.002.

The INTEC LET&D facility will be used recover nitric acid from the LAW overhead. For the Modified UNEX process, the LET&D facility will recover about 65% of the acid needed (as 100% HNO₃) in the process. 15.9-molar HNO₃ acid, along with recycle water is used to make-up the total process nitric acid requirement for the Modified UNEX process. A small amount of make-up acid will be required in the UNEX process for start-up and initial chemical inventories.

2.2.7 LAW Neutralization and Grouting

Two different grout formulations were used for the two material balance cases based on the anticipated disposal sites for the waste products. For grouts such as would be required for the UNEX actinide removal case, development at the INEEL has shown that SBW can be grouted directly with proper pH adjustment (Herbst et al. 1998). The concentrated LAW from the UNEX process will be very similar in composition to SBW, hence the direct grouting development results (42.5 % waste loading) were used as the basis for grouting parameters. The following grout formulation was used (from Table 12 of Herbst et al. 1998):

For "performance grouts" such as would be required for the UNEX actinide removal case, development at the INEEL has shown that SBW can be grouted directly either with an acidic or a basic formulation (Herbst et al. 1998). However, the basic formulation allows for a higher waste loading (42.5%) than the acidic formulation (30%). The concentrated LAW from the UNEX process will be very similar in composition to SBW, hence the direct grouting development results were used as the basis for grouting parameters. To minimize the grout volume, the following basic grout formulation was used (from Table 12 of Herbst et al. 1998):

• Neutralization with 50% NaOH: to a pH of 12 (0.1457 kg 50% NaOH per kg grout)

• Solid grout additives: 14.0% Ca(OH)2

8.6% Portland cement

77.4% Blast furnace slag

• Waste loading 0.425 kg of neutralized liquid per kg of grout

The waste loading equates to a "dry" loading of about 22.4%. The grout density was assumed to be 1.63 kg/liter, as per test results for direct grouting of SBW with the basic formulation (Table 12, Herbst et al. 1998).

For the case of disposal at WIPP, the grout formulation used is based on high-waste grouts developed for the CsIX/TRU Grout process for disposal at WIPP. The formulation used for the Modified UNEX process with no actinide removal is (from Table 6 of Herbst et al. 1999)²:

² The grout formulation used for the modified UNEX is closest to samples H-32 and H-8, but with slight modifications based on discussions with John McCray. See also J. A. McCray, "Status Report for CsIX and NGLW Demonstration Grout Testing," JAM-03-99, September 30, 1999.

•	Weight Fraction Waste	0.70
•	CaO	0.16
•	Blast Furnace Slag	0.10
•	Portland Cement	0.04.

In this case, CaO is added to the waste before the other additives to neutralize it and prevent hydrogen sulfide formation and degradation of the cement clinker. The water content of the resulting grout amounts to 38.5%, and the waste loading of 0.70 kg liquid per kg grouted waste corresponds to a "dry" waste loading of 41.4 wt %.

Test data for grouts developed for the CsIX/TRU Grout process with an 80% loading remain soft after curing, but generally meet the WIPP criteria for no free liquids. CaO needs to be mixed with the waste before addition of the other additives to ensure no free liquid formation.³ Results from formulations using 70% waste loading were "somewhat hard" and met LDR TCLP limits for Hg, Cr, Cd and Pb.³

For both cases, solid grout additives are assumed fed to the grout mix tank by gravity rather than pneumatically, thus the exhaust from the grout mix tank and the entrained solids in this exhaust will be low. The average exhaust flowrate was based on a 2.4 times the grout flowrate, and the solids entrainment fraction was assumed to be 0.001%. The exhaust is filtered by a prefilter and two stages of HEPA filters, with assumed efficiencies of 95%, 99.5%, and 99.5% respectively.

2.3 Equipment Sizing and Selection

2.3.1 SBW Feed Filtration Equipment

Separation of the suspended solids (concentration 3 g/L) in the SBW (stream 115) is necessary for the processing of the waste stream. This separation process is performed by two centrifugal membrane filtration (CMF) systems, which use a high-shear rotary cross-flow process (CFP) to achieve a 95% filtration efficiency of the SBW feed. Each of the two CMF systems will employ two parallel mounted filtration housings, each containing ten 11-in.-diameter disks with each disk having a total permeable surface area of approximately 1 ft². Each of the centrifugal housings has the capability of processing 2,500 gal/day of waste during continuous operation. A single centrifugal pump with a variable capacity of up to 10 gpm is used to supply the inlet feed to the CMF housings. The rotation of the CMF filtration discs, located inside the housings, is accomplished by a single 15-hp motor. All the components associated with a single CMF are mounted on a base plate, which is approximately 3-ft wide by 5-ft long, has an overall height of 5 ft, and weights approximately 1,600 lb.

All wetted parts of the CMF are fabricated from stainless steel, with seals commensurate with proven performance for the expected activity levels associated with the inlet stream. Inspection and maintenance of the filter membrane and internal components is accomplished by vertical extraction of the rotor and filtration disks after removal of j-clamp retention bolts holding the rotating assembly to the CMF housing.

³ J. A. McCray, "Status Report for CsIX and NGLW Demonstration Grout Testing," JAM-03-99, September 30, 1999

2.3.2 Separation Equipment

Performance of the extraction, scrub, and strip portions of the UNEX process is accomplished through the use of centrifugal contractors. Due to the arrangement of the individual inlet and discharge ports on the separate contactor stages, individual pumps between each stage are not required. Consequently, the entire driving head for fluid transport through the contactor stages may be provided by a single pump on both the inlet and discharge main supply lines.

For the 24 stages (2 scrub, 8 strip, and 14 extraction) required by the UNEX process, centrifugal contactors with an 11-cm diameter rotor are required. The combined assembly, consisting of 24 stages, will require approximately 65 ft² of floor space and when mounted on 9-in. centers an overall footprint for the contactor assembly of 3-ft wide and 22-ft long may be achieved. The cost estimate for the complete 24-stage assembly is \$900K with any additional stages costing \$25K each.

2.3.3 RHTC Processing Equipment

Generation of the remote-handled low-level waste (RH-LLW) or TRU (RHTC) crystallite will be accomplished by a vertically mounted Thin-Film Dryer (TFD). To handle the expected 335-lb/hour feed rate (consisting of 97% water), the TFD will have 22 ft² of internal heat transfer area. The TFD operates with 150 psig steam to effect the drying and with cooling water to condense and recover vapor. The heated section of the dryer and the drive mechanism alone have a combination height of 11 ft. An additional 13.2 ft of overhead clearance is required for rotor removal. The TFD would be skid mounted with an accompanying condenser, condensate tank, and condensate transfer pump. Additional information for the TFD is provided in Appendix F.

2.3.4 LLW/CHT Processing Equipment

The LAW Evaporator is a skid mounted, latent heat, steam-heated evaporator capable of evaporating approximately 130 gal/hour on a continuous basis. The skid mount supports the 537 gal evaporation tank, feed and recirculation pumps, off-gas condenser, steam heat condensate collection tank, and all necessary piping and instrumentation and control devices. All PLC controllers and other control instrumentation are remote-mounted for access by operations personnel. The skid which supports the evaporator equipment is 58-in. wide x 127-in. long x 99-in. high with an estimated dry weight of 3,200 lb.

2.3.5 LLW Grouting Equipment

The Modified UNEX grout consistency is closely approximated in both content and viscosity by the grout mixture used in the CsIX/TRU Grout design study. This study will use the equipment configuration and grouting facility layout presented in the CsIX/TRU Grout study. The equipment consists of dry grout ingredient feed systems and a vertical mixer drive system compatible with in-drum lost-paddle mixing of grout in 55-gal drums.

2.3.5.1 Modified UNEX Grouting Facility. Clean 55-gal drums are remotely transported to one of three grout mixing stations, where grout formation is accomplished in the 55-gal drum located inside a containment cell. The lidless drum and grout mixture, which contains the discarded mixing blade, is then remotely transported to a curing room where up to 30% by wt. of the drum contents is lost to the atmosphere. After the grout has cured, the drum and contents are transferred back to the containment box, where the drum lid is installed and the drum external surfaces decontaminated. Upon decontamination, the drum is remotely transferred to the drum storage area attached directly to the grouting facility building. The estimated number of 55-gal drums produced from the entire Modified UNEX run is 29,200 drums based upon an 80% fill of each 55-gal drum. It is expected that since the

mixing operation is conducted in-drum and in-cell, only three mixing stations will be required to meet the roughly 49 drums/day of grout output required for the Modified UNEX process.

2.3.5.2 UNEX Grouting Facility. The UNEX grouting facility is essentially the same as the facility proposed for the Modified UNEX process with the exception that open lid curing of the grout mixture is not required. Consequently, the formation of the grout in the 55-gal drums can be performed in-drum, out-of-cell. This requires the individual drums to be mated and decoupled from a grout mixing glovebox. However, it eliminates the required decontamination of the drum externals following the mixing process. Since the mating process of the drum to the grout mixing glovebox is a time consuming process, it is anticipated that at least six individual mixing stations will be necessary to produce the 72 drums/day of grout required by the UNEX process flow rates. It is estimated that the drum storage facility for the entire production of UNEX drums must be capable of handling 44,700 drums based upon an 80% fill of each drum. A typical UNEX grouting glovebox design is presented in Figure 1 below.

Bulk dry material is delivered to the process facility by truck, where a semi-dense phase conveyor system powered by a pneumatic air source is employed to transfer the material to the appropriate bulk storage tank located outside of and next to the grouting facility (drawing P-6). As the grouting process consumes material from the day tanks (T-205-6a, 6b, 6c) which are located near to the grout mixing stations, a separate semi-dense phase conveyor is used to fill them from the bulk storage tanks (T-206-1,2,3).

A gravity feed system is employed to move material from the day storage tanks to the vertical drive auger for injection into the grout mixing drums. The material may be either volume-metered in a batch method, or a load scale, mounted under the vertical auger, may be employed to provide a direct material weight before use in the grouting procedure. The feed rate of material to the auger is controlled by a rotary valve located on the bottom discharge of the dry storage tanks and may be set to achieve the desired feed rate by the operator.

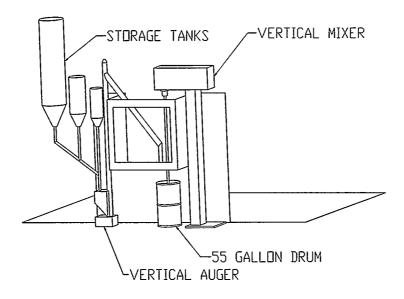


Figure 1. Typical UNEX grouting glovebox design.

2.4 Interim Storage Requirements

Interim storage capacity will be provided for the total life-cycle quantity of waste generated from the UNEX process or the Modified UNEX process. In the case of the UNEX process, storage capacity will be provided for 45,000 55-gal drums of contact-handled low-level waste (CH-LLW) and 360 2 x 10-ft cylinders of remote-handled TRU (RH-TRU). In the case of the Modified UNEX process, storage capacity will be provided for 30,000 55-gal drums of CH-LLW and 250 2 x 10-ft cylinders of RH-TRU.

2.5 Surge Capacity Requirements

Surge capacity requirements serve to provide a buffer in decoupling unit operations for the UNEX processes due to normal evolutions that are intermittent in nature or due to system upset conditions. A nominal surge capacity requirement of 24-hours is used to drive the number and sizing of tanks between unit operations. The primary operations, which serve as the basis for identifying surge capacities, are the transfer of SBW from and return of UDS to the tank farms, the shut down and start up of the UNEX contactors, the TFD operations, and the LAW treatment train. The following discusses each of these operations.

The transfer of SBW from the tank farms and the subsequent return of the UDS are intermittent operations and assumed to be performed on a daily basis. To support this operation, one SBW feed tank and two SBW day tanks are provided. The SBW feed tank is sized for 24-hours of operation at the midlevel, which provides flexibility in the steam-jet transfer of SBW from the tank farms to the UNEX process. The SBW feed tank feeds the cross-flow filter stations at a rate of 298 liter/hour. Since the SBW filtration operates with two stations in parallel, each respective SBW day tank is sized for 12-hours of operation. Only one station will be on-line at a time to feed the UNEX process with filtered SBW at 298 liters/hour, while accumulating solids in the on-line tank. Once the on-line tank is depleted, it is taken off-line and the other filter station is placed on-line. The accumulated RHTS in the off-line SBW day tank are pumped back to the tank farm and, subsequently, the day tank is refilled with SBW from the SBW feed tank.

A 24-hour surge capacitance is provided between the cross-flow filtration and the UNEX contactors by three extraction feed tanks. One of the three tanks is always on-line to fill from the SBW filters at a rate of 298 liters/hour, a second is on-line to feed the UNEX contactors at the same flow rate, and a third is off-line for holding and sampling. Each tank is sized for a 25% additional capacitance beyond the 24-hour fill at 298 liters/hour to provide some operating margin and some low-level of fill when placing and taking each of the tanks on and off-line.

A 24-hour surge capacitance is provided between the UNEX strip contactors and the TFD at a rate of 148 liters/hour. Since both the UNEX contactors and the TFD can be shut down relatively quickly (i.e. within an hour) in the case of an upset condition, the UNEX strip effluent tank could be operated at near capacity to allow for a full 24-hour operating buffer. This capacitance is consistent with TFD operations, which could require a relatively rigorous start-up scheme to establish conditions for thin-film drying. Once steady-state conditions are established, perturbations should be minimized.

Surge capacitance is provided between the UNEX contactors and the LAW evaporator by two UNEX raffinate tanks and one LAW evaporator feed tank. Each of the two UNEX raffinate tanks is sized for 12-hours of fill at a rate of 445 liters/hour. One of the two tanks is always on-line to receive raffinate from the UNEX extraction contactors. The other is off-line for holding and sampling. Once sampling is complete and the LAW is accepted, the off-line tank is drained to the LAW evaporator feed tank. Once the on-line UNEX raffinate tank is filled, the other is placed on-line while the former is held for sampling.

The LAW evaporator feed tank is sized for 48 hours of fill at a rate of 593 liters/hour which, when operated at the mid-level, provides a 24 hour capacitance for filling or draining.

Surge capacitance is provided between the LAW evaporator and the grouting stations by three neutralization tanks. Each of these tanks is sized for 12 hours of fill at a rate of 297 liters/hour. These tank sizes take exception to the 24-hour nominal surge capacitance in an effort to keep the tank size down and the solid phase of the neutralized solution in suspension. Also, the smaller tank sizes aid in heat removal for these jacketed tanks. With three neutralization tanks, one is on-line for filling and neutralizing, a second is on-line for filling drums intermittently at the grouting stations, and a third is off-line for holding and sampling.

2.6 Sampling Requirements

The purpose of in-process sampling is to monitor the UNEX process performance and verify that waste form requirements are met. The scope of this discussion is qualitative and limited to the primary sample locations in the UNEX processes, as well as make-up feed streams. The in-process streams include the UNEX feed and raffinate streams, the remote-handled waste forms, the neutralization tanks, and the contact-handled waste forms. The make-up feed streams include the UNEX solvent and the UNEX scrub and strip solutions. The following discusses sampling locations, frequency, and duration for each of these streams.

2.6.1 Sampling Locations, Frequency, and Duration

In both the UNEX and Modified UNEX processes, the SBW is filtered to remove UDS before solvent extraction. Additionally, in the UNEX process the SBW is conditioned with hydrofluoric acid (HF) before introduction to the contactors. Consequently, three extraction feed tanks are provided to accommodate sampling requirements at this point in the process. Two of the three tanks are on-line for filling and draining, and one of the three tanks is off-line for sampling. The tanks are sized for 24-hour capacitance, within which time the sampling of the extraction feed to verify UDS and HF conditioning must be completed. Each of the three tanks is configured with an air sparge for mixing. If UDS concentrations are too high, the extraction feed shall be returned to the SBW feed tank. If the HF concentration in the extraction feed is too low, than additional HF may be added. If it is too high, then each of the tanks is configured for aluminum nitrate addition to bind the excess free fluoride, after which the solution may be fed to the extraction contactors.

Since the principal function of the UNEX process is cesium, strontium, and actinide extraction, the key sampling location is the UNEX raffinate stream. For the UNEX process, the cesium, strontium, and actinide concentrations in the raffinate require monitoring to ensure that the contact-handled waste form will meet LLW criteria. The cesium concentration may be monitored on-line and nonobtrusively; however, a sample is required regardless to analyze for strontium and actinides. To accommodate these needs, two UNEX raffinate tanks are incorporated into the flow diagrams, each with a 12-hour storage capacitance, which is the estimated time necessary to obtain sample results. Thus, one tank will accumulate raffinate from the contactors and the other will be held for storage awaiting sample analysis results. After the waste stream is qualified, the contents of the off-line raffinate storage tank are discharged to the LAW evaporator feed tank. The same sampling approach applies for the Modified UNEX process, with the exception that analysis of actinides will not be required. If sampling and analysis showed that a raffinate stream were off-spec, then the off-spec material would be returned to one of the extraction feed tanks for reprocessing.

The remote-handled waste forms will be sampled on a per-canister or per-lot of canisters basis. The form of the sample would be a grab sample of the crystallite. The purpose of the sample would be to

characterize the waste form and verify that waste acceptance criteria (WAC) are met. Of particular concern would be the RH-LLW from the Modified UNEX process, which would additionally need to be characterized for RCRA metal immobilization. The duration to provide sample results could be several days.

In the neutralization tank, the pH of the concentrated UNEX raffinate is adjusted before grouting. This adjustment could possibly be accommodated in a continuous mode of operation by an on-line monitor for pH. However, to provide more operational flexibility and surge capacitance, three neutralization tanks have been incorporated into the flow diagrams. Each tank is configured to maintain the precipitated solids in suspension and to sample before drum filling. Each of the three neutralization tanks is sized with a 12-hour storage capacitance, which is the estimated time necessary to obtain sample results. Two of the three tanks are on-line for receiving/neutralizing concentrated raffinate from the LAW evaporator and filling drums at the grouting stations, while the third tank is held off-line for sampling. After satisfactory sample results are obtained, the off-line tank may supply the grouting stations.

The contact-handled waste forms will be sampled on a per-lot of drums basis. The form of the sample would likely be a core sample of the cured grout. The purpose of the sample would be to characterize the waste form and verify that WAC are met. The duration of the sampling and analysis could be a couple of weeks, which includes a nominal 7-day cure period for grout in addition to waste characterization analyses.

Due to uneven losses of UNEX solvent constituents, (i.e., ChCoDiC, PEG-400, CMPO, and FS-13), the solvent will be sampled periodically to characterize the necessary make-up stream. The make-up will be provided intermittently, as opposed to continuous injection of make-up constituents, based on the solvent sample results. This approach necessitates the ability of the UNEX process to function within a range of specific extractant concentrations. Specific losses of UNEX solvent constituents are described in Section 2.7.1 of this report. Operating ranges for the UNEX solvent constituent concentrations remain to be defined. Once defined and solvent analytical techniques are developed, the necessary sampling periodicity may be identified.

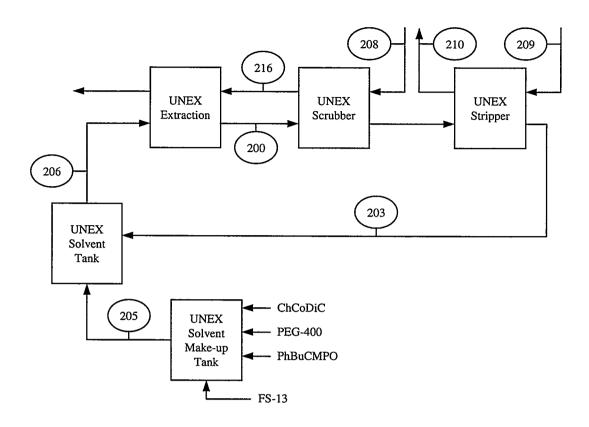
The UNEX scrub and strip make-up streams are prepared daily. The UNEX scrub and strip make-up tanks are sized for a 24-hour delivery at 117 and 148 liters/hour, respectively. The solutions are prepared in these tanks from raw materials and sampled before delivery to the respective feed tanks. The feed tanks are sized at 110% of the make-up tank volume to provide some operating margin in the daily make-up of these streams.

2.7 Make-up Feeds

2.7.1 UNEX Solvent

During the extraction process, losses of UNEX solvent will be incurred. As is shown in the process flow diagrams, UNEX solvent is fed in a countercurrent manner through a series of staged contacts (centrifugal contactors) with the SBW waste feed solution, a wash solution, and a guanadine carbonate strip solution. After contact with the various aqueous solutions, the solvent is recirculated to a surge tank for continuous reuse. During extraction/contact within the centrifugal contactors, some of the solvent itself is transferred into the various aqueous phases. The mechanism for the transfer of solvent is through solubility of the solvent constituents into the various aqueous phases and through entrainment as emulisified entities. The V. G. Khlopin Radium Institute issued a report (Khlopin 1999) describing various aspects of the UNEX solvent system. One task of that report was to quantify the solubility of the solvent constituents with respect to the various process solutions. Values were determined for solvent losses from a solvent consisting of 0.08-molar ChCoDiC, 0.02-molar CMPO, and 0.6 vol% PEG-400.

These components were in a UNEX process diluent consisting of FS-13. The solubility of ChCoDiC and CMPO in the aqueous solutions is negligible. Values for entrainment were determined by assuming a 0.05 vol% based on the use of centrifugal contactors in optimum operating regimes. When considering the mass balance of the process (Barnes 1999), the rate of solvent losses can be determined. Using the solubility values in conjunction with the specified flow rates from the proposed PFDs/mass balance for the UNEX system, solvent losses can be estimated. The solvent losses for the various contactors are presented in Table 4.


(Note that although the actual treatment of SBW will be performed in a series of tank batches, the mass balance from the PFD, as well as this analysis, is treated as a continuous steady-state process to allow for numerical estimates.)

To correct for these losses to the UNEX solvent, the solvent make-up tank must contain preset constituent concentrations that properly account for these losses. The make-up solution is set at 0.071-molar ChCoDiC, 0.030-molar CMPO, and 10.7 vol% PEG-400. The total inventory of make-up solvent required for 200 days (24 hour/day) of processing is 735 gal. The minimum inventory for the individual constituents of the make-up is 3,163 kg for FS-13, 294 kg for PEG-400, 94 kg for ChCoDiC, and 28 kg for CMPO. This amount of solvent is in addition to the amount that is kept in the surge tank and the amount that is inconstant circulation during processing. Figure 2 provides a block flow diagram that features solvent recirculation and presents the solvent composition by weight percents.

Table 4. Losses of UNEX solvent components with process streams due to entrainment and solubility.

Stream	Entrai	Entrainment		Solubility		Total	
	Raffinate	Strip prod	Raffinate	Strip prod	Raffinate	Strip prod	
FS-13	276 g/hr	276 g/hr	89 g/hr	18 g/hr	365 g/hr	294 g/hr	
ChCoDiC	8.3 g/hr	8.3 g/hr	2.2 g/hr	0.74 g/hr	10.5 g/hr	9.0 g/hr	
PEG-400	1.1 g/hr	1.1 g/hr	22 g/hr	37 g/hr	23.1 g/hr	38.1 g/hr	
CMPO	1.5 g/hr	1.5 g/hr	2.2 g/hr	0.74 g/hr	3.7 g/hr	2.2 g/hr	
Total	287 g/hr	287 g/hr	115.4 g/hr	56.5 g/hr	402 g/hr	343 g/hr	
Total UNEX solvent loss = 745 g/hr/1290 g/L = 0.58 L/hr							

The mode in which solvent additions are made to the system needs to be determined. Process control aspects, as related to sampling and solvent composition, are briefly addressed in Section 2.6. The individual components will need to be metered to the make-up tank as solutions of FS-13 (diluent) in amounts dictated by on-going solvent analysis. The make-up tank concentrations determined in this section will serve as a starting point. It should be noted that make-up of UNEX solvent losses could also be accomplished by introducing the prescribed quantities of FS-13 and PEG into the aqueous strip feed solution. Such an approach is presently being explored in UNEX process development testing.

Percent Weight Compositions				
	Stream Numbers			
Constituent	203	205	206	
FS-13	96	88.4	96	
PEG-400	0.492	8.2	0.5	
ChCoDiC	3.0	2.63	3.0	
Ph2Bu2CMPO	0.5	0.78	0.5	

Figure 2. Block flow diagram featuring the UNEX solvent and the make-up feed.

2.8 Secondary Waste Streams

The significant secondary waste streams from the UNEX processes include HEPA filters, Personal Protective Equipment (PPE), and the end-of-life UNEX solvent. The following describes each of these streams, including estimated volumes and disposition options.

2.8.1 HEPA Filters

Ventilation of facilities to support the UNEX process requires HEPA filtration for contamination control. Emission sources to the filtered exhaust include UNEX process tank venting, HAW and LAW evaporator off-gassing, and grouting station operations in addition to general area facility suspect exhaust. Operating experience at the NWCF has identified the required change-out rate of a nominal two HEPA

filters per month of operation. A similar usage of HEPA filters for treatment of the SBW in the NWCF or in a Greenfield Facility over a three-year period would result in approximately 10 m³ of HEPA filter waste. The spent filters would be treated in a HEPA filter leaching process at INTEC, before disposal at WIPP as a TRU waste or Hanford as a LLW.

2.8.2 Personal Protective Equipment

Maintenance of the UNEX process will produce some quantity of PPE. Again, operating experience at the NWCF has shown that approximately 10 m³ per year of PPE waste is produced. By extension to a 3-year operating lifetime for treatment of the SBW with the UNEX process, an estimated 30 m³ of waste would be produced. The PPE would be packaged for disposal at WIPP as a CH-TRU waste or Hanford as LLW.

2.8.3 Spent UNEX Solvent

Approximately 400 gal of UNEX solvent will remain at the end of the SBW treatment campaign. The spent solvent will be sufficiently stripped of actinide and radioactive constituents to be classified as CH-LLW. The solvent constituents alone are not hazardous or listed per RCRA. However, since the SBW contains listed materials the spent UNEX solvent will be a listed waste. Treatment of the waste solvent for disposal, at a minimum, would require solidification. This could be accomplished in a UNEX grouting station after treatment of LAW is complete. Specifically, spent solvent could be loaded into drums and mixed with an organo-philic solidifying agent. Such an approach is estimated to produce 100 55-gal drums of solidified solvent waste. The waste would be disposed as a contact-handled listed hazardous waste at Hanford.

3. REGULATORY, PROCESS, AND EQUIPMENT ASSUMPTIONS

This study assumes an immediate decision to proceed with this technology.

3.1 Regulatory Assumptions

The following major regulatory assumptions are used in this feasibility study:

- The wastes resulting from the UNEX or Modified UNEX option will be delisted before final interim storage for shipment to the disposal sites.
- A waste incidental to reprocessing (WIR) ruling will be established and the SBW will not be considered HLW. Consequently, the waste products to be derived from the SBW processing will be considered LLW and TRU waste.
- A determination of equivalent treatment (DET) petition will be approved by EPA for using grouting instead of the LDR specified treatment (i.e., retorting) to stabilize the high mercury waste (≥ 260 mg/kg total mercury) for disposal.

3.2 Process and Equipment Assumptions

For a feasibility study, a number of assumptions are necessary to provide some preliminary definition for an integrated UNEX process. The liquid-liquid extraction portion of the integrated UNEX process is characterized by empirical data from Russian and INTEC operating experience. However, the pre- and post-extraction unit operations lack such process development. Thus, the majority of the process assumptions center around these unproven operations. Many assumptions regarding the UNEX and Modified UNEX processes and equipment have been made throughout this document, particularly in Section 2.2, Mass and Energy Balance. The following is a summary list of the key assumptions in assessing the feasibility of these processes and their respective equipment.

- The projected total volume of SBW to be treated is 4.3 million liters. This total volume is based on existing SBW and estimated NGLW volumes, some of which is expected to be concentrated by the HLLWE. An average waste composition is assumed for this total waste volume, which is based on existing waste characterization data and projected compositions for NGLW. The process flows for the UNEX processes are based on treating the total SBW volume in 3 years at an operating capacity of 200, 24-hour days per year.
- An UDS concentration of 3.1 g/liter is assumed to be present in the SBW as a result of transferring the liquid waste from the tank farms to the UNEX processes. The cross-flow filters are assumed to remove 90% of these solids. In the filtration process, the removed UDS are assumed to concentrate up to 40 wt% in the SBW solution. It is additionally assumed that the accumulated UDS will be able to be pumped back into the tank farm. It is also assumed that the 90% filtration efficiency is sufficient to preclude adverse effects on the liquid-liquid contactor operations from UDS carryover.
- It is assumed that a TFD will be capable of continuously producing an appropriate remotehandled waste form. For either the UNEX or Modified UNEX process, a waste form with no free liquid is required. For mass balance purposes, this is assumed to be ≤10 wt% moisture. TFD vendors have identified the need to perform bench-scale drying tests and

- pilot-scale TFD operations with surrogate GC/DTPA solutions to determine whether application of a TFD is feasible and scalable.
- The current revision of the WIPP WAC (rev. 7, November 1999) does not include WAC for RH-TRU. Therefore, the most recently drafted WAC for RH-TRU (rev. 6, April 1999) is used in this study for comparison to the RHTC waste form from the UNEX process.
- It is assumed that the RHTC waste form will meet gas generation requirements per the WIPP WAC. However, further evaluation and gas generation testing of the RHTC waste form will likely be required to verify compliance with this requirement.
- Although WIPP WAC identify RH-TRU dose rate limits on contact with a canister of up to 1,000 rem/h with pre-approval, the position of this feasibility study has been to limit the RHTC dose rates to <100 rem/h. To this end, it is assumed that a RH-TRU canister specific to the UNEX process may be developed, which provides the appropriate shielding, i.e. approximately 2 cm of steel.
- Since the Modified UNEX process LAW form is comparable to that of the CsIX/TRU Grout
 process, the respective grouting equipment and drum-handling scheme are referenced for use
 within this study.
- It is assumed that the RH-LLW and CH-LLW forms would meet Universal Treatment Standard (UTS) for the characteristic and underlying hazardous constituent (UHC) metals, i.e. As, Ba, Cd, Cr, Pb, Hg, Ni, Se, Ag. However, further testing of these waste forms will be required to verify compliance with these standards.
- The design basis for surge capacitance between unit operations within the UNEX process is nominally 24-hours. Given this basis, it is assumed that all equipment can be shut down or started up within a 24-hour period. In addition, it is assumed that in-process sampling and analyses can be performed within one 12-hour work shift to support continuous operations.
- It is assumed that fissile material contained in the SBW will not precipitate and/or concentrate in any fashion requiring special geometry equipment and/or monitoring systems to prevent a criticality.
- The UNEX and Modified UNEX processes assume that the LET&D facility will be available to process LAW evaporator overheads.

4. PROCESS DESCRIPTION

4.1 SBW Transfer to Facility

The SBW tanks are equipped with transfer lines that were used to transfer the SBW to the calciner. These lines will be used to access the SBW during UNEX processing. For the purpose of this feasibility study, it is assumed that transfer of the SBW from the tank farm will be performed using the steam jet transfer equipment already present at the SBW tank farm.

4.1.1 NWCF Transfers

The SBW will be transferred from the tank farm to the NWCF in the same way it is currently handled.

4.1.2 GFF Transfers

This system will be used to drive the SBW through new, belowgrade lines to the GFF and directly into the SBW feed tank (T-201-1). Any residual SBW in the transfer lines following transfer operations may either be gravity drained back to the tank farm valve box for disposition or flushed through the system to the SBW feed tank using the tank farm steam supply.

4.1.3 Retrieval

The SBW tanks are equipped with steam jets and valve boxes. This equipment will be used in the retrieval of SBW from the tanks.

4.1.4 Transport

Liquid transfers at INTEC are accomplished almost exclusively using steam jet pumps. These pumps operate by injecting plant steam from a nozzle through a venturi creating a pressure gradient that draws liquid into the stream and propels it down the line. Steam jet pumps are desirable for remote operations because they have no moving parts. Also, unlike air jet pumps that require a downstream separator that creates a secondary waste stream, the steam simply condenses in the liquid stream. Steam condensation generally results in about a 3-5% dilution of the liquid stream, as well as some heating of the liquid. For the liquids involved in this process, slight dilution and some heating are generally not a concern.

4.2 SBW Feed Filtration

4.2.1 SBW Primary Filter

The SBW stream is delivered to the SBW feed tank located next to the CMF support stand. The SBW is then transferred to one of two frame-mounted SBW feed tanks. The frame-mounted CMF feed pump draws suction from its dedicated SBW feed tank and delivers the SBW to the two CMF housings, at a flow rate of 10 gpm. Inside the housings the SBW comes in contact with the rotating variable speed disks, which have a permeable membrane filter located on their outer surface. As the SBW flows across the discs the solids are collected on the membrane surface where through the combined action of the SBW flow and centrifugal action generated by the rotating discs, a shearing action is imparted to the collected solids. This action minimizes the formation of a secondary boundary layer on the membrane thereby resulting in permeation of material at and below the membrane cutoff size. Once the concentrated solids have been removed from the rotating discs they are swept into the SBW flow stream

and carried out of the CMF housing back to the SBW feed tank. The filtered stream, or permeate, is routed through the spinning shaft which supports the filter discs and is transferred to the extraction feed tank (stream 120). The CMF may be adjusted to provide a concentrated stream outlet to the SBW feed tank that has a concentration of up to 40% solids. After the desired solids concentration is reached in the SBW feed tank, the slurry is transferred back to the tank farm through the use of a progressive cavity pump located next to the CMF frame.

4.3 UNEX Feed Adjustment

4.3.1 HF Make-Up

HF make-up to the process will be accomplished through the HF make-up feed tank. HF acts as a zirconium complexing agent in the SBW feed and UNEX scrub. HF is needed in the process to keep Zr from being extracted in the process. The extraction of Zr inhibits the extraction of TRU elements, so it is beneficial to minimize the amount of Zr extracted.

The HF feed system must be constructed with materials compatible with HF due to the corrosive nature of HF. One material to be considered is Hasteloy.

4.4 Separation Process

Liquid-liquid contactors operate upon similar principals regardless of the manufacturer of the device. The proposed contactors for the UNEX process are electric-motor-driven centrifugal, single-stage devices that function as both contactor and separator (Figure 3). The proposed contactors have an upright design with their electrical drive motor mounted on top. The contactors' vertically mounted rotor imparts a pumping action to the fluids being processed thereby enabling the contactor to have a limited self feed capability. This means that utilization of a high-pressure feed pump or individual pumps located between each stage is unnecessary.

The method of operation of the contactors is very basic. Two immiscible fluids of different densities are fed to the contactor inlets and are rapidly mixed in the annular space between the spinning rotor and stationary housing. The mixed phases are directed toward the center of the rotor bottom by radial vanes (or other means) at the base of the housing. As the liquids enter the central opening of the rotor they are accelerated toward the rotor wall. Once there, the mixed phases are rapidly accelerated to rotor speed and separation begins as the liquids are displaced upward by continued pumping. At this point, the centrifugal separation efficiency may be affected by varying the centrifugal velocity of the contactor rotor or by adjusting the residence time of the liquids in the contactor by changing the volumetric flow rate of the inlet liquid streams. Separation of the higher-density liquid from the lower-density liquid is accomplished by selecting the proper sized weir, which directs the layered fluids to the individual outlet collection rings and ports. It is important to maintain equilibration of pressure between the centrifugal housing, discharge pipes, and receiver tanks (if used) to insure proper separation efficiency of the individual stages of the liquid-liquid contactors.

Operating ANL Centrifugal Contactor

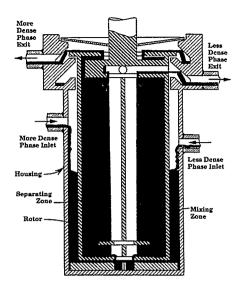


Figure 3. ANL Centrifugal Contactor.

4.4.1 UNEX Process

In the UNEX process, both Cs/Sr and actinide elements are extracted by the process solvent. The universal solvent used in the UNEX process consists of FS-13 diluent with ChCoDiC (Cs extraction), PEG-400 (Sr extraction), and CMPO (actinide extraction).

Initially, the SBW comes in contact with the universal solvent and the Cs/Sr and actinides are extracted in the first 14 contactors. Once the Cs/Sr and actinides are removed, the raffinate is directed to the LAW evaporator for further processing.

The solvent, rich in actinides and Cs/Sr, is then directed into the scrub contactors where Zr and Fe are scrubbed from the solvent by a solution of 0.3-molar HF, 0.05-molar Al(NO₃)₃, and 0.1-molar HNO₃. After passing through the scrub contactors, the solvent is passed through the strip contactors where the Cs/Sr and actinides are stripped from the solvent using a GC/DTPA solution. Once the solvent has been stripped of Cs/Sr and actinides, the solvent is fed back to the UNEX Solvent Feed Tank where it is recycled back into the process. The strip solution, rich in Cs/Sr and actinides, is then directed to the HAW evaporator for further treatment.

4.4.2 Modified UNEX Process

The Modified UNEX process is virtually the same except that the actinides are not extracted from the SBW. All other portions of the process are the same as presented in Section 4.4.1 above. Actinides are left with the raffinate by leaving out the CMPO in the extraction solvent.

4.5 RHTC Processing

4.5.1 RHTC Evaporation and Crystallization

The objective in processing the UNEX strip is twofold – to consolidate the waste volume and to provide a waste form that contains no free liquid. An additional objective for the final remote-handled waste form from the Modified UNEX strip is immobilization of RCRA metals. These objectives can be

accomplished for either the UNEX or Modified UNEX process by a Thin-Film Dryer (TFD), a schematic of which is shown in the Figure 4. The feed inlet stream is presented near the top of the heated section of the TFD through a standard piping connection. The feed is composed of roughly 97 wt% water and 3 wt% solids, the majority of which is GC. As the feed inlet stream flows down through the TFD, rotating blades spread, agitate, and move the feed down and off the heated shell allowing a very short residence time of feed on the heated shell. The resulting vapor driven off during the heating process flows countercurrent to the feed and condenses in a condenser external to the TFD. Any droplets which are entrained with the vapors are thrown back to the heated shell by the centrifugal force imparted by the rotating action of the TFD. After the vapors condense, the resulting distillate is directed to the LAW stream. Noncondensable gases are discharged to a filtered exhaust system. The remaining bottoms flow out of the TFD by gravity and mechanical force and are collected for disposal. Condensate resulting from the steam heating process of the TFD is directed back to the condensate collection system through a float or thermally actuated condensate flow-control valve utilizing the driving head provided by the incoming heating steam. The TFD concentrates the solids to a 10 wt% residual moisture content.

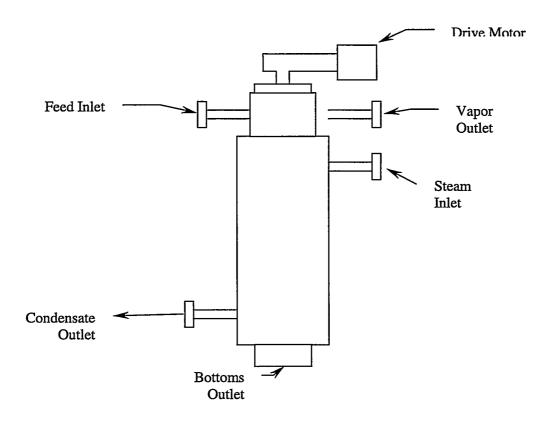


Figure 4. Schematic of Thin-Film Dryer.

4.5.2 RHTC Stream Characteristics

4.5.2.1 Physical. For the UNEX and Modified UNEX processes, the physical forms of the remote-handled crystallite waste streams are essentially identical. In each case, a guanidine carbonate solution, containing the respective extracted constituents, is evaporated to dryness in a TFD. The end form is a loose-fill crystallite, which can be loaded directly into an appropriate waste container. For a common planning basis between the UNEX and Modified UNEX processes, the crystallite waste form is assumed to be loaded into a 2-ft diameter x 10-ft RH-TRU canister. The estimated loose-fill density of the crystallite is 0.58 g/cc. "Dryness" of the waste form refers to no free liquid. It is estimated that the RHTC waste form will contain up to 10% residual moisture, which would be in a hydrated crystalline form or as surface wetting, but not as a free-standing liquid.

4.5.2.2 Chemical. For the UNEX and Modified UNEX processes, the remote-handled crystallite waste streams are chemically similar, although minor constituent concentrations differ, i.e., The UNEX process strip solution contains DTPA in addition to the guanidine carbonate. By taking a 0.25-molar solution of guanidine carbonate to dryness, the remote-handled crystallite waste form is roughly 90 wt% solids and 10 wt% moisture. Minor constituents include calcium, sodium, and potassium, each of which is <3 wt%. In the UNEX process, nearly half of the zirconium is extracted and deposited in the RHTC waste form. The extraction of RCRA metal constituents relative to the filtered SBW is listed in Table 5 below.

Table 5. Distribution of RCRA metals in remote-handled waste forms.

Constituent	Filtered SBW	<u>RH</u>	<u>TC</u>	RHI	<u>LLW</u>		<u>RCRA</u>
(RCRA waste code)	mg/l	% Extracted	mg/kg	% Extracted	mg/kg	TC (mg/l)	UTS (mg/l)
As	4.27	<0.1	4.59E-4	<0.1	7.85E-4	5.0	5.0
Ba	8.98	73.3	50.5	75.0	50.6	100.0	21
Cd (D006)	591	<0.1	0.0636	<0.1	0.109	1.0	0.11
Cr (D007)	276	<0.1	0.0296	<0.1	0.0507	5.0	0.60
Pb (D008)	224	76.0	1300	77.7	1300	5.0	0.75
Hg (D009)	578	0.3	12.0	0.3	12.1	0.2	0.025
Ni	153	<0.1	0.0165	<0.1	0.0282	NA	11.0
Se (D010)	1.20	<0.1	1.29E-4	<0.1	2.21E-4	1.0	5.7
Ag	3.45	<0.1	3.71E-4	<0.1	6.35E-4	5.0	0.14

The UNEX and Modified UNEX processes extract barium and lead into the remote-handled waste forms. A minor portion of mercury also carries over into the remote-handled wastes in sufficient concentrations to be of possible concern for RCRA treatment. The RCRA metals are acceptable in the RHTC waste form, in accordance with the WIPP WAC. However, the levels of lead and mercury concentrations in the RHLLW are sufficient to warrant TCLP testing to verify metal immobilization for Subtitle C land disposal.

4.5.2.3 Radiological. The UNEX and Modified UNEX processes differ by the extraction of radionuclides. In the UNEX process, over 99% of the cesium, strontium, and the actinides are extracted into a RHTC form. The Modified UNEX process likewise extracts over 99% of the cesium and strontium, but allows the actinides to remain with the raffinate. Thus, the Modified UNEX process produces an RH-LLW. Given a slight potential for disposal of the RH-LLW at a commercial, non-DOE facility, the radiological classifications of the remote-handled waste forms per NRC guidelines (10 CFR 61.65) are identified in Table 6. The SBW (as is) and the RHTC waste classifications are presented alongside the RH-LLW in Table 6 for comparison purposes only.

By extracting the cesium, strontium, and actinides and subsequently consolidating the waste stream, the UNEX process yields an RH-TRU waste with actinide concentrations increased more than an order of magnitude over the original SBW. The RH-LLW form from the Modified UNEX process would be Class C due to the concentration of Cs-137 and Sr-90 specific activities.

Applicable radiological properties of the RHTC waste in the form of a loose-filled 2 x 10-ft column are shown in Table 7 along with anticipated WIPP WAC. The current revision of the WIPP WAC (rev. 7, November 1999) does not include those for RH-TRU. Those shown in the subject table are taken from the most recent draft revision (rev. 6, April 1999).

Table 6. Radiological classification of remote-handled waste forms.

NRC Waste Classific				nunuica w	SBW (as is)	UNEX	Mod. UNEX
		Cor	ncentratio	ons	SBW	RHTC	RH-LLW
Constituents of Conc	ern	Class A	Class B	Class C	(filtered)		
				Radionuc			
C-14	Ci/m ³	0.8	N/A	8	NL	NL	NL
Tc-99	Ci/m ³	0.3	N/A	3	0.0176	0.00238	0.00342
I-129	Ci/m ³	0.008	N/A	0.08	4.36E-04	9.22E-8	2.26E-07
Alpha emitting,>5-yr	half-life						
Am-241					65	2,230	0.0765
Am-243					0.0268	0.922	3.16E-05
Cm-244					1.73	59.6	0.00204
Np-237					2.89	90.3	0.00309
Pu-238					458	15,600	0.535
Pu-239					57.7	1,960	0.0672
Pu-240					13.3	451	0.0155
Pu-242					0.0159	0.543	1.86E-05
Total alpha	nCi/g	10	N/A	100	599	20,400	0.699
Pu-241	nCi/g	350	N/A	3,500	277	9,400	0.322
Cm-242	nCi/g	2,000	N/A	20,000	0.0238	0.818	2.80E-05
Sum of Class A fracti	ions				61	2,070	0.0823
Sum of Class C fracti	ions				6.1	207	0.00823
		Sho	rt-Lived	Radionuc	<u>lides</u>		
<5-yr half-life:							
Cm-242					3.14E-05	4.74E-4	1.62E-08
Ce-144					1.23E-05	1.86E-4	6.38E-09
Cs-134					0.0164	0.248	0.354
Eu-155					0.0714	1.08	3.69E-05
Pm-147					0.0746	1.58E-5	3.86E-05
Pr-144					NL	NL	NL
Ru-106					4.92E-05	1.04E-8	2.55E-08
Sb-125	_				0.00603	1.27E-6	3.07E-06
total <5-yr	Ci/m ³	700	N/A	N/A	0.169	1.33	0.354
H-3	Ci/m ³	40	N/A	N/A	0.0356	7.54E-6	1.84E-05
Co-60	Ci/m ³	700	N/A	N/A	0.0237	5.03E-6	1.23E-05
Ni-63	Ci/m ³	3.5	70	700	0.0479	1.02E-5	2.48E-05
Sr-90	Ci/m ³	0.04	150	7,000	38.3	579	829
Cs-137	Ci/m ³	1	44	4,600	41.7	632	899
Sum of Class A fracti	ions				999	15,107	21,600
Sum of Class B fracti					1.20	18.2	26.0
Sum of Class C fracti	ions				0.0146	0.220	0.314
Waste Form Classific	ation				N/A	N/A	С

Table 7. Comparison of RHTC waste form with WIPP WAC.

Criteria	WIPP WAC	RHTC Estimations
Pu-239 Fissile Gram Equivalent	<325 g/canister	178 g/canister
Pu-239 Equivalent Activity	≤1,000 PE-Ci/canister	9.8 PE-Ci/canister
Contact Dose Rate	≤1,000 rem/h per canister (preapproval required if >100 rem/h per canister)	343 rem/h (unshielded); 100 rem/h (2 cm of steel shielding)
	≤270 mrem/h neutron dose rate per canister	Requires Further Analysis
Thermal Power	≤300 W per canister	5.1 W
TRU alpha activity	>100 nCi/g of water matrix	20,400 nCi/g
	≤23 Ci/L of waste matrix	<0.1 Ci/L

Radiological estimations for the RHTC waste form comply with the most recently drafted WIPP WAC for RH-TRU. One criterion, which does not presently apply to RH-TRU but could require further investigation, is gas generation. The RHTC is largely composed of guanidine carbonate, which is a hydrogenous material, i.e., $C_3H_{12}N_6O_3$, and 10 wt% moisture. Whether such a waste matrix in combination with the specific alpha activity poses a gas generation concern needs to be determined to qualify this matrix as a viable waste form that is transportable to WIPP. A brief evaluation performed by IT Corporation concludes that gas generation may be an issue. The IT Corporation evaluation is included in Appendix J.

4.5.3 RHTC Form

For planning purposes, the remote-handled waste from both the UNEX and Modified UNEX processes is loaded into a RH-TRU canister in the form of a 2 ft. diameter by 10 ft. long column of loose-fill crystallite. At an estimated density of 0.58 g/cc, the fill weight of a waste canister is 464 kg or 1,020 lb.

4.5.4 RHTC Quantity

Both the UNEX and Modified UNEX processes are estimated to produce 166,000 kg and 115,000 kg of RHTC waste, respectively. By assuming a nominal usable volume of 800 liters per canister, a total of 250–360 RH-TRU canisters is estimated to be produced from these processes.

4.6 LLW/CH-TRU Waste Form (CHT)Processing

4.6.1 LLW/CHT Evaporation

The LAW Evaporator is a steam-heated, latent heat evaporator capable of meeting the evaporation requirements associated with inlet feed stream number 401. The evaporator is mounted on a

skid which supports all the components, control devices, and piping necessary for both continuous and batch style evaporating operations. The evaporator feed pump (P-204-1) takes suction from the evaporator feed tank (T-204-1) and supplies sufficient volume flow to the 537 gal evaporator storage tank to make up for tank volume reduction due to the evaporative process or due to bleed off of concentrate to the UNEX neutralization tank. Steam, supplied at 30 psig, provides the energy necessary for the evaporation process to occur. As the latent heat of vaporization is remove the resulting condensate is collected in a skid-mounted condensate collection tank where it is ultimately forced back to the condensate collection system through a level control valve in the collection tank. A pump takes suction on the evaporation tank and provides agitation of the tank by continuous recirculation, thereby helping to keep accumulated solids in suspension. The evaporator can be operated in two different modes: (1) The batch mode, where the evaporative process continues until the desired concentration level is reached in the evaporation tank, at which time the entire tank volume is sent to the neutralization tank; or (2) in the continuous mode, where a continuous bleed from the discharge of the recirculation pump is directed to the neutralization tank while holding a constant concentrate level in the evaporation tank. Both modes of operation require a continuous feed to the evaporation tank to make up for decreasing tank volume. Condensable gases released during the evaporative process are condensed and collected in the LET&D feed tank (T-204-3) while noncondensables are scavenged off of the tank through the building HVAC system. Any condensate in the LET&D feed tank is directed to the LET&D system for processing.

Since the radiological exposure levels associated with the evaporator and its associated support tanks and equipment do not warrant installation in a shielded cell, it has been decided to locate these components in the grouting building in a separate radiologically controlled access room. This allows the evaporator to be near to the grouting process, eases maintenance accessibility, and minimizes main hot cell square footage.

4.6.2 LLW/CHT Acid Fractionation

Existing facilities for liquid process waste treatment/recycle at the INTEC consist of two systems: the Process Equipment Waste Evaporator (PEWE) system, and the LET&D system. The PEW system consists essentially of an evaporator (actually a pair of evaporators) that concentrates liquid process waste. Overheads from the PEWE are sent to LET&D, which is essentially an acid fractionator. The LET&D system concentrates the PEWE overheads by fractional distillation, up to an acid concentration of 10 to 15 molar. There is a partial condenser at the top of the distillation column that provides reflux for the system, but otherwise LET&D overheads are sent to the main stack for discharge. LET&D bottoms are recycled back to the UNEX process.

At this point in the design process for UNEX, it is not clear whether or not the PEWE system will be available to process liquid effluent from the separations process. The scope of the current design study does not include resolution of this question. Therefore, for the current design study it is assumed that the UNEX plant will include its own evaporator to perform the function of the PEW evaporator(s). Overheads from the UNEX evaporator would then tie into LET&D system. Since UNEX requires makeup acid at 5 molar concentration, it is also assumed that LET&D would not be operated to fully concentrate the acid to 10 to 15-molar, but that bottoms would be recycled back to UNEX at the desired 5M concentration. Otherwise, LET&D would be operated as it is now.

4.7 LLW/CHT Neutralization and Grouting

4.7.1 Feed Stream and Neutralization Process

The objective in processing the UNEX and Modified UNEX raffinate streams after volume consolidation (through evaporation) is to solidify the aqueous stream such that no free liquid remains. An additional objective for the UNEX process is to immobilize RCRA metals. These objectives are accomplished by adjusting the pH of the raffinate streams and subsequently solidifying the waste with a grout mixture. In the UNEX process, sodium hydroxide is mixed with the LAW concentrate and LET&D bottoms in a jacketed neutralization tank to nominally adjust the pH to 12. This puts the waste material into a form, which can be grouted into a hard setting matrix. The combination of a strong base with an acidic solution in the neutralization tank will generate heat and precipitate solids. The energy liberated from the neutralization process will be removed by the cooling jacket, which directs cooling water around the tank. The neutralization tank will employ a continuous, pump driven, recirculation system to maintain tank homogeneity and once sampled and accepted will discharge to the mixing station for incorporation into the grouting mixture.

The grouting process is slightly different for the Modified UNEX process, which produces a CHTRU waste form destined for WIPP. WIPP WAC allow for RCRA metals and do not require a hard-setting grout. Consequently, a higher waste loading can be achieved by changing the pH adjustment and grouting mixture requirements. For the Modified UNEX process, the raffinate waste stream pH is nominally adjusted to 2-3 with calcium oxide. Also, the grouting mixture is changed to incorporate calcium oxide in place of calcium hydroxide. Since the Modified UNEX grout is similar to that of the CsIX/TRU Grout process, The CsIX/TRU Grout grouting process and equipment are referenced for application to the Modified UNEX process.

4.7.2 Grout Characteristics

- **4.7.2.1 Physical.** The difference in treatment requirements between the UNEX and Modified UNEX processes and consequent changes in pH adjustment and the grouting mixture result in different waste loadings and physical forms. The UNEX process produces a hard-setting grout with a waste loading of 49 wt% and an estimated density of 1.63 g/cc. The structural strength requirement for this CH-LLW form is driven by anticipated WAC to be set for Subtitle C waste disposal at Hanford. The CH-TRU waste from the Modified UNEX process is more of a stiff putty consistency than a hard-setting concrete. The waste loading, however, is higher at 70 wt% with an estimated density of 1.40 g/cc.
- **4.7.2.2 Chemical.** For the UNEX process, the hard-setting grout is largely composed of blast furnace slag (40 wt%), water (26 wt%), calcium hydroxide (7 wt%), Portland Cement (4 wt%), and nitrate compounds predominantly sodium nitrate. For the Modified UNEX process, the grout is largely composed of water (39 wt%), calcium oxide (16 wt%), blast furnace slag (10 wt%), Portland Cement (4 wt%), and nitrate compounds predominantly sodium nitrate. The concentrations of RCRA metals relative to the filtered SBW are listed in Table 8.

Table 8. Distribution of RCRA metals in contact-handled waste forms.

	Filtered						
Constituent	<u>SBW</u>	<u>CH-L</u>	<u>LW</u>	<u>CH-T</u>	<u>RU</u>	<u>RC</u>	<u>RA</u>
(RCRA waste	mg/l	%		%		TC	UTS
code)		Retained	mg/kg	Retained	mg/kg	(mg/l)	(mg/l)
As	4.27	>99.9	1.51	>99.9	2.70	5.0	5.0
Ba	8.98	26.7	0.85	26.6	1.51	100.0	21
Cd (D006)	591	>99.9	210	>99.9	375	1.0	0.11
Cr (D007)	276	>99.9	98	>99.9	175	5.0	0.60
Pb (D008)	224	24.0	19.2	23.9	34.1	5.0	0.75
Hg (D009)	578	99.7	205	99.7	366	0.2	0.025
Ni	153	>99.9	56	>99.9	100	NA	11.0
Se (D010)	1.20	>99.9	0.425	>99.9	0.76	1.0	5.7
Ag	3.45	>99.9	1.22	>99.9	2.19	5.0	0.14

The UNEX and Modified UNEX processes extract barium and lead into the remote-handled waste forms. A minor portion of mercury is also estimated to carry over into the remote-handled wastes. Thus, the remaining RCRA metals accumulate in the contact-handled waste forms. The RCRA metals are acceptable in the CH-TRU waste form, in accordance with the WIPP WAC. Significant leaching of RCRA metals is not expected from the performance grout, however, the levels of total cadmium, chromium, lead, and mercury concentrations in the CH-LLW are sufficient to warrant TCLP testing to verify metal immobilization for Subtitle C land disposal.

4.7.2.3 Radiological. The UNEX and Modified UNEX processes differ by the extraction of radionuclides. In the UNEX process, over 99% of the cesium, strontium, and the actinides are extracted into a RHTC form. The Modified UNEX process likewise extracts over 99% of the cesium and strontium, but allows the actinides to remain with the raffinate. Thus, the UNEX process produces a CHLLW and the Modified UNEX a CH-TRU waste. Given a slight potential for disposal of the CH-LLW at a commercial, non-DOE facility, the radiological classifications of the contact-handled waste forms per NRC guidelines (10 CFR 61.65) are identified in Table 9. The SBW (as is) and the CH-TRU waste classifications are presented alongside the CH-LLW in Table 9 for comparison purposes only.

Table 9. Radiological classification of contact-handled waste forms.

NRC Waste Cla				tact-nanun	SBW (as is)	UNEX	Mod. UNEX
1110 11450 01	ubbiii outioi		ncentration	one	SBW	OTVEX	14104. 011122
Constituents of	Concern			Class C	(filtered)	CH-LLW	CH-TRU
Constituents of	Concent	C1435 11		ved Radio	•	CII-LL VV	CII-IKO
C-14	Ci/m3	0.8	N/A	8	NL	NL	NL
Tc-99	Ci/m3	0.3	N/A	3	0.0176	0.0101	0.0154
I-129	Ci/m3	0.008	N/A	0.08	4.36E-04	4.24E-04	6.47E-04
Alpha emitting			14/74	0.00	4.30E-04	4.24E-04	0.47E-04
Am-241	, /J-y1 11a1	1-1116.			65	1.24E-05	54.1
Am-243					0.0268	2.78E-09	0.0223
Cm-244					1.73		
						2.45E-12	1.44
Np-237 Pu-238				•	2.89	0.126	2.41
					458 57.7	2.15	382
Pu-239					57.7	0.248	48
Pu-240					13.3	0.0795	11.1
Pu-242	0 11	10	27/4	100	0.0159	6.30E-05	0.0132
Total alpha	nCi/g	10	N/A	100	599	2.60	499
Pu-241	nCi/g	350	N/A	3,500	277	1.62	230
Cm-242	nCi/g	2,000	N/A	20,000	0.0238	3.36E-14	0.0198
Sum of Class A					61	0.3470	51
Sum of Class C	fractions				6.1	0.0347	5.1
			Short-Li	ved Radio	<u>nuclides</u>		
<5-year half-lif	e:						
Cm-242					3.14E-05	5.48E-17	2.77E-05
Ce-144					1.23E-05	2.14E-12	1.09E-05
Cs-134					0.0164	5.17E-06	2.41E-05
Eu-155					0.0714	3.63E-05	0.0630
Pm-147					0.0746	0.0430	0.0658
Pr-144					NL	NL	NL
Ru-106					4.92E-05	2.84E-05	4.34E-05
Sb-125					0.00603	0.00349	0.00532
total <5-yr	Ci/m3	700	N/A	N/A	0.169	0.047	0.134
H-3	Ci/m3	40	N/A	N/A	0.0356	0.0205	0.0314
Co-60	Ci/m3	700	N/A	N/A	0.0237	0.0137	0.0210
Ni-63	Ci/m3	3.5	70	700	0.0479	0.0277	0.0423
Sr-90	Ci/m3	0.04	150	7,000	38.3	0.0215	0.0326
Cs-137	Ci/m3	1	44	4,600	41.7	0.0302	0.0871
Sum of Class A					999	0.576	0.915
Sum of Class B	fractions				1.20	0.00123	0.00280
Sum of Class C	fractions				0.0146	4.92E-05	8.40E-05
NRC Classifica	tion	······································	•		N/A	A	N/A

By extracting the cesium, strontium and actinides into the RHTC waste form the UNEX process produces a CH-LLW form that would be Class A. In the absence of actinide extraction, the Modified UNEX process produces a CH-TRU waste form with a similar concentration of long-lived radionuclides as the original SBW.

Applicable radiological properties of the CH-TRU waste in the form of a grout-filled 55-gal drum are shown in Table 10 along with WIPP WAC (rev. 7, November 1999).

Table 10. Comparison of CH-TRUcWaste Form with WIPP WAC.

Criteria	WIPP WAC	CH-TRU Estimations
Pu-239 Fissile Gram Equivalent	≤200 g/55-gal drum	2.7 g/55-gal drum
Pu-239 Equivalent Activity	≤80 PE-Ci/55-gal drum	0.152 PE-Ci/Drum
Contact Dose Rate	≤200 mrem/h on contact;	144 mrem/hr
	≤10 mrem/hr at 2 m	
Thermal Power	≤40 W per TRUPACT-II (14 Drum Capacity)	5.7 E-3 W/Drum
TRU alpha activity	>100 nCi/g of waste matrix	499 nCi/g

Radiological estimations for the Modified UNEX process contact-handled waste form comply with the current revision of the WIPP WAC for CH-TRU. One criterion, which applies to CH-TRU and would require further investigation, is gas generation. The CH-TRU waste form is composed of roughly 39 wt% water. Whether such a waste matrix in combination with the specific alpha activity poses a gas generation concern needs to be determined to qualify this matrix as a viable waste form.

4.7.3 LLW/CH-TRU Form

For planning purposes, the remote-handled waste for both the UNEX and Modified UNEX processes is loaded into 55-gal drums. 55-gal drums are one of relatively few accepted waste containers at WIPP. A larger waste container could be considered for the CH-LLW, if such were acceptable in a Subtitle C landfill at Hanford. A larger waste container could reduce the number of grouting stations necessary to process an equivalent of three 55-gal drums per hour. Based on a 44-gal loading within a 55-gal drum and an estimated density of 1.63 g/cc, the fill weight of a UNEX process CH-LLW waste container is 271 kg or 598 lb. Likewise for the Modified UNEX process with an estimated density of 1.40 g/cc, the fill weight of a CH-TRU waste container is 233 kg or 514 lb.

4.7.4 LLW/CH-TRU Quantity

The UNEX process is estimated to produce 12,100 metric tons of CH LLW, which translates into approximately 7440 m³ or 44,700 55-gal drums. The Modified UNEX process is estimated to produce 6,810 metric tons of CH-TRU, which translates into approximately 4870 m³ or 29,200 55-gal drums.

5. FACILITY DESCRIPTION

Four different facility layout scenarios were examined for the two UNEX processes. Two of the scenarios, Greenfield Facility (GFF) for UNEX and Modified UNEX, require the construction of a new building to house both processes. The other two scenarios, New Waste Calcining Facility (NWCF) for UNEX and Modified UNEX, requires the construction of two new buildings, one for the grouting process associated with the Low Activity Waste portion of both processes and one for High Activity Waste processing. Both NWCF scenarios place the bulk of the remaining radiological processes in the NWCF. Since the process variations between the UNEX and Modified UNEX scenarios are slight in regards to the facility layout requirements, differences which arose during the evaluation of the GFF and NWCF scenarios are detailed only where they are pertinent. See Appendix D for facility layout drawings.

Major assumptions made during the generation of the GFF and NWCF scenarios are as follows:

- Main containment cell height is based upon the ability to lift and move the major process components over the tallest piece of equipment.
- Maintenance which cannot be performed in the Main Cell will be performed in a "Hot Repair Area" (HRA).
- All maintenance including D&D associated with the Thin Film Dryer (TFD) will be performed in the Main Cell.
- Removal of the TFD from the Main Cell will only be performed upon D & D of the facility.
- The radiological concerns associated with the Low Activity Evaporator do not warrant its installation in the Main Cell.
- The Interim Storage Facility detailed in Rawlins (1997) is used as a baseline design for this study.
- All support utilities required for the operation of the UNEX process, with the exception of process steam, will be supplied by existing utility systems at INTEC.

5.1 Greenfield Facility (GFF)

Based upon the process detailed in this study's 30% review, the GFF has been designed around seven different systems; cross flow filtration, liquid/liquid contacting, HAW evaporation, low activity waste (LAW) evaporation, LAW grouting, LAW storage and handling, and HAW storage and handling.

The building design is sited to vacant property inside INTEC on the intersection of Hemlock Street and Cypress Avenue. This location allows adequate ground for a separate Interim Storage Building to the east side the building and for ease of truck access to and around the UNEX facility.

To site the building in this location, the abandoned slabs and foundations from two removed buildings must be demolished, as well as street sections on Cypress Avenue and Palm Avenue.

The design focuses on the relationship and proximity between the frequent truck access for loading and unloading supplies and the drum storage and UNEX separation processes. The design allows semi-

tractor trailers to approach from either street with sufficient turning space to backup to loading and unloading stations.

The UNEX process hot cell forms the structural core of the building, surrounded by structural steel framed secondary and tertiary zones with composite steel/ concrete floors and roofs and enclosed by precast concrete curtainwall panel exterior walls. The Hot Cell itself assumes mass concrete walls, floors, and roof for radiation shielding and structural sheer strength.

Interior partitions in the separations and drum process areas are assumed to be one-hour fire-rated and either grouted form block or concrete masonry finished with skim-coated veneer plaster or furred gypsum wallboard. Interior partitions in administration areas are assumed to be light-gage steel stud frames and painted gypsum wallboard.

The design also uses the layout and flow process presented in the CsIX/TRU Grout Feasibility Study for the SBW for filling, lidding, decontaminating, and handling LAW drums before conveying them to storage (Losinski et al. 1998). For the Modified UNEX Separation process design, the only difference in the design is that LAW drums do not need hot cells, inspection stations, or curing time. As result, the drum may be contact-handled, filled, lidded, and decontaminated in gloveboxes rather remotely in hot cells.

5.1.1 GFF Processing Facility

The GFF is designed as separate but adjoining buildings. The buildings required for the greenfield design include the following:

- 1. UNEX Separation Process Building
- 2. Drum Process Building
- 3. Administrative Building

The UNEX Separation Process building has a central, two-story process main cell for remote handling and process of equipment and incoming SBW waste streams.

The Drum Process building has three separate areas for filling, decontaminating, storage, inspection, and loading before being shipped to permanent repository or disposal.

The Administrative building supports the operation and administration of the personnel stationed at these facilities. The size and complexity of spaces necessary for this support are based on assumptions and layout presented in Losinski et al. (1998). See Appendix D.

The main cell, located in the UNEX Separation Process building, is the heart of the GFF processing facility. It houses the major processing components associated with cross flow filtration, liquid/liquid contacting, and HAW evaporation. The main cell has both an upper and lower level with the upper level floor being comprised of removable metal grating which can be removed to allow access to the component located on the lower floor level. Table 11 below identifies the equipment located on the upper and lower levels of the main cell.

Table 11. Main cell equipment.

Equipment Number	Description	Location
T-201-1	SBW FEED TANK	Lower
T-201-2a & b	SBW DAY TANK	Lower
T-201-5a, b, & c	Extraction Feed Tank	Lower
T-202-5	UNEX Solvent Tank	Lower
T-202-6a & b	UNEX Raffinate Tank	Lower
T-202-14	UNEX Strip Effluent Tank	Lower
P-201-1	SBW XFR Pump	Lower
P-201-2a & b	Filter Feed Pump	Lower
P-201-5	Extraction Feed Pump	Lower
P-201-6a & b	SBW Slurry XFR Pump	Lower
P-202-5	Solvent Feed Pump	Lower
P-202-6a & b	Raffinate XFR Pump	Lower
P-202-6b	Raffinate Off Spec XFR	Lower
P-202-14	Strip Effluent XFR Pump	Lower
P-203-1	Strip TFD XFR Pump	Lower
VP-203	TFD Vacuum Pump	Lower
CON-202-1-14	Extraction Contactor	Upper
SB-202-1-2	Scrub Contactor	Upper
SP-202-1-8	Strip Contactor	Upper
CF-201-1 & 2	Cross Flow Filters	Upper
TFD-203-1	Thin Film Dryer	Lower

Generally, the pumps have been located on the main-cell lower floor level near to the tanks from which they take their suction. The major processing components, with the exception of the TFD, have been located on the upper floor level to maximize their accessibility during operation and maintenance evolutions. The overall height of the TFD as presented at the 30% review was 25 ft. This restricted the maintenance activities on the TFD because of available main cell crane clearance. It is anticipated that the overall height of the TFD will be significantly less than previously presented. This will enable TFD maintenance to be readily accomplished in the main cell while also allowing a decrease in overall facility height.

The UNEX Process Hot Cell includes a 20-ton bridge crane and is sized in area to accommodate all SBW waste-handling equipment, including tanks, pumps, and thin-film drier, with sufficient clearances from obstructions, pipe runs, and construction installation. The Hot Cell is also sized in height to allow adequate clearance over all equipment on the mezzanine level and for crane clearance.

Slave manipulators will be located with windows in the Hot Cell walls at regular intervals to allow complete reach coverage near walls on all sides. Once operations in the Hot Cell have begun, no human occupancy inside the Cell will occur. All handling and operations inside the Hot Cell will be. accomplished by remote equipment, including slave and PaR manipulators. The PaR manipulator will be mounted to the bridge crane to save head clearance height. Objects inside the Hot Cell requiring manipulation, disconnect, or removal will be within reach of slave manipulators that in turn place them where a PaR manipulator or bridge crane can reach.

5.1.2 HAW Evaporation

Evaporation of the HAW in the TFD will produce a dry powder that will be directed down from the bottom of the TFD into a 2 x 10-ft storage can that has been mated to the bottom of the main cell. Access to the mating annulus located below the TFD is provided by a cask transfer corridor which extends from the GFF to the Interim Storage Facility detailed in Rawlins (1997). To maintain continuous uninterrupted operation of the TFD, two storage cans must be able to mate to the main cell floor and

accomplish their loading through a diverting valve connected to the TFD outlet. The diverter valve will allow the filling of one can to proceed while the other full can is remotely capped and replaced. Upon completion of the filling and lid welding procedure, the can is transferred through the belowgrade cask transfer tunnel to the Interim Storage Facility.

Areas surrounding the Process Hot Cell act as secondary radiation buffer zones and are accessed through airlocks and similar transition zones. These secondary zones are used for grout mixing, interior make-up tanks, and process air filtration and ventilation.

Aligned over the Hot Cell on the next story, the Hot Repair Shop resides. The Repair Shop includes a 20-Ton bridge crane and has the same area and same floor-to-ceiling height as the Hot Cell for the same reasons. The Hot Repair Shop has an equipment access floor hatch to the Hot Cell that is offset in alignment with an access hatch in the floor above. The Repair Shop is designed for limited handling and repair or replacement of equipment in the Hot Cell and will include most machine shop and bench equipment.

5.1.3 Grouting

The Drum Process Building is separated from the UNEX Process Building by fire-rated concrete walls. The building is divided into three functional drum process areas. They are: Filling and Palletizing, Automatic Storage Retrieval, and Drum Packaging and Shipping. This facility design assumed the design introduced by Losinski et al. (1998). See also Appendix D.

As in the CsIX/TRU Grout study, the design incorporates a first-in-first-out, automatic storage retrieval system for drum storage on pallets. The facility may accommodate up to 48,400 drums on pallets, as initially estimated to be needed for this study. As designed, the retrieval system will place four drums per pallet in a stack, 22 rows of 57 pallets long, by 10 pallets high.

Each drum may be individually retrieved, sent to an inspection station, de-palletized, and packaged in HalfPac Tru-Waste containers for eventual delivery to a final repository.

5.1.4 Administrative Building

Because actual personnel analyses are yet forthcoming, the UNEX design assumes approximately the same space as shown the CsIX/TRU Grout study mentioned earlier. As a result, the study provides administration spaces and operations change rooms for a staff of approximately 20–40 people, assuming approximately 40 % operators.

5.2 New Waste Calcining Facility

Part of this feasibility study includes the evaluation of placing process equipment associated with both the UNEX processes in the NWCF. The installation of this equipment will take advantage of the existing NWCF infrastructure, which includes building utilities, HVAC, and off-gas systems. This study assumes these systems are adequate to handle the demands generated by the UNEX processes and that no changes or upgrades are needed to accommodate the UNEX equipment.

It is further assumed that the calcining process will no longer be needed and that Calciner operability can be degraded or totally incapacitated as a result of new equipment installation. The following systems are needed and their operational status cannot be impugned.

Decontamination Facility

- Building HVAC
- Vessel Off-gas
- Waste Water Collection
- Pneumatic Transfer System

Sufficient hot cell and floor space capable of meeting the assumed conditions has been identified in the Calciner Cell, Off Gas Cell, Blend and Hold Cell, and Valve Cubicle.

5.2.1 NWCF Cell Descriptions

5.2.1.1 Calciner Cell. The Calciner cell has approximately 650 ft² of floor space and is about 34 feet high. The Calciner vessel occupies the west half of the cell with the east half remaining relatively free of equipment. The calciner must be removed to allow the installation of the equipment in Table 12.

Table 12. Calciner cell equipment.

Equipment Number	Description
T-201-2a	SBW Day Tank
T-201-2b	SBW Day Tank
P-201-6a	SBW Slurry XFR Pump
P-201-6b	SBW Slurry XFR Pump
CF-201-1	Cross Flow Filter
CF-201-2	Cross Flow Filter

The slurry transfer pumps and cross flow filter will be positioned along the south wall of the Calciner cell to take advantage of the viewing window and manipulator coverage provided. An additional window with manipulator support must be provided to allow maintenance and operational activities to occur. It is anticipated that the shielding provided by the existing cell wall (57 in. of concrete) will be sufficient to allow unrestricted personnel access to the operating corridors next to the cell.

Remote maintenance will be performed on the UNEX equipment using the overhead PaR and crane in conjunction with the manipulator slaves. The PaR and crane gain access to the cell through the cell hatches.

5.2.1.2 Off Gas Cell. The Off Gas Cell has approximately 528 ft² of floor space and is 39 feet high. It currently contains three tanks that must be removed to allow the installation of off-gas cell equipment (Table 13).

Table 13. Off-gas cell equipment.

Equipment Number	Description
CON-202-1-14	Extraction Contactors
SB-202-1-2	Scrubbing Contactors
SP-202-1-8	Stripping Contactors
T-202-5	UNEX Solvent Tank
P-201-5	Extraction Feed Pump
P-202-5	Solvent Feed Pump

The extraction, scrubbing, and stripping contactors will be mounted along the south wall of the cell with the pumps and tanks located in the mid part of the cell thereby allowing full or partial access of all in cell components by the manipulator slaves which must be installed in the south cell wall.

Remote maintenance for in-cell components will be performed using the overhead PaR and crane in conjunction with the manipulator slaves. The PaR and crane gain access to the cell through the cell hatches.

5.2.1.3 Blend and Hold Cell. The blend and hold cell has approximately 770 ft² of floor space and is 39 ft high with the removable hatches pulled. The cell currently contains one 4000 gal and two 3,000 gal tanks which must be removed to allow the installation of the following UNEX equipment:

Table 14. Blend and hold cell equipment.

Equipment Number	Description
T-201-5A	Extraction Feed Tank
T-201-5B	Extraction Feed Tank
T-201-5C	Extraction Feed Tank
T-201-1	SBW Feed Tank
T-202-6A	UNEX Raffinate Tank
T-202-6B	UNEX Raffinate Tank
T-202-14	UNEX Strip Effluent Tank

The extraction feed tanks are located along the south wall of the cell to allow shorter suction piping runs to the extraction feed pump located in the adjacent Off Gas Cell just as the remaining tanks are located along the north wall to minimize their piping runs to the pumps located in the valve cubicle. Since the only components located in the Blend and Hold Cell are tanks it is unlikely that any form of regular maintenance activity would occur in the cell. However, any placement or relocation of the tanks in the cell is supported by the overhead crane and PaR manipulator located in the maintenance area.

5.2.1.4 Valve Cubicle. The valve cubicle is about 60 feet long, 11.5-ft wide, and 34-ft high. Four pumps associated with the UNEX process are located in this area mainly to minimize suction line runs

from the tanks located in the Blend and Hold cell while still allowing maintenance access through the use of the valve cubicle PaR. The following pumps (Table 15) will be located in the valve cubicle.

Table 15. Valve cubicle equipment.

Equipment Number	Description
P-201-1	SBW XFR Pump
P-202-6a	Raffinate XFR Pump
P-202-6b	Raffinate Off Spec. XFR Pump
P-202-14	Strip Effluent XFR. Pump

5.2.2 NWCF Storage Area

Several of the pumps and tanks associated with the UNEX process require no special radiological controls or shielding. These components have been located on the 3rd level storage area of the NWCF. Maintenance and operational evolutions involving these tanks is by direct personnel access. Transfer of replacement components or tanks is accomplished through the elevator located in the southeast corner of the NWCF. The components located in the maintenance area, which support the UNEX process, are as follows (Table 16).

Table 16. Storage Area equipment.

Equipment Number	Description	Equipment Number	Description
T-201-3	HF Storage Tank	P-201-3	HF XFR Pump
T-201-4	HF Make-up Tank	P-201-4	HF Pump
T-202-1	Dicarbolide Tank	P-202-1	Dicarbolide Feed Pump
T-202-2	PEG Feed Tank	P-202-2	PEG Feed Pump
T-202-3	CMPO Tank	P-202-3	CMPO Feed Pump
T-202-4	FS-13 Tank	P-202-4	FS-13 Feed Pump
T-202-7	Recycled Acid Storage Tank	P-202-7	Acid Feed Pump
T-202-8	Alum. Nitrate Storage Tank	P-202-8	Alum. Nitrate Feed Pump
T-202-9	Scrub Make up Tank	P-202-9	Scrub Make up XFR Pump
T-202-10	Scrub Solution Feed Tank	P-202-11	Scrub Solution Feed Pump
T-202-11	DTPA Storage Tank	P-202-12	Strip Make up Xfr Pump
T-202-12	Strip Make up Tank	P-202-13	Strip Solution Feed Pump
T-202-13	Strip Solution Feed Tank		

5.3 Thin Film Dryer Facility (TFD)

The dry powder high activity waste stream produced by the UNEX processes is generated by the Thin Film Dryer (TFD). The dryer is a vertically mounted unit with the liquid inlet stream presented at the top and the dry powder discharge being ejected from the bottom. The dry powder is slated for collection in a 2 x 10-ft can, which will subsequently be stored in the interim storage facility. Since the NWCF layout does not support an access path to the under side of the TFD, should it be located in one of the existing NWCF cells, a separate facility used to house the TFD and enable the transfer of the 2 x 10-ft cans from the TFD to the Interim Storage Facility must be provided.

The TFD facility contains a single main cell with 484 ft² of floor area (22-ft square) which is approximately 26 ft high. The following equipment is located in the TFD facility main cell (Table 17).

Table 17. TFD equipment.

Equipment Number	Description
TFD-203-1	Thin Film Dryer (TFD)
VP-203-1	TFD Vacuum Pump
P-203-1	TFD Condensate Pump
T-203-1	TFD Condensate Tank
T-203-2	Strip Feed Tank
P-203-2	TFD Feed Pump

Maintenance and handling of the in-cell equipment is performed through the use of the manipulator slaves located on the east and west walls of the cell and by using the in-cell 20 ton bridge crane. Maintenance, which cannot be performed in the main cell, can be conducted by moving the affected components into the HRA located directly over the main cell by using the HRA crane. Transport of materials into or out of the HRA is accomplished using the high bay bridge crane and the truck lock access hatch located on the east side of the facility. The truck lock also has a floor access hatch, which allows for the transport of equipment into the cask access tunnel, which extends below the main cell floor. This tunnel provides the access of the 2' x 10' cans to the underside of the TFD where mating of the can to the TFD discharge connection is accomplished. It is proposed that two cans be mated to the discharge connection of the TFD at one time through the use of a diverter valve connection. This will enable one full can to be transported through the access tunnel to the Interim Storage Facility following lid installation while the second can is filled from the TFD, thereby avoiding unnecessary interruption of TFD operations.

5.4 GFF Grouting Facility

The grouting facility, which in the case of the GFF, is attached directly to the UNEX processing facility, is based upon the design generated in Losinski et al. (1998).

It is anticipated that the grout consistency for the Modified UNEX process will closely approximate the grout consistency used during the CsIX/TRU grouting facility design effort. Since the drum production for both the CsIX/TRU Grout and Modified UNEX processes are roughly equivalent, the design and configuration of the CsIX/TRU grouting facility should adequately meet the requirements

associated with the Modified UNEX process. Consequently, no changes to the CsIX/TRU Grout design for presentation as the Modified UNEX grouting method have been performed.

5.4.1 Modified UNEX Grouting Facility

Clean, empty 55-gal barrels are moved along an automated track system to one of three grout mixing cells, where the waste form and grouting constituents are placed into the drum and mixing occurs. The drums are then moved to a curing cell to allow the grout to harden and any release of moisture during the curing process to occur. Testing on grout, which is expected to closely approximate the grout consistence of the Modified UNEX "nonperformance" grout, has indicated a loss of up to 30 wt% due to water evaporation during the curing process. Because of this, it is recommended that the curing process occur with the lids removed from the drums. This will enhance the formation of the grout matrix given the high degree of moisture loss due to evaporation. The drums are then moved back to the mixing cell, where the lids are installed on the drums and the outside of the drum is decontaminated before relocation of the drums to the automated drum storage facility. The storage facility for the Modified UNEX process must be capable of handling the entire 3-year combined production run of 29,160 drums (based upon an 80% fill capability).

5.4.2 UNEX Grouting Facility

The UNEX process will produce a "performance" type grout which has a significantly lower moisture concentration than the Modified UNEX grout. This removes the necessity for an "open-lid" curing process and consequently allows the grout formation process to be an in-barrel, out-of-cell, mixing process which precludes the external contamination of the 55-gal grout drums that is inherent to the Modified UNEX grouting process. Consequently, the CsIX/TRU Grout design has been modified to reflect the handling of noncontaminated drums during the UNEX grouting process. To maintain the required drum production rate of 72 drums of grout per day, it was necessary to add an additional three grouting stations to the CsIX/TRU Grout design. Since the grouting process will not be an in-cell process, the grouting stations, rather than consisting of a shielded thick wall cell as presented in the CsIX/TRU Grout process, will be of a standard thin-wall glovebox design with a mating port on the bottom of the glovebox. Clean drums will be transported to the gloveboxes using an automated transport system. They are then mated to the grouting glovebox where the constituents are added and mixing occurs. The drums are then de-coupled from the glovebox and transported in a clean condition to the drum storage area. Due to the radiation field associated with the grout mixture produced by the UNEX process (about 100 mrem/hour) a shield ring must be used to limit exposure to personnel during the grout mixing process. The shield ring will be located around the outside of the 55-gal drum when it is coupled to the bottom of the glovebox and must remain in place until the drum is transported to the curing/storage location. The storage facility of the UNEX process must be capable of handling the entire three-year combined production run of 44,606 drums (based upon an 80% fill capability)

Both grouting facility layouts will provide an operating area for the LAW evaporator and associated support equipment. It is anticipated that standard, 10 inch thick, cinder block walls will provide sufficient shielding for personnel near to the evaporator enclosure area. Operation of the evaporator and its support equipment will be accomplished remotely while maintenance will be performed "hands on" after component draining has been performed.

5.5 NWCF Grouting Facility

The NWCF layout will send the raffinate and strip evaporator condensate liquid streams to the grouting facility, which was designed in support of the GFF portion of this study, for evaporation and solidification. The handling process will be exactly the same as earlier described for the GFF process.

5.5.1 GFF &TFD HVAC

This feasibility study will address two facilities and a third facility housing the thin film dryer (TFD). The first two facilities are nearly identical with the exception of a process and the drum storage capacity. The two facilities are designated as UNEX and Modified UNEX. The UNEX facility will have additional primary containment zones for the grout/drum processing and an approximate drum storage capacity of 44,000. The Modified UNEX facility will have drum storage capacity of about 23,000 and the grout/drum process will have less space dedicated to primary confinement.

Each facility will be required to have two ventilation confinement zones. This section addresses the confinement zones and the nonconfinement areas. A ventilation confinement system in conjunction with physical barriers, maintain a continuous airflow pattern from areas of low potential contamination to areas of high potential contamination. The objectives of the confinement systems are to prevent the spread of radioactive and other hazardous materials to occupied areas; and to minimize the release of radioactive and other hazardous materials in facility effluents. The primary confinement area consists of process hot cells and hot maintenance areas, which will be exhausted through two stages of HEPA filters. The primary confinement boundary will be comprised of hot cell walls, welded stainless steel ductwork and HVAC equipment designed to maintain its structural integrity during and after operational and natural-phenomena design basis accidents (DBAs). The secondary confinement boundary consists of the operating corridors and other building structures that surround the primary confinement. The secondary confinement boundary contains all ventilation system equipment such as HEPA filter units and exhaust fans. The nonconfinement boundary consists of offices, control rooms, clean loading bays, storage and support areas outside the secondary confinement boundary. The nonconfinement zones do not require once-through ventilation systems and will be maintained at a slight positive pressure with respect to ambient. Drum storage will be maintained at a slightly negative pressure and also have HEPA filters, but will not require once-through air. HEPA filters will remove contaminated particulates, but no carbon absorber beds will be provided in the primary filter trains.

Drawings HV-1, HV-2 and HV-3 depict the air flow diagram of the HVAC system for the three facilities. Several air handling units (AHU) will supply conditioned air to the secondary confinement zones. Air from the secondary confinement zones will be forced into the primary confinement zones by supply blowers through a single stage testable HEPA filter.

The facilities will be provided with an independent chiller system consisting of central chillers and pumps, delivering to various cooling coils. The facilities will use steam or electricity for heating the once-through air and for the office and other occupied areas. Electrical power and steam requirements for heating will be provided. The HVAC system will be controlled by a central electronic system located within each facility.

Redundancy will ensure proper ventilation confinement during HEPA filter replacement or fan maintenance. Redundancy is provided through an additional fan and HEPA filter bank for each zone. Exhaust ductwork from containment zones will be located in areas that will not be normally occupied and designated secondary containment. HEPA filter housings will have the capability to be leak tested and tested for filter efficiency in place. Single stage HEPA filtration will be provided at the hot cell intakes to prevent possible contamination from momentary back flow to the occupied areas. HEPA filters units will be designed per the American Society of Mechanical Engineers (ASME), N509, Nuclear Power Plant Air-Cleaning Units and Components, and tested per ASME N510, Testing of Nuclear Air Treatment Systems. Confinement boundaries will be sealed to maintain isolation when pressure differentials fall below normal conditions. Exhaust systems for the primary and secondary confinements will be round stainless steel welded joint ductwork designed and installed in accordance with applicable Sheet Metal and Air

Conditioning Contractors National Association, Uniform Mechanical Code, and American Conference of Governmental Industrial Hygienists standards.

Confinement zones will be supplied by once-through ventilation. Airflow from the secondary confinement zones will be HEPA filtered to before the primary confinement zones. The once-through ventilation will be HEPA filtered and discharged with no air recirculation. Each HEPA filter unit includes a stainless steel plenum housing, a deluge system, demister, prefilter, two stages of side-bagout HEPA filters for the primary zone exhaust, single stage side-bagout HEPA filters for secondary zone exhaust and primary supply, DOP test sections and ports, and an exhaust fan. The exhaust fans have integral adjustable flow control. It is assumed that the supply and exhaust fans for the hot cells can be powered from the standby power source. This allows the ventilation confinement to be maintained in the hot cells during a loss of off-Site power condition.

Automatic local stand-alone controllers will be provided with the HVAC equipment. Graphic displays mimicking the HVAC system will be available in the control room for monitoring and for remote manual override control. The HVAC system will have local operator stations. However, the control room operator will have supervisory control capability to start and stop the HVAC system and to change setpoints. Alarms and out-of-tolerance conditions will be displayed in the control room.

Each facility will be designed with the following ventilation parameters:

- Eight air changes per hour for primary confinement
- Four air changes per hour for secondary confinement
- 0.75 cfm per square foot for administrative areas
- 1.5 cfm per square for the mechanical rooms.
- 1.5 cfm per square foot for the drum storage facility.
- One stage of testable HEPA filters for secondary confinement exhaust
- Two stages of testable HEPA filters for hot cell exhaust
- One stage of testable HEPA filters for hot cell inlet
- Once-through ventilation for primary and secondary confinement zones
- Room pressures maintained in accordance with Tables 18 20.

Each UNEX and Modified UNEX facility is divided into four independent HVAC systems. This is due to two factors. The primary factor is due to the differing operational life of the processes, as specific processes end they undergo D & D, but the remaining facilities will remain operational. The second factor is due to the different process that require isolation from the occupied areas. The four areas are listed in Tables 18 and 19. The TFD facility has a single HVAC system.

Special HVAC requirements are necessary for the process facilities. The administration area and mechanical rooms have no special requirements. The UNEX, Modified UNEX and TFD process requires a secondary confinement zone around the primary confinement zone hot cells. These confinement zones require HEPA filtration and the HVAC room is designated as secondary confinement. The drum process

facility also has secondary and primary confinement zones require HEPA filtration and similar HVAC designations as the UNEX process. The drum storage is considered a noncontaminated area but HEPA filtration is provided as a containment safeguard.

 Table 18. UNEX Area requirements.

Room	Area	Room Requirements	Static Pressure iwg	Room cfm	Total cfm/Area
Administration		.75 cfm/ft ²	0.1	5,877	
Admin Mechanical	one	1.5 cfm/ft ²	0.1	3,750	total 9,627
Half Pac Loading		1 cfm/ft ²	-0.25	4,000	
De-Palletizer/Palletizer		1 cfm/ft ²	-0.25	2,250	
Drum Storage	two	1 cfm/ft ²	-0.25	56,488	
Truck Bay Clean Drum Stor	•	1 cfm/ft ²	0.1	2,400	
Drum Storage HVAC		1.5/hr	-0.25	2,475	total 67,613
Drum Process Primary		8/hr	-0.75	11,607	
Drum Process Secondary		4/hr	-0.25	8,707	
Drum Process Loading	three	4/hr	-0.25	4,000	
Truck Lock Drum Process	инее	4/hr	0.1	3,333	
Drum Process HVAC		4/hr	-0.25	10,417	
Drum Process Mech		2/hr	0.1	1,667	total 39,730
UNEX Primary		8/hr	-0.75	41,344	
Transfer Tunnel		8/hr	-0.75	3,360	
UNEX Secondary		4/hr	-0.25	74,816	
UNEX Secondary		4/hr	-0.25	8,512	
Truck Lock UNEX	£	4/hr	0.1	4,000	
UNEX HVAC	four	4/hr	-0.25	20,000	
UNEX Mechanical		1.5/hr	0.1	2,500	
Freight Elevator		1/hr	0.1	680	
Stair Air Lock South		2/hr	0.1	1,813	
Stair Air Lock North		2/hr	0.1	1,813	total 158,839

Table 19. Modified UNEX Area requirements.

Room	Area	Room Requirements	Static S Pressure iwg	Room cfm	Total cfm/Area
Administration		.75 cfm/ft ²	0.1	5,877	
Admin Mechanical	one	1.5 cfm/ft ²	0.1	3,750	total 9,627
Half Pac Loading		1 cfm/ft ²	-0.25	4,000	
De-Palletizer/Palletizer		1 cfm/ft ²	-0.25	2,250	
Drum Storage	two	1 cfm/ft ²	-0.25	29,507	
Truck Bay Clean Drum Sto	r	1 cfm/ft ²	0.1	2,400	
Drum Storage HVAC		1.5/hr	-0.25	2,475	total 40,632
Drum Process Primary		8/hr	-0.75	8,707	
Drum Process Secondary		4/hr	-0.25	10,157	
Drum Process Loading	three	4/hr	-0.25	4,000	
Truck Lock Drum Process	urree	4/hr	0.1	3,333	
Drum Process HVAC		4/hr	-0.25	10,417	
Drum Process Mechanical		2/hr	0.1	1,667	total 38,280
UNEX Primary		8/hr	-0.75	41,344	
Transfer Tunnel	•	8/hr	-0.75	3,360	
UNEX Secondary		4/hr	-0.25	74,816	
UNEX Secondary		4/hr	-0.25	8,512	
Truck Lock UNEX	four	4/hr	0.1	4,000	
UNEX HVAC	Tour	4/hr	-0.25	20,000	
UNEX Mechanical		1.5/hr	0.1	2,500	
Freight Elevator		1/hr	0.1	680	
Stair Air Lock South		2/hr	0.1	1,813	
Stair Air Lock North		2/hr	0.1	1,813	total 158,839

Table 20. Thin Film Dryer Area requirements.

Room	Area	Room Requirements	Static Pressure iwg	Room cfm	Total cfm/Area
Truck Lock		1 cfm/ft ²	-0.25	1,260	
Office/Stair well	one	.75 cfm/ft ²	0.1	1,055	total 2,315
Primary Hot Repair		8/hr	-0.75	4,013	
Primary Main Cell		8/hr	-0.75	3,306	
Transfer Tunnel Primary	two	8/hr	-0.75	4,680	
Secondary		4/hr	-0.25	23,493	
HVAC		4/hr .	-0.25	892	total 36,384

The secondary confinement areas require the largest volume of once-through air. The air exhausted from the secondary confinement zones is supplied to the primary confinement areas. As shown in the HVAC Flow Diagram the cfm required to meet the capacity of the secondary zones exceeds the cfm for the primary zone. The cost to heat, cool, filter and force the once-through air through each facility is mainly attributed to the volume of secondary confinement zones. The secondary confinement zones are the principal factor affecting HVAC system capital and operational costs.

Tables 21 through 23 show the preliminary equipment list for the three separate facilities in this study. This is not an all-inclusive list of instruments, components and equipment.

Table 21. UNEX Equipment.

Quantity	Equipment Description	Size/Power/Capacity	Comments
none	Ventilation Centrifugal Fans	5 hp	Includes standby fans
none	Ventilation Centrifugal Fans	15 hp	Includes standby fans
5	Ventilation Centrifugal Fans	20 hp	Includes standby fans
7	Ventilation Centrifugal Fans	25 hp	Includes standby fans
5	Ventilation Centrifugal Fans	30 hp	Includes standby fans
5	Ventilation Centrifugal Fans	40 hp	Includes standby fans
14	Ventilation Centrifugal Fans	50 hp	Includes standby fans
3	Ventilation Centrifugal Fans	60 hp	Includes standby fans
2	HEPA 4x4 Banks Single Stage	12 filters per bank	one filter is 24 by 24-in.
23	HEPA 4x4 Banks Single Stage	16 filters per bank	one filter is 24 by 24-in.
2	HEPA 4x4 Banks Dual Stage	12 filters per bank	one filter is 24 by 24-in.
4	HEPA 4x4 Banks Dual Stage	16 filters per bank	one filter is 24 by 24-in.
	Chiller: Compressors and Fans	530 hp combined	
	Chiller: Compressors and Fans	375 hp combined	
	Actuated Air Dampers	0.5 hp each	flow control to rooms
	Pre filters	208,000 cfm.	outside air filters
	Heating coils	208,000 cfm	steam or electric heat
	Cooling coils	208,000 cfm	
	Heat Recovery coils		for exhaust air
	Heat Recovery coils		for intake heat/cool coils

Table 22. . Modified UNEX Equipment.

Quantity	Equipment Description	Size/Power/Capacity	Comments
none	Ventilation Centrifugal Fans	5 hp	
2	Ventilation Centrifugal Fans	15 hp	Includes standby fans
5	Ventilation Centrifugal Fans	20 hp	Includes standby fans
11	Ventilation Centrifugal Fans	25 hp	Includes standby fans
3	Ventilation Centrifugal Fans	30 hp	Includes standby fans
3	Ventilation Centrifugal Fans	40 hp	Includes standby fans
14	Ventilation Centrifugal Fans	50 hp	Includes standby fans
none	Ventilation Centrifugal Fans	60 hp	Includes standby fans
2	HEPA 4x4 Banks Single Stage	12 filters per bank	one filter is 24 by 24-in.
19	HEPA 4x4 Banks Single Stage	16 filters per bank	one filter is 24 by 24-in.
2	HEPA 4x4 Banks Dual Stage	12 filters per bank	one filter is 24 by 24-in.
4	HEPA 4x4 Banks Dual Stage	16 filters per bank	one filter is 24 by 24-in.
	Chiller: Compressors and Fans	530 hp combined	
	Chiller: Compressors and Fans	380 hp combined	
	Actuated Air Dampers	0.5 hp each	flow control to rooms
	Pre filters	183,000 cfm.	outside air filters
	Heating coils	183,000 cfm	steam or electric heat
	Cooling coils	183,000 cfm	
	Heat Recovery coils		for exhaust air
	Heat Recovery coils		for intake heat/cool coils

Table 23. Thin Film Dryer Equipment.

Quantity	Equipment Description	Size/Power/Capacity	Comments
1	Ventilation Centrifugal Fans	5 hp	
2	Ventilation Centrifugal Fans	15 hp	Includes standby fans
2	Ventilation Centrifugal Fans	20 hp	Includes standby fans
none	Ventilation Centrifugal Fans	25 hp	Includes standby fans
4	Ventilation Centrifugal Fans	30 hp	Includes standby fans
2	Ventilation Centrifugal Fans	40 hp	Includes standby fans
5	HEPA 4x4 Banks Single Stage	12 filters per bank	one filter is 24 by 24-in.
2	HEPA 4x4 Banks Dual Stage	12 filters per bank	one filter is 24 by 24-in.
	Chiller: Compressors and Fans	114 hp combined	_
	Actuated Air Dampers	0.5 hp each	flow control to rooms
	Pre filters	27,000 cfm.	outside air filters
	Heating coils	27,000 cfm	steam or electric heat
	Cooling coils	27,000 cfm	
	Heat Recovery coils		for exhaust air
	Heat Recovery coils		for intake heat/cool coils

5.5.2 Heat Recovery Systems

It is assumed that later stages of design will provide greater detail and a more specific system description. The inclusion of a heat recovery system may have the potential to reduce operational costs. Here are two types of heat recovery systems applicable to these facilities that completely separates air streams and eliminating cross-contamination. The face velocity is a primary factor in effectiveness and capital costs.

Coil energy covery loops have an effectiveness range of 45% to 65%. The effectiveness is directly correlated to the delta T and the minimum low temperature to prevent freezing. Relative to other system parameters, the three facilities have a low delta T and a freezing limitation. Expected effectiveness is in low end of the range, approximately 45%. Coil energy recovery loops require a liquid loop, typically a refrigerant and compressors. This system has more moving parts than other heat recovery systems and thus requires more maintenance.

Heat pipe heat exchangers have a higher effectiveness than coil energy recovery loops but also have freeze protection problems. The performance of heat pipes is correlated directly to face velocities and the number of rows or heat pipes. Doubling the number of rows of heat pipes in a 60% effective heat exchanger increases the effectiveness to 75%. Effectiveness is also based upon the proper selection of fluid for the operating temperature range. According to Heat Pipe Technology Inc. typical costs range from \$0.50 to \$1.00 per cfm for a heat pipe recovery system.

Fixed plate exchangers have potential for cross contamination and are not considered here.

A coil energy recover loop is recommended primarily due to the flexibility of locating the heat exchangers in both exhaust and intake air streams. This will not require special routing of ducts to get close proximity that is required in a heat pipe exchanger system. Special duct routing would require additional floor space and added cost to the building structure. The heat recovery system exchangers can be located in line with the intake steam and cooling coils and just behind the HEPA filter banks before going to the exhaust stack. The cost would be similar to a heat pipe system \$0.50 to \$1.00 per cfm.

5.5.3 Heating Loads With Steam or Electric Requirements

150 psi of saturated steam converts to 860 Btu/lb of steam.

1 Btu/hour = 0.293 Watts

According to the ASHRAE Fundamentals Handbook:

Q = 0.93 (cfm) $(T_2 - T_1)$ in units of Btu/hour

5.5.3.1 UNEX Facility. Based upon the cfm requirements for the cumulative supply to occupied areas and secondary confinement zones:

cfm = 211,372

 $T_2 = 80^{\circ}F$

Typically, air is heated to 95°F, but due to the high rate of volume changeout, 80°F is used for more realistic results that are still conservative.

 $T_1 = -19$ °F

Q = 0.93 (211,372) (80-(-19)) = 19.46 million Btu/hour

= 5,700 kW

= 22,600 lb/hour Steam.

5.5.3.2 Modified UNEX Facility. Based upon the cfm requirements for the cumulative supply to occupied areas and secondary confinement zones:

$$cfm = 182,841$$

$$T_2 = 80^{\circ}F$$

Typically, air is heated to 95°F, but due to the high rate of volume changeout, 80°F is used for more realistic results that are still conservative.

= 19,600 lb/hour Steam.

$$T_1 = -19^{\circ}F$$

5.5.3.3 Thin Film Dryer Facility.

$$cfm = 26,700$$

$$T_2 = 80^{\circ}F$$

Typically air is heated to 95°F, but due to the high rate of volume changeout, 80°F is used for more realistic results that are still conservative.

$$T_1 = -19^{\circ}F$$

$$Q = 1.1 (26,700) (80- (-19))$$
 = 2.46 million Btu/hour
= 700 kW
= 2,850 lb/hour Steam.

5.5.4 Ventilation Fans, HP

The ventilation fan sizing was based upon software and vendor data to ensure common fan motor sizes. The static pressures for each zone were conservatively approximated and all filters were assigned worst-case pressure losses. Table 24 details the assigned pressure drops, final static pressures were based upon additional pressure drops through each zone.

Table 24. Zone pressure drops.

Equipment	Static pressure loss
Pre-filter for intake from atmosphere	1 in. w.g
Heating and cooling coils	1 in. w.g
Single HEPA filter bank	3 in. w.g
Dual HEPA filter bank	6 in. w.g
Each zone total	4 in. w.g
Duct to stack	1 in. w.g

According to the flow diagrams shown on drawings HV-1, HV-2 and HV-3, the fan hp totals are shown in Table 25. Each confinement zone is given a standby fan for immediate backup.

Table 25. Fan horsepower.

Facility	Number of fans	Cumulative hp
UNEX	39	1,510
Modified UNEX	38	1,315
Thin Film Dryer	11	275

The lists of fans are detailed in the equipment tables 4 through 6 for each facility. Hp requirements are based upon centrifugal fans from GreenHeck, based upon cfm and static pressure loads.

5.5.5 Cooling, Compressor and Fan HP

Converting the Btu/hour to tons the conversion is 12,000 Btu/hour = 1 ton. According to the ASHRAE Fundamentals Handbook:

Q = 0.93 (cfm) ($T_2 - T_1$) in units of Btu/hour

5.5.5.1 UNEX Facility. Based upon the cfm requirements for the cumulative supply to occupied areas and secondary confinement zones.

cfm = 211,372

 $T_2 = 95$ °F

 $T_1 = 60$ °F

Typically air is cooled to 55°F, but due to the high rate of volume changeout, 65°F is used for more realistic results that are still conservative.

Q = 0.93 (211,372) (95-60) = 6.88 million Btu/hour

5.5.6 Modified UNEX Facility

Based upon the cfm requirements for the cumulative supply to occupied areas and secondary confinement zones:

cfm = 182,841

 $T_2 = 95^{\circ}F$

 $T_1 = 60^{\circ}F$

Typically air is cooled to 55°F, but due to the high rate of volume changeout, 65°F is used for more realistic results that are still conservative.

Q = 0.93 (182,841) (95 - 60) = 5.95 million Btu/hour

5.5.7 Thin Film Dryer Facility

cfm = 26,700

 $T_2 = 95^{\circ}F$

The assumed exit temperature from the secondary confinement zones:

 $T_1 = 60^{\circ}F$

Typically air is cooled to 55°F, but due to the high rate of volume changeout, 65°F is used for more realistic results that are still conservative.

Q = 0.93 (143,500) (95-60) = 0.87 million Btu/hour

Based upon Product Data from Carrier, the 30GU series Flotronic™ Air-Cooled Reciprocating Liquid Chillers 60 Hz require the following combined horsepower from fans and compressors for the tonnage calculated. The Thin Film Dryer Facility will require reduced capacity chillers.

6.88 million Btu/hour = 573 tons requiring a combined 905 hp

5.95 million Btu/hour = 496 tons requiring a combined 784 hp

0.87 million Btu/hour = 72 tons requiring a combined 114 hp

Total = 1,803 hp.

5.6 Remote Maintenance Philosophy

Operating and maintenance access to the components located in the main cell is accomplish remotely through the use of manipulator slaves, PaR manipulator, or 20-ton overhead bridge crane. All components, accept for the storage tanks, are located within the viewing area of a shielded window and area of accessibility of the manipulator slaves. Any maintenance procedures which can not be accomplished in the main cell through the use of the remote handling devices will be accomplished by repositioning the failed component below the overhead access hatch with the in-cell crane and raising the component into the Hot Repair Area, which is located above the main cell, using the HRA crane. Once the component is positioned in the HRA it may be contact-handled or disposed of depending upon a case evaluation. An equipment lay down area has been designated in the main cell for those components which can not be immediately transferred out for dispensation.

The major maintenance process associated with the TFD would require the removal of its internal blades for repair. To accommodate this procedure, the TFD has been located on the lower level of the main cell. Disassembly of the TFD would be performed using a coordinated effort from the manipulators and overhead handling system. Due to the high radiation and contamination levels associated with the TFD, it is not proposed that any maintenance be performed in the HRA unless exposure levels are first evaluated. Should the TFD become totally disabled, sufficient space has been allocated in the main cell to allow it to be repositioned and abandoned with continued process operations being supported by a new TFD. The replacement TFD may be installed though access hatches provided in the HRA and main cell. Overhead access to the HRA is provided by the High Bay crane, which also provides crane support for loading and unloading operations in the truck loading bay.

Tanks located in the main cell are not considered to be high maintenance items and hence are not afforded manipulator coverage for repair. Initial placement and replacement access to the tanks is provided by the overhead handling systems with access being accomplished after removal of the grated floor covering the tanks.

The following are features which will provide remote handling capabilities in the facilities:

- Hot Repair Area (HRA) A shielded area located directly above the main cell which has direct access to the main cell through a sliding floor hatch and remote operated crane. Any equipment located in the main cell which requires repair which cannot be handled remotely shall be transferred to the HRA for hands on repair.
- Master Slave Manipulators Remote arms which extend through a shield wall in the vicinity
 of a viewing window which are operated directly by personnel performing remote
 manipulations.
- Viewing Windows Shielded viewing windows which allow direct visually observation of limited areas of a shielded cell.
- Overhead Crane A remotely controlled crane which allows movement and positioning of components inside a shielded cell. Certain components on the crane can be remove for repair or maintenance to the HRA otherwise the crane must be maintainable in the main cell by remote means.
- Equipment Lay down Area/Decontamination Cell An area in the main cell which is used for the temporary storage of new or replace components. It should enable components to be accessed by the overhead handling systems for repair or preliminary decontamination before relocating the component to the HRA. This area may include a spray wash down system and should be separated from the main cell environment by a walled enclosure.
- Breathing Air Stations A breathing air station used to supply personnel entering the HRA
 in forced air hoods.
- Equipment Transfer Buffer Room A room adjacent and attached to the HRA which will allow personnel to transfer clean equipment into the HRA.
- Transfer Hatch A floor or ceiling mounted hatch which can be remotely operated to allow access from the HRA to the main cell or from the HRA to the High Bay area.
- Personnel Buffer Zone A buffer zone which allows the transfer of personnel into or out of the HRA.
- Glove Wall A vertical wall section which supports glove access into the HRA for components that require contact handling for maintenance or repair.
- Repair Pit A vertical below grade pit which will allow the TFD to be lowered to a level of the viewing windows and manipulators for remote repair activities.

5.7 Hot Cell Design Requirements

The following will also be provided to permit in-cell remote handling operations and to reduce operator exposure:

- Permanently located lifting devices to aid in remote maintenance operations.
- Tool ports, in-cell tool racks, and tables.
- Decontamination system for external and internal equipment surfaces as well as cell surfaces.
- Quick-disconnect piping connections on all in-cell components
- Stainless steel lining for the inside of high contamination areas as appropriate to facilitate decontamination.
- Remote maintenance service stations with remote connectors for utilities needed inside the shielded areas, including air, fluids (water, decontamination solutions) electric and video.
- Equipment which will be placed in the main cell must be designed for remote maintenance capability.

The following remote capabilities should also be included in the cell design:

- The capability for viewing and remotely transferring radioactive items and materials as required to maintain personnel radiation exposures to as-low-as-reasonably achievable levels.
- Remote process equipment will be accessible for ease of operation and maintenance.
- In-cell lights for remote cells will be designed for remote replacement.
- Provision will be made for tool storage and worktables as required.
- Clearances for standard operation and removal of master-slave manipulators will be provided.
- Remote connectors, bolts, flanges, wrenches, sockets, extensions, and other tooling should be standardized to the extend possible to reduce the need for wrench changes and varied operating envelopes during equipment replacement.
- Equipment will be movable, maintainable and replaceable without disturbing adjacent equipment whenever possible.
- Design of in-cell equipment supports and concrete embedments will consider possible retrofit of alternate process equipment.
- Equipment components and subsystems will be of modular design, if feasible, to facilitate removal and replacement.

 All remotely serviced equipment will be checked for dimensional fit and proper operation before installation.

5.8 Decontamination and Decommissioning

Upon completion of the processing schedule, all components which may be directly removed from the main cell to the HRA will be decontaminated in the HRA and transferred out of the facility using standard waste boxes. Any components that are too large to be removed to the HRA or have a radiological impact incompatible with contact handling will be dismantled in the main cell. The resulting individual component pieces will be transferred to the HRA by cage lift and transferred to a standard waste box for disposal.

5.9 Interim Storage

The TFD for both the UNEX and Modified UNEX processes will produce a HLW stream which must be transferred away from the TFD operations area to a temporary storage facility capable of handling and storing the receptacle which will contain the HLW product. It is anticipated that the storage facility to be used for this purpose will be the Interim Storage Facility detailed in a previous feasibility study (Rawlins 1997)).

The following assumptions have been made for using the ISF in conjunction with the UNEX process:

- 1. The storage capability of the ISF will be sufficient to handle the approximately 500 2 x 10-ft cans produced during the entire UNEX run.
- 2. The waste will be stored in 2×10 -ft cans.
- 3. The maximum weight of the 2×10 -ft cans is 5,300 lb.
- 4. The ISF will be a new facility physically located next to either the GFF or TFD facility.

A tunnel will have to be provided between either the GFF or TFD facility to allow the transfer of the cans, belowgrade, to the receiving room of the ISF. The ISF storage capabilities ranging from 170 to 18,000 cans with storage areas laid out in a modular configuration. Each module is capable of handling 1,890 cans, stacked three cans high. Since the total number of cans produced during the UNEX run is about one quarter of the maximum storage capability of a single ISF module, it is evident that the ISF storage capability depicted in the design study can be greatly reduced and still meet the UNEX storage requirements.

5.10 Process Energy

Energy balances were performed on all major pieces of equipment requiring significant amounts of energy. The major processes that were evaluated include crystallization, evaporation, and neutralization. The energy requirements were determined for these processes in both the UNEX and Modified UNEX cases. Energy balance calculations and additional detail on assumptions used in the analysis can be found in Appendix C.

Table 26 provides the heating and cooling process requirements for operation of the TFD (TFD-203-1). (Values for power are given on a yearly basis.)

Table 26. Crystallization process requirements.

	Heating		Ċ	ooling
<u>Process</u>	Power	Steam	Power	Cooling_Water
	<u>(kW)</u>	<u>(lb/hr)</u>	<u>(kW)</u>	(lb/hr)
UNEX	105.0	300.0	-1.93	73.3
Modified UNEX	89.2	254.9	-1.64	62.3

Table 27 provides the heating and cooling process requirements for operation of the LAW evaporator (EV-204-1). (Values for power are given on a yearly basis.)

Table 27. LAW evaporation (EV-204-1) process requirements.

	Heating		Co	ooling
<u>Process</u>	Power	Steam	Power	Cooling_Water
	<u>(kW)</u>	<u>(lb/hr)</u>	<u>(kW)</u>	<u>(lb/hr)</u>
UNEX	266.7	832.6	-4.62	175.2
Modified UNEX	200.4	594.2	-3.40	129.0

Table 28 provides the cooling requirements for neutralization. (Values for power are given on a yearly basis.)

Table 28. Neutralization process requirements.

	Cooling				
Process	Power	Cooling Water			
	<u>(kW)</u>	<u>(lb/hr)</u>			
UNEX	-15.48	587.0			
Modified UNEX	-14.22	539.3			

5.11 Steam Facility

The UNEX facility requires an estimated maximum steam supply of 25,450 lb/hour. Modified UNEX requires a similar amount 22,350 lb/hour; both of these facilities includes the TFD. The existing steam supply is from CPP-606. Currently the boilers are undergoing replacement and are scheduled for completion by October 2000. The CPP-606 Boiler Replacement project will install four new boilers with an operating capacity of 23,000 lb/hour for each boiler. The total for the four boilers combined is approximately 92,000 lb/hour (Figure 5). According to the INTEC Thermal Energy Study Final Report, the maximum steam supplied does not allow for the additional capacity for the proposed UNEX or Modified UNEX facilities until after fiscal year 2015.

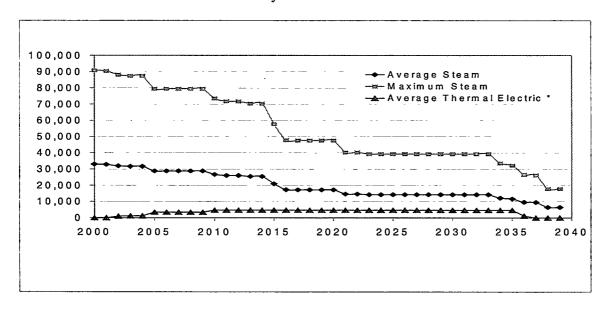


Figure 5. Projected INTEC thermal energy demands, FY-00 through FY-40.

A new steam facility is planned to meet the steam demand for the either facility. A plan view of the building and the layout of two boilers are shown in the accompanying drawing. Two boilers are shown one for operational demands and the second as an immediate standby. At this stage of design a standby is included, later stages may determine whether a standby boiler is justified. The cost estimate and information from the CPP-606 Boiler Replacement project was used for the drawing and the two boiler cost estimate. The boiler building provides adequate room for installation, associated utilities and changeout, of the boilers. The drawing does not detail the multiple utilities and systems required for the boiler but they are incorporated into the cost estimate.

5.12 Utilities

5.12.1 Storm Drain System

The storm drain shall connect to the overall INTEC surface drain system. However, there is an existing open ditch that tracks along the north side of Palm Avenue east towards Lodge Pole Street then turns to the south before Cypress Avenue then turns to the east again, towards the storm water collection pond. This open ditch is carrying mostly surface water from the tank farm area. Since the UNEX Projects proposed building is right on top of Palm Avenue, the open ditch shall be relocated to along south side of Cypress Avenue. See drawing U-7.

5.12.2 Sanitary Sewer System

There are existing 6-in. sewer effluent lines (6-in. WQP-109754) along north side of Palm Avenue and 4-in. sanitary lines (4-in. WQ NY-152739) along the south side of Palm Avenue. Both the lines will be under UNEX building facilities. These effluent lines shall be relocated to the north of the UNEX facilities and the 4-in. sanitary line shall be relocated to north side of Cypress Avenue. See drawing U-4.

5.12.3 Fire Water System

There is an existing fire water system line south of Cypress Avenue. The UNEX facilities fire system can connect to this system if the existing systems can provide enough pressure. See drawing U-6.

5.12.4 High-Pressure Air Line

There is an existing high-pressure airline (AV-UT-500) located along the west side of Beech Street and an outlet valve next to structure 616. This valve can be used as tie-in point of the high-pressure airline for the UNEX facilities. The line layout shall be along Beech Street towards the north, over Cypress Avenue then turn east to the UNEX facilities. See drawing U-5.

5.12.5 Potable Water Line

An existing potable water line (4-in. CW-NR-110865) is located along the north side of Palm Avenue and turns to the south on Cedar Street. This line can be used as a potable water line for the UNEX facilities. A portion of this line will need to be relocated. See drawing U-3.

5.12.6 Cooling Water and Demin Waterlines

An existing demin water line (3-in. DWNW-109601) is located along west the side of Beech Street and turns to Building 616. This bend can be use as tie-in point for demin water. The cooling water will come from Building 606, so both demin water and cooling water lines will be along the west side of Beech Street and north over to Cypress Avenue then will turn to east along Cypress Avenue to the UNEX facilities. See drawing U-2

5.12.7 SBW Feed & UDS Return Lines

The SBW feed line and UDS return lines will connect to the existing B7 valve box. These lines will go from the valve box north to the UNEX facilities. Since the New Generated Liquid Waste Tank Farm (NGLWTF) is likely to be located north of existing tank farm and most process pipe lines are going to connect at the B7 valve box, these two lines shall be combined with NGLWTF project.. See drawing U-8.

5.12.8 Electricity

An existing electrical duct bank is located along the west side of Hemlock Street and goes northward over to Elm Avenue then turns to the west along the north side of Elm Avenue. The duct bank from Cypress Avenue to Elm Avenue will be under the UNEX facility, therefore, it will need to be relocated to the west of the TFD facility. See drawing E-5.

5.12.9 Electrical Requirements

5.12.9.1 Existing And Planned Electrical Utilities At INTEC. The INTEC power system ties into the 138kV INEEL loop at Substation 2, which is located outside the west area fence. Substation 2 transforms the 138kV to 13.8kV and provides power to Substation 10 and Substation 15, which are located within the INTEC complex. Power at 13.8kV is then distributed from Substation 10 and Substation 15 through the complex. The Electrical and Utility System Upgrade (EUSU) project is currently under construction and nearing completion. The EUSU project has installed a new 13.8kV electrical distribution system throughout the complex. This new system will provide greater safety, additional capacity and greater reliability.

Currently, standby power is provided by each facility. Standby generators are located at various facilities and operate as an island of power during a normal power outage. The EUSU project will construct a standby power plant and install new standby. Standby power will than be distributed through the complex by the new 13.8kV distribution system, The Utility Control System (UCS) will control the usage of standby power.

5.12.9.2 Power Requirements.

5.12.9.2.1 Normal Power—The electrical requirements of the UNEX Process and the Modified UNEX Process were analyzed. The results of the analysis are included in Tables 1 and 3 of Appendix C. Normal power is the power that is required during normal operations and includes the standby power loads, which are supplied by the standby generator, when normal power is interrupted.

Normal power will be supplied to the facilities housing the UNEX process by 13.8 kV feeders from Substation 15. A combination of new and existing duct banks will be used to route the feeders.

5.12.9.2.2 Standby Power—The requirements for standby power for the UNEX Process and the Modified UNEX Process were analyzed the results of the analysis are included in Tables 2 and 4 of Appendix C.

The standby loads for the UNEX process consist of the following:

- UPS Normal and Bypass feeds
- Selected lighting and miscellaneous loads
- Selected exhaust fans
- Other loads as determined in later designs.

Standby power to the UNEX process will be provided over the normal power distribution system from Substation 60, the Standby power plant substation, through Substation 15. The standby power system is at or near capacity. Upon completion of the EUSU project, an evaluation of the spare capacity will be performed. If necessary, a 2,000-kVA diesel generator and associated equipment will be installed next to the standby generator plant and connected to the standby power bus. Shedding of the nonessential loads will be performed by the UCS. The UCS will control the operation of circuit breakers and equipment to assure that only those loads requiring standby power remain in operation

5.12.9.3 Distribution System. If the UNEX or Modified UNEX process is housed in the new Greenfield Facility, both normal and standby power will be provided by one set of redundant feeders. The

EUSU project has installed a redundant pair of sectionalizing switches in the north east quadrant of the complex. These switches, PSS-NCE-1507A and PSS-NCE-1557A, are supplied by one set of 500-kcmil cables each. These are switches are fed directly from Substation 15 and are very lightly loaded. New duct banks will be run from these switches to a new load center. The load center will be double-ended and will provide a redundant source of power to the UNEX process.

If the UNEX or Modified UNEX process is housed in the existing Waste Calcine Facility, the electrical distribution system is not adequate and an additional load center would be constructed to supplement the existing power. The power would be taken from switches PSS-NCE-1507A and PSS-NCE-1557A and routed to the new load center through new and existing duct banks.

5.12.9.4 Uninterruptible Power Supply (UPS). A solid-state UPS with a static transfer switch will be provided. The UPS will be provided with a 20-minute battery backup. Both the normal feed and the bypass feed to the UPS will be on standby power. The UPS will feed a 208Y/120 Volt panel. The UPS and the panel will be located in the electrical room. The UPS will support the following loads:

- Voice paging/evacuation systems
- Environmental monitoring system
- Other critical loads as determined during design.

COST ESTIMATE

6.1 Life-Cycle Costs

The purpose of a life-cycle cost (LCC) analysis is to determine the least cost alternative, from a resource perspective. For Federal Agencies like the U.S. Department of Energy (DOE), the preferred evaluation methodology is discounted LCA as prescribed by the Office of Management and Budgets (OMB) document A-94. Thus, all costs presented are actually discounted Life-cycle analyses.

In general, the purpose of life-cycle analysis is to determine the current value of the resources required to implement the option, assuming each alternative provides equal product and/or service output. In other words, we are interested only in evaluating the cash flows; we will not evaluate the value of the benefits because we have assumed all alternatives will meet the minimum technical performance standard (technical viability).

6.1.1 Economic Methodology

All costs are estimated in FY-2000 dollars and not inflated (one of two analysis methods accepted by OMB.) For purpose of this feasibility study, all production rates and resulting costs in production were flat-lined (assuming constant production.) As prescribed in OMB Circular A-94, all constant value cash flows are discounted 3.1% (compounded annually) to FY-2000 to calculate the present value (PV) of the projected cash flow. The total of all discounted cash flows over the life of the project is the discounted LCC (dLCC). This methodology, prescribed by OMB in Circular A-94 (discount rate update in January 2000), is used to determine the most cost-effective method in acquiring, operating, and maintaining Government programs and agencies. In general, this test for cost effectiveness mandates that the best alternative is one with lowest PV, assuming each alternative meets minimum performance requirements. Thus, system performance must be ensured in economic analysis. As prescribed by OMB A-94, any previously incurred capital costs for equipment and facilities are considered "sunk" and are not included in cost-effectiveness analysis.

6.1.2 Operations Cost Methodology

The design team generated most of the operation costs. A majority of these costs were either labor or direct materials consumed in the process of operation. Other incidental costs such as training and working capital were estimated using best engineering judgement equally applied to all options.

Costs were organized into a pre-operations, operations, and post-operations periods. These were decomposed into direct and support activities. These were then decomposed into a functional organization according to the design team's input. This included: (1) material receipt and rough filtration, (2) radionuclide extraction, (3) evaporative drying, (4) neutralizing and drying, (5) packaging, (6) interim storage, (7) transportation to disposition site, (8) and support functions of capital maintenance, facility maintenance, administration, QA /safety/Radcon, and process maintenance. Lastly, some economic evaluations include a cost category for intangible costs that are often mitigated through the administration of additional capital and/or operations investment. Such a methodology usually allows for the inclusion of an operations benefit that is not included when a cost/benefit analysis is not performed (i.e., an intangible cost may be the added cost of a system that fails more often because less costly selected over better performing equipment.) However, discussions with the design team suggested that the stand-alone independence of the facility would not impact other INTEC operations. Additionally, the failure rates of any of the options are probably equal, thus, if there are any intangible costs impacts, they impact the options equally.

Labor costs were estimated based on a general classification of the laborer. The design team provided the labor type and estimated number of laborers. The economic evaluation assumed annual burdened costs of \$100K for operator/technicians, \$125K for scientists/engineers, and \$155K for management and supervisors. The design estimated a total of 110 personnel are required to operate the facility for any option; thus, there are no marginal labor cost advantages between a greenfield and existing facility, or the UNEX and Modified UNEX Process.

The design team provided all consumable materials and unit costs. These were calculated according to the volume throughput of SBW (and because the volume was equal over three years, these costs were equal for three years.) Interim storage and transporting/dispositioning costs for treated SBW was included in the evaluation. Including these costs completes the LCC evaluation and the effect the treatment process has on follow handling. For example, the evaluation assumed that UNEX treated waste could be handled a little more cost-effectively since they could be contact-handled (\$250 versus \$500 per drum; \$2500 versus \$3500 for canisters). Similarly, the disposal could be performed on-site (\$600 per drum) versus WIPP (\$8.8K per drum). All contact-handled canisters disposed at Hanford cost \$26.4K. Lastly, an operations contingency equal to 35% was included to account for unknown operations/post-operations costs. This cost did not include a contingency on the capital cost estimate which has its own contingency included.

6.1.3 Schedule Methodology

For all options, the analysis assumed a 5-year construction schedule starting in FY-2003. Although meeting the financial obligations may be accelerated, this was the assumed schedule to meet treatment by the start of FY-2008. All options also assumed a three-year operating schedule, after which the facility would be maintained in standby operations until FY-2020. During standby, the analysis assumed the option would be maintained at 50% of direct capital maintenance, 33% of support labor and administration, 25% of process maintenance, 50% of facility maintenance, and incur zero costs for QA, radcon, safety and direct operations.

The analysis assumed that the NWCF and the Hg removal system would be decommissioned, decontaminated, and demolished (DD&D) in FY-2021. For purposes of simplicity, this activity of DD&D would occur over a one-year period, although a realistic time period could require 10 or 15 years. The evaluation estimated a DD&D cost to be 13% of the original capital investment because of the expected low levels of contamination and relative ease in dismantling a facility of these construction techniques.

6.1.4 Life-Cycle Results

From a LCC perspective, all four options are very capital intensive. This result is primarily a factor of the SBW facility size, its throughput requirements, and the duration of the treatment campaign. Option A (Greenfield/UNEX option) has the lowest dLCC because of the less costly capital infrastructure and the disposition path for the treated SBW. The next lowest alternative is Option C which employ the UNEX process. This suggests that the marginal cost differences in the treatment process is more of a cost driver than the marginal cost differences in facility location.

6.1.5 Economic Recommendation

Based on the economic evaluation, it appears that Option A has a significant cost advantage over all other options. This evaluation has estimated that the UNEX Process is at least 20% more cost-effective than the Modified UNEX Process (once the effects of dispositioning are accounted for.) Secondly, Option A includes Greenfield construction which is at least 20% more cost effective than the

NWCF/Greenfield option. In both cases, 20% margins are considered significant enough of a difference to select one alternative over another. However, because a large portion of the overall cost advantages is due to the variable of disposition path, this economic evaluation recommending that additional analysis be provided to validate the volume and the disposition path of treated SBW.

Life-cycle estimates for UNEX and MUNEX have been completed for both the Greenfield Facility and the NWCF and are shown in Table 29. See Appendix E for a complete cost analysis breakdown.

Table 29. Life-cycle cost estimates for UNEX and MUNEX in GFF and NWCF.

Options	Life-cycle Costs
UNEX in GFF (Option A)	744,347,000
MUNEX in GFF (Option B)	890,140,000
UNEX in NWCF (Option C)	848,500,000
MUNEX in NWCF (Option D)	994,568,000

6.2 Capital Costs

Capital cost estimates for UNEX and MUNEX have been completed for both the Greenfield Facility and the NWCF. Costs for each different option are listed below in Table V-II.

Table 30. Capital costs for UNEX and MUNEX in GFF and NWCF.

Option	Total Project Cost
UNEX in GFF (Option A)	514,000,000
MUNEX in GFF (Option B)	514,000,000
UNEX in NWCF (Option C)	604,000,000
MUNEX in NWCF (Option D)	609,000,000

Details for each of the estimates include Other Project Cost (OPC), allowances for Project Development, Technical Development, Project Execution, and Project Acceptance/Closeout. Also included in each estimate are Total Estimated Cost (TEC) allowances for Engineering and Design (Title I and II), Quality Assurance, Project Management, Construction Management, Construction A/E Support, Construction (direct and indirect costs), Procurement, Escalation, G&A allowance, and contingency.

Due to minimal detail and scoping definition, this estimate is considered a planning estimate and is not intended to be used to establish a cost baseline. The complete capital cost estimate is provided in Appendix E.

7. PROJECT SCHEDULE

The following schedule is based on an INEEL Decision Analysis Session held to review and evaluate SBW treatment options.

Act ID	Description	Orig Early Dur Start	Early Finish	2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2
UNEX Stu	dy Final Schedule			
	r SBW - Unescalated Costs		* .	
1010	Conceptual Design	780 02JAN01	09JAN04	Conceptual Design
1020	Project Support	2260 02JAN01	25SEP09	→ Project Support
1030	Design	780 12JAN04	11JAN07	Design
1040	Construction	1300 10JAN06	18JAN11	Δ ∇ Construction
1050	Facility Acceptance	780 20JAN10	21JAN13	Facility Acceptance
1060	Projet Management	2340 12JAN04	21JAN13	Projet Managemen
UNEX fo	r SBW for SBW - Escalated Costs	San Balling Barrier		The individual section of the individual sec
2000	Conceptual Design	780 02JAN01	09JAN04	Conceptual Design
2010	Project Support	2260 02JAN01	25SEP09	V Project Support
2020	Design	780 12JAN04	11JAN07	-
2030	Construction	1300 10JAN06	18JAN11	Design
2040	Facility Acceptance	780 19JAN09	18JAN11	△ Construction
2050	Projet Management	2340 12JAN04	21JAN13	✓ ✓ ✓ ✓ Facility Acceptance
li. ———	r SBW - Discounted Costs	2340 123ANU4	Z10AN13	▲ Projet Managemen
3000	Conceptual Design	780 02JAN01	09JAN04	- Concentral Design
3010	Project Support	2260 02JAN01	25SEP09	Conceptual Design
3020	Design	780 12JAN04	11JAN07	△ Project Support A Design
3030	Construction	1300 10JAN06	18JAN11	₹
3040	Facility Acceptance	780 19JAN09	18JAN12	△ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △
3050	Projet Management	2340 12JAN04	21JAN13	
	ge for UNEX for SBW. Unescalated Co			A Projet Managemen
4000	Conceptual Design	780 12JAN04	11JAN07	Δ ∇ Conceptual Design
4010	Project Support	2065 12JAN04	28DEC11	△ ✓ Conceptual Design
4020	Design	520 12JAN07	16JAN09	Δ V Project Support
4030	Construction	780 16JAN08	18JAN11	△ ✓ Construction
4040	Facility Acceptance	465 17MAR10	28DEC11	✓ Constitution A Tacility Acceptance
4050	Projet Management	1285 12JAN07	28DEC11	Δ Projet Management
/	ge for UNEX for SBW-Escalated Costs			Z
5000	Conceptual Design	780 12JAN04	11JAN07	△ ✓ Conceptual Design
5010	Project Support	2065 12JAN04	28DEC11	△ ✓ Project Support
5020	Design	520 12JAN07	16JAN09	∑ V Project Support
5030	Construction	780 16JAN08	18JAN11	✓ Construction
5040	Facility Acceptance	465 17MAR10	28DEC11	✓ Construction ✓ Facility Acceptance
5050	Projet Management	1285 12JAN07	28DEC11	△ Pacinity Acceptance ✓ Projet Management
	ge for UNEX for SBW-Discounted Costs		12022011	v riojet Management
6000	Conceptual Design	780 12JAN04	11JAN07	△ ✓ Conceptual Design
6010	Project Support	2065 12JAN04	28DEC11	Δ
6020	Design	520 12JAN07	16JAN09	∑ Project Support
6030	Construction	780 16JAN08	18JAN11	△ Construction
6040	Facility Acceptance	465 17MAR10	28DEC11	✓ Construction △ ✓ Facility Acceptance
6050	Projet Management	1285 12JAN07	28DEC11	△ ✓ Projet Management
	ge for UNEX for SBW-Unescalated Cos			Trojectwanagement
7000	Conceptual Design	780 12JAN04	11JAN07	4

7020	Design	520	12JAN07	16JAN09	<u> </u>
7030	Construction	780	16JAN08	18JAN11	△ Construction
7040	Facility Acceptance	465	17MAR10	28DEC11	△□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
7050	Projet Management	1285	12JAN07	28DEC11	△ Annual
RH Store	age for UNEX for SBW-Escalated Costs				
8000	Conceptual Design	780	12JAN04	11JAN07	△ Conceptual Design
8010	Project Support	2065	12JAN04	28DEC11	△ V Project Support
8020	Design	520	12JAN07	16JAN09	<u> </u>
8030	Construction	780	16JAN08	18JAN11	<u>∆</u>
8040	Facility Acceptance	465	17MAR10	28DEC11	△ Acceptance
8050	Projet Management	1285	12JAN07	28DEC11	<u> </u>
RH Stora	age for UNEX for SBW-Discounted Costs				
9000	Conceptual Design	780	12JAN04	11JAN07	△¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
9010	Project Support	2065	12JAN04	28DEC11	Project Support
9020	Design	520	12JAN07	16JAN09	<u> </u>
9030	Construction	780	16JAN08	18JAN11	<u> </u>
9040	Facility Acceptance	465	17MAR10	28DEC11	△ Facility Acceptance
9050	Projet Management	1285	12JAN07	28DEC11	<u> </u>

8. REQUIREMENTS AND ASSESSMENTS

8.1 Federal and State Regulations

The SBW and NGLW wastes contain both RCRA hazardous contaminants and radionuclides. Therefore, the management of the wastes must be in compliance with the requirements of EPA RCRA Subtitle C for the hazardous wastes and of the AEA-based requirements for radioactive wastes. The State of Idaho adopted the Federal RCRA regulations pursuant to the Idaho Hazardous Waste Management Act of 1983, and it has the authority to implement them in Idaho. The regulations are incorporated by reference into the Idaho "Rules and Standards for Hazardous Wastes." The AEA requirements are implemented and administered by DOE. The principal DOE requirement is compliance with DOE Order 435.1, "Radioactive Waste Management," and by implication, compliance with DOE Order 460.1A, "Packaging and Transportation Safety," and DOE Order 460.2 on "Departmental Materials Transportation and Packaging Management." These, in turn, imply compliance with applicable U.S. Department of Transportation (DOT) and U.S. Nuclear Regulatory Commission (NRC) regulations. The wastes are also subject to all other applicable federal, state, and local laws and regulations.

The waste management activities and their schedules must also comply with the terms and conditions of the Idaho Settlement Agreement, the Consent Order and other INEEL specific requirements. Also, the wastes must be managed in a way that meets the enforceable requirements and intent of the INEEL Site Treatment Plan developed in accordance with the Federal Facilities Compliance Act (FFCA).

The treatment options under consideration will result in waste forms that must meet the applicable regulatory requirements and that satisfy the WAC of the repositories identified as most suitable for them. A detailed discussion of the regulatory requirements that apply to this treatment process and facility can be fund in Appendix G of this report.

8.2 Waste Treatment and Acceptance Requirements

The UNEX or the Modified UNEX process would generate several primary and secondary waste products. The primary products are designated as high-activity waste (HAW) and low-activity waste (LAW). The HAW and LAW designation is based on the projected radionuclides and their concentrations in the wastes. The HAW will predominantly contain TRU nuclides that would meet the definition of TRU waste. The LAW will mainly contain cesium and strontium which would be qualified as LLW. The treatment options for the primary waste streams are expected to generate two waste forms. These are grout and crystallite. The primary products of the UNEX process are called CH-LLW grout (Class A) and RH-TRU crystallite. For the Modified UNEX, the primary waste products are designated as RH-LLW crystallite (Class C) and CH-TRU grout.

The secondary wastes include the final process solvents remaining at the end of the treatment campaign, HEPA filters, and PPE. The specific final waste forms for the secondary waste streams would depend on the treatment options selected. The determination of the treatment options relies on the nature and chemical composition of these wastes.

The primary and secondary waste streams must be treated to meet the RCRA land disposal restriction (LDR) standards or alternative methods approved by EPA for land disposal. They must also meet the criteria of the respective repositories they are destined to be sent.

Based on the DOE-HQ and NRC assessments, it appears that the SBW as it sits today in the Tank Farm may be considered HLW. The SBW would need a waste incidental to reprocessing (WIR)

determination using the "Evaluation" process established in DOE Manual 435.1 to be managed as non-HLW. For the purpose of this study, it is assumed that the WIR ruling will be established and the SBW will not be considered HLW. The HAW and LAW fractions to be derived from the SBW processing will be considered TRU waste and LLW, respectively.

The SBW feed to the UNEX or the Modified UNEX process carries a number of RCRA characteristic and listed components, as defined in 40 Code of Federal Regulations (CFR) Part 261, Subparts C and D. The characteristic components consist of corrosive chemicals, heavy metals, and others known as the underlying hazardous constituents (UHCs). The hazardous waste numbers (HWNs) currently assigned to the waste are D002, D004-D0011, other D-codes, and listed F001, F002, F005 and U134. The wastes would be subject to the RCRA LDR requirements before any of these residues can be land disposed.

Because the waste is listed, any residues from treatment of the listed wastes would carry the same listed HWNs, as a result of RCRA "derived-from rule" (40 CFR 261.3 (C)(2)(I). Consequently, the resultant waste residues would be considered listed and would carry all the listed HWN. Without delisting, the treated waste products would continue to be regulated under RCRA even after LDR requirements are met, unless excluded from the RCRA Subtitle C regulations. "Delisting" is currently the only EPA approved mechanism for obtaining such an exclusion.

Currently, some of the potential target repositories under consideration in this study are not RCRA Subtitle C facilities. These facilities are not authorized to receive any RCRA listed waste for disposal. Others such as the Waste Isolation Pilot Plant (WIPP) and the Hanford site accept certain LDR treated listed LLW. The Nevada Test Site (NTS) accepts mixed LLW for disposal, however, it does not accept such waste from the off-site generators at the present time. Per DOE's record of decision (ROD) issued in February 2000, the NTS and Hanford site will be used for the disposal of both LLW and mixed LLW from the DOE complex in the future. Nevertheless, in this study, it is assumed that the wastes resulting from the UNEX or Modified UNEX option will be delisted before final interim storage for shipment to the disposal sites.

Before shipment, delisting petitions for the target waste must be granted for both Idaho and the receiving state. If the target waste were transported through other states on its way to the receiving state, it would have to be accompanied by a manifest. Potentially, notification of transitory states may be performed before shipment as a courtesy.

The design and operation of the interim storage facility that would be used for the final waste products would not require compliance with the RCRA requirements. This is based on the assumption that the delisting petitions for the target-waste products would be granted before interim storage. However, since the SBW also contains characteristic constituents, the facilities used for processing the liquid SBW (before interim storage) must be designed, constructed, and operated in accordance with the RCRA requirements. Both the liquid waste processing and the interim storage facilities must comply with all other applicable DOE regulations. These requirements are defined in 40 CFR 264 (IDAPA 16.01.05.008) and in 40 CFR 270 (IDAPA 16.01.05.012).

Some of the tanks with SBW feed to the UNEX process contain a relatively large amount of mercury. Based on the total amount of mercury in the waste in these tanks, the SBW is considered a high mercury subcategory waste (≥ 260 mg/kg total mercury) from RCRA standpoint. For high-mercury subcategory waste, the RCRA LDR treatment standard is RMERC (retorting mercury) followed by stabilization of the retorted residue. A large percentage of mercury in the SBW feed will end up in the final LLW grout if mercury is not removed from the upstream. Grouting is not the LDR specified treatment for high mercury waste. Therefore, a determination of equivalent treatment (DET) petition will

need to sought by the INEEL and approved by EPA for using grouting to stabilize the waste for disposal. It is assumed that the DET petition will approved by EPA for using grouting to stabilize the waste for disposal.

Appendix G provides a detailed analysis of the applicable regulatory requirements and a description of the criteria of the potential repositories for waste acceptance and disposal.

9. UNCERTAINTIES AND RECOMMENDED RESOLUTIONS

At this point, there are a few uncertainties to be resolved to be certain this project is feasible. For example, it is not known at this juncture whether the HAW fraction from the process can be evaporated in the TFD to an acceptable solids concentration for grouting. Another unknown at this time is whether a suitable grouting formula can be developed that will meet all repository requirements. Listed below are the uncertainties and recommended resolutions for the UNEX and Modified UNEX project.

9.1 Research

9.1.1 Mercury Study

- **9.1.1.1** Introduction. The purpose of the UNEX and modified UNEX processes is to remove cesium, strontium, and actinides from the SBW. The extracted radionuclides in the UNEX solvent are stripped into guanidine carbonate/DTPA solution. This allows the UNEX solvent to be reused and minimize final waste quantities. While the main purpose of the UNEX solvent is to extract the targeted radionuclides, there are concerns about the fate of other heavy metals, in particular mercury. The focus of this appendix is to track the movement of the mercury species in the process and to determine how mercury will impact the final waste forms. The main reference that will be used to follow mercury in the process is the UNEX mass balance developed by Barnes (1999). Additionally, EPA/RCRA references appearing in the Code of Federal Regulations and the Federal Register will be used. This section will first discuss the following details:
 - Mercury regulatory issues
 - Amount of mercury in the tank farm
 - Partitioning of mercury in the UNEX process
 - Final disposition of mercury
 - Technical development needs.
- 9.1.1.2 Regulatory Issues involved with Mercury. The concern over the presence of mercury in the UNEX process is born from regulatory issues. Mercury is a volatile metal at room temperature and as a result, the regulatory agencies treat mercury contamination in waste differently than other metal contaminants, i.e. cadmium, chromium, lead, etc. The key issue with mercury in waste is to determine if the waste exhibits the characteristic of toxicity for mercury (D009) at the point of generation. If the waste is characteristic for mercury, the subcategory of the waste and the treatment standard relative to total mercury concentration in the waste must be identified for LDR purposes.

Point of generation – The original point of generation of the waste of interest is the sodium bearing waste. The current regulations say that a waste is D009 (characteristic for mercury) at 0.2 mg/L. The molar concentration for this is 9.96E-7-molar Hg. For all the tank farm waste (WM-180 through WM-189), the lowest mercury concentration is in WM-181 which is 4.49E-4-molar Hg. All the tank farm waste exhibits the characteristic of mercury and will carry a D009 code.

Mercury Subcategory – Due to the concentration of mercury, some of the waste in the tank farm is currently considered a nonwastewater⁴. According to 40 CFR 268.40, there are two subcategories for mercury as a nonwastewater – low mercury subcategory and high mercury subcategory. The concentration of mercury that determines the subcategory is a total mercury concentration of 260 mg/kg or, in this case (assuming a density of ~1.0 g/ml), a total concentration of mercury of 260 mg/L. This value can be expressed as a molar concentration of 1.29E-3 M. In Tables 31 and 32, the concentration of mercury in each of the tanks and the subcategories are given. (NOTE: The mercury subcategory assignment is based on the premise that each tank could be treated as individual wastes. For this study, it will be assumed that the entire SBW in the tank farm is ONE waste stream, per the blending strategy.)

Table 31. Mercury inventory in the Tank Farm (before blending scheme).

Tank Number	Mercury Conc (M)	Mercury Subcategory
WM-180	9.72E-4	LOW/Wastewater
WM-181	4.49E-4	LOW/Wastewater
WM-182	9.97E-4	LOW/Wastewater
WM-183	2.89E-3	HIGH/Nonwastewater
WM-184	6.88E-4	LOW/Wastewater
WM-185	3.90E-3	HIGH/Nonwastewater
WM-186	9.02E-4	LOW/Wastewater
WM-187	2.69E-3	HIGH/Nonwastewater
WM-188	7.48E-3	HIGH/Nonwastewater
WM-189	5.10E-3	HIGH/Nonwastewater

Table 32. Mercury inventory in the Tank Farm (after blending scheme).

Tank Number	Mercury Concentration (M)	Mercury Subcategory
WM-180	9.72E-4	LOW/Wastewater
WM-188	1.32E-3	HIGH/Nonwastewater
WM-189	4.03E-3	HIGH/Nonwastewater
New	1.53E-3	HIGH/Nonwastewater

Treatment Standards – The treatment standard for high subcategory mercury waste is given in 40 CFR 268.40 as IMERC and RMERC for the organic subcategory or RMERC for the inorganic subcategory. Although the waste stream has been identified as a nonwastewater per 40 CFR 268.2(f), the actual physical form of the waste, especially after filtration is that of a wastewater. Typically in retorting operations, mercury is more volatile than the majority of the waste matrix from which it is to be removed. The SBW raffinate is not amenable to retorting due to the 97 to 99 wt% water composition. As a result, retorting of process residues is not recommended.

9.1.1.3 Movement of Mercury in the UNEX Process. One of the purposes of this study is to track and analyze the movement of mercury in the process. The starting point for this analysis is the mass balances that exist for the UNEX process (Barnes 1999). These mass balances were developed from process flow diagrams using an EXCEL model and input parameters. Unlike the solvents TRUEX or

⁴ According to 56 FR 3874: "Any wastes that contain greater than 260 mg/kg of total mercury, but that otherwise appear to meet the definition of wastewaters, are, in fact, classified as nonwastewaters that must be recovered."

SREX processes, the UNEX solvents show little affinity to mercury. In the TRUEX process, the carbonate wash step was instrumental in backwashing the mercury out of the extraction solvent.

Figure 6 shows a simplified process flow diagram for the UNEX/modified UNEX processes that illustrate how the mercury is partitioned from process to process. The speciation of the mercury in solution can be inferred by the molar concentration of mercury and the various anions in solution. Due to a chloride to mercury molar ratio of 17 to 1 in most of the streams, it may be concluded that most of the mercury in solution exists as chloride complexes.

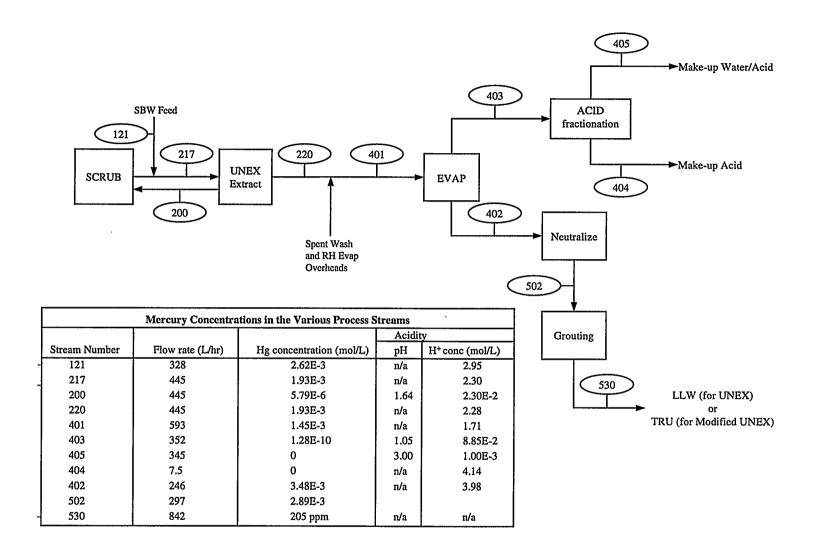


Figure 6. UNEX/Modified UNEX process flow diagram.

The feed stream to the UNEX process (Stream 121/217) undergoes extraction with the selected solvent system (UNEX or modified UNEX). The raffinate (Stream 220) retains nearly all of the mercury (distribution coefficient for mercury of 0.003). The exit solvent stream (Stream 200) contains a minimal amount of mercury. The raffinate stream (Stream 220) is combined with both the UNEX wash effluent and the remote-handled stream evaporator overheads to form a stream (Stream 401). This combined stream is fed to an evaporator and the mercury is partitioned between the evaporator bottoms (Stream 402) and overheads (Stream 403). At the temperature of the evaporator, it is assumed that 98.6% of the Hg is retained in the bottoms.

The evaporator overhead stream (Stream 403) is sent to an acid fractionator that splits the stream into two fractions. The overhead stream from the acid fractionator (Stream 405) is used as water for the grout mixing tank, the acid make-up tank, the HF make-up tank (for UNEX), and the strip and carbonate wash tanks. The bottoms stream from the acid fractionator (Stream 420) is used as the make-up acid for the SBW filter wash, the UNEX scrub, and the solvent wash feed tanks. The presence of mercury in the evaporator bottoms stream results in relatively small concentrations of mercury becoming recycled throughout the contactors.

The evaporator bottoms stream (**Stream 402**) is sent to a neutralizing tank to be adjusted to a pH of 1.3 by addition of NaOH. The stream exiting the neutralization (**Stream 502**) is sent to the grout tank to be solidified with a combination of Portland cement, blast furnace slag, and calcium hydroxide. The final solidified form (**Stream 530**) will be targeted as a LLW for disposal at a subtitle C disposal facility (UNEX process) or as a TRU for disposal at WIPP (modified UNEX process).

- 9.1.1.4 Effect of mercury on the final disposition of waste forms. A recommended strategy of treating the SBW waste stream is to apply for a Determination of Equivalent Treatment (DET) exclusion from retorting. Through future TD studies, data can be provided to the governing agencies to demonstrate the effectiveness of alternate methods for mercury treatment. At the time of this feasibility study, the impacts to planned schedules or budgets due to the DET are not known. Since demonstration of the UNEX process is required for RCRA treatment before permitting and needs to be scheduled and budgeted, extra costs for specific DET activities/requirements would be a relatively small adder to these activities.
- **9.1.1.5 Technology development needs.** If it is deemed through evaluation that a mercury removal process is required on the raffinate stream, suitable processes need to be evaluated. One consideration with mercury removal from the raffinate is dealing with the high acidity. There are a few candidate processes that would need refinement from a bench/pilot-scale before inclusion to any PFD plans. These are electrochemical reduction, sorption with a potassium copper hexacyanoferrate resin, and the Sachtleben-Lurgi process. A brief discussion of the process and technology needs will be presented.

One alternative for mercury removal from the raffinate would be electrochemical reduction using a flow through electrochemical cell. Elemental mercury would serve as a cathode pool in an electrochemical cell. Soluble species of mercury in aqueous solution would be reduced to its elemental form at the cathode pool. Along with the mercury, some metals (including a few radionuclides) will also reduce into the mercury cathode pool. Experimental studies conducted by the INEEL Technical Development Group are on-going to analyze the feasibility of treating calcine off-gas scrub solutions. Initial results using a flow through system have indicated that acidic scrub solutions of 0.15-molar Hg can be treated to produce concentrations of 0.015-molar Hg. Assuming that 0.015-molar Hg is the lowest concentration that can be attained, only the most Hg-laden tanks could be effectively treated. The residual from this process is elemental Hg with some amalgamation of metals on the top. This form could then be retorted to recover "pure" mercury for sulfur amalgamation. The residues of retort could be

added back to the raffinate for grouting. Further developmental efforts into this process would focus on the following.

- Refinement of the process to treat down to Hg concentrations below 0.015 M.
- Effects of co-reduction of metals on the process and final Hg waste form

Another potential treatment option for mercury in the raffinate stream is to process the stream through a potassium copper hexacyanoferrate ion exchange sorbent (silica dioxide substrate). This resin was investigated at the INEEL (Brewer et al. 1999) for the removal of Cs from Tank Farm Wastes. The study found that the sorbent was not effective for removal of Cs due to chemical interference from mercury. [Note: For the raffinate stream from UNEX, there will be negligible Cs present.] For tests on simulated dissolved calcine, the results of this report indicate that although the resin performed well for removing mercury in the absence of chlorides (a DF between 1.6 to 2.9 for the first 320 bed volumes - breakthrough occurring near 400 bed volumes). With a molar ratio of 3 to 1 (chloride to mercury), poor removal of mercury (DF=1.1) resulted. When tank farm waste was tested (SBW from WM-183 and WM-185), the chloride to mercury molar ratio was between 4 to 6. The results were difficult to interpret due to fluctuating DFs. At the levels of mercury removal required for the raffinate (<260 mg/L), these resins may be adequate. The main waste form resulting from this process would be a mercury-loaded resin, which would require retort per the RCRA requirements. Further developmental efforts into this process would focus on the following.

- Understanding the process better and how it relates to mercury removal. The earlier study was focussed on cesium removal.
- Testing the system for mercury in the absence of cesium, which is the main competitor with mercury for sorption sites.

Another process that may be able to remove mercury from the UNEX raffinate is the Sachtleben-Lurgi process. This process has been used in Duisburg, Germany for precipitation of arsenic and other heavy metals, including mercury, from acidic scrubber waters (SAIC 1998). The wastewaters are off-gas scrub solutions resulting from the smelting operations of metal ores. The process includes the addition of small amounts of a soluble hydrosulfide salt to provide the hydrosulfide ion (HS) to the reaction, assuring more complete heavy metal removal. The resulting waste form from this process is a mercuric precipitate that may not require further retort pending TCLP. Further developmental efforts into this process would focus on the following.

- Determine conditions in which this process operates
- Determine collection units for solids

All of these processes could require investigation if it is determined retort of a residue of treatment is required before final treatment. If retort is not required for any of the treatment residues, these mercury removal processes would not be needed.

9.1.2 Solvent Evaluation

To maintain reliable and prolonged operation of any extraction system, it is necessary to ensure the stability of the extractant composition and properties. In the UNEX process, changes in extractant composition arise from radiation and chemical decomposition of its components, as well as a result of the washing by aqueous solutions.

The UNEX-extractant contains four components: phenyltrifluoromethylsulfone (FS-13), as the diluent, and chlorinated cobalt dicarbollide (ChCoDiC), diphenyl-N,N-dibutylcarbamoylmethylene phosphine oxide (CMPO) and polyethyleneglycol (PEG), as the extractants.

9.1.2.1 Characteristics

Some components of the UNEX extractants are well known, due to extensive studies and experience of their use in radiochemical facilities. For example, high chemical and radiation stability of ChCoDiC and PEG have been demonstrated at a HLW partitioning facility (Khlopin 1999). ChCoDiC is also characterized by its very low solubility in acidic media and thus very low losses with aqueous solutions¹. In existing practices, the constant growth of ChCoDiC concentration is observed in extraction mixture due to diluent washout.

There is rather wide Russian and American experience of using different CMPO for HLW reprocessing, which confirms their high radiation and chemical stability.

The diluent for the UNEX process, FS-13, has not currently been used in radiochemical processes and, therefore, its radiation and chemical stability has been unknown. Studies have recently been performed in St. Petersburg, Russia by V.G. Khlopin Radium Institute to evaluate the radiation and chemical stability of FS-13. The results of these studies can be found in the 1999 final report entitled "Applicability of the Russian Separation Technology to Processing of US Radioactive Wastes."

Radiation and chemical stability of FS-13 studies were conducted in two cases. First, irradiation of FS-13 by itself produced a maximum decomposition of 4.5 molecules/100 eV. Second, irradiating FS-13 in contact with an aqueous solution of nitric acid produced a total decomposition of 4.5 to 5.0 molecules/100 eV.

Table 33 summarizes the characteristics of the extraction solvents. More information on UNEX extraction solvents can be found in the process description of the extraction stage in Section IV.

Table 33. Characteristics of the extraction solvents.

Compound	Composition	Reactivity	Degradation
Phenlytrifluoromethyl sulfone (FS-13)	C ₇ H ₅ F ₃ O ₂ S	The distribution coefficients of Cs, Sr and Eu are unaffected by the irradiation dose (in ranges up to 20 Wh/l), which is indicative of high radiation stability of all components in the extraction mixture.	Radiation losses of FS-13 diluent in 350 extraction cycles at a dose of 20 Wh/l in one- and two-phase systems do not exceed 0.9%; Washed out by highly acidic solutions, but losses with solutions of UNEX process do not exceed 0.3 g/l.
Chlorinated cobalt dicarbollide (ChCoDiC)	$(C_2B_9H_8Cl_3)_2Co^{-}$	High chemical and radiation stability	Low solubility in acidic media and, thus, very low losses with aqueous solutions
diphenyl-N,N- dibutylcarbamoylmethyl ene phospine oxide (Ph ₂ Bu ₂ CMPO)	$(C_6H_5)_2$ POCH $_2$ CON($C_4H_9)_2$	High chemical and radiation stability	
Polyethylene glycol 400 (PEG-400)	HO-(CH ₂ CH ₂ O) _n -H	High chemical and radiation stability	Low solubility in acidic media and, thus, very low losses with aqueous solutions

Adapted from V.G. Khlopin Radium Institute, "Applicability of the Russian Separation Technology to Processing of US Radioactive Wastes", 1999.

9.1.2.2 Safety Issues

This section is written to address possible safety issues with the UNEX solvent during storage and use. Information about the four components is needed to determine safety concerns. A report was written in which some of these safety issues were determined (Khlopin 1999). The discussion that follows is a summary of the testing that is discussed in the report.

Some components of UNEX-extractant are rather well studied, and through experience in practice, it was determined that ChCoDiC, PEG, and CMPO have high chemical and radiation stability. The diluent for the process, FS-13, was previously not used in radiochemical processes, and as such, its radiation and chemical stability is unknown. In addition, by weight, the FS-13 represents 96% of the solvent. Three particular issues that were addressed were:

- Amount of hydrogen formed from radiolysis
- Formation of combustible mixture of diluent (FS-13)
- Thermal stability with nitric acid

They determined the total dose rate released from the aqueous feed solution to be 0.0009 W per liter of solution. Using assumptions which include assigning numerical values to the solvent flow rate, mixing chamber volume, number of contactor stages, and percent of nuclides transferred, a dose per solvent cycle in the UNEX process (0.065 W-hour per l) was obtained. As recirculation passes are accumulated, this number will increase accordingly.

The integral dose rate was determined to be 20 W-hour per 1 liter of FS-13. The main products of radiolysis are hexafluoroethane and benzenesulfonic acid (liquids), and hydrogen gas (95%). When FS-13 was irradiated in the presence of nitric acid, additional products of radiolysis are trifluoronitromethane and nitrobenzene (liquids), sulfide and fluoride ions (in aqueous phase), and hydrogen gas (80%). The rate of radiological gas-evolution is equal 4.5 to 5.1 ml/hour per liter of solution.

The investigators concluded that the values of t_{flash} and t_{low} for the organic products involved with FS-13 diluent are well above the maximum temperatures that would be used in the extraction operations. The researchers concluded that the temperatures at which a fire hazard is possible are much higher than the maximum operational temperatures of the UNEX process. The process should be considered as fire-explosion safe if "normal" conditions are met.

A series of experiments used a 14-molar solution of HNO₃ with the FS-13 diluent (at a ratio of 3:1 by volume). This mixture was placed in a cell that would allow for heating (120 to 150°C). There was no direct mixing of the acid phase with the solvent. Varying densities of acid were used by varying the NO₃ ion (addition of nitrate salts). The data obtained from these tests indicated that FS-13 is resistant to the action of highly concentrated nitric acid solutions. Recordable gas evolution occurred began at 105°C and the rate of evolution was deemed low. In a closed reactor vessel (autoclave), there was no heat release from nitric acid and FS-13 up to 150°C (no mixing in the system). At around 160°C, self-heating begins, but the exotherm was reported to be weak – 15 to 17°C rise in 10 to 15 minutes. After this period, the mixture stabilizes. The researchers concluded that the potentially hazardous processes (gas-evolution, self-heating of mixtures) come about at the temperatures well in excess of the operating conditions, and therefore also conclude that the process operations have a significant margin of safety with respect to thermal stability.

9.1.2.3 Suppliers

Vendors and prices for UNEX and Modified UNEX raw materials were researched and tabulated. In many cases, several vendors were identified, with varying unit prices. Price ranges for raw materials are shown below (Table 34)

Table 34. Cost of raw materials.

Material	Price	Unit
Hydrofluoric acid (HF)	\$30.39	16 L
Aluminum nitrate (Al(NO ₃) ₃)	\$4.65 - \$6.31	1 lb
Phenyltrifluoromethyl sulfone (FS-13)	\$30	1 kg
diphenyl-N,N-dibutylcarbamoyl phosphine oxide (CMPO)	\$1	1 g
Polyethylene glycol 400 (PEG 400)	\$86	0.5 lb
Chlorinated cobalt dicarbollide (ChCoDiC)	\$3	1 g
Guanidine carbonate	\$118	5 kg
Diethylenetriamine pentaacetic acid (DTPA)	\$10.5 - \$33	1 kg
Nitric acid (HNO ₃)	\$219.24 - \$284.92	15 L
Sodium hydroxide (NaOH)	\$741.6 - \$2885	200 L

9.1.2.4 Possibility for glass loading

Vitrification of UNEX HAW Crystalline Waste

The high activity fraction of the waste from the UNEX process is primarily an organic material. Guanidine carbonate (2[(NH₂)₂C=NH]·H₂CO₃) and other organic compounds constitute more the 80 % of the waste. It is vitally important to understand how these materials will behave in a glass melter. To date, limited development work has been done, including preparation of a borosilicate glass sample at 1,100–1,200°F using guanidine carbonate strip product solution from pilot testing.

The thermal regime in a glass melter is complex. Feed material is exposed to temperatures ranging from a few hundred degrees to over 1,100° C. As the feed heats up and becomes part of the "cold cap" floating on the molten glass, it also passes through a variety of chemical environments. Initially, the material is at 200° C to about 600° C with adequate ambient oxygen to support combustion. As the feed heats up further and begins to decompose, it enters an area with reduced oxygen content between the top of the cap and the molten glass. With the UNEX High Activity Waste (HAW), the decomposition products may include partially oxidized materials such as CO, HCN, and oxides of nitrogen.

In recent pilot-scale melter tests, a small amount of powdered activated carbon was blended with inorganic feed material to control redox conditions in the melt. The carbon was less than 1 % of the feed by weight. While this mixture was being fed to the melter, small flames were observed coming from the cold cap. The effect was similar to several cigarette lighters being turned on and off rapidly. With a much higher percentage of organics in HAW feed, substantial amounts of CO would be generated, resulting in a potential safety hazard.

A glass melter can be used for thermal treatment of organics. However, it is not a substitute for an incinerator, in which combustion conditions can be optimized. It is suggested that a safety assessment be conducted before there is further process development or design work done on this portion of the UNEX flowsheet.

9.1.3 Citrate Study

In the UNEX process, citrate was proposed as an ingredient in the scrub cycle for purposes of removing extracted zirconium. If citrate were used in this manner, it is highly possible that it would end up in the low level waste (LLW) form, which is assumed to be grouted before disposal. Citrate was not proposed as an ingredient in the Modified UNEX process and will not be evaluated for that process.

Citrates are organic compounds that belong to the family of hydroxy carboxylic acids. Hydroxy carboxylic acids, or their salts, are commonly used as retarding agents because of their incompatibility with alkali carbonates, alkali bicarbonates, and metal nitrates. Citrate is also a known metal complexing agent and can complicate stabilizations when it is present in solutions. In the UNEX process, it is assumed that grouting is the selected treatment for the LLW stream. Therefore, it is necessary to determine the effects of citrate on grouting of the LLW and to define permissible citrate loadings for grout, if applicable.

An extensive literature search was performed to collect and document information on citrate in grout. This proved to be difficult, as discussions revealed that testing of citrate in grout is limited. In discussions with B.E. Scheetz of the Pennsylvania State University materials research laboratory and A. K. Herbst and J. A. McCray of the Idaho National Engineering and Environmental Laboratory (INEEL), it was revealed that grout tests with citrates have not been performed at the INEEL. The only known testing of this type has been done in the United Kingdom. These tests have revealed citrate in grout prevents curing and have resulted in the United Kingdom banning any citrates in processes that lead to grouting. Based on these findings, the INEEL has done no testing of citrates in grout, but has relied on past experience.

The issue then was to determine the levels of citrate that prevent curing of grout. R.D. Spence of Oak Ridge National Laboratory has stated that retarder admixtures are usually effective in concrete mixtures as low as a few tenths of a percent. Retardation may either prevent ultimate curing of the final waste form, or extend the time it takes to cure. Because results may vary for each individual waste form and there are no known development tests for grouting sodium-bearing waste containing citrates, it may very well be necessary to perform tests and identify problem areas.

The number of processing steps necessary for the production of an acceptable grout may dramatically increase, because all evidence reveals small quantities of citrate can reduce or eliminate curing reactions. Additional precautions and processing steps may include specific development tests for grouting sodium-bearing waste containing citrate and the steps to convert citrate to a grout former downstream of the centrifugal contactors. Because these steps may be very extensive, it was decided that it is best to eliminate citrate from the UNEX process and replace it with a different compound that will not hinder the grouting process. Other possible compounds may include hydrofluoric acid, sodium fluoride, or aluminum fluoride.

9.1.4 Sodium Fluoride vs HF

The UNEX extraction process uses hydrogen fluoride as a zirconium and iron sequestering agent in both the SBW feed and in the UNEX scrub. Zirconium and Fe compete with the actinides during the extraction process inhibiting the full extraction of actinides. Fluoride ion from the HF complexes the zirconium and Fe thus decreasing the amount of Zr and Fe extracted in the process.

There are inherent problems in dealing with HF though. HF is highly toxic and very corrosive. Special care must be taken when handling HF to prevent it from coming in contact with the skin. Therefore, special training must be conducted for anyone working with HF. Also, special protective wear

must be used when handling this chemical. HF is also very corrosive to most materials. Because of this, special alloys must be used for storage tanks, transfer lines, and pumps.

This problem could be alleviated though through the use of sodium fluoride since all that is required out of the complexing compound is the F- ion. Sodium fluoride does not have the toxicity of HF and is not as corrosive.

Another benefit of using NaF is the fact that it could be added to the filtered SBW feed tanks and scrub make up stream as a solid. This would decrease the size of the storage tank needed thus decreasing the footprint of the process.

The only possible problem with NaF has to do with the increase in Na concentration in the SBW. Na competes in the extraction process with Cs and it is not known if increasing the Na concentration from 1.4M to 1.7M, which would happen if NaF is used, would change the extraction efficiency with respect to Cs. Bench-scale tests do need to be conducted to determine this before any decision is made as to use of NaF over HF.

9.2 Applicability to Calcine Treatment

The UNEX or Modified UNEX process could be applied to treat calcined waste. However, the scale of equipment presented in this study is insufficiently sized to appropriately handle the liquid waste volume generated from redissolving the entire inventory of calcined waste at INTEC. The following elaborates on these findings.

Calcined waste exists largely in two forms – alumina and zirconia calcine. Bench-scale experimental studies were performed in FY-00 with UNEX treatment of redissolved zirconia calcine. The preliminary results were favorable, yielding comparable or higher separation factors for cesium, strontium, and actinides then those achieved from UNEX treatment of SBW. The differences in UNEX process performance between SBW and redissolved calcine revolve largely around the concentrations of interfering constituents, which differ between SBW and alumina and zirconia calcine. Based on the experience with UNEX treatment of SBW and redissolved zirconia calcine and on the chemical make-up of alumina calcine, the UNEX process is also expected to perform well with redissolved alumina calcine. Bench-scale experimental studies of UNEX treatment of alumina calcine are planned.

UNEX treatment of calcined waste would require the material's retrieval from the Calcined Solids Storage Facility (bin sets) and subsequent dissolution in nitric acid as a head-end process to feed into the UNEX cross-flow filtration system. A previous study has identified a technique to vacuum out the calcined solids from the storage bins and pneumatically transfer the material to dissolution process equipment (Landman and Barnes 1998). The recent experimental study of UNEX treatment of zirconia calcine used 10 liters of 3M nitric acid for dissolution of every 1 kg of zirconia calcine, resulting in a solution of approximately 1M acid concentration. A similar acid volume to calcine loading ratio is also expected for dissolution of alumina calcine, although the initial concentration of acid would vary in order achieve a 1M acid concentration as a UNEX feed. Filtration of the redissolved calcine is required to remove UDS, which would be returned to the tank farm as presented in this study. The amount of UDS estimated from dissolution of calcined waste is comparable to that of the SBW, i.e. approximately 3g/liter.

The inventory of calcined waste is about 3800 m³, 1230 of which (or 1400 metric tons) is alumina and the balance (or 4900 metric tons) zirconia. Given the prescribed acid to calcine dissolution ratio, the inventory of calcined waste would result in the generation of some 63 million liters of redissolved calcine liquid waste. At a UNEX processing rate of approximately 300 liters/hour, 24-hours/day, and 200

operating days/yr, as presented in this study, the inventory of calcine waste would require approximately 44 years to process. Such a treatment rate is inconsistent with the Settlement Agreement between the State of Idaho and the DOE, which requires treatment of calcined waste into a form suitable for transport to a permanent repository by a target date of December 31, 2035.

9.3 Research and Development Needs

During the course of this feasibility study, several issues and/or uncertainties were identified where additional research and technology development activities could be conducted that would enhance the feasibility study design. The following major areas were identified:

9.3.1 Sodium Bearing Waste Filtration Characteristics

Filtration characteristics of the tank farm waste must be determined to select and size the appropriate equipment for the remote solids liquid separation (SLS) unit operation. Physical properties such as particle size distribution and solids content are required. Methods must be developed to obtain appropriate samples, determine experimental methodologies, and evaluate filter requirements. All development efforts must be geared toward the use of the concentrated tank farm wastes after evaporation.

9.3.2 Filtered UDS Radiological and Rheological Properties

To ascertain the necessary handling equipment, shielding requirements, and appropriate treatment unit operations, the radiological and rheological properties of the undissolved solids (UDS) filtered from the tank farm waste must be determined. With regard to radiological properties, the total curie content and radionuclide distribution must be evaluated. Determination of the radiological properties will require samples of the UDS from the tank farm for characterization and analysis. Rheological properties include bulk density, moisture content, friability, and transport characteristics – many of which are dependant on the type of filteration equipment used for solids liquid separation. Consequently, samples of actual tank waste must be obtained in sufficient quantities to gather UDS samples amenable to determination of solids characteristics.

9.3.3 Feed Composition Variability

UNEX Development work to date has focused on treatment of the tank waste as it exists in the tanks today, as well as the projected average tank waste composition of the SBW after evaporation in the HLW evaporator. The composition of SBW feed to the UNEX process will vary from tank to tank, as well as vary based upon operation of the high-level waste evaporator. The effect of these feed variations on the extraction of the Cs, Sr, and TRU's should be evaluated and UNEX flowsheets developed which will result in the necessary removal efficiencies of these components. Feed composition variability may also affect the grouting, solvent crystallization, and the extraction solvent loss processes.

9.3.4 Solvent composition Variability

The concentration of the extractants in the UNEX process solvent will vary during operation due to the solubility of PEG and phenyl trifluoromethyl sulfone in the aqueous raffinate and strip product streams. To know when adjustment of the solvent is required, the range of acceptable extractant concentrations (PEG, cobalt dicarbollide and CMPO) must be known. This information is important in that it defines how tightly the solvent composition must be controlled and also affects to some degree how "tight" the quality specification on raw solvent materials must be.

9.3.5 Chemical/Radiological Stability of Solvents

Due to the relatively long periods of time that the waste forms generated from the UNEX processes may need to be stored before shipment to a final waste repository, radiological stability and long term chemical stability of the solvents must be demonstrated.

9.3.6 Hazards Analysis

An analysis of the hazards associated with the operation of the high temperature unit operation in the UNEX process should be performed. This includes analysis of potential hazardous decomposition products associated with the entrained/dissolved solvent components in the aqueous raffinate feed to the evaporator and the RH TRU strip feed to the thin film dryer.

9.3.7 Hydrogen Generation

Operation of the UNEX process concentrates the fission products into the RH TRU crystallite. The generation of hydrogen in the RH TRU canisters should be evaluated to determine the potential level of hydrogen buildup, if any, during storage or shipping of the canisters.

9.3.8 Solvent Purity Specifications

Extraction of the Cs, Sr, and/or TRU elements by the UNEX solvent likely will be effected by the purity of the solvent components. The purity specifications required for each of the extractants and the diluent to obtain efficient extraction of these components needs to be determined.

9.3.9 Solvent Commercialization

The commercial availability of the UNEX solvent components for the volumes required to process the SBW needs to be evaluated. The synthesis of the phenyl trifluoromethyl sulfone diluent is of the most concern as it is the only component currently not commercially available in any quantity.

9.3.10 Solvent Loss Rates/Adjustment

Due to the solubility of some of the UNEX solvent components (PEG and phenyl trifluoromethyl sulfone) in the aqueous raffinate and strip product streams, adjustment of the solvent during operation will be required to maintain the solvent within the desired compositional range. Development of analytical methods for solvent composition analysis should be performed so solvent composition can be monitored during operation. Methods of adjustment of the solvent should be evaluated including the addition of PEG to the strip feed to maintain the PEG concentration.

9.3.11 Alternative Scrub Reagents

The use of partially complexed hydrofluoric acid in the scrub solution introduces potential concerns with regards to personnel handling of the scrub makeup solution and corrosion of the process piping/equipment. Alternative scrub reagents, such as sodium fluoride, likely could be used to suppress the extraction of Zr and Fe. Development work should be performed to determine the viability of using an alternative scrub reagent. It should be noted that this development item does not apply to the Modified UNEX process which does not use a fluoride scrub since CMPO, which extracts Zr and Fe, is not present in the solvent.

9.3.12 Strip Product Chemical Variability

Composition of the strip product solution may vary based upon the composition of the SBW feed solution to the UNEX process. The effect of any variations of the strip product composition on the operation of the thin film dryer should be evaluated.

9.3.13 Spent Solvent Disposition

At the end of treatment of the SBW, the UNEX solvent will require disposal. Potential disposal options should be evaluated including solidification and incineration. Experimental studies to support this evaluation, such as testing of solidification agents, will need to be performed.

9.3.14 Crystallization of HAW Fraction

Development of suitable unit operations associated with crystallization of organic compounds is generally very compound specific and many issues such as foaming, crystal agregation, formation of tars and gums, etc. can only be addressed by unit operation process development. To date, the work in this area has been highly speculative and must be demonstrated with the HAW fraction chemical constituents.

9.3.15 Instrumentation and Control Associated with Remote-level Sensing in HAW 2X10 Canisters

Remote instrumentation capable of accurately performing feed control of evaporator crystallite to the 2X10 canisters and sensing the fill level are recognized as significant engineering challenges. This highly specialized equipment will require significant research and development to ensure process reliability.

9.3.16 Criticality Analysis

Any process in which the uranium in the SBW is concentrated (UNEX only) raises the issue of whether a potential criticality scenario is credible. Criticality safety analysis personnel should perform an evaluation of the UNEX process criticality scenarios.

9.3.17 Mercury Removal from SBW

If it is determined that mercury must be removed from the SBW as part of the UNEX process, development efforts are required for potential mercury removal processes. Specifically, mercury removal from the UNEX raffinate would require development. Potential mercury removal processes include electrochemical reduction and mercury precipitation by the Sachtleben-Lurgi process as described earlier in this report.

9.3.18 Grout Formulation

As can be seen from the mass balance, the grout formulation for the low activity fraction in the UNEX and Modified UNEX process directly influences the volume of grout produced. Grout volume is a major element in either processing scenario in that it directly affects the capacity of the grout line, the size of the interim storage facility, transportation costs to the final disposal facility, and the ultimate disposal cost. The grout formulation must be compatible with the waste acceptance criteria for the final disposal site and for all requirements imposed by interim storage. The best grout formulation would correspond to the highest waste loading which meets the storage and disposal requirements.

Current research work performed by A. Herbst, et. al, suggest that higher waste loadings than those used in this feasibility study can be achieved. Further research work is needed to demonstrate optimal waste loadings and to verify that the grouts are stable over long-term storage intervals.

9.3.19 Grout Neutralization Reaction and Kinetics

Before grouting of the UNEX raffinate, the solution is neutralized using hydroxide solutions. The reaction kinetics of the neutralization should be developed to determine the rates at which the neutralization chemical should be added and the potential for uncontrolled reactions.

9.3.20 Grout Mixing

Grout mixing at the scale (55 gal) proposed in this study has not been demonstrated for our waste specific types. Engineering issues such as paddle design, mixer torque, heat dissipation requirements, mixer cycle time, and other mixer-specific data have not been generated to date. This information is required to refine the grout mixing process line design.

9.3.21 Grout Cure and Physical Properties

Development work on the grouting of SBW has been performed but grout development as applied specifically to the UNEX raffinate has not been performed. Grout waste forms should be made using the UNEX raffinate solutions and the physical properties of the resulting grout waste form evaluated. Additionally, the effect of the trace organics present in the UNEX raffinate on curing of the grout waste form is unknown and should be evaluated.

Due to uneven losses of UNEX solvent constituents, i.e. chlorinated cobalt dicarbollide, PEG-400, CMPO, and FS-13, the solvent will be sampled periodically to characterize the necessary make-up stream. The make-up will be provided intermittently, as opposed to continuous injection of make-up constituents, based on the solvent sample results. This approach necessitates the ability of the UNEX processes to function within a range of specific extractant concentrations. Specific losses of UNEX solvent constituents are described in Section 5 of this report. Operating ranges for the UNEX solvent constituent concentrations remain to be defined. Once defined and solvent analytical techniques are developed, the necessary sampling periodicity may be identified.

The grout curing requirements for production-scale processing also requires significant additional research. For example, the high waste loading grouts are known to evolve approximately 30% moisture during the curing process. It is not known how long a full-sale drum of grout would need to cure for this quantity of moisture to be liberated. This is vital information to adequately engineer the size of grout curing areas and their associated ventilation systems.

9.3.22 Crystallization of HAW Fraction

At this point, it is not known whether the UNEX HAW stream can be evaporated to a solids concentration high enough for use in the grouting process. For this to be determined, bench-scale evaporation studies will have to be conducted.

10. REFERENCES

- Barnes, Charles, 1999, UNEX Process Flow Diagrams, Material Balance and Basis Document Treatment of Sodium Bearing Waste, Engineering Design File, No. 1296, December.
- Brewer, K. N., T. A. Todd, P. A. Tullock, V. M. Gelis, E. A. Kozlitin, and V. V. Milyutin, 1999, The Use of a Russian Manufactured Potassium Copper Hexacyanoferrate to Remove Cesium from Idaho Nuclear Technology and Engineering Center Radioactive Wastes, INEEL/EXT-99-00663, June.
- Herbst, A. K., W. Marshall, J. A. McCray, 1998, Idaho Chemical Processing Plant Low-Activity Waste Grout Stabilization Development Program FY-97 Status Report, INEEL/EXT-98-00116.
- Herbst, A. K., J. A. McCray, R. J. Kirkham, J. Pao, and S. H. Hinckley, 1999, *Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Development Program FY-99 Status Report*, INEEL/EXT-99-00973, September.
- Herbst, A. K., J. A. McCray, R. J. Kirkham, J. Pao, and S. H. Hinckley, 2000, INTEC Low-Activity Waste Process Technology Program FY 2000 Status Report, INEEL/EXT-2000-00167.
- Khlopin Radium Institute, 1999, Applicability of the Russian Separation Technology to Processing of US Radioactive Wastes, Final Report, November.
- Landman, W. H. Jr. and C. M. Barnes, 1998, TRU Separations Options Study Report, INEEL/EXT-97-01428, February.
- Losinski, S. J., C. M. Barnes, and B. K. Grover, 1998, CsIX/TRU Grout Feasibility Study, INEEL/EXT-99-00034.
- Patterson, M., 1999, Light Duty Utility Arm Deployment in Tank WM-188, INEEL/EXT-01302, December.
- Perry, Robert H., Don W. Green, James O. Maloney, eds, 1997, *Perry's Chemical Engineers' Handbook*, McGraw-Hill, 7th edition.
- Rawlins, J. K., 1997, Interim Storage Study Report, INEEL/EXT-97-01393.
- Tripp, J. L., Supporting Information for the INEEL Liquid Waste Management Plan, INEEL/EXT-98-00730, July, 1998
- SAIC, 1998, Technologies for Immobilizing High Mercury Subcategory Wastes, prepared by Science Applications International Corporation for the EPA, July.

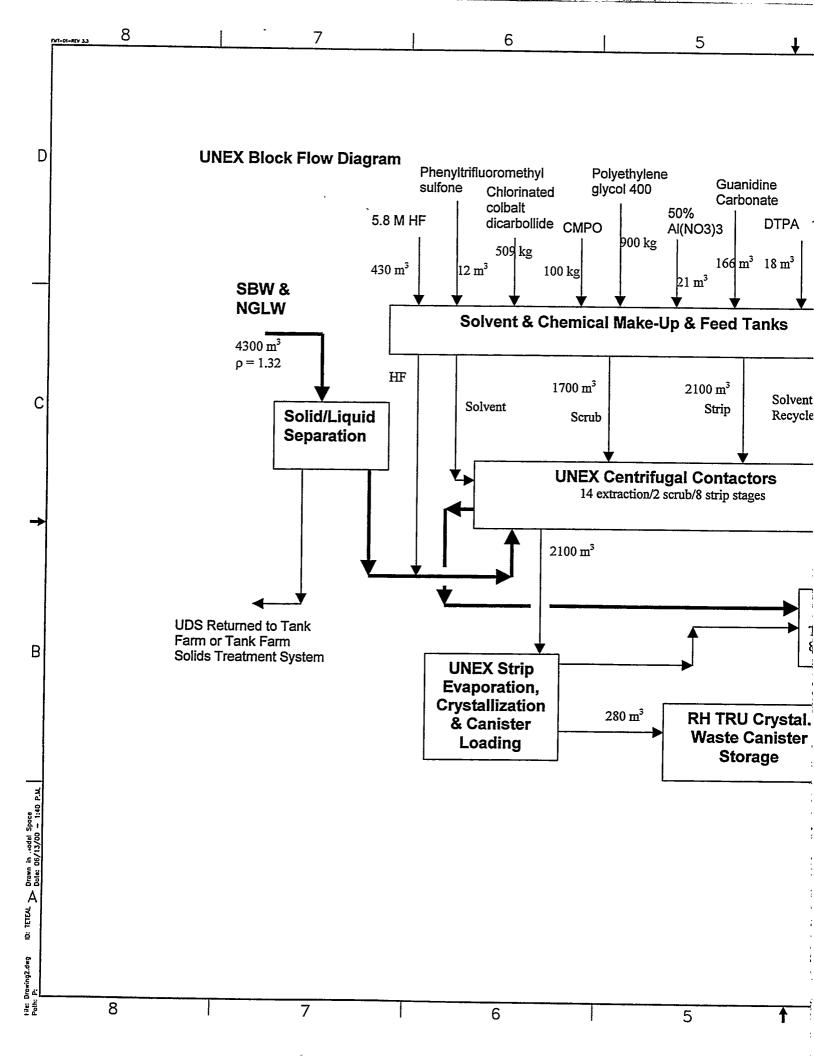
Appendix A

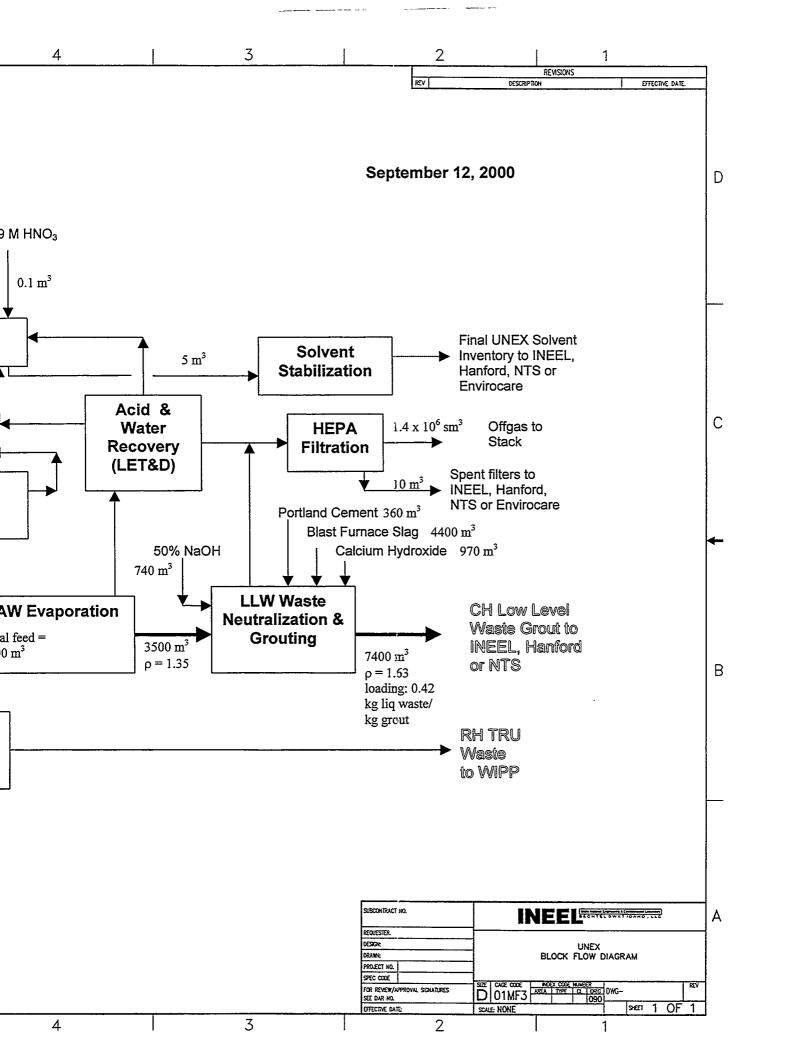
Equipment List

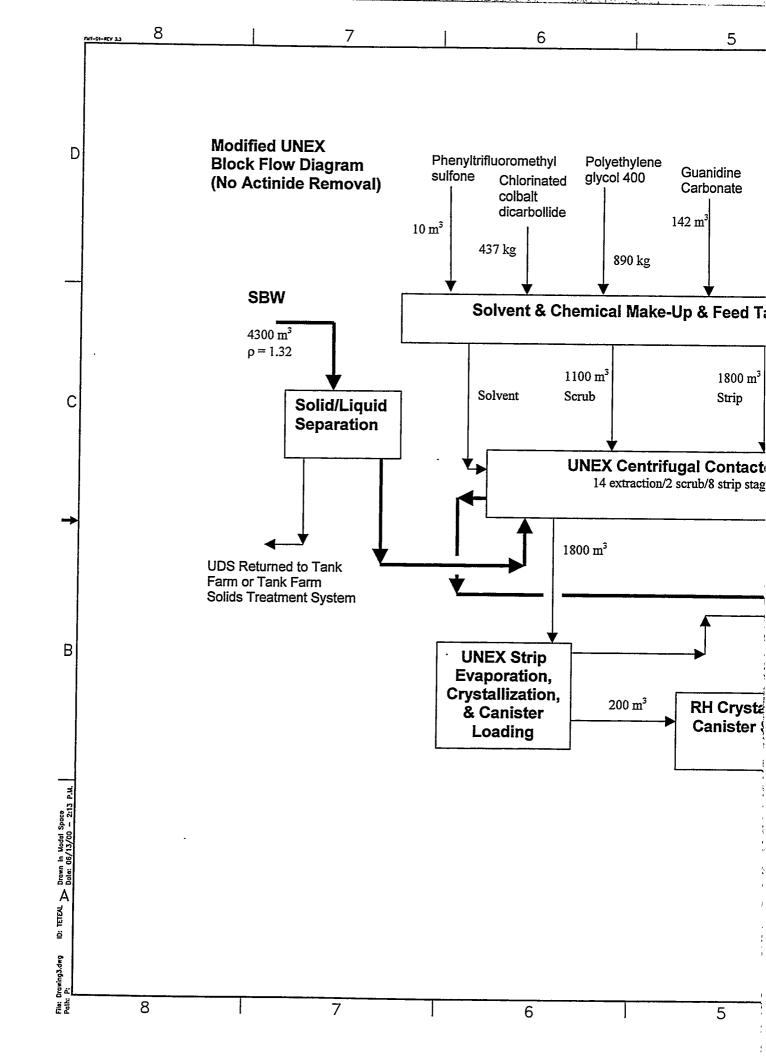
UNEX AND MODIFIED UNEX PUMP DATA

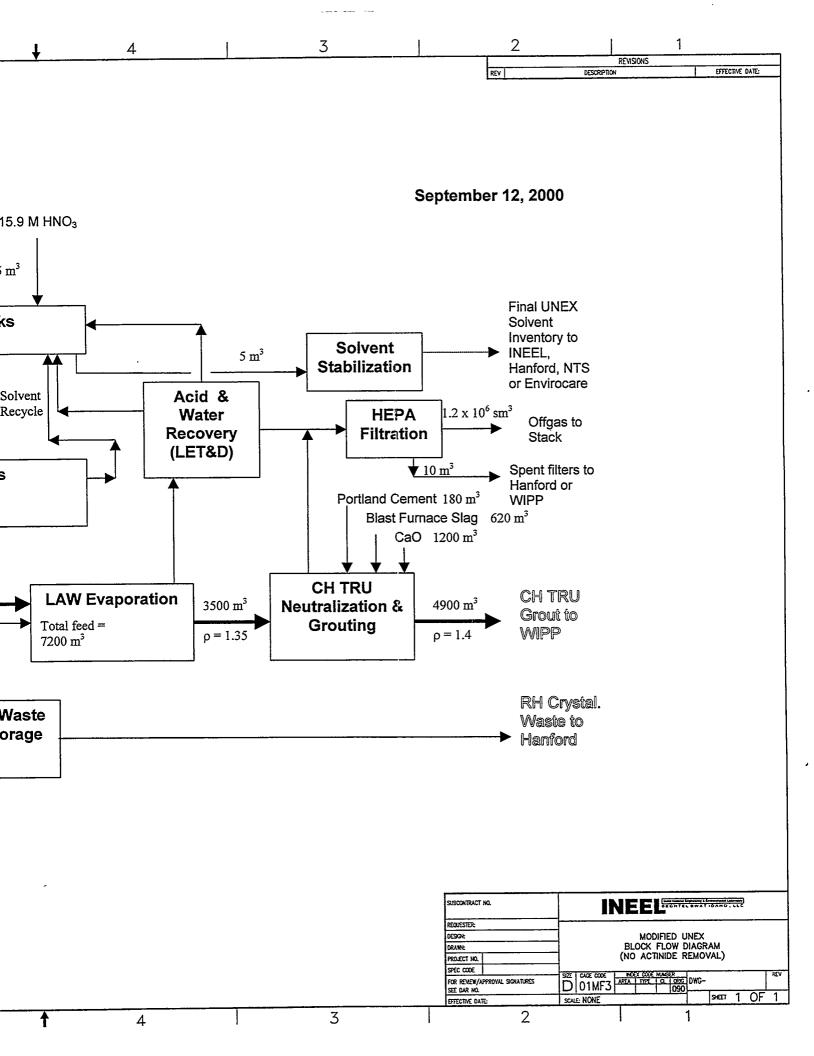
PUMP NAME	#0					PRESSURE	URE				۵.	PUMP DATA	۲			<u>ق</u>	GPM	WXHXL	700	LOCATION
		8.6	SHZ	LPM	GPM	INLET	our	STYLE	MAKE	MODEL	GEAR	RPM	TORO.	IDEAL H.P	H.P.	NIW	MAX	INCHES	NWCF	
SBW TRANSFER	P-201-1	1,32			20.0	ATM	8	PARFLEX						50	30			24 X 24 X 4	VAL. CUB.	MC
FILTER FEED PUMPS (2X)	P-201-2a&b								VENDOR S	VENDOR SUPPLIED - SKID MOUNTED	SKID MOUN	TEO							CAL. CELL	MC
HF XFR PUMP	P-201-3				0.0	ATM	v 100	CAVITY	IDEX	30t	635	1750	580	1.01	2	10.0	11.0	24 X 24 X 4	OUTSIDE	OUTSIDE
HF PUMP	P-201-4	8.	ຊ	05.0	0.1	ATM	99 >	CAVITY	IDEX	114	K23	1450	45	90'0	0.125	0.1	1.0	12 X 12 X 3	STR AREA	AER
EXTRACTION FEED	P-201-5	1.29	328	5.47	4.	ATM	89	CAVITY	DEX	114	K23	2850	45	0.13	0.375	1.2	2.2	12 X 12 X 3	OFF GAS	MC
SBW SLURRY XRF (2X)	P-201-6a & b	40%			20.0	ATM	99 >	PARFLEX						20	30			24 X 24 X 4	CAL. CELL	MC
DICARBOLIDE FEED	P-202-1	1.42	0.4	0.01	0.0	ATM	09 >	METER	DURCO	DIATUBE		•		0:30	0,75	0.0	0.0	12 X 12 X 1	STR AREA	AER
PEG FEED	P-202-2	1.42	0.4	10.0	0.0	ATM	× 60	METER	DURCO	DIATUBE	•		•	0.30	0.75	0.0	0.0	12 X 12 X 1	STR AREA	AER
CMPO FEED	P-202-3	1.42	3	100	0.0	ATM	99 >	METER	DURCO	DIATUBE				0.30	0.75	0.0	0.0	12 X 12 X 1	STR AREA	AER
FS-13 FEED	P-202-4	1.42	8	10.0	0,0	ATM	8	METER	DURCO	DIATUBE	·	•		0:30	0.75	0.0	0.0	12 X 12 X 1	STR AREA	AER
SOLVENT FEED	P-202-5	1.42	445	7.42	2.0	ATM	· 60	CAVITY	IDEX	114	K23	3450	45	0,15	0.25	1.2	2.2	12 X 12 X 3	OFF GAS	MC
RAFFFINATE XFR	P-202-6a	1.21	577	7.42	2.0	ATM	09 >	CAVITY	tDEX	114	K23	3450	45	0.15	0.25	1.2	2.2	12 X 12 X 3	VAL. CUB.	MC
RAFFINATE OFF SMC	P-202-6b	1.21			10.0	ATM	< 100	CAVITY	TDEX	10K	635	1750	280	1.01	2	10.0	11.0	24 X 24 X 4	VAL. CUB.	MC
ACID FEED	P-202-7	1.13	2.9	50'0	0.0	ATM	o9 >	METER	DURCO	DIATUBE	•	•	•	0.30	0.75	0.0	0.0	12 X 12 X 1	STR AREA	AER
ALUM NITRATE FEED	P-202-8	1.54	1.5	0.03	0.0	ATM	< 60	METER	DURCO	DIATUBE	•	•		0.30	0.75	0.0	0.0	12 X 12 X 1	STR AREA	AER
SCRUB MAKEUP XFR	P-202-9	1.01	211	1.95	0.5	ATM	09 >	CAVITY	XBQI	114	K23	2400	45	0.11	0.25	0.6	1.7	12 X 12 X 3	STR AREA	AER
SCRUB SOLUTION FEED	P-202-10	ō	117	1.95	0.5	ATM	09 >	CAVITY	IDEX	114	K23	2400	45	0,11	0.25	0.0	21	12 X 12 X 3	STR AREA	AER
DTPA FEED (M-UNEX ONLY)	P-202-11	:	1,3	0.02	0.0	ATM	< 60	METER	DURCO	DIATUBE	•	·	·	0.30	0.75	0.0	0.0	12 X 12 X 1	STR AREA	AER
STRIP MAKEUP XFR	P-202-12	1.01	148	2.47	0.7	ATM	× 60	CAVITY	IDEX	114	K23	2400	45	0.11	0.25	0.7	1.7	12 X 12 X 3		AER
STRIP SOLUTION FEED	P-202-13	1.01	148	2.47	0.7	ATM	× 60	CAVITY	IDEX	114	K23	2400	45	0.11	0.25	0.7	1.7	12 X 12 X 3	STR AREA	AER
STRIP TO TFD FEED	P-202-14	1,02	148	2.47	0.7	ATM	6 00	CAVITY	IDEX	114	K23	2400	45	0.11	0.25	0.7	1.7	12 X 12 X 3		MC
STRIP CYSTALLIZER CONDENSATE	P-203-1								VENI	VENDOR SUPPLIED - SKID MOUNTED	ED - SKID !	MOUNTED						,	TFD FAC.	MC
TFD FEED	P-203-2	1.02	148	2.47	0.7	ATM	œ>	CAVITY	NEX	114	K23	2400	45	0.11	0.25	0.7	1.7	12 X 12 X 3	TFD FAC.	MC
LAW EVAPORATOR FEED	P-204-1	1.18	593	9.88	2.6	ATM	<120	CAVITY	IDEX	2200	G23	1450	250	0.36	0.75	2.2	3.8	12 X 12 X 3		GRT. FAC.
LAW EVAPORATOR RECIRCIMEN	P-204-2							VENDO	IR SUPPLIE	VENDOR SUPPLIED - SKID MOUNTED	CONTED								GRT. FAC.	GRT. FAC.
LET&D SUPPLY	P-204-3	-	352	5.87	1.5	ATM	œ>	CAVITY	IDEX	114	K23	2850	45	0.13	0.25	1.2	2.2	12 X 12 X 3	GRT. FAC.	GRT. FAC,
NAOH FEED	P-205-1	1,53	25	28'0	0.2	ATM	< 60	CAVITY	IDEX	114	K23	1450	45	0.00	0.125	0.1	1.0	12 X 12 X 3	GRT. FAC.	GRT. FAC,
NEUTRALIZATION TANK	P-205-2a,b,c	1,38	207	4.95	1.3	ATM	o9 >	CAVITY	DEX	114	K23	2850	45	0.38	0.75	1.2	2.2	12 X 12 X 3	GRT. FAC.	GRT. FAC,

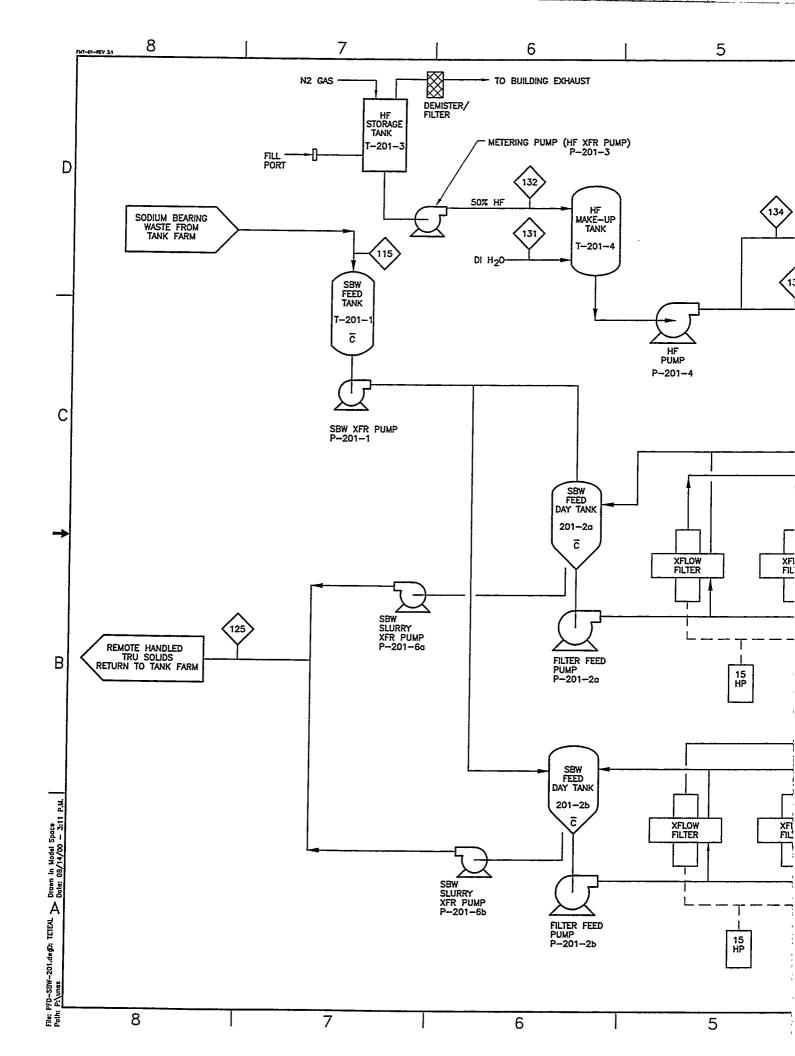
UNEX & MODIFIED UNEX PROCESS STORAGE TANK DATA

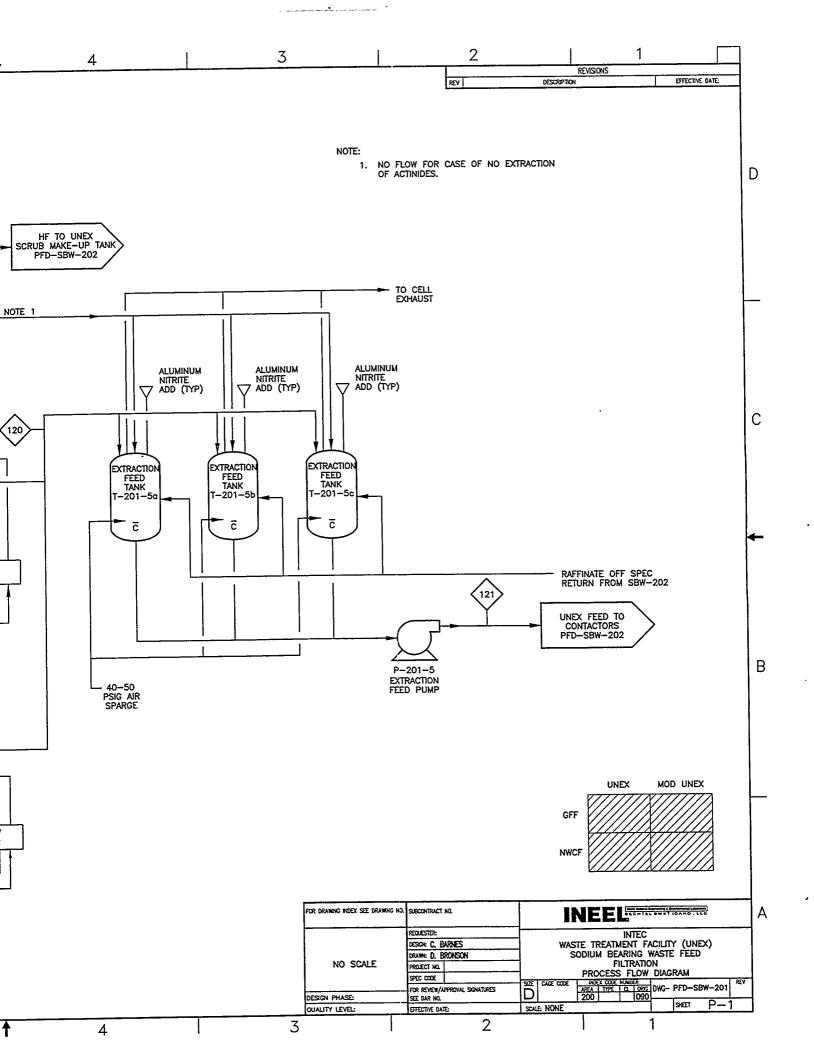

UNEX TANKS	#Ql	ГРН	STYLE	VOLUME	ME	SIZE	Ш	MATERIAL	RIAL	LOCATION	NOI
	,	FLOW	воттом	GAL	FT3	DIAMETER	HEIGHT	BASE	LINER	NWCF	GFF
SBW FEED	T-201-1	298	CONICAL	4718	629	96	150	c.s.	S.S.T	B&H CELL	M.C.
SBW DAY	T-201-2a&b	298	CONICAL	1179	157	09	96	c.s.	S.S.T	CAL. CELL	M.C.
HF STORAGE	T-201-3		ROUND	4000	533	96	127	c.s.	C-276	STOR. AREA	A.E.R.
HF MAKEUP	T-201-4	30	ROUND	237	32	36	24	c.s.	C-276	STOR. AREA	A.E.R.
EXTRACTION FEED	T-201-5abc	298	ROUND	2359	315	72	134	c.s.	S.S.T	B&H CELL	M.C.
DICARBOLLIDE FEED	T-202-1		ROUND	22	7	23	31	C.S.	S.S.T	STOR. AREA	A.E.R.
PEG 400 FEED	T-202-2		ROUND	55	7	23	31	c.s.	S.S.T	STOR. AREA	A.E.R.
PH2BU2CMPO FEED	T-202-3a,b		ROUND	22	7	23	31	c.s.	S.S.T	STOR. AREA	A.E.R.
FS-13	T-202-4		ROUND	22	7	23	31	C.S.	S.S.T	STOR. AREA	A.E.R.
UNEX SOLVENT	T-202-5		ROUND	200	29	48	64	c.s.	S.S.T	OFF GAS CELL	M.C.
UNEX RAFFINATE	T-202-6a,b	445	ROUND	1761	235	72	100	C.S.	S.S.T	B&H CELL	M.C.
RECYCLE ACID	T-202-7		ROUND	22	7	23	31	C.S.	S.S.T	STOR. AREA	A.E.R.
ALUMINUM NITRATE	T-202-8		ROUND	55	7	23	31	c.s.	S.S.T	STOR. AREA	A.E.R.
UNEX SCRUB MAKEUP	T-202-9	102	ROUND	807	108	48	103	C.S.	S.S.T	STOR. AREA	A.E.R.
UNEX SCRUB SOLUTION FEED	T-202-10		ROUND	888	118	48	113	C.S.	S.S.T	STOR. AREA	A.E.R.
DTPA STORAGE (UNEX ONLY)	T-202-11		ROUND	55	7	23	31	C'S.	S.S.T	STOR. AREA	A.E.R.
UNEX STRIP MAKEUP	T-202-12	143	ROUND	1132	151	60	92	C.S.	S.S.T	STOR. AREA	A.E.R.
UNEX STRIP SOLUTION FEED	T-202-13		ROUND	1245	166	60	102	C.S.	S.S.T	STOR. AREA	A.E.R.
UNEX STRIP EFFLUENT	T-202-14	142	ROUND	1124	150	60	92	C.S.	T.S.S	B&H CELL	M.C.
CRYSTALLIZER CONDENSATE	T-203-1		ROUND	10	1	10	29	C.S.	S.S.T	TFD FAC.	M.C.
STRIP TFD FEED (NWCF ONLY)	T-203-2	142	ROUND	1124	150	60	92	C.S.	S.S.T	TFD FAC.	M.C.
LAW EVAPORATOR FEED	T-204-1	593	ROUND	9388	1252	120	191	C.S.	S.S.T	GRT. FAC	GRT. FAC
LET&D FEED	T-204-3	352	ROUND	352	47	36	80	C.S.	S.S.T	GRT. FAC	GRT. FAC
NAOH STORAGE	T-205-1	52	ROUND	400	53	36	91	C.S.	S.S.T	GRT. FAC	GRT. FAC
NEUTRALIZATION	T-205-2a,b,c	302	CONICAL	1200	160	60	98	C.S.	S.S.T	GRT. FAC	GRT. FAC
		LBS									
SLAG STORAGE	T-205-5	40000	CONICAL		875	108	165	C.S.		GRT. FAC	GRT.FAC
Ca(OH)2 STORAGE	T-205-6	40000	CONICAL		1071	120	164	c.s.		GRT. FAC	GRT.FAC
CEMENT STORAGE	T-205-7	40000	CONICAL		641	108	121	c.s.		GRT. FAC	GRT.FAC
		KG/HR									
SLAG DAY STORAGE	T-205-6a	334	CONICAL		257	72	109	C.S.		GRT.FAC	GRT.FAC
Ca(OH)2 DAY STORAGE (UNEX ONLY)	T-205-6b	09	CONICAL		46	36	78	c.s.		GRT.FAC	GRT.FAC
CEMENT DAY STORAGE	T-205-6c	37	CONICAL		28	36	48	C.S.			GRT.FAC

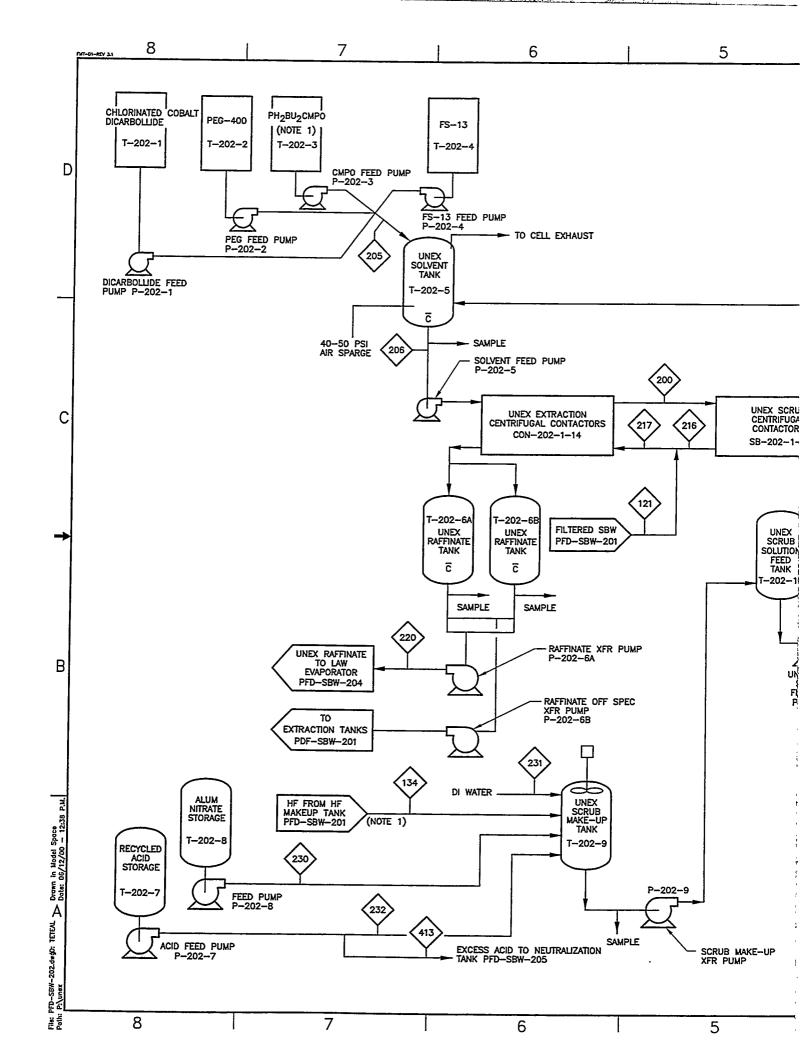

UNEX & MODIFIED UNEX PROCESS EQUIPMENT DATA

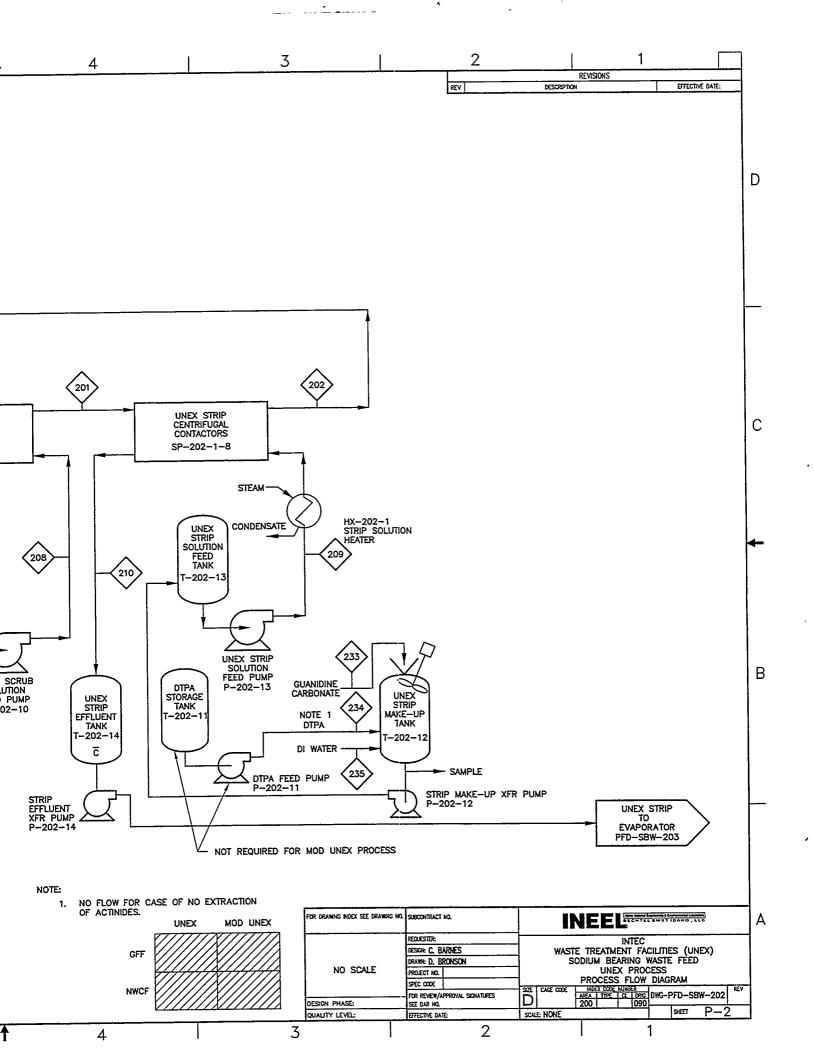

			LOCATION	NO	POWER	
EQUIPMENT	#0	(W X L X H)	NWCF	GFF	H.P.	WATTS
EXTRACTION CONTACTOR	CON-202-1-14	3' X13' X 5'	OFF GAS CELL	M.C.	3.5	
SCRUB CONTACTOR	SB-202-1-2	3' X 2' X 5'	OFF GAS CELL	M.C.	0.5	
STRIP CONTACTOR	SP-202-1-8	3'X7'X5'	OFF GAS CELL	M.C.	2	
THIN FILM DRYER	TFD-203-1	7' X 7' X 16'	TFD FAC	M.C.	20	
LAW EVAPORATOR	EV-204-1	8' X 10' X 8'	GRT FAC	GRT. FAC		1800
VERTICAL AUGER	VA-205-1-6	20" X 40" X 140"	GRT FAC	GRT. FAC	9	
VERTICAL MIXER	VM-205-1-6	30" X 60" X 140	GRT FAC	GRT. FAC	09	
X-FLOW FILTER	CF-201-1 & 2	36" X 60" X 65"	CAL. CELL	M.C.	30	

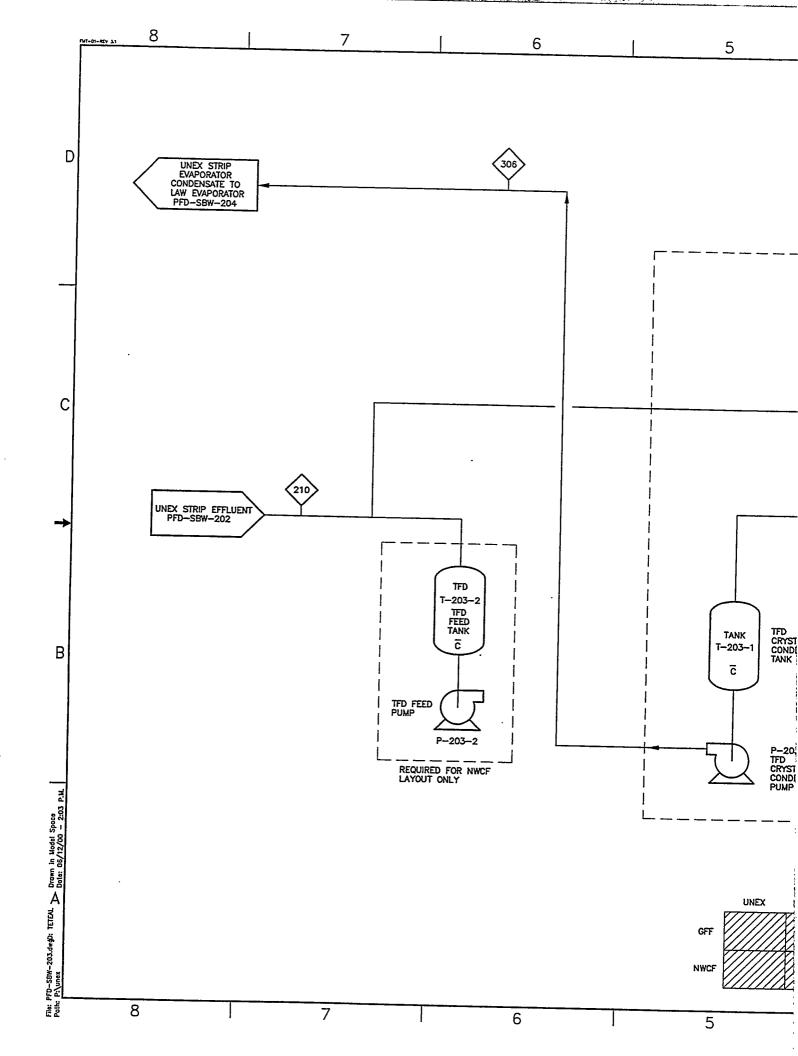

122 1800	\bigvee	,8 ()
12		92.8
TOTAL		TOTAL K.W.

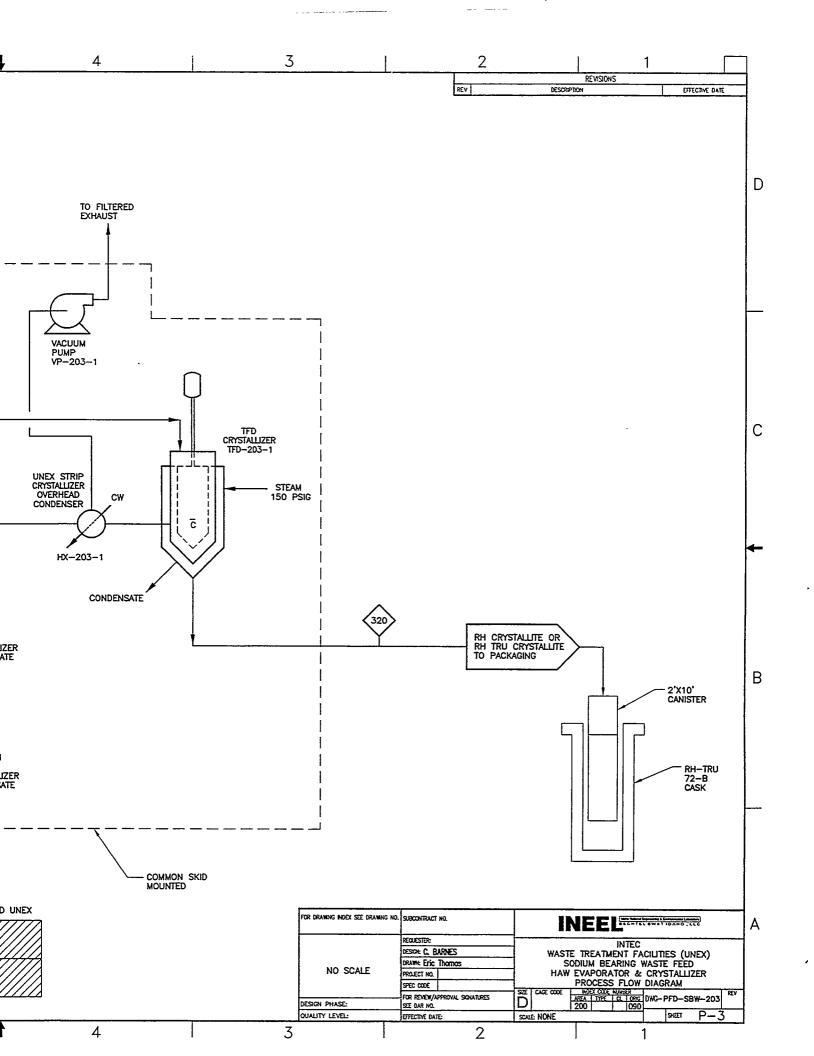

Appendix B Process Flow Diagrams

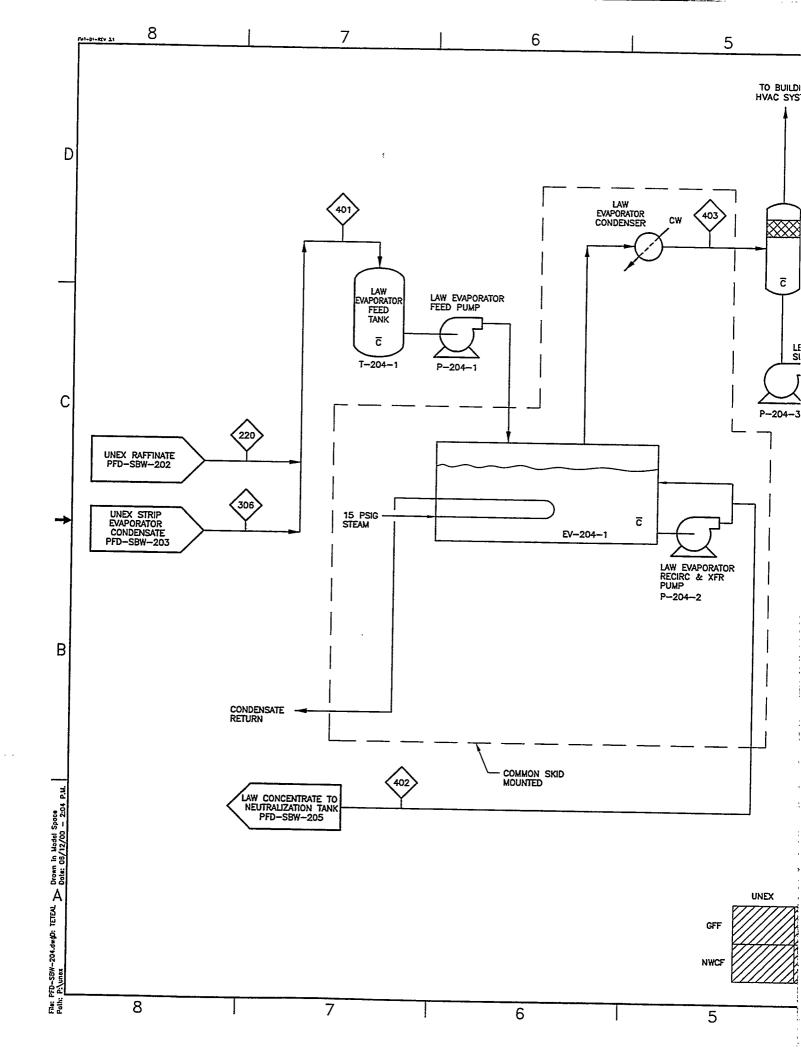


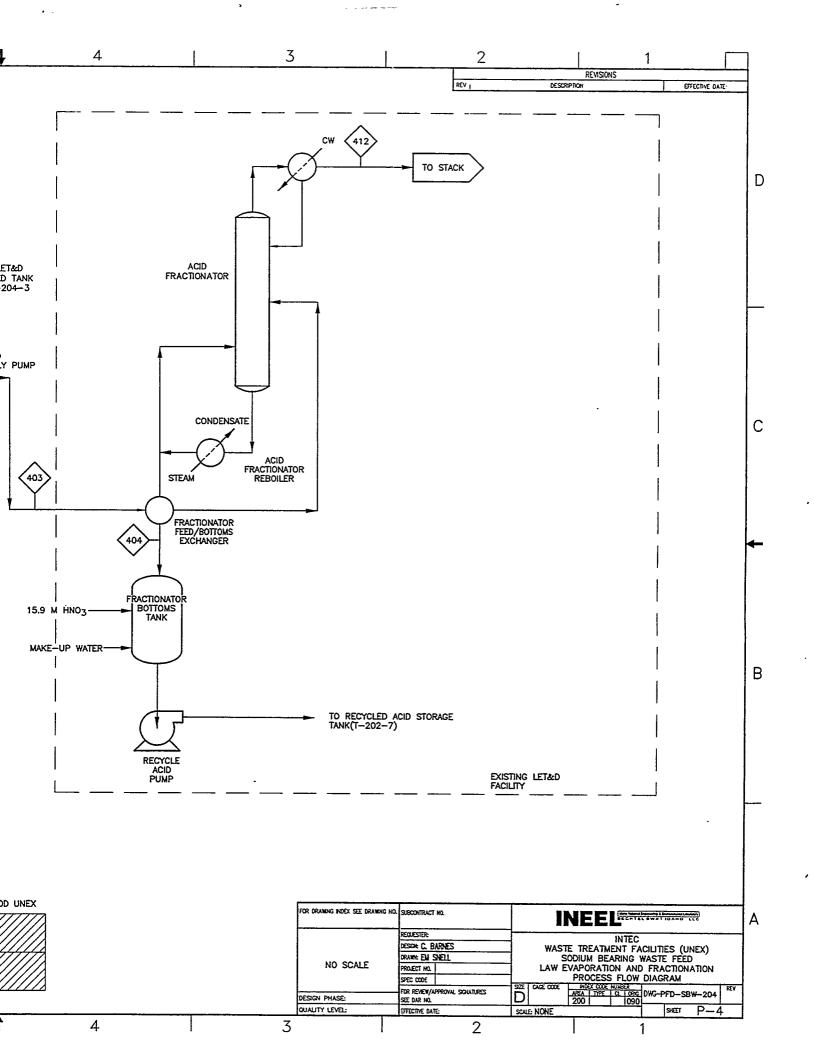


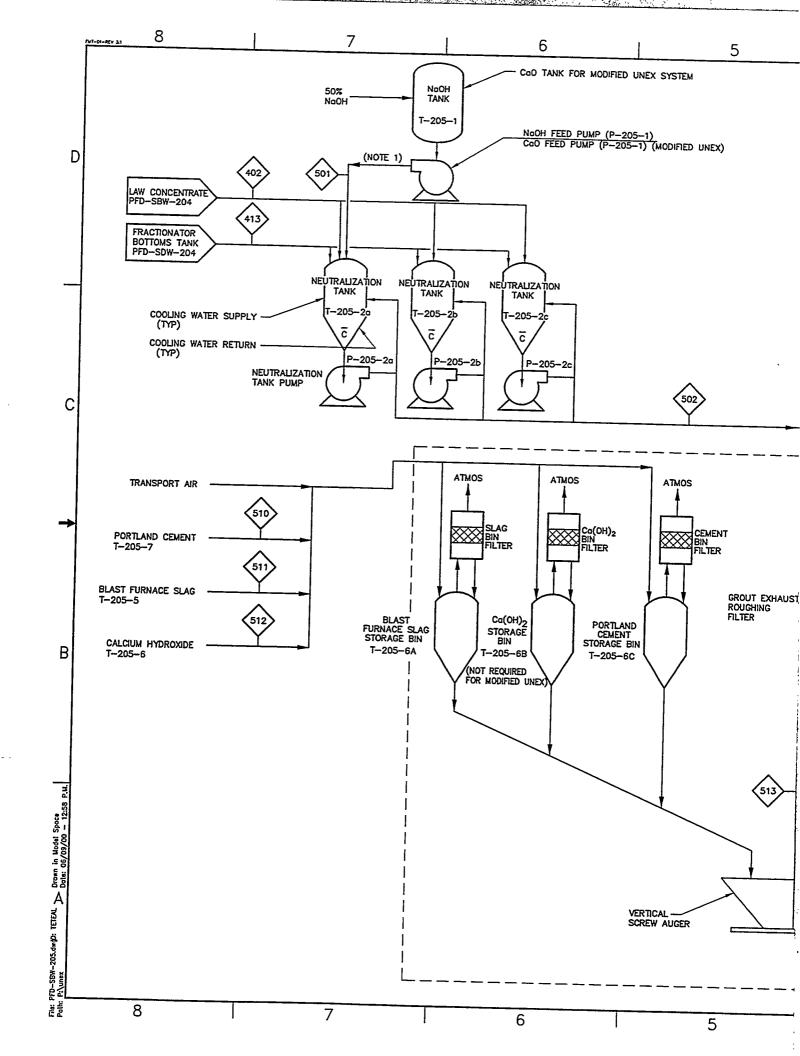


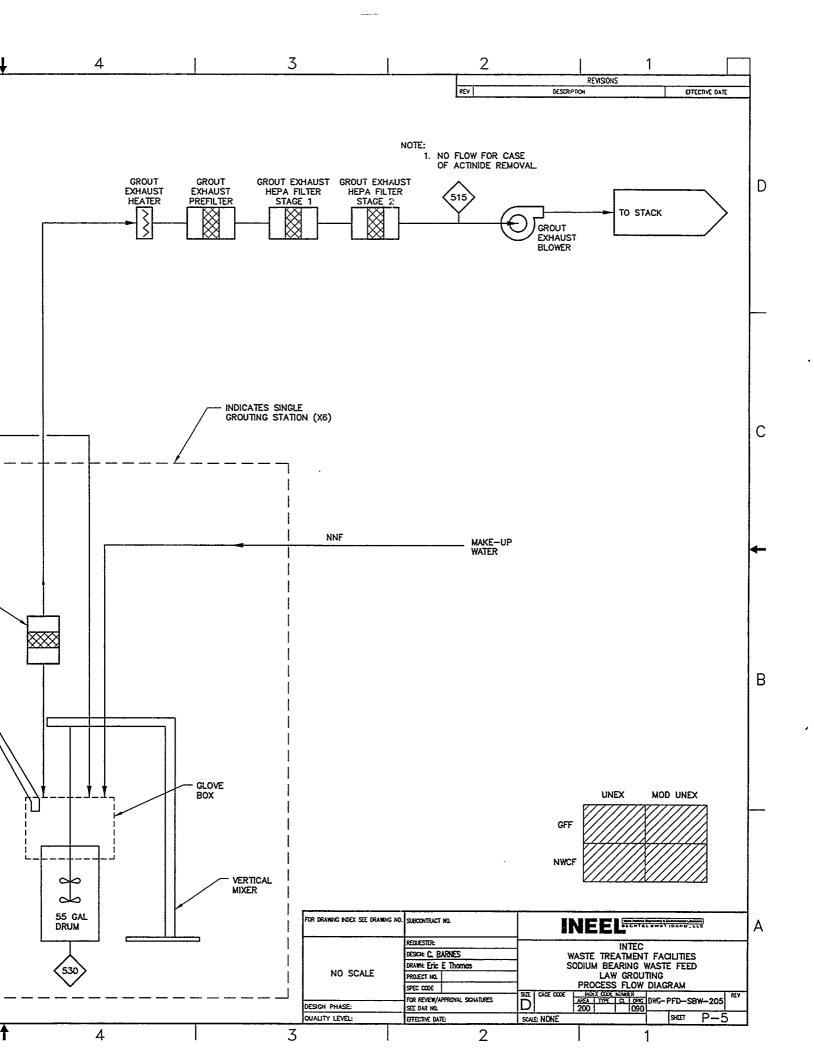


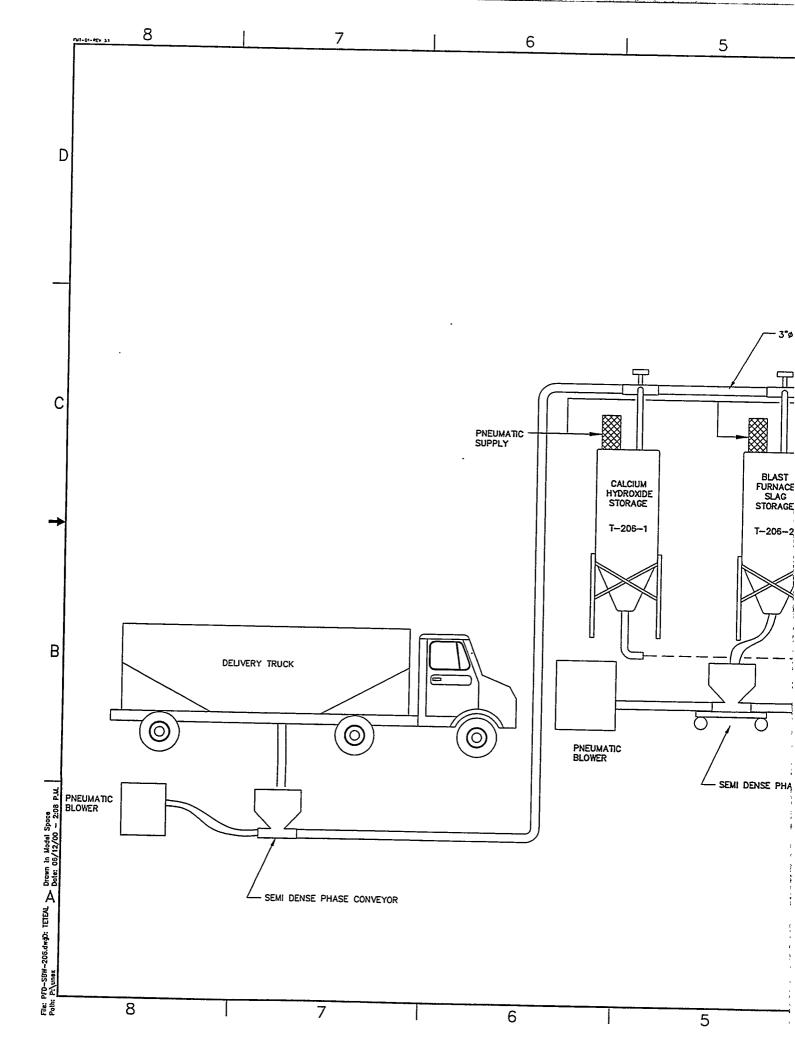


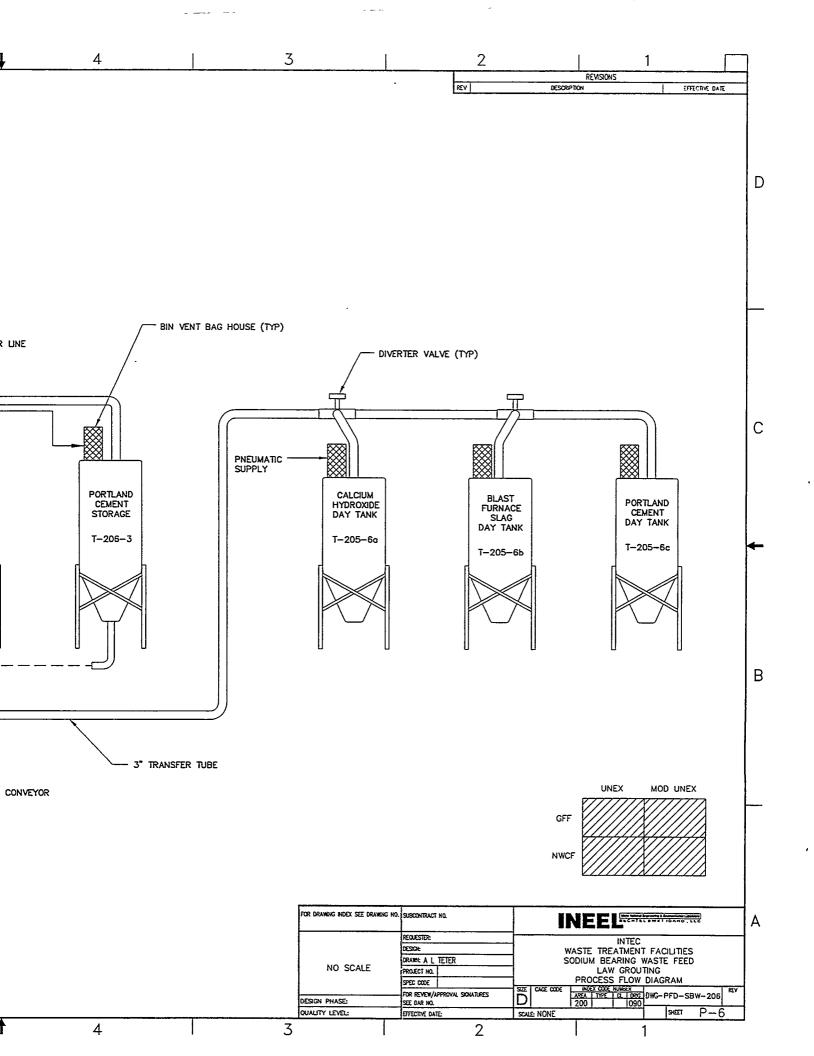












Appendix C Mass and Energy Balances

Sodium Bearing Wa	ste		9/5/00		Rates base	ed on 3 year	s operating ti	ime	Page 1a
PFD-SBW-	201	201	201, 202	201	201	201	201	201	202
Stream Number	115	120	121	125	131	132	133	134	200
Stream Name	Sodium	Filtered	UNEX	UDS	Water to	50% HF	3.3 M HF	3.3 M HF	UNEX
ļ ·	Bearing	SBW	Feed	Return	HF Tank		to Feed	to Scrub	Solvent to
	Waste						Adjustment		Scrub
Volume or Rate	298	298	328	12,061	834	107	30	11	445
Units	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr
Hours per day	24	24	24	15.7	1	1	24	24	24
Days per year	200	200	200	Min/month	200	200	200	200	200
Specific Gravity	1.32	1.32	1.29	1.17	1.00	1.20	1.04	1.04	1.43
Temperature, C	25	25	25	25	25	25	25	25	25
Pressure, kPa	100	100	100	100	100	100	100	100	100
Liquid Composition	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter
Ag+1	3.20E-05		2.91E-05	1.14E-05					2.17E-07
Al+3	6.15E-01	6.15E-01	5.59E-01	2.19E-01					4.29E-03
As+3	5.70E-05	5.70E-05		2.03E-05					3.86E-07
B+3	2.05E-02	2.05E-02	1.87E-02	7.31E-03					1.39E-04
Ba+2	6.54E-05			2.33E-05					3.55E-05
Ca+2	5.95E-02	5.95E-02		2.12E-02					1.99E-03
Cd+2	5.26E-03	5.26E-03		1.87E-03					3.56E-05
Ce+4	2.28E-05	2.28E-05	2.08E-05	8.13E-06					1.53E-05
CI-1	2.75E-02	2.75E-02	2.50E-02	9.79E-03					1.88E-04
CO3-2	2.702 02	2.702 02	2.001.02	0.702 00					1.002-04
Cr+3	5.30E-03	5.30E-03	4.81E-03	1.88E-03					3.58E-05
Cs+1	8.85E-06	8.85E-06		3.15E-06					5.98E-06
F-1	9.87E-02	9.87E-02		3.51E-02		3.00E+01	3.30E+00	3.30E+00	3.67E-03
Fe+3	2.27E-02	2.27E-02	2.07E-02	8.09E-03		0.002.01	0.002.00	0.002.00	6.09E-04
H+1	2.92E+00		2.95E+00	1.04E+00	1.00E-03	3.00E+01	3.30E+00	3.30E+00	2.30E-02
Hg+2	2.88E-03	2.88E-03	2.62E-03	1.03E-03	1.002 00	0.002.01	0.002.00	0.002.00	5.79E-06
K+1	1.75E-01	1.75E-01	1.59E-01	6.21E-02					1.64E-02
Mg+2				0.2.1.02					1.042-02
Mn+2	1.69E-02	1.69E-02	1.53E-02	6.00E-03					1.14E-04
Mo+6	9.76E-04	9.76E-04		3.47E-04					1.05E-04
Na+1	1.59E+00	1.59E+00		5.66E-01					1.07E-02
Nb+5	8.07E-08	8.07E-08		2.87E-08					5.46E-10
Nd+3	3.81E-05			1.36E-05					2.56E-05
Ni+2	2.61E-03	2.61E-03	2.38E-03	9.30E-04					1.77E-05
NO3-1	6.67E+00	6.67E+00	6.06E+00	2.37E+00	1.00E-03		8.90E-04	8.90E-04	8.95E-02
OH-1									
Pb+2	1.08E-03	1.08E-03	9.80E-04	3.84E-04					5.71E-04
Pd+3		4:51E-06							3.05E-08
PO4-3	6.12E-03		5.56E-03						4.14E-05
Pr+3	1.06E-05	1.06E-05							7.15E-06
Ru+4	2.18E-05		1.98E-05	7.74E-06					1.47E-07
Se+4	1.52E-05		1.38E-05	5.40E-06					1.03E-07
Si+4									
Sn+4		4.21E-07		1.50E-07					2.85E-09
Sr+2	1.14E-05	1.14E-05	1.04E-05	4.06E-06					7.66E-06
SO4-2	4.99E-02	4.99E-02	4.53E-02	1.77E-02					3.37E-04
Zr+4	1.42E-02	1.42E-02	1.29E-02	5.06E-03					5.45E-03
UDS, g/l	3.10E+00	3.10E-01	2.82E-02	1.17E+02					2.10E-04
H2O	4.55E+01		4.62E+01	4.87E+01		3.33E+01	5.14E+01	5.14E+01	5.55E-02
Oxygen									
Others									
TOC	6.98E-01	6.98E-01	6.34E-01	2.48E-01					4.72E-03
		!							

Stream Number 115 120 121 125 131 132 133 134 200	Sodium Bearing Wa	ste		09/05/00		Activities d	ecayed to 1/	1/2008		Page 1b
Stream Name			120						134	
Note			Filtered	UNEX				3.3 M HF		
Volume or Rate 298 298 328 12.061 834 107 30 11 445									0.0	
Volume or Rate 298 328 328 12,061 834 107 30 11 445	;		02							00,10,11,10
Units	Volume or Rate		298	328	12 061	834	107	30	11	445
Clin										
Radionuclides	Office				11(010/11)	111010711	11010/11	111010/111	11013/11	incis/iii
Am-241 8.58E-05 8.58E-05 7.80E-05 3.05E-05 1.20E-05 2.05E-05 2.30E-05 Cm-242 3.14E-08 3.14E-08 3.22E-08 1.20E-08 2.20E-05 Cm-244 2.29E-06 2.29E-06 2.80E-08 1.12E-08 2.10E-0 Cm-244 2.29E-06 2.29E-06 1.20E-06 3.14E-07 1.53E-0 2.30E-0 Rp-237 3.47E-06 3.82E-06 1.30E-06 1.30E-06 2.30E-0 Rp-237 3.47E-06 3.82E-06 1.30E-06 0.23E-06 2.30E-0 Rp-238 5.99E-04 6.05E-04 5.50E-04 2.13E-04 4.02E-0 Rp-239 7.54E-05 7.61E-05 6.91E-05 2.68E-06 0.05E-04 1.23E-04 4.02E-0 Rp-239 7.54E-05 7.61E-05 6.91E-05 2.68E-06 0.05E-04 1.23E-04 4.02E-0 Rp-240 1.73E-05 1.76E-05 1.60E-05 6.47E-06 0.05E-04 1.28E-04 1.16E-0 Rp-241 3.61E-04 3.66E-04 3.32E-04 1.28E-04 0.05E-04 1.16E-0 Rp-241 3.61E-04 3.66E-04 3.32E-04 1.28E-04 0.05E-04 1.26E-0 Rp-241 3.61E-04 3.66E-04 3.32E-04 1.28E-04 0.05E-04 1.26E-0 Rp-242 2.00E-08 2.10E-08 1.91E-08 7.41E-09 1.40E-0 Rp-242 2.00E-09 2.10E-09 1.90E-09 7.77E-10 0.05E-04 1.26E-0 Rp-243 5.63E-1 5.30E-11 5.30E	Padionuclidos				Ci/liter	Ci/liter	Ci/liter	Ci/liter	Ci/liter	Cilliter
Am-243 3,54E-08 3,54E-08 3,22E-08 1,22E-08 2 Cm-242 3,14E-08 3,14E-08 2,25E-08 1,12E-09 2 Cm-244 2,29E-06 2,29E-06 2,08E-06 8,14E-07 1,5SE-0 Np-237 3,47E-06 3,82E-06 3,88E-06 1,23E-06 2,32E-06 2,32E-0 Np-237 3,47E-06 3,82E-06 3,88E-06 1,23E-06 2,32E-0 Pu-239 7,54E-05 7,61E-05 6,91E-05 2,68E-05 2,32E-0 Pu-239 7,54E-05 7,61E-05 6,91E-05 2,68E-05 5,0SE-0 Pu-240 1,73E-05 1,76E-05 1,60E-05 6,47E-06 5 1,61E-05 1,61E-05 6,47E-06 5 1,61E-05 6,47E-06 5 1,61E-05 1,61E-05 1,61E-05 6,47E-06 5 1,61E-05 1,61E-	S					Oiritei	Oiriitei	Officer	Cirilei	
Cm-242										
Cm-244										
Np-237 3.47E-06 3.82E-06 3.48E-06 1.23E-05 2.32E-05 4.02E-05										
Pu-238 5.99E-04 6.05E-04 5.50E-04 2.13E-04 4.02E-05 Pu-239 7.54E-05 7.61E-05 6.91E-05 2.68E-05 5.05E-0 Pu-240 1.73E-05 1.76E-05 1.06E-05 6.17E-06 1.16E-0 Pu-241 3.61E-04 3.68E-04 3.22E-04 1.28E-04 2.42E-0 Pu-242 2.08E-08 2.10E-08 1.91E-08 7.41E-09 1.40E-0 Th-230 1.25E-09 1.25E-09 1.25E-09 1.40E-0 7.77E-10 1.40E-0 U-232 2.18E-09 2.18E-09 1.98E-09 7.77E-10 1.46E-0 U-233 5.83E-11 5.83E-12 7.83E-12 7.83E-12 7.83E-12 7.83E-12										
Pu-239 7.54E-05 7.61E-05 2.68E-05 5.05E-0 Pu-240 1.73E-05 1.76E-05 1.60E-05 6.17E-06 1.16E-0 Pu-241 3.61E-04 3.32E-04 1.28E-04 2.42E-0 Pu-242 2.08E-08 2.10E-08 1.91E-08 7.41E-09 1.40E-0 Pu-232 1.28E-09 1.28E-09 1.48E-0 4.48E-10 8.38E-1 U-233 1.58E-09 1.28E-09 1.98E-09 7.77E-10 1.46E-0 U-233 5.88E-17 5.27E-07 8.42E-07 3.29E-07 1.46E-0 U-234 9.26E-07 9.27E-07 8.42E-07 3.29E-07 9.61E-0 U-235 2.60E-08 2.36E-08 9.24E-09 1.74E-0 U-238 1.59E-08 1.59E-08 1.45E-08 5.67E-09 1.77E-0 U-238 1.59E-08 1.59E-08 1.45E-08 5.67E-09 1.07E-0 Ba-137m 3.93E-02 3.94E-02 3.58E-02 1.40E-02 2.68E-0 Ce-144 1.23E-08										
Pu-240 1.73E-05 1.76E-05 1.60E-05 6.47E-06 1.16E-0 Pu-241 3.61E-04 3.63E-04 3.32E-04 1.28E-09 1.40E-0 Pu-242 2.08E-08 2.10E-08 1.91E-08 7.41E-09 1.40E-0 Th-230 1.25E-09 1.28E-09 1.98E-09 1.97E-10 8.38E-1 U-232 2.18E-09 2.18E-09 1.98E-09 1.77E-10 1.46E-0 U-233 5.83E-11 5.30E-11 5.30E-11 2.08E-11 3.91E-1 U-234 9.26E-07 9.27E-07 8.42E-07 3.29E-07 6.21E-0 U-235 2.60E-08 2.60E-08 2.60E-08 2.60E-08 9.26E-09 1.74E-0 U-236 4.83E-08 4.83E-08 1.39E-08 1.72E-08 3.23E-0 U-238 1.59E-08 1.59E-08 1.45E-08 5.67E-09 1.07E-0 Ba-137m 3.93E-02 3.94E-02 3.58E-02 1.40E-02 2.66E-0 Ce-144 1.23E-08 1.23E-08 1.49E-08 6.67E-09									<u> </u>	
Pu-241 3.61E-04 3.62E-04 1.28E-04 2.42E-0 Pu-242 2.08E-08 2.10E-08 1.91E-08 7.41E-09 1.40E-0 Th-230 1.25E-09 1.25E-09 1.14E-09 4.45E-10 8.38E-1 U-232 2.18E-09 2.18E-09 1.98E-09 7.77E-10 1.46E-0 U-233 5.83E-11 5.83E-11 5.30E-11 2.08E-11 3.91E-1 U-234 9.26E-07 9.27E-07 7.82E-07 3.29E-07 6.21E-0 U-235 2.60E-08 2.60E-08 2.36E-08 9.24E-09 1.74E-0 U-236 4.83E-08 4.83E-08 8.39E-08 1.75E-08 3.23E-0 U-238 1.59E-08 1.59E-08 1.45E-08 5.67E-09 1.07E-0 Ba-137m 3.93E-02 3.94E-02 3.58E-02 1.40E-02 2.66E-0 Ce-144 1.23E-08 1.23E-08 1.23E-08 1.25E-09 8.27E-0 Ce-144 1.23E-08 1.25E-09 8.48E-09 8.27E-0 Ce-144										
Fu-242 2.08E-08 2.10E-08 1.91E-08 7.41E-09 1.40E-0 1.40E-0 Th-230 1.25E-09 1.25E-09 1.45E-09 7.77E-10 1.46E-0 8.38E-1 U-232 2.18E-09 2.18E-09 1.98E-09 7.77E-10 1.46E-0 1.46E-0 U-233 5.83E-11 5.30E-11 2.08E-11 3.91E-1 3.91E-1 U-234 9.26E-07 9.27E-07 8.42E-07 3.29E-07 6.21E-0 U-235 2.60E-08 2.36E-08 9.24E-09 1.74E-0 U-236 4.83E-08 4.39E-08 1.72E-08 3.23E-0 U-238 1.59E-08 1.59E-08 1.67E-09 1.07E-0 Ba-137m 3.93E-02 3.94E-02 1.40E-02 2.66E-0 Ce-144 1.23E-08 1.23E-08 1.12E-08 4.38E-09 8.27E-0 Ce-144 1.23E-05 1.23E-08 1.49E-05 5.85E-06 1.61E-0 Cs-133 8.30E-07 7.55E-07 2.95E-07 2.95E-07 5.61E-0										
Th-230							<u> </u>			
U-232										
U-233									ļ	
U-234 9.26E-07 9.27E-07 8.42E-07 3.29E-07										
U-235										
U-236 4.83E-08 4.83E-08 4.39E-08 1.72E-08 3.23E-0 U-238 1.59E-08 1.59E-08 1.45E-08 5.67E-09 1.07E-0 Ba-137m 3.93E-02 3.94E-02 3.58E-02 1.40E-02 2.66E-0 Ce-1444 1.23E-08 1.23E-08 1.12E-08 4.38E-09 8.27E-0 Co-60 2.37E-05 2.26E-05 8.44E-06 1.61E-0 1.61E-0 Cs-1334 1.64E-05 1.49E-05 5.85E-06 1.11E-0 1.11E-0 Cs-137 4.17E-02 4.77E-02 3.79E-02 1.48E-02 2.28E-0 Eu-152 2.48E-06 2.24E-06 2.88E-06 2.25E-06 8.81E-07 Eu-1544 1.47E-04 1.47E-04 1.34E-04 5.23E-05 9.87E-0 Eu-155 7.14E-05 7.14E-05 6.50E-05 2.56E-05 9.87E-0 Pm-1447 7.46E-05 7.46E-05 1.71E-05 3.24E-0 Ru-106 4.92E-08 4.92E-08 1.75E-08 3.33E-1 Sb-125 <td></td>										
U-238										
Ba-137m 3.93E-02 3.94E-02 3.58E-02 1.40E-02 2.66E-0 Ce-144 1.23E-08 1.23E-08 1.12E-08 4.38E-09 8.27E-0 Co-60 2.37E-05 2.16E-05 8.44E-06 1.61E-0 Cs-134 1.64E-05 1.64E-05 1.49E-05 5.85E-06 1.11E-0 Cs-135 8.30E-07 8.30E-07 7.55E-07 2.95E-07 5.61E-0 Cs-137 4.17E-02 4.17E-02 3.79E-02 1.48E-02 2.28E-0 Eu-152 2.48E-06 2.25E-06 8.91E-07 1.66E-0 Eu-152 2.48E-04 2.25E-06 8.91E-07 1.66E-0 Eu-154 1.47E-04 1.47E-04 1.34E-04 5.23E-05 9.87E-0 Eu-155 7.14E-05 7.46E-05 6.50E-05 2.54E-05 9.87E-0 Pr-144 7.46E-05 7.46E-05 6.78E-05 2.56E-05 9.50E-0 Pr-144 1.63 4.79E-05 4.36E-05 1.71E-05 3.32E-0 Pr-144 1.62						·				3.23E-08
Ce-144 1.23E-08 1.23E-08 1.12E-08 4.38E-09 8.27E-0 Co-60 2.37E-05 2.37E-05 2.16E-05 8.44E-06 1.61E-0 Cs-134 1.64E-05 1.64E-05 1.49E-05 8.5E-06 1.11E-0 Cs-135 8.30E-07 8.30E-07 7.55E-07 2.95E-07 5.61E-0 Cs-137 4.17E-02 4.17E-02 3.79E-02 1.48E-02 2.82E-0 Eu-152 2.48E-06 2.25E-06 8.81E-07 1.66E-0 Eu-155 7.14E-05 7.14E-05 6.50E-05 9.87E-0 Eu-155 7.14E-05 7.14E-05 6.50E-05 9.87E-0 Pm-147 7.46E-05 7.46E-05 6.78E-05 2.58E-05 9.87E-0 Pr-144 Ni-63 4.79E-05 4.36E-05 1.71E-05 3.24E-0 Ru-106 4.92E-08 4.92E-08 1.75E-08 3.33E-0 Sh-125 5.93E-06 6.03E-06 5.48E-06 2.11E-06 3.34E-0 Sr-90 3.83E-02 3.83E-02	U-238	1.59E-08	1.59E-08	1.45E-08	5.67E-09				i	1.07E-08
Ce-144 1.23E-08 1.23E-08 1.12E-08 4.38E-09 8.27E-0 Co-60 2.37E-05 2.37E-05 2.16E-05 8.44E-06 1.61E-0 Cs-134 1.64E-05 1.64E-05 1.49E-05 8.5E-06 1.11E-0 Cs-135 8.30E-07 8.30E-07 7.55E-07 2.95E-07 5.61E-0 Cs-137 4.17E-02 4.17E-02 3.79E-02 1.48E-02 2.82E-0 Eu-152 2.48E-06 2.25E-06 8.81E-07 1.66E-0 Eu-155 7.14E-05 7.14E-05 6.50E-05 9.87E-0 Eu-155 7.14E-05 7.14E-05 6.50E-05 9.87E-0 Pm-147 7.46E-05 7.46E-05 6.78E-05 2.58E-05 9.87E-0 Pr-144 Ni-63 4.79E-05 4.36E-05 1.71E-05 3.24E-0 Ru-106 4.92E-08 4.92E-08 1.75E-08 3.33E-0 Sh-125 5.93E-06 6.03E-06 5.48E-06 2.11E-06 3.34E-0 Sr-90 3.83E-02 3.83E-02			l						l	
Co-60 2.37E-05 2.37E-05 2.16E-05 8.44E-06 1.61E-0 Cs-134 1.64E-05 1.64E-05 1.49E-05 5.85E-06 1.11E-0 Cs-135 8.30E-07 8.30E-07 7.55E-07 5.61E-0 5.61E-0 Cs-137 4.17E-02 4.7FE-02 3.79E-02 1.48E-02 2.28E-0 Eu-152 2.48E-06 2.28E-06 8.81E-07 1.66E-0 1.66E-0 Eu-154 1.47E-04 1.34E-04 5.23E-05 9.87E-0 1.66E-0 Eu-155 7.14E-05 7.14E-05 6.50E-05 2.54E-05 9.87E-0 Eu-155 7.14E-05 7.46E-05 6.78E-05 2.65E-05 9.87E-0 Pm-147 7.46E-05 7.46E-05 6.78E-05 2.65E-05 5.05E-0 Pr-1444 8.3E-02 4.79E-05 4.36E-05 1.71E-05 3.24E-0 Ru-106 4.92E-08 4.47E-08 1.75E-08 3.33E-1 3.33E-1 Sb-125 5.93E-06 6.08E-04 4.62E-04 1.81E-04 3.44E-0<	Ba-137m	3.93E-02			1.40E-02					2.66E-04
Cs-134 1.64E-05 1.64E-05 1.49E-05 5.85E-06 1.11E-0 Cs-135 8.30E-07 8.30E-07 7.55E-07 2.95E-07 5.61E-0 Cs-137 4.17E-02 4.17E-02 1.48E-02 2.82E-0 Eu-152 2.48E-06 2.48E-06 2.25E-06 8.81E-07 1.66E-0 Eu-154 1.47E-04 1.47E-04 1.34E-04 5.23E-05 9.87E-0 Eu-155 7.14E-05 6.50E-05 2.54E-05 4.80E-0 Pm-147 7.46E-05 7.46E-05 6.78E-05 2.65E-05 Pr-1444 1.74E-05 4.79E-05 4.36E-05 1.71E-05 Ru-106 4.92E-08 4.92E-08 1.75E-08 3.33E-1 Sb-125 5.93E-06 6.03E-06 5.48E-06 2.11E-06 4.01E-0 Sm-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 Tc-99 1.63E-05 1.76E-05 5.79E-06 1.09E-0 Y-90 3.83E-02 3.49E-02 1.36E-02 2.57E-0	Ce-144	1.23E-08	1.23E-08							8.27E-09
Cs-135 8.30E-07 8.30E-07 7.55E-07 2.95E-07 5.61E-0 Cs-137 4.17E-02 4.17E-02 3.79E-02 1.48E-02 2.82E-0 Eu-152 2.48E-06 2.48E-06 2.25E-06 8.81E-07 1.66E-0 Eu-154 1.47E-04 1.47E-04 1.34E-04 5.23E-05 9.87E-0 Eu-155 7.14E-05 7.14E-05 6.50E-05 2.5E-05 4.80E-0 Pm-147 7.46E-05 7.46E-05 6.78E-05 2.65E-05 5.05E-0 Pr-144 Ni-63 4.79E-05 4.36E-05 1.71E-05 3.24E-0 Ru-106 4.92E-08 4.92E-08 1.75E-08 3.33E-1 Sb-125 5.93E-06 6.03E-06 5.48E-06 2.11E-06 3.44E-0 Sm-151 5.08E-04 5.08E-04 1.81E-04 3.44E-0 Sr-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 Y-90 3.83E-02 3.83E-02 3.29E-06 1.29E-05 Y-90 3.83E-02 3.29E-05	Co-60	2.37E-05	2.37E-05	2.16E-05	8.44E-06					1.61E-07
Cs-137 4.17E-02 4.17E-02 3.79E-02 1.48E-02 2.82E-0 Eu-152 2.48E-06 2.48E-06 2.25E-06 8.81E-07 1.66E-0 Eu-154 1.47E-04 1.47E-04 1.34E-04 5.23E-05 9.87E-0 Eu-155 7.14E-05 7.14E-05 6.50E-05 2.54E-05 4.80E-0 Pm-147 7.46E-05 7.46E-05 6.78E-05 2.65E-05 5.05E-0 Pr-144 Ni-63 4.79E-05 4.79E-05 4.36E-05 1.71E-05 3.24E-0 Ru-106 4.92E-08 4.92E-08 4.47E-08 1.75E-08 3.33E-1 Sb-125 5.93E-06 6.03E-04 4.62E-04 1.81E-04 3.44E-0 Sr-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 Y-90 3.83E-02 3.56E-05 3.23E-05 1.27E-05 1.27E-05 H-3 3.56E-05 3.23E-05 1.27E-05 2.41E-0 Liquid only Mole/liter Mole/liter Mole/liter Mole/liter	Cs-134	1.64E-05	1.64E-05	1.49E-05	5.85E-06					1.11E-05
Eu-152 2.48E-06 2.48E-06 2.25E-06 8.81E-07 1.66E-0 Eu-154 1.47E-04 1.34E-04 5.23E-05 9.87E-0 Eu-155 7.14E-05 7.14E-05 6.50E-05 2.54E-05 4.80E-0 Pm-147 7.46E-05 7.46E-05 6.78E-05 2.65E-05 5.05E-0 Pr-1444 7.14E-05 4.79E-05 4.36E-05 1.71E-05 3.24E-0 Ru-106 4.92E-08 4.92E-08 4.47E-08 1.75E-08 3.33E-1 Sb-125 5.93E-06 6.03E-06 5.48E-06 2.11E-06 4.01E-0 Sm-151 5.08E-04 5.08E-04 4.62E-04 1.81E-04 3.44E-0 Sr-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 T-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 H-3 3.56E-05 3.23E-05 1.27E-05 2.41E-0 I-129 4.36E-07 3.97E-07 1.55E-07 2.95E-0 Liquid only Mole/liter <td>Cs-135</td> <td>8.30E-07</td> <td>8.30E-07</td> <td>7.55E-07</td> <td>2.95E-07</td> <td></td> <td></td> <td></td> <td></td> <td>5.61E-07</td>	Cs-135	8.30E-07	8.30E-07	7.55E-07	2.95E-07					5.61E-07
Eu-154 1.47E-04 1.34E-04 5.23E-05 9.87E-0 Eu-155 7.14E-05 7.14E-05 6.50E-05 2.54E-05 4.80E-0 Pm-147 7.46E-05 7.46E-05 6.78E-05 2.65E-05 5.05E-0 Pr-144 Ni-63 4.79E-05 4.36E-05 1.71E-05 3.24E-0 Ru-106 4.92E-08 4.92E-08 4.47E-08 1.75E-08 3.33E-1 Sb-125 5.93E-06 6.03E-06 5.48E-06 2.11E-06 4.01E-0 Sm-151 5.08E-04 5.08E-04 4.62E-04 1.81E-04 3.44E-0 Sr-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 Tc-99 1.63E-05 1.76E-05 1.60E-05 5.79E-06 1.09E-0 Y-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 H-3 3.56E-05 3.23E-05 1.27E-05 2.41E-0 Liquid only Mole/liter Mole/liter Mole/liter Mole/liter Mole/liter Am+4<	Cs-137	4.17E-02	4.17E-02	3.79E-02	1.48E-02					2.82E-02
Eu-154 1.47E-04 1.34E-04 5.23E-05 9.87E-0 Eu-155 7.14E-05 7.14E-05 6.50E-05 2.54E-05 4.80E-0 Pm-147 7.46E-05 7.46E-05 6.78E-05 2.65E-05 5.05E-0 Pr-144 Ni-63 4.79E-05 4.36E-05 1.71E-05 3.24E-0 Ru-106 4.92E-08 4.92E-08 4.47E-08 1.75E-08 3.33E-1 Sb-125 5.93E-06 6.03E-06 5.48E-06 2.11E-06 4.01E-0 Sm-151 5.08E-04 5.08E-04 4.62E-04 1.81E-04 3.44E-0 Sr-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 Tc-99 1.63E-05 1.76E-05 1.60E-05 5.79E-06 1.09E-0 Y-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 H-3 3.56E-05 3.23E-05 1.27E-05 2.41E-0 Liquid only Mole/liter Mole/liter Mole/liter Mole/liter Mole/liter Am+4<	Eu-152	2.48E-06	2.48E-06	2.25E-06	8.81E-07					1.66E-06
Eu-155 7.14E-05 7.14E-05 6.50E-05 2.54E-05 4.80E-05 Pm-147 7.46E-05 7.46E-05 6.78E-05 2.65E-05 5.05E-05 Pr-144 Ni-63 4.79E-05 4.36E-05 1.71E-05 3.24E-0 Ru-106 4.92E-08 4.92E-08 1.75E-08 3.33E-1 Sb-125 5.93E-06 6.03E-06 5.48E-06 2.11E-06 4.01E-0 Sm-151 5.08E-04 5.08E-04 4.62E-04 1.36E-02 3.44E-0 Sr-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 Tc-99 1.63E-05 1.76E-05 1.60E-05 5.79E-06 1.09E-0 Y-90 3.83E-02 3.83E-02 3.23E-05 1.27E-05 2.41E-0 H-3 3.56E-05 3.26E-05 3.23E-05 1.27E-05 2.41E-0 Liquid only Mole/liter Mole/liter Mole/liter Mole/liter Mole/liter Am+4 1.04E-07 1.04E-07 9.43E-08 3.69E-08 6.97E-0						i		ĺ		9.87E-05
Pm-147 7.46E-05 7.46E-05 2.65E-05 5.05E-05 Pr-144 Ni-63 4.79E-05 4.79E-05 4.36E-05 1.71E-05 3.24E-0 Ru-106 4.92E-08 4.92E-08 4.47E-08 1.75E-08 3.33E-1 Sb-125 5.93E-06 6.03E-06 5.48E-06 2.11E-06 4.01E-0 Sm-151 5.08E-04 5.08E-04 4.62E-04 1.81E-04 3.44E-0 Sr-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 Y-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 H-3 3.56E-05 3.23E-05 1.27E-05 2.41E-0 I-129 4.36E-07 4.36E-07 3.97E-07 1.55E-07 2.95E-0 Liquid only Mole/liter Mole/liter Mole/liter Mole/liter Mole/liter Am+4 1.04E-07 1.04E-07 9.43E-08 3.69E-08 6.97E-0 I 1.92E-05 1.74E-05 6.82E-06 1.30E-0 Np+4										4.80E-05
Pr-144 Ni-63 4.79E-05 4.36E-05 1.71E-05 3.24E-0 Ru-106 4.92E-08 4.92E-08 4.47E-08 1.75E-08 3.33E-1 Sb-125 5.93E-06 6.03E-06 5.48E-06 2.11E-06 4.01E-0 Sm-151 5.08E-04 5.08E-04 4.62E-04 1.81E-04 3.44E-0 Sr-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 Tc-99 1.63E-05 1.76E-05 1.60E-05 5.79E-06 1.09E-0 Y-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 H-3 3.56E-05 3.23E-05 1.27E-05 2.41E-0 I-129 4.36E-07 4.36E-07 3.97E-07 1.55E-07 2.95E-0 Liquid only Mole/liter Mole/liter Mole/liter Mole/liter Mole/liter Am+4 1.04E-07 1.04E-07 9.43E-08 3.69E-08 6.97E-0 I 1.92E-05 1.92E-05 1.74E-05 6.82E-06 1.39E-0										5.05E-07
Ni-63 4.79E-05 4.79E-05 4.36E-05 1.71E-05 3.24E-0 Ru-106 4.92E-08 4.47E-08 1.75E-08 3.33E-1 Sb-125 5.93E-06 6.03E-06 5.48E-06 2.11E-06 4.01E-0 Sm-151 5.08E-04 5.08E-04 4.62E-04 1.81E-04 3.44E-0 Sr-90 3.83E-02 3.49E-02 1.36E-02 2.57E-0 Tc-99 1.63E-05 1.76E-05 1.60E-05 5.79E-06 1.09E-0 Y-90 3.83E-02 3.49E-02 1.36E-02 2.57E-0 H-3 3.56E-05 3.23E-05 1.27E-05 2.41E-0 I-129 4.36E-07 4.36E-07 1.55E-07 2.95E-0 Liquid only Mole/liter Mole/liter Mole/liter Mole/liter Am+4 1.04E-07 1.04E-07 9.43E-08 3.69E-08 6.97E-0 I 1.92E-05 1.74E-05 6.82E-06 1.30E-0 Np+4 2.08E-05 2.08E-05 1.89E-05 7.38E-06 1.39E-0 Pu+4 5.57E-06 5.57E-06 5.07E-06 1.98E-06		1						İ		
Ru-106 4.92E-08 4.92E-08 4.47E-08 1.75E-08 3.33E-1 Sb-125 5.93E-06 6.03E-06 5.48E-06 2.11E-06 4.01E-0 Sm-151 5.08E-04 5.08E-04 1.81E-04 3.44E-0 Sr-90 3.83E-02 3.83E-02 1.36E-02 2.57E-0 Tc-99 1.63E-05 1.76E-05 1.60E-05 5.79E-06 1.09E-0 Y-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 H-3 3.56E-05 3.23E-05 1.27E-05 2.41E-0 I-129 4.36E-07 4.36E-07 3.97E-07 1.55E-07 2.95E-0 Liquid only Mole/liter Mole/liter Mole/liter Mole/liter Mole/liter Am+4 1.04E-07 1.04E-07 9.43E-08 3.69E-08 6.97E-0 I 1.92E-05 1.74E-05 6.82E-06 1.30E-0 Np+4 2.08E-05 2.08E-05 1.89E-05 7.38E-06 1.39E-0 Pu+4 5.57E-06 5.57E-06 5.07E-06 1.98E-06 6.49E-0 Tc+7 9.69E-06		4.79E-05	4.79E-05	4.36E-05	1.71E-05					3.24E-07
Sb-125 5.93E-06 6.03E-06 5.48E-06 2.11E-06 4.01E-0 Sm-151 5.08E-04 5.08E-04 4.62E-04 1.81E-04 3.44E-0 Sr-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 Tc-99 1.63E-05 1.76E-05 1.60E-05 5.79E-06 1.09E-0 Y-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 H-3 3.56E-05 3.23E-05 1.27E-05 2.41E-0 I-129 4.36E-07 4.36E-07 3.97E-07 1.55E-07 2.95E-0 Liquid only Mole/liter Mole/liter Mole/liter Mole/liter Mole/liter Am+4 1.04E-07 1.04E-07 9.43E-08 3.69E-08 6.97E-0 I 1.92E-05 1.74E-05 6.82E-06 1.30E-0 Np+4 2.08E-05 2.08E-05 7.38E-06 1.39E-0 Pu+4 5.57E-06 5.57E-06 5.07E-06 3.45E-06 3.45E-06 Tc+7 9.69E-06										3.33E-10
Sm-151 5.08E-04 5.08E-04 4.62E-04 1.81E-04 3.44E-0 Sr-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 Tc-99 1.63E-05 1.76E-05 1.60E-05 5.79E-06 1.09E-0 Y-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 H-3 3.56E-05 3.23E-05 1.27E-05 2.41E-0 I-129 4.36E-07 4.36E-07 3.97E-07 1.55E-07 2.95E-0 Liquid only Mole/liter Mole/liter Mole/liter Mole/liter Mole/liter Am+4 1.04E-07 1.04E-07 9.43E-08 3.69E-08 6.97E-0 I 1.92E-05 1.74E-05 6.82E-06 1.30E-0 Np+4 2.08E-05 2.08E-05 7.38E-06 1.39E-0 Pu+4 5.57E-06 5.57E-06 5.07E-06 3.45E-06 3.74E-0 Tc+7 9.69E-06 8.81E-06 3.45E-06 6.49E-0										4.01E-08
Sr-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 Tc-99 1.63E-05 1.76E-05 1.60E-05 5.79E-06 1.09E-0 Y-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 H-3 3.56E-05 3.56E-05 3.23E-05 1.27E-05 2.41E-0 I-129 4.36E-07 4.36E-07 3.97E-07 1.55E-07 2.95E-0 Liquid only Mole/liter Mole/liter Mole/liter Mole/liter Mole/liter Am+4 1.04E-07 1.04E-07 9.43E-08 3.69E-08 6.97E-0 I 1.92E-05 1.74E-05 6.82E-06 1.30E-0 Np+4 2.08E-05 2.08E-05 7.38E-06 1.39E-0 Pu+4 5.57E-06 5.57E-06 5.07E-06 3.45E-06 3.74E-0 Tc+7 9.69E-06 8.81E-06 3.45E-06 6.49E-0									ļ	
Tc-99 1.63E-05 1.76E-05 1.60E-05 5.79E-06 1.09E-0 Y-90 3.83E-02 3.83E-02 3.49E-02 1.36E-02 2.57E-0 H-3 3.56E-05 3.56E-05 3.23E-05 1.27E-05 2.41E-0 I-129 4.36E-07 4.36E-07 3.97E-07 1.55E-07 2.95E-0 Liquid only Mole/liter Mole/liter Mole/liter Mole/liter Mole/liter Am+4 1.04E-07 1.04E-07 9.43E-08 3.69E-08 6.97E-0 I 1.92E-05 1.74E-05 6.82E-06 1.30E-0 Np+4 2.08E-05 2.08E-05 1.89E-05 7.38E-06 1.39E-0 Pu+4 5.57E-06 5.57E-06 5.07E-06 3.45E-06 3.74E-0 Tc+7 9.69E-06 8.81E-06 3.45E-06 6.49E-0						 			 	
Y-90 3.83E-02 3.83E-02 1.36E-02 2.57E-0 H-3 3.56E-05 3.23E-05 1.27E-05 2.41E-0 I-129 4.36E-07 4.36E-07 1.55E-07 2.95E-0 Liquid only Mole/liter Mole/liter Mole/liter Mole/liter Am+4 1.04E-07 1.04E-07 9.43E-08 3.69E-08 6.97E-0 I 1.92E-05 1.74E-05 6.82E-06 1.30E-0 Np+4 2.08E-05 2.08E-05 7.38E-06 1.39E-0 Pu+4 5.57E-06 5.57E-06 5.07E-06 1.98E-06 Tc+7 9.69E-06 8.81E-06 3.45E-06 6.49E-0						 		<u> </u>		
H-3 3.56E-05 3.56E-05 3.23E-05 1.27E-05 2.41E-0 I-129 4.36E-07 4.36E-07 1.55E-07 2.95E-0 Liquid only Mole/liter Mole/liter Mole/liter Mole/liter Am+4 1.04E-07 1.04E-07 9.43E-08 3.69E-08 6.97E-0 I 1.92E-05 1.74E-05 6.82E-06 1.30E-0 Np+4 2.08E-05 2.08E-05 7.38E-06 1.39E-0 Pu+4 5.57E-06 5.57E-06 5.07E-06 1.98E-06 3.74E-0 Tc+7 9.69E-06 8.81E-06 3.45E-06 6.49E-0						 			 	
i-129 4.36E-07 4.36E-07 3.97E-07 1.55E-07 2.95E-0 Liquid only Mole/liter Mole/liter Mole/liter Mole/liter Mole/liter Am+4 1.04E-07 1.04E-07 9.43E-08 3.69E-08 6.97E-0 I 1.92E-05 1.92E-05 1.74E-05 6.82E-06 1.30E-0 Np+4 2.08E-05 2.08E-05 7.38E-06 1.39E-0 Pu+4 5.57E-06 5.57E-06 5.07E-06 1.98E-06 Tc+7 9.69E-06 8.81E-06 3.45E-06 6.49E-0									 	
Liquid only Mole/liter Mole/liter Mole/liter Mole/liter Mole/liter Am+4 1.04E-07 1.04E-07 9.43E-08 3.69E-08 6.97E-0 I 1.92E-05 1.74E-05 6.82E-06 1.30E-0 Np+4 2.08E-05 2.08E-05 7.38E-06 1.39E-0 Pu+4 5.57E-06 5.57E-06 5.07E-06 1.98E-06 Tc+7 9.69E-06 8.81E-06 3.45E-06 6.49E-0		<u> </u>				 			-	
Am+4 1.04E-07 1.04E-07 9.43E-08 3.69E-08 6.97E-0 I 1.92E-05 1.92E-05 1.74E-05 6.82E-06 1.30E-0 Np+4 2.08E-05 2.08E-05 1.89E-05 7.38E-06 1.39E-0 Pu+4 5.57E-06 5.57E-06 5.07E-06 1.98E-06 3.74E-0 Tc+7 9.69E-06 9.69E-06 8.81E-06 3.45E-06 6.49E-0	1-123	-4.50E-01	4.50E-01	J.31 E-01	1.00E-07	 				2.335-03
Am+4 1.04E-07 1.04E-07 9.43E-08 3.69E-08 6.97E-0 I 1.92E-05 1.92E-05 1.74E-05 6.82E-06 1.30E-0 Np+4 2.08E-05 2.08E-05 1.89E-05 7.38E-06 1.39E-0 Pu+4 5.57E-06 5.57E-06 5.07E-06 1.98E-06 3.74E-0 Tc+7 9.69E-06 9.69E-06 8.81E-06 3.45E-06 6.49E-0	l iquid only	Moleditor	Molerlites	Moleritor	Molo/lito-	 	 	 	 	Mole/liter
I 1.92E-05 1.74E-05 6.82E-06 1.30E-0 Np+4 2.08E-05 2.08E-05 1.89E-05 7.38E-06 1.39E-0 Pu+4 5.57E-06 5.57E-06 5.07E-06 1.98E-06 3.74E-0 Tc+7 9.69E-06 9.69E-06 8.81E-06 3.45E-06 6.49E-0									 	
Np+4 2.08E-05 2.08E-05 1.89E-05 7.38E-06 1.39E-06 Pu+4 5.57E-06 5.57E-06 5.07E-06 1.98E-06 3.74E-06 Tc+7 9.69E-06 9.69E-06 8.81E-06 3.45E-06 6.49E-06	MIIT4					-		 	 	
Pu+4 5.57E-06 5.57E-06 5.07E-06 1.98E-06 3.74E-0 Tc+7 9.69E-06 9.69E-06 8.81E-06 3.45E-06 6.49E-0	Nm.1.4					 		 	 	
Tc+7 9.69E-06 9.69E-06 8.81E-06 3.45E-06 6.49E-0						-		 	 	
									 	
U+4 2.54E-U4 2.54E-U4 2.51E-U4 9.U4E-U5 1.70E-U						ļ	 			1
	U+4	2.54E-04	2.54E-04	2.31E-04	9.04E-05		ļ			1./UE-U4
		ļ	 		<u> </u>		 		ļ	ļ <u> </u>
		ļ	ļ		ļ		 			ļ
				ļ	ļ		<u> </u>	<u> </u>		
]			ļ					
								1		
				<u> </u>	<u></u>					<u> </u>

Sodium Bearing Wa	ste		09/05/00						Page 1c
Stream Number	115	120	121	125	125	125	125	l	200
Stream Name	Sodium	Filtered	UNEX	UDS	UDS	UDS	UDS	i	UNEX
	Bearing Waste	SBW	Feed	Return	Return	Return	Return	,	Solvent to
Volume or Rate	298	298	328	12,061	12,061	12,061	12,061		445
Units	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr		liters/hr
					Solids Con	position			
Other Species	Mole/liter	Mole/liter	Mole/liter		Wt frac		Ci/kg		Mole/liter
Ac+3	3.35E-15	3.35E-15	3.04E-15	Al+3	1.80E-02	Am-241		Ac+3	2.27E-17
At	6.67E-28	6.67E-28	6.06E-28	B+3	2.99E-02	Np-237		At	4.51E-30
Be+2	2.11E-11	2.11E-11	1.92E-11	Ca+2	9.10E-03	Pu-238		Be+2	1.43E-13
Bi+3	1.48E-17	1.48E-17	1.35E-17	Cd+2	1.62E-03	Pu-239		Bi+3	1.00E-19
Br-1	3.88E-07	3.88E-07	3.53E-07	CI-1	2.72E-02	Pu-240		Br-1	2.63E-09
C+4				Cr+3	2.30E-03	Pu-241		C+4	
Cf+3	2.19E-20	2.19E-20	1.99E-20	Cu+2	1.62E-03	Pu-242		Cf+3	1.47E-20
Cm+3	1.05E-10	1.05E-10	9.57E-11	F-1	2.66E-02	U-234	3.09E-06	Cm+3	7.06E-11
Cu+2				Fe+3	2.49E-02	U-235	7.76E-08	Cu+2	
Dy+3	8.00E-10	8.00E-10	7.27E-10	Hg+2	5.88E-03	U-236	3.49E-08	Dy+3	5.41E-12
Er+3	1.32E-11	1.32E-11	1.20E-11	K+1	1.60E-02	U-238	1.50E-08	Er+3	8.90E-14
Eu+3	6.51E-07	6.51E-07	5.92E-07	Li+1	1.62E-03			Eu+3	4.38E-07
Fr+1	8.97E-23	8.97E-23	8.15E-23	Mg+2	1.62E-02	Ba-137m		Fr+1	6.07E-25
Ga+3	2.44E-14	2.44E-14	2.22E-14	Mn+2	3.89E-03	Ce-144		Ga+3	1.65E-16
Gd+3	3.31E-07	3.31E-07	3.01E-07	Mo+6	1.62E-02	Co-60		Gd+3	2.24E-09
Ge+2	1.13E-08	1.13E-08	1.03E-08	Na+1	4.35E-02	Cs-134		Ge+2	7.64E-11
Ho+3	3.40E-11	3.40E-11	3.09E-11	Nb+5	1.55E-03	Cs-137	1.12E-01	Ho+3	2.30E-13
In+3	1.74E-08	1.74E-08	1.58E-08	Ni+2	1.46E-02	Eu-154		In+3	1.18E-10
La+3	1.15E-05	1.15E-05	1.05E-05	Pb+2	1.62E-03	Eu-155	2.03E-04	La+3	7.80E-08
Li+1	5.04E-11	5.04E-11	4.58E-11	Pd+3	9.69E-04	Ru-106		Li+1	3.41E-13
Pa+4	9.09E-12	9.09E-12	8.26E-12	PO4-3	1.35E-01	Sb-125		Pa+4	6.15E-14
Pm+3	4.55E-10	4.55E-10	4.14E-10	Rh+3	1.62E-03	Sr-90	1.19E-01	Pm+3	3.08E-12
Po+2	5.26E-18	5.26E-18	4.78E-18	Ru+4	1.62E-02	Tc-99		Po+2	3.56E-20
Ra	5.75E-14	5.75E-14	5.23E-14	Si+4	4.09E-02	Y-90		Ra	3.89E-16
Rb+3	7.02E-06	7.02E-06	6.38E-06	Sn+4	8.08E-03	I-129	9.57E-04	Rb+3	4.75E-08
Rh+3	4.66E-06	4.66E-06	4.24E-06	SO4-2	1.48E-01		<u> </u>	Rh+3	3.16E-08
Sb+4	8,21E-08	8.21E-08	7.47E-08	Ti+4	1.62E-03			Sb+4	5.56E-10
Sm+3	7.32E-06	7.32E-06	6.65E-06	Zn+2	1.62E-03	Tot TRU	2.37E-02	Sm+3	4.95E-08
Tb+3	2.71E-09	2.71E-09	2.46E-09	Zr+4	1.39E-01			Tb+3	1.83E-11
Te+4	3.68E-06	3.68E-06	3.35E-06	H2O	7.12E-02			Te+4	2.49E-08
Th+4	2.63E-10	2.63E-10	2.39E-10	0	1.74E-01			Th+4	1.76E-10
Ti+4	0.055.00	0.055.00	0.005.00					Ti+4	1045.00
TI+3		6.85E-20					ļ	TI+3	4.64E-22
Tm+3		6.51E-15						Tm+3	4.41E-17
Y+3		8.76E-06 1.10E-15				<u> </u>		Y+3	5.93E-08
Yb+3	1.10E-15	1.10E-15	9.985-16			ļ	ļ	Yb+3	
Zn+2		ļ				<u> </u>		Zn+2	
		<u> </u>				<u> </u>		ļ	
			<u> </u>		 				-
					 	ļ. <u></u>		 	
	 		 		 	! !	 	 	
					-	<u> </u>	 		
	 	 			1	 	 		
					 		 	 	
		 							-
		 	ļ		 	ļ	-	1	
		 			 	 		-	
<u> </u>	L	<u> </u>	<u> </u>	!	1	<u> </u>	<u> </u>	1	<u> </u>

Sodium Bearing Wa	aste	09/05/00	· · · · · · · · · · · · · · · · · · ·	Rates base	d on 3 vea	rs operation	ı time		<u> </u>	Page 2a
PFD-SBW-	202	202	202	202	202	202	202	202	202	202
Stream Number	201	202	205	206	208	209	210	216	217	220
Stream Name	UNEX	UNEX	UNEX	UNEX	Scrub	Strip	Strip	Scrub	Extraction	Raffinate
	Solvent to		Solvent	Solvent to	Feed	Feed	Effluent	Effluent	Aqueous	ramac
	Strip	Wash	Make-up	Extraction					Feed	
Volume or Rate	445	445	0.58	445	117	148	148	117	445	445
Units	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr
Hours per day	24	24	24	24	24	24	24	24	24	24
Days per year	200	200	200	200	200	200	200	200	200	200
Specific Gravity	1.42	1.42	1.42	1.42	1.01	1.01	1.02	1.02	1.22	1.21
Temperature, C	25	25	25	25	25	25	25	25	25	25
Pressure, kPa	100	100	100	100	100	100	100	100	100	100
Liquid Composition	Mole/liter		Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter
Ag+1	3.01E-10	1.91E-22		1.91E-22					2.17E-05	2.14E-05
Al+3	5.05E-04	1.73E-04		1.73E-04	5.00E-02		9.97E-04	6.44E-02	4.29E-01	4.25E-01
As+3	5.35E-10	3.41E-22		3.40E-22					3.86E-05	3.82E-05
B+3	1.93E-07	1.23E-19		1.23E-19					1.39E-02	
Ba+2	3.46E-05			2.43E-06					4.47E-05	
Ca+2	1.94E-03	1.09E-06		1.09E-06					3.99E-02	
Cd+2	4.95E-08	3.14E-20		3.14E-20						3.52E-03
Ce+4	1.53E-05	2.55E-23		2.55E-23				1.54E-07	1.53E-05	3.39E-12
CI-1	7.27E-06	4.62E-18		4.62E-18	7.02E-04		2.18E-05	1.39E-03	1.88E-02	1.86E-02
CO3-2						2.50E-01	2.43E-01			
Cr+3	4.98E-08	3.17E-20		3.16E-20						
Cs+1	5.93E-06			3.33E-09				1.93E-07	5.98E-06	
F-1	3.00E-03				3.00E-01					3.63E-01
Fe+3	5.94E-04	1.23E-04		1.23E-04			1.41E-03	6.09E-05		1.48E-02
H+1	4.04E-03	9.50E-06		9.49E-06	4.01E-01	9.50E-04		4.73E-01		
Hg+2	5.64E-06	3.96E-07		3.96E-07				5.79E-07	1.93E-03	1.93E-03
K+1	1.60E-02	1.09E-04		1.08E-04			4.77E-02	1.64E-03	1.17E-01	1.01E-01
Mg+2	4.505.07	4.045.40		4.045.40			4 705 07	4.00= 04	4 4 5 00	4.405.00
Mn+2 Mo+6	1.59E-07	1.01E-19 6.44E-05		1.01E-19 6.44E-05				4.33E-04		1.13E-02
Na+1	1.02E-04 1.04E-02	2.14E-03			·				6.57E-04	
Nb+5	7.59E-13			2.14E-03 4.82E-25					1.07E+00	
Nd+3	2.56E-05	4.03E-23		4.02E-23			7.67E-05		5.46E-08	
Ni+2	2.46E-08	1.56E-20		1.56E-20				6.71E-05	2.56E-05 1.77E-03	
NO3-1	5.37E-02	3.57E-03			2.51E-01	9.50E-04		3.87E-01	4.57E+00	1.75E-03 4.48E+00
OH-1	0.01 L-02	3.57 L-03		3.50L-05	2.011-01	3.30L-04	1.512-01	3.07 = 01	4.37 E +00	4.40E+00
Pb+2	5.56F-04	6.97E-06		6.97E-06			1.65E_03	5.71E-05	7.37E-04	1 73E-04
Pd+3		2.70E-23		2.69E-23					3.05E-06	
PO4-3		3.66E-20		3.66E-20					4.14E-03	
Pr+3		1.19E-23		1.19E-23					7.15E-06	
Ru+4	2.05E-10			1.30E-22					1.47E-05	
Se+4	1.43E-10	9.08E-23		9.07E-23					1.03E-05	
Si+4										
Sn+4	3.96E-12	2.52E-24		2.52E-24			1.19E-11	1.08E-08	2.85E-07	2.82E-07
Sr+2	7.65E-06	2.25E-17		2.25E-17					7.65E-06	
SO4-2	4.69E-07	2.98E-19		2.98E-19					3.37E-02	
Zr+4	4.09E-03	2.30E-06		2.29E-06			1.23E-02	5.16E-03	1.09E-02	5.45E-03
UDS, g/l	2.91E-07			1.85E-19			8.73E-07	7.95E-04	2.10E-02	2.07E-02
H2O	5.55E-02	5.55E-02		5.55E-02	5.49E+01	5.50E+01	5.50E+01	5.49E+01	4.85E+01	4.85E+01
Oxygen										
DTPA		2.54E-04		2.54E-04					2.53E-32	
Guanidine+1	6.92E-34	5.00E-03		5.00E-03		5.00E-01			4.97E-31	
UNEX solvent, g/lit	er						1.00E+00	1.00E+00	2.63E-01	1.00E+00
				<u> </u>						
		_		L	L				l	

Sodium Bearing	Waste	09/05/00		Activities de	ecaved to 1	/1/2008				Page 2b
Stream Number	201	202	205	206	208	209	210	216	217	220
Stream Name	UNEX	UNEX	UNEX	UNEX	Scrub	Strip	Strip	Scrub	Extraction	Raffinate
		Solvent to	Solvent	Solvent to	Feed	Feed	Effluent	Effluent	Aqueous	
	Strip	Wash	Make-up	Extraction					Feed	
Volume or Rate	445	445	0.6	445	117	148	148	117	445	445
Units	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr
O.M.O	- INCOCOTO		ii.toroitii			11.0.0.11.	incoro, in	110101111	(w/ UDS)	(w/ UDS)
Radionuclides	Ci/liter	Ci/liter	Ci/liter	Ci/liter	Ci/liter	Ci/liter	Ci/liter	Ci/liter	Ci/liter	Ci/liter
Am-241	5.75E-05	- Cirillo:	0,,,,,,,,	- Ouritor	O.J.II.CO.	Ou inter	1.73E-04	5.77E-07	5.76E-05	2.34E-11
Am-243	2.37E-08							2.38E-10		5.26E-15
Cm-242	2.10E-08	5.75E-19		5.74E-19			6.31E-08	1.10E-11		6.35E-20
Cm-244	1.53E-06	4.19E-17		4.18E-17			4.60E-06	7.98E-10		4.63E-18
Np-237	2.32E-06	6.35E-17		6.34E-17					2.56E-06	2.39E-07
Pu-238	4.02E-04	0.33E-17		0.34E-17				2.09E-07		4.06E-06
Pu-239	5.05E-05								5.10E-05	4.68E-07
Pu-240	1.16E-05						3.48E-05	6.05E-09		1.50E-07
Pu-241	2.42E-04						7.26E-04		2.45E-04	3.07E-06
Pu-242	1.40E-08	ļ	·	<u> </u>					1.41E-08	1.19E-10
Th-230	8.38E-10		<u> </u>				2.51E-09	4.36E-13		2.53E-21
U-232	1.46E-09						4.39E-09	7.62E-13		4.42E-21
U-233	3.91E-11	<u> </u>					1.17E-10	2.04E-14		1.18E-22
U-234	6.21E-07	1.69E-17		1.69E-17					6.21E-07	6.40E-10
U-235	1.74E-08	4.75E-19		4.75E-19				9.07E-12		1.61E-11
U-236	3.23E-08	8.83E-19		8.82E-19			9.70E-08	1.68E-11	3.23E-08	7.24E-12
U-238	1.07E-08	2.92E-19		2.91E-19			3.20E-08	5.56E-12	1.07E-08	3.11E-12
							7.91E-02	8.60E-04	2.66E-02	3.30E-05
Ce-144	8.25E-09						2.48E-08	8.27E-11	8.27E-09	2.47E-15
Co-60	2.23E-10		-,		<u> </u>		6.69E-10	6.09E-07	1.61E-05	1.59E-05
Cs-134	1.10E-05	6.19E-09		6.18E-09				3.59E-07	1.11E-05	6.00E-09
Cs-135	5.57E-07	3.13E-10		3.12E-10					5.61E-07	2.31E-10
Cs-137	2.80E-02	1.57E-05		1.57E-05			8.38E-02	9.11E-04		3.49E-05
Eu-152	1.66E-06								1.66E-06	3.68E-13
Eu-154	9.85E-05	 					2.95E-04	9.87E-07		3.37E-07
Eu-155	4.79E-05	 						4.80E-07		4.21E-08
Pm-147	7.01E-10				 		2.10E-09	1.92E-06		5.00E-05
Pr-144	7.012.0						202 00	1.022 00	0.002 00	0.001 00
Ni-63	4.51E-10				 		1.35E-09	1 235-06	3.24E-05	3.21E-05
Ru-106	4.62E-13			 			1.39E-12	1.26E-09		3.29E-08
Sb-125	5.57E-11	 		 	 				4.08E-06	4.04E-06
· · · ·	4.78E-09			 						
Sm-151 Sr-90	2.57E-02	7.56E-14		7.55E-14	 				3.44E-04 2.57E-02	
Tc-99	1.06E-07			7.19E-10	 				1.18E-05	
				7.19E-10 7.55E-14	 				1.18E-05 2.57E-02	
Y-90	2.57E-02	7.56E-14		1.00E-14	 					
H-3	3.34E-10			 	 				2.41E-05	
1-129	4.10E-12			<u> </u>			1.23E-11	1.12E-08	2.95E-07	2.92E-07
0 200.20 0000	B. 8 - 1 - 111	Adala nu	Name of the	Male Mis-	Male "!!	Mala mis	Name of the	B.4 = 1 = 10° L :	Male mis-	NA-1- Pre-
Liquid only	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter			Mole/liter	Mole/liter
Am+4	6.95E-08			<u> </u>	<u> </u>				6.97E-08	1.54E-14
1	1.80E-10				L				1.30E-05	1.28E-05
Np+4	1.39E-05	3.80E-16		3.80E-16	ļ				1.39E-05	4.20E-17
Pu+4	3.74E-06			<u> </u>					3.73E-06	
Tc+7	6.32E-08			4.29E-10	<u> </u>				6.49E-06	6.43E-06
U+4	1.70E-04	4.65E-15		4.65E-15	L		5.11E-04	8.87E-08	1.70E-04	5.14E-16
					<u> </u>					

Sodium Possine V	No. to	00/05/00		<u> </u>				<u> </u>		Dago Co
Sodium Bearing V	va∷te 201	09/05/00 202	205	206	208	209	240	246	217	Page 2c 220
Stream Number				206			210 Strin	216		
Stream Name	UNEX	UNEX	UNEX	UNEX	Scrub	Strip	Strip	Scrub	Extraction	Raffinate
	Solvent to	Solvent to	Solvent	Solvent to	Feed	Feed	Effluent	Effluent	Aqueous	
Volume or Rate	445	445	0.6	445	117	148	148	117	445	445
Units	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr
Office	ii(CIS/III	ille15/11	inters/iii	11(613/11)	IIICI 3/III	1/10/3/11	111013/111	11(013/11)	nters/III	ii(e)3/iii
Other Species	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter
Ac+3	1	o.o.					10.0.0	8.60E-17	2.27E-15	2.24E-15
At				<u> </u>						
Be+2	1.98E-16						5.95F-16	5.42E-13	1.43E-11	1.41E-11
Bi+3	1.002 .0						0.002 .0	3.81E-19		9.94E-18
Br-1	3.65E-12						1.09F-11		2.63E-07	2.60E-07
C+4	0.002 .2			<u> </u>		 		0.000		
Cf+"				-						
Cm- 3	7.06E-11					 	2 12F-10	3.68E-14	7.05E-11	
Cu+2	1.002-11							3.002 14		
Dy+3	7.52E-15						2 26F-14	2 05F-11	5.41E-10	5.36E-10
Er+3	1.24E-16					-			8.90E-12	8.81E-12
Eu+3	4.37E-07				 	 		4.38E-09	4.38E-07	9.67E-12
Fr+1	4.31E-01	 		ļ	 		1.012-00	7.000-09	→.30⊑-0/	3.01 E-14
Ga+3	2.29E-19			 	 	 	6 90E 10	6 265 46	1.65E-14	1.63E-14
				<u></u>						1.63E-14 2.22E-07
Gd+3	3.11E-12	ļ			 	ļ		8.49E-09		
Ge+2	1.06E-13				 	 			7.64E-09	7.57E-09
Ho+3	3.19E-16	 			 	 		8.72E-13		2.28E-11
In+3	1.64E-13	ļ		ļ		 			1.18E-08	1.17E-08
La+3	1.08E-10	ļ		ļ	ļ	ļ		2.96E-07	7.80E-06	7.72E-06
Li+1	4.74E-16	ļ		ļ	ļ	ļ		1.30E-12	3.41E-11	3.38E-11
Pa+4	8.55E-17	ļ				<u> </u>		2.33E-13		6.09E-12
Pm+3	4.28E-15			ļ			1.28E-14	1.17E-11		3.05E-10
Po+2	1	<u> </u>					4.005.45	1.35E-19		3.53E-18
Ra	5.41E-19	ļ		ļ	<u> </u>	ļ	1.62E-18		3.89E-14	3.85E-14
5+3	6.60E-11	<u> </u>			ļ	<u> </u>	1.98E-10		4.75E-06	4.70E-06
i:(n+3	4.39E-11	<u> </u>				<u> </u>	1.32E-10			3.13E-06
Sb+4	7.72E-13							2.11E-09		5.50E-08
Sm+3	6.88E-11						2.06E-10	1.88E-07	4.95E-06	4.90E-06
b+3	2.54E-14	ļ			ļ	<u> </u>	7.63E-14		1.83E-09	1.81E-09
£e+4	3.46E-11								2.49E-06	2.47E-06
Th+4	1.76E-10	<u></u>		ļ			5.29E-10	9.18E-14	1.76E-10	
Ti+4										
TI+3										
Tm+3							1.84E-19	1.67E-16	4.41E-15	4.36E-15
Y+3	8.24E-11						2.47E-10		5.93E-06	
Yb+3								2.82E-17	7.43E-16	7.36E-16
Zn+2										
!										
ì										
		1	ľ						I	
			<u> </u>				1			
	 						1		 	
						i		 	 	
	-					 	 	 	 	
		 		<u> </u>	 	 	İ			
	1 .		L .	<u> </u>	ــــــــــــــــــــــــــــــــــــــ				1	L

Sodium Bearing W	aste	09/05/00		Rates base	d on 3 vears	s operating	time			Page 3
PFD-SBW-	202	202	202	202	202	202	202	202	202	202
Stream Number	230	231	232	233	234	235	236	237	238	239
Stream Name	50%	Scrub	Scrub	Guanidine	DTPA	Strip	FS-13	CMPO	PEG-	Chlor.
	Aluminum	Make-up	Make-up	Carbonate		Make-up		J J	400	Cobalt
	Nitrate	Water	Acid	Guizonalo		Water			700	Dicarbol.
Volume or Rate	1.5	86.4	2.9	6.7	1.3	140.9	11,942	100	821	509
Units	liters/hr	liters/hr	liters/hr	kg/hr	liters/hr	liters/hr	liters	kg	liters	kg
Hours per day	24	24	24	24	24	24			cals include	Ky
		200	200	200	200	200				
Days per year	200								f 12 hrs circii	
Specific Gravity	1.54	1.00	1.13	0.58	1.10	1.00	1.41	???	1.10	???
Temperature, C	25	25	25	25	25	25	25	25	25	25
Pressure, kPa	100	100	100	100	100	100	100	100	100	100
		2.2.4.4								
Liquid Composition	Mole/liter	Mole/liter	Mole/liter	Wt frac	Mole/liter	Mole/liter	Wt frac	Wt frac	Wt frac	Wt frac
Al+3	4.00E+00									
CI-1			2.81E-02							
F-1			1.09E-01							
H+1		1.00E-03	4.14E+00			1.00E-03				
NO3-1	1.20E+01		4.00E+00			1.00E-03				
DTPA					2.80E+00					
Guanidine Carbon	afe			1.00E+00						
FS-13					-		1.00E+00			
CMPO							1.002.00	1.00E+00		
PEG-400								1.002+00	1.00E+00	
ChCoDiC									1.00E+00	4.005.00
CIICODIC										1.00E+00
1100	4.705:04	E EEE : 04		5 505 104		F FFF : 04				
H2O	4.72E+01	5.55E+01		5.58E+01		5.55E+01				
										,
					i					
						I				
							l			
							<u> </u>			
						 			-	
				·		 				
						 	 	 		
				i		 	 			
						 				
								ļ		
		 				 	 	ļ		
<u> </u>										
						 	ļ			ļ
						<u> </u>	<u> </u>	ļ		
		ļ				ļ	<u> </u>	<u> </u>		
								<u> </u>		
				ļ		<u> </u>				
				<u> </u>		L			l	
					··					

Sodium Bearing W	aste	9/5/00			Rates base	d on 3 vea	rs operatio	n time		Page 4a
PFD-SBW-	203	203	204	204	204	204	204	204	204	204
Stream Number	306	320	401	402	403	404	405	410	412	413
	UNEX Stri	Dried	LAW	LAW	LAW	Recov'd	Fraction-	Total	Excess	Excess
	Evaporator		Evap.	Evap.	Evap.	HNO3	ator	Recycle	Water Vap	Acid to
	Cond.	Waste	Feed	Bottoms	Overhead	1	Ovhd	Water	to Stack	Grouting
Volume or Rate	147	11	593	246	352	7.5	345	267	97.3	5
Units	liters/hr	kg/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	sm3/hr	liters/hr
Hours per day	24	24	24	24	24	24	24	24	24	24
Days per year	200	200	200	200	200	200	200	200	200	200
Specific Gravity	1.00	0.58	1.16	1.35	1.00	1.13	1.00	1.00	200	1.13
Temperature, C	1.00	0.00	25	0	1.00	1.13	1.00	25		25
Pressure, kPa	100	100	100	100	100	100	100	100		100
r ressure, ki a	100	100	700	100	100	100	100	100		100
Composition	Mole/liter	Wt frac	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Molo/litor	Mole/liter	Mala for a	Mala Cita
Ag+1	Mole/liter		1.61E-05		Mole/liter	iviole/illei	Molevitei	woie/iiter	Mole frac	Mole/liter
Al+3			3.19E-01							
As+3										
B+3			2.87E-05 1.03E-02							
Ba+2										
			8.79E-06							
Ca+2			2.85E-02	6.85E-02						
Cd+2			2.65E-03							
Ce+4			2.55E-12	6.13E-12						
CI-1			1.40E-02	3.28E-02	5.91E-04	2.79E-02				2.79E-02
CO3-2		1.88E-01								
Cr+3			2.67E-03							
Cs+1			1.85E-09							
F-1			2.73E-01		2.30E-03	1.08E-01				1.08E-01
Fe+3			1.11E-02							
H+1	5.99E-06		1.71E+00			4.14E+00	1.00E-03	1.00E-03		4.14E+00
Hg+2			1.45E-03	3.48E-03	1.28E-10					
K+1		2.42E-02	7.60E-02	1.83E-01						
Mg+2										
Mn+2			8.49E-03							
Mo+6		1.41E-04	4.63E-04	1.11E-03						
Na+1	-	7.35E-03	7.94E-01	1.91E+00						
Nb+5		2.74E-12	4.07E-08	9.77E-08						
Nd+3		1.00E-04	4.26E-12	1.02E-11						
Ni+2		5.60E-08	1.32E-03							
NO3-1	5.99E-06		3.37E+00		8.56E-02	4.00E+00	1.00E-03	1.00E-03		4.00E+00
OH-1										
Pb+2		4.42E-03	1.30E-04	3.13E-04						
Pd+3			2.27E-06							
PO4-3			3.08E-03						·	
Pr+3			1.19E-12							
Ru+4			1.10E-05							
Se+4			7.65E-06					-		
Si+4										
Sn+4		1.83F-11	2.12E-07	5.10E-07						
Sr+2			9.32E-11							
SO4-2			2.51E-02			<u> </u>	<u> </u>			
Zr+4			4.10E-03					ļ		
UDS, g/I			1.56E-02		-					<u> </u>
H2O	5.55E+01		5.02E+01		5.54E+01	4 92E+04	E EEE . O.	4 000 - 04	4.005.00	4 005 :04
	J.JJ⊏+U1	1.00⊏-01	J.UZE*U1	4.10=+01	0.04E#UT	4.03E+U1	o.oo⊑+01	4.03E+U1	1.00E+00	4.83E+01
Oxygen Crystallization add	itives							ļ		
DTPA	HUVES	1 265 04	1.015.04	4 505 04						
			1.91E-04							
Guanidine+1			3.75E-03							
UNEX solvent, g/lit			7.52E-01							
Other organic, g/lit	er	2.03E-02	3.63E-01	8.74E-01						

Sodium Bearing \	Waste		9/5/00							Page 4b
Stream Number	306	320	401	402	403	404	405	410	412	413
Stream Name	UNEX Stri	Dried	LAW	LAW	LAW	Recov'd		Total	Excess	Excess
	Evaporator		Evap.	Evap.	Evap.	HNO3	ator	Recycle	Water Vap	Acid to
	Cond.	Waste	Feed	Bottoms	Overhead		Ovhd	Water	to Stack	Grouting
Volume or Rate	147	11	593	246	352	7	345	267	97	5
Units	liters/hr	kg/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	sm3/hr	liters/hr

Radionuclides	Ci/liter	Ci/kg	Ci/liter	Ci/liter						
Am-241			1.76E-11							
Am-243			3.95E-15							
Cm-242	1	8.18E-07	4.78E-20	1.15E-19	i		-			
Cm-244			3.48E-18							
Np-237	<u> </u>		1.80E-07							
Pu-238	- 		3.05E-06							
Pu-239	-i		3.52E-07			_ _				
Pu-240 ·	- 		1.13E-07							
Pu-241			2.31E-06							
Pu-242			8.95E-11	2.15E-10						
Th-230		3.26E-08		4.57E-21						
U-232		5.68E-08		7.98E-21						
U-233	1	1.52E-09		2.13E-22					<u> </u>	
U-234			4.81E-10							
U-235			1.21E-11							
U-236	<u> </u>		5.44E-12		i					
U-238			2.33E-12							
	1									
Ba-137m		1.02E+00	2.48E-05	5.96E-05						
Ce-144	1		1.86E-15							
Co-60	 		1.20E-05							
Cs-134			4.51E-09							
Cs-135			1.74E-10							
Cs-137			2.63E-05						 -	
Eu-152			2.76E-13							
Eu-154	-		2.53E-07							
Eu-155			3.17E-08							
Pm-147			3.76E-05	9.03E-05					i —	
Pr-144										
Ni-63	1	1.75E-08	2.41E-05	5.80E-05					i	
Ru-106		1.80E-11	2.48E-08	5.95E-08						
Sb-125	1		3.04E-06						i	
Sm-151	1			6.15E-04						
Sr-90		9.98E-01	1.88E-05	4.52E-05						
Tc-99			8.81E-06							
Y-90			1.88E-05							
H-3	1		1.79E-05						l	
I-129			2.20E-07							
Liquid only	Mole/liter		Mole/liter							
Am+4			1.16E-14							
1		9.03E-10	9.65E-06	2.32E-05						
Np+4		1.28E-04	3.16E-17	7.59E-17						
Pu+4		3.47E-05	5.18E-22	1.25E-21						
Tc+7		2.42E-07	4.83E-06	1.16E-05						
U+4		1.57E-03	3.86E-16	9.29E-16						
	1			ļ						

Sodium Bearing	Naste		09/05/00		<u> </u>				1	Dago 4o
Stream Number	306	320	401	402	403	404	405	410	412	Page 4c 413
Stream Name	UNEX Stri	Dried	LAW	LAW	LAW	Recovid	Fraction-	Total	Excess	Excess
	Evaporator		Evap.	Evap.	Evap.	HNO3	ator		Water Vap	
	Cond.	Waste	Feed		Overhead		Ovhd	Water	to Stack	Grouting
Volume or Rate	147	11	593	246	352	7	345	267	97	5
Units	liters/hr	kg/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	sm3/hr	liters/hr
		···g/···		11(010711	III.C. O/III	11013/111	IIICI SIIII	illers/til	51113/111	11(615/11)
Other Species		wt frac	Mole/liter	Mole/liter						
Ac+3		2.8E-19	1.7E-15	4.1E-15	-		 	<u> </u>		
At										
Be+2	-	6.9E-17	1.1E-11	2.6E-11						
Bi+3			7.5E-18	1.8E-17			 			
Br-1		1.1E-11	2.0E-07	4.7E-07						
C+4										
Cf+3		1.4E-19	3.3E-32	8.0E-32						
Cm+3	<u> </u>	6.8E-10	1.6E-22	3.9E-22						
Cu+2		0.02.0	7.012 2.2	0.02 44						
Dy+3		4.7E-14	4.0E-10	9.7E-10			 			
Er+3		8.0E-16	6.6E-12	1.6E-11			 			
Eu+3		2.6E-06	7.3E-14	1.7E-13			 			
Fr+1				10				 -		
Ga+3		6.2E-19	1.2E-14	3.0E-14	-	<u></u>	 			
Gd+3		1.9E-11	1.7E-07	4.0E-07					ļ	
Ge+2		3.0E-13	5.7E-09	1.4E-08					·	
Ho+3		2.0E-15	1.7E-11	4.1E-11						
In+3		7.3E-13	8.8E-09	2.1E-08						
La+3		3.7E-10	5.8E-06	1.4E-05						
Li+1	-	1.3E-16	2.5E-11	6.1E-11						
Pa+4		7.7E-16	4.6E-12	1.1E-11						
Pm+3		2.4E-14	2.3E-10	5.5E-10						
Po+2			2.7E-18	6.4E-18						
Ra		4.7E-18	2.9E-14	7.0E-14						
Rb+3	- 	3.6E-10	3.5E-06	8.5E-06						
Rh+3		1.8E-10	2.3E-06	5.6E-06						
Sb+4		3.7E-12	4.1E-08	9.9E-08						
Sm+3		4.0E-10	3.7E-06	8.9E-06						
Tb+3		1.6E-13	1.4E-09	3.3E-09						
Te+4		1.9E-10	1.9E-06	4.5E-06						
Th+4		1.6E-09		1.02.00						
Ti+4				• • • • • • • • • • • • • • • • • • • •						
TI+3	1									
Tm+3	1	4.0E-19	3.3E-15	7.9E-15				-		
Y+3	1	4.6E-10	4.4E-06	1.1E-05						
Yb+3	 	6.9E-20	5.5E-16	1.3E-15						
Zn+2						•				
	1				 					
	1			·						
	1									
	1									
	1	-	-							
								<u></u>		-
	1									
	1									
										,
	 									
	 						ļ			-
										
	1									
·	+									

Sodium Bearing W	aste		09/05/00		Rates bas	ed on 3 ye	ars operati	na time		Page 5a
PFD-SBW-	205	205	205	205	205	205	205	205	205	- rugo ou
Stream Number	501	502	510	511	512	514	515	516	530	
Stream Name	50 wt %	Grout	Portland	Blast	Calcium	Grout	Stack	Mix	Grouted	
	NaOH	Mix Tank	Cement		Hydroxid	Mix Tank	Gas	Tank	LAW	
		Feed		Slag	0	Vent Gas		Air	Waste	
Volume or Rate	52	297	37	334	60	1.1	98	1.1	842	
Units	liters/hr	liters/hr	kg/hr	kg/hr	kg/hr	sm3/hr	sm3/hr	sm3/hr	kg/hr	
Hours per day	24	24	24	24	24	24	24	24	24	
Days per year	200	200	200	200	200	200	200	200	200	
Specific Gravity	1.53	1.38	1.50	1.10	0.90				1.63	
Temperature, C	25	25	25	25	25	25		25	25	
Pressure, kPa	100	100	100	100	100	100	-	100	100	
									133	- "
Composition	Mole/liter	Mole/liter				g/sm3	g/sm3		wt frac	
Ag+1		3.21E-05				9.66E-06			1.22E-06	
Al+3		6,37E-01				4.78E-02			6.07E-03	
As+3		5.72E-05				1.19E-05			1.51E-06	
B+3		2.06E-02		<u> </u>	i	6.21E-04			8.20E-05	
Ba+2		1.75E-05				6.71E-06			8.50E-07	
Ca+2		5.68E-02				6.34E-03			8.06E-04	
Cd+2		5.28E-03			 		2.24E-11		2.10E-04	
Ce+4	· · · · · · · · · · · · · · · · · · ·	5.08E-12					1.64E-20		1.53E-13	
CI-1		2.72E-02				2.69E-03			3.44E-04	
CO3-2	i				i					
Cr+3		5.32E-03				7.70E-04	1.04E-11		9.80E-05	
Cs+1	<u> </u>	3.69E-09					1.85E-17		1.73E-10	
F-1		5.42E-01					3.88E-10		3.64E-03	
Fe+3		2.21E-02				3.44E-03			4.39E-04	
H+1										
Hg+2		2.89E-03				1.61E-03	2.19E-11		2.05E-04	
K+1		1.52E-01				1.65E-02	2.24E-10		2.10E-03	
Mg+2										
Mn+2		1.69E-02				2.59E-03	3.51E-11		3.29E-04	
Mo+6	•	9.23E-04				2.47E-04	3.34E-12		3.31E-05	
Na+1	1.91E+01	4.90E+00				3.14E-01	4.25E-09		3.98E-02	
Nb+5		8.11E-08					2.84E-16		1.72E-07	
Nd+3		8.49E-12					3.24E-20		3.03E-13	
Ni+2		2.62E-03	-	<u></u>			5.82E-12		5.60E-05	
NO3-1	<u> </u>	6.62E+00				1.14E+00			1.45E-01	
OH-1	1.91E+01	2.00E-13				9.48E-15			1.99E-02	
Pb+2		2.60E-04		<u> </u>			2.03E-12		1.92E-05	
Pd+3	<u></u>	4.53E-06		<u> </u>	<u> </u>		1.76E-14]	2.71E-07	
PO4-3		6.15E-03					2.20E-11		2.21E-04	
Pr+3		2.37E-12		<u> </u>			1.24E-20	<u> </u>	1.16E-13	
Ru+4		2.19E-05			ļ <u> </u>		1.05E-13		2.76E-06	
Se+4	ļ	1.53E-05		ļ		3.35E-06	4.55E-14		4.25E-07	
Si+4		4.00= ==	, · ·		ļ	4.40= 0=	4.007.47		4.49E-06	
Sn+4		4.23E-07			<u> </u>		1.90E-15	ļ <u>.</u>	9.05E-07	
Sr+2	<u> </u>	1.86E-10		<u> </u>	ļ		6.15E-19		5.76E-12	
SO4-2		5.01E-02	_ -	<u> </u>	<u> </u>		1.82E-10	ļ	1.72E-03	
Zr+4	<u></u>	8.17E-03		 		2.00E-03	2.81E-11	<u> </u>	2.79E-04	
UDS, g/l	4.005.04	4.505.04		<u> </u>	ļ			 	1.10E-05	
H2O	4.23E+U1	4.50E+01		<u> </u>	ļ	 		 	2.63E-01	
Oxygen						 		 		
DTDA	 	2 045 04		<u> </u>	ļ	4 175 04	E CET 40	<u> </u>	E 20E 05	
DTPA Cuspidina 14		3.81E-04		<u> </u>			5.65E-12	ļ	5.29E-05	
Guanidine+1	 	7.49E-03 1.50E+00		-	-		1.67E-11 5.66E-11	 	1.56E-04 5.30E-04	
UNEX solvent	 	7.25E-01	<u> </u>	 			2.74E-11	<u> </u>	2.56E-04	
Other organic		1.20E-U1				Z.UZE-U3	2.145-11	<u> </u>	2.00E-04	
	<u> </u>	<u> </u>	ļ	<u> </u>	I	<u> </u>	L	<u> </u>	<u> </u>	

Sodium Bearing W	aste		09/05/00		T				Page 5b	
Stream Number	501	502	510	511	512	514	515	516	530	
Stream Name	50 wt %	Grout	Portland	Blast	Calcium	Grout	Stack	Mix	Grouted	
	NaOH	Mix Tank	Cement		Hydroxid	Mix Tank	Gas	Tank	LAW	
		Feed		Slag		Vent Gas		Air	Waste	
Volume or Rate	52	297	37	334	60	1.1	98	1.1	842	
Units	liters/hr	liters/hr	kg/hr	kg/hr	kg/hr	sm3/hr	sm3/hr	sm3/hr	kg/hr	
	1									
Radionuclides		Ci/liter				Ci/sm3	Ci/sm3	***************************************	Ci/kg	
Am-241		3.51E-11	•			9.77E-14			1.24E-11	
Am-243		7.88E-15				2.20E-17			2.78E-15	
Cm-242		9.52E-20							3.36E-20	
Cm-244	<u> </u>	6.94E-18							2.45E-18	
Np-237	ļ	3.58E-07			ļ	9.98E-10			1.26E-07	
Pu-238		6.08E-06					2.30E-16		2.15E-06	
Pu-239		7.02E-07				1.96E-09			2.48E-07	
Pu-240		2.25E-07					8.50E-18		7.95E-08	
Pu-241		4.60E-06	•				1.74E-16		1.62E-06	
Pu-242		1.79E-10			ļ	4.98E-13			6.30E-11	
Th-230	ļ	3.79E-21			<u> </u>	1.06E-23			1.34E-21	
U-232		6.62E-21				1.84E-23			2.34E-21	
U-233	ļ	1.77E-22			ļ 	4.93E-25			6.25E-23	
U-234 U-235	<u> </u>	9.60E-10				2.67E-12			3.39E-10	
U-236	<u> </u>	2.41E-11			ļ	6.73E-14			8.52E-12	
U-238	 	1.09E-11				3.02E-14			3.83E-12	
U-238		4.66E-12			 	1.30E-14			1.64E-12	
Ba-137m	 	4.94E-05				4 205 07	4.075.45		4 745 05	
Ce-144	 	3.70E-15			<u> </u>	1.38E-07 1.03E-17	1.6/E-15		1.74E-05	
Co-60	ļ	2.38E-05			 		9.00E-16	-	1.31E-15	
Cs-134	}	8.99E-09			 	2.51E-11			8.41E-06 3.17E-09	
Cs-135		3.46E-10			 	9.65E-13			1.22E-10	
Cs-137	-	5.24E-05			 		1.98E-15		1.85E-05	
Eu-152		5.51E-13			 		2.08E-23		1.95E-13	
Eu-154	 	5.05E-07			1		1.91E-17		1.78E-07	
Eu-155	 	6.31E-08	• • • • • • • • • • • • • • • • • • • •				2.38E-18		2.23E-08	
Pm-147		7.49E-05					2.83E-15		2.64E-05	
Pr-144		11111					1002 10		2.0 12 00	
Ni-63	 	4.81E-05				1.34E-07	1.82E-15		1.70E-05	
Ru-106	<u> </u>	4.94E-08			 		1.86E-18		1.74E-08	
Sb-125		6.06E-06					2.29E-16		2.14E-06	
Sm-151		5.11E-04					1.93E-14		1.80E-04	
Sr-90		3.75E-05					1.42E-15		1.32E-05	
Tc-99		1.76E-05				4.89E-08	6.63E-16		6.20E-06	
Y-90		3.75E-05					1.42E-15		1.32E-05	
H-3		3.57E-05				9.95E-08	1.35E-15		1.26E-05	
I-129		4.38E-07					1.65E-17		2.60E-07	
									•	
Liquid only		Mole/liter				g/sm3	g/sm3		wt frac	
Am+4		2.31E-14					2.10E-22		1.97E-15	
İ		1.92E-05					9.37E-14		8.77E-07	
Np+4	L	6.30E-17			ļ		5.63E-25		5.27E-18	
Pu+4		1.03E-21					9.32E-30		8.72E-23	
Tc+7	ļ	9.64E-06					3.60E-14		3.37E-07	
U+4	ļ	7.71E-16			ļ	5.11E-16	6.93E-24		6.48E-17	
<u> </u>					L					
		1							L	

UNEX Process Material Balance

Sodium Bearing Wa	aste	9/5/00				1			Page 5c
Stream Number	501	502	510	511	512	514	515	516	530
Stream Name	50 wt %	Grout	Portland	Blast	Calcium	Grout	Stack	Mix	Grouted
	NaOH	Mix Tank	Cement	Furnace	Hydroxide	Mix Tank	Gas	Tank	LAW
		Feed	000	Slag	,	Vent Gas		Air	Waste
Volume or Rate	52	297	37	334	60	1	98	1	842
Units	liters/hr	liters/hr	kg/hr	kg/hr	kg/hr	sm3/hr	sm3/hr	sm3/hr	kg/hr
Units	inters/in	incro/iii	Kg/III	Kg/III	Kg/III	3110/111	SILIONII	51110/111	Kg/III
		<u> </u>					-		
Ac+3		3.36E-15				2.13E-15		···	2.70E-16
At		0.002 10				2.102-10		· · · · · · · · · · · · · · · · · · ·	0.00E+00
Be+2		2.12E-11				5.32E-13			6.74E-14
Bi+3		1.49E-17				8.67E-18			1.10E-18
Br-1		3.90E-07				8.67E-08	1.18E-15		1.10E-08
C+4		0.002 07				0.07 = 00	1.102-10		1.10200
Cf+3									-
Cm+3								*****	
Cu+2									1.77E-07
Dy+3	-	8.03E-10				3.64E-10	4.93E-18		4.61E-11
Er+3		1.32E-11				6.15E-12	4.33⊑-10		
Eu+3		1.32E-11 1.45E-13							7.80E-13
Fr+1		1.45E-13				6.14E-14		· 	7.78E-15
Ga+3		2.45E-14	-			4.75E-15			6.025.46
							4 075 45		6.03E-16
Gd+3		3.32E-07				1.45E-07	1.97E-15		1.85E-08
Ge+2		1.13E-08				2.29E-09	3.11E-17		2.91E-10
Ho+3		3.41E-11				1.57E-11	2.12E-19		1.99E-12
ln+3		1.75E-08				5.60E-09	7.58E-17		7.10E-10
La+3		1.16E-05				2.86E-06	3.88E-14		3.63E-07
Li+1		5.06E-11				9.79E-13		<u> </u>	1.77E-07
Pa+4		9.13E-12				5.88E-12		- 	7.45E-13
Pm+3		4.57E-10				1.85E-10	2.50E-18		2.34E-11
Po+2		5.29E-18				3.08E-18			3.90E-19
Ra		5.78E-14				3.64E-14			4.61E-15
Rb+3		7.05E-06				2.75E-06	3.73E-14		3.49E-07
Rh+3		4.68E-06				1.39E-06	1.88E-14		3.54E-07
Sb+4		8.25E-08				2.80E-08	3.79E-16		3.55E-09
Sm+3		7.35E-06				3.08E-06	4.17E-14		3.90E-07
Tb+3		2.72E-09				1.20E-09	1.63E-17		1.53E-10
Te+4		3.70E-06				1.45E-06	1.97E-14		1.84E-07
Th+4									
Ti+4			` _						1.77E-07
TI+3									
Tm+3		6.54E-15				3.08E-15			3.90E-16
Y+3		8.80E-06				3.54E-06	4.79E-14		4.48E-07
Yb+3		1.10E-15		· ·		5.32E-16			6.74E-17
Zn+2									1.77E-07
			Wt frac	Wt frac	Wt frac	Mole frac	Mole frac	Mole frac	Wt frac
Portland cement			1.00E+00						4.42E-02
Blast furnace slag				1.00E+00					3.97E-01
Calcium hydroxide					1.00E+00				7.18E-02
N2						7.66E-01	8.30E-03	0.79	
O2						2.04E-01		0.21	
H2O						3.06E-02	9.89E-01		
		ļ.,			<u> </u>				<u> </u>
									<u> </u>
									<u></u>
		<u> </u>							
		I					1 7		1

Sodium Bearing Wa	ste		9/12/00		Rates based	d on 3 years	operating ti	me	Page 1a
PFD-SBW-	201	201	201, 202	201				i i	202
Stream Number	115	120	121	125					200
Stream Name	Sodium	Filtered	UNEX	UDS					UNEX
Oli Gaiii Maiii G	Bearing	SBW	Feed	Return					Solvent to
	Waste	05.1	. 000	11010					Scrub
Volume or Rate	298	298	298	12,061					381
Units	liters/hr	liters/hr	liters/hr	liters/hr					liters/hr
Hours per day	24	24	24	15.7			<u> </u>		24
	200	200	200	Min/month				 	200
Days per year Specific Gravity	1.32	1.32	1.32	1.17		· · · · · · · · · · · · · · · · · · ·			1.42
	25	25	25	25					25
Temperature, C	100	100	100	100			 		100
Pressure, kPa	100	100	100	100			<u> </u>		100
Lincial Communition	Mala (litara	34-1-114	34-1-11:4	Male (liter			 		Maladikan
Liquid Composition	Mole/liter	Mole/liter	Mole/liter	Mole/liter			<u> </u>		Mole/liter
Ag+1	3.20E-05		3.20E-05				ļ		2.59E-07
AI+3	6.15E-01	6.15E-01	6.15E-01	2.19E-01			ļ		4.97E-03
As+3	5.70E-05		5.70E-05	2.03E-05			<u> </u>		4.60E-07
B+3	2.05E-02	2.05E-02	2.05E-02	7.31E-03					1.66E-04
Ba+2	6.54E-05		6.54E-05	2.33E-05					4.22E-05
Ca+2	5.95E-02		5.95E-02	2.12E-02			ļ		2.38E-03
Cd+2	5.26E-03		5.26E-03	1.87E-03			<u> </u>		4.25E-05
Ce+4	2.28E-05	2.28E-05		8.13E-06					1.85E-07
CI-1	2.75E-02	2.75E-02	2.75E-02	9.79E-03			<u> </u>		2.36E-04
CO3-2				<u> </u>					
Cr+3	5.30E-03	5.30E-03		1.88E-03					4.28E-05
Cs+1	8.85E-06	8.85E-06	8.85E-06	3.15E-06					7.12E-06
F-1	9.87E-02	9.87E-02	9.87E-02	3.51E-02					8.50E-04
Fe+3	2.27E-02	2.27E-02	2.27E-02	8.09E-03					1.84E-04
H+1	2.92E+00	2.92E+00	2.92E+00	1.04E+00		i			2.56E-02
Hg+2	2.88E-03	2.88E-03	2.88E-03	1.03E-03		i			6.92E-06
K+1	1.75E-01	1.75E-01	1.75E-01	6.21E-02		İ			1.96E-02
Mg+2						i			
Mn+2	1.69E-02	1.69E-02	1.69E-02	6.00E-03					1.36E-04
Mo+6	9.76E-04		9.76E-04	3.47E-04					7.89E-06
Na+1	1.59E+00		1.59E+00						1.27E-02
Nb+5	8.07E-08		8.07E-08	2.87E-08					6.52E-10
Nd+3	3.81E-05		3.81E-05						3.08E-07
Ni+2	2.61E-03	2.61E-03			i			 	2.11E-05
NO3-1	6.67E+00		6.67E+00	2.37E+00	<u> </u>		 		7.91E-02
OH-1	0.0.2	3.5. = 35				i	i e		
Pb+2	1.08F-03	1.08E-03	1.08E-03	3.84E-04	· ·				6.79E-04
Pd+3				1.61E-06			 		3.65E-08
PO4-3	6.12E-03			2.18E-03	 	1	 		4.95E-05
Pr+3		1.06E-05			<u> </u>	<u> </u>	 		8.60E-08
Ru+4	2.18E-05		2.18E-05		 		 		1.76E-07
Se+4	1.52E-05		1.52E-05		 			 	1.23E-07
Si+4	1.021-00				 	 	 	 	001
Sn+4	4.21E-07	4 21F-07	4.21E-07	1.50E-07	 	 	 		3.40E-09
Sr+2		1.14E-05			 	 	 		9.14E-06
SO4-2	4.99E-02		4.99E-02			 			4.03E-04
Zr+4	1.42E-02		1.42E-02		 				1.15E-04
UDS, g/I		3.10E-01		1.17E+02	 	 	 	 	2.50E-04
H2O					 	 	 	 	5.55E-02
	4.55E+01	4.00ETU1	7.005701	7.07 E TO	-	 	<u> </u>	 	J.JJL-02
Oxygen	 	 	 	 	1	 		 	
Others	6.005.04	6.98E-01	6.98E-01	2.48E-01	 		 	 	5.64E-03
TOC	6.98E-01	0.305-01	0.302-01	2.402-01	 			 	J.04E-03
		 	 			-	ļ	 	
			 	 	ļ			 	<u> </u>
		 				<u> </u>	 	 	
	1	<u> </u>	<u></u>	<u> </u>	I	I	l	<u> </u>	

Sodium Bearing Wa	ste		09/12/00			T*****	1	<u> </u>	Dona 45
Stream Number	115	120	121	125		 	 		Page 1b
Stream Name	Sodium	Filtered	UNEX	UDS	 			 	200
Otteam Hame	Bearing	SBW	Feed	Return				1	UNEX
	Waste	0500	1 660	1/etaili]		İ	Solvent to
Volume or Rate	298	298	298	12,061				<u> </u>	204
Units	liters/hr	liters/hr	liters/hr	liters/hr	-	ļ		<u> </u>	381
Office	(Liq. Only)		(w/ UDS)	ille15/11				 	liters/hr
Radionuclides	Ci/liter	Ci/liter	Ci/liter	Ci/liter	-	 	 		Olditar.
Am-241	8.58E-05	8.58E-05	8.58E-05			 	 	<u> </u>	Ci/liter
Am-243	3.54E-08		3.54E-08	1.26E-08		 	ļ	<u> </u>	6.93E-07
Cm-242	3.14E-08	3.14E-08						 	2.86E-10
Cm-244	2.29E-06		2.29E-06			ļ	ļ <u>.</u>	 	2.54E-10
Np-237	3.47E-06				 	-	ļ	 	1.85E-08
Pu-238	5.99E-04		6.05E-04				 	 	2.80E-08
Pu-239	7.54E-05	7.61E-05	7.61E-05	2.68E-05			 	 	4.84E-06
Pu-240	1.73E-05	1.76E-05	1.76E-05					 	6.09E-07 1.40E-07
Pu-241	3.61E-04	3.66E-04					 		2.92E-06
Pu-242	2.08E-08		2.10E-08	7.41E-09	ļ	 	 		2.92E-06 1.68E-10
Th-230	1.25E-09		1.25E-09	4.45E-10		 	 	 	1.00E-10 1.01E-11
U-232	2.18E-09		2.18E-09	7.77E-10				 	1.01E-11 1.76E-11
U-233	5.83E-11	5.83E-11		2.08E-11			 	 	4.71E-13
U-234	9.26E-07	9.27E-07	9.27E-07	3.29E-07		ļ		ļ 	7.48E-09
U-235	2.60E-08	2.60E-08	2.60E-08	9.24E-09	 -				2.10E-10
U-236	4.83E-08		4.83E-08	1.72E-08		 			3.90E-10
U-238	1.59E-08	1.59E-08	1.59E-08	5.67E-09					1.29E-10
				0.012 00			-		1.291-10
Ba-137m	3.93E-02	3.94E-02	3.94F-02	1.40E-02					3.18E-04
Ce-144	1.23E-08		1.23E-08		-	 			9.94E-11
Co-60	2.37E-05		2.37E-05			 	 		1.92E-07
Cs-134	1.64E-05		1.64E-05			 	 		1.32E-05
Cs-135	8.30E-07	8.30E-07	8.30E-07	2.95E-07				 	6.68E-07
Cs-137	4.17E-02	4.17E-02	4.17E-02	1.48E-02				 	3.36E-02
Eu-152	2.48E-06	2.48E-06		8.81E-07				 	2.00E-08
Eu-154	1.47E-04	1.47E-04		5.23E-05				l	1.19E-06
Eu-155	7.14E-05	7.14E-05	7.14E-05	2.54E-05				1	5.77E-07
Pm-147	7.46E-05	7.46E-05	7.46E-05	2.65E-05			 		6.03E-07
Pr-144						ļ			0.002 01
Ni-63	4.79E-05	4.79E-05	4.79E-05	1.71E-05					3.87E-07
Ru-106	4.92E-08	4.92E-08	4.92E-08	1.75E-08				-	3.97E-10
Sb-125	5.93E-06	6.03E-06	6.03E-06	2.11E-06		 			4.79E-08
Sm-151	5.08E-04	5.08E-04	5.08E-04					 	4.11E-06
Sr-90	3.83E-02	3.83E-02	3.83E-02	1.36E-02			i		3.07E-02
Tc-99		1.76E-05							1.30E-07
Y-90				1.36E-02					3.07E-02
H-3	3.56E-05	3.56E-05		1.27E-05					2.88E-07
l-129	4.36E-07	4.36E-07	4.36E-07	1.55E-07					3.52E-09
Liquid only	Mole/liter	Mole/liter		Mole/liter					Mole/liter
Am+4	1.04E-07		1.04E-07						8.38E-10
1	1.92E-05	1.92E-05	1.92E-05	6.82E-06			l		1.55E-07
Np+4	2.08E-05		2.08E-05	7.38E-06					1.68E-07
Pu+4	5.57E-06	5.57E-06		1.98E-06					4.50E-08
Tc+7	9.69E-06		9.69E-06	3.45E-06					7.75E-08
U+4	2.54E-04	2.54E-04	2.54E-04	9.04E-05					2.05E-06

Sodium Bearing W	asto	1	09/12/00		·				Page 1c
Stream Number	115	120	121	125	125		125		Page 1c 200
Stream Name	Sodium	Filtered	UNEX	UDS	UDS		UDS		UNEX
Olicani Name	Bearing	SBW	Feed	Return	Return		Return		Solvent to
	Waste	6511	1 000	Return	-		Return		Solvent to
Volume or Rate	298	298	298	12,061	12,061		12,061		381
Units	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr		liters/hr		liters/hr
011100	111010/111			11.01.01.11	illo.c.iii		illerenti		11013/11
Other Species	Mole/liter	Mole/liter	Mole/liter		Wt frac		Ci/kg		Mole/liter
Ac+3	3.35E-15	3.35E-15	3.35E-15	Al+3	1.80E-02	Am-241	5.14E-08	Ac+3	2.71E-17
At	6.67E-28	6.67E-28	6.67E-28	B+3	2.99E-02	Np-237	1.15E-03	At	5.39E-30
Be+2	2.11E-11	2.11E-11	2.11E-11	Ca+2	9.10E-03	Pu-238	1.96E-02	Be+2	1.70E-13
Bi+3	1.48E-17	1.48E-17	1.48E-17	Cd+2	1.62E-03	Pu-239	2.26E-03	Bi+3	1.20E-19
Br-1	3.88E-07	3.88E-07	3.88E-07	CI-1	2.72E-02	Pu-240	7.24E-04	Br-1	3.14E-09
C+4	0.002 0.	0.002 0.		Cr+3	2.30E-03	Pu-241	1.48E-02	C+4	0.112.00
Cf+3	2.19E-20	2.19E-20	2.19E-20	Cu+2	1.62E-03	Pu-242	5.74E-07	Cf+3	1.77E-22
Cm+3	1.05E-10	1.05E-10	1.05E-10	F-1	2.66E-02	U-234	3.09E-06	Cm+3	8.51E-13
Cu+2	1			Fe+3	2.49E-02	U-235	7.76E-08	Cu+2	3.3.12-10
Dy+3	8.00E-10	8.00E-10	8.00E-10	Hg+2	5.88E-03	U-236	3.49E-08	Dy+3	6.47E-12
Er+3	1.32E-11	1.32E-11	1.32E-11	K+1	1.60E-02	U-238	1.50E-08	Er+3	1.06E-13
Eu+3	6.51E-07	6.51E-07	6.51E-07	Li+1	1.62E-03			Eu+3	5.26E-09
Fr+1	8.97E-23	8.97E-23	8.97E-23	Mg+2	1.62E-02	Ba-137m	1.06E-01	Fr+1	0.202 00
Ga+3	2.44E-14	2.44E-14	2.44E-14	Mn+2	3.89E-03	Ce-144	3.10E-12	Ga+3	1.97E-16
Gd+3	3.31E-07	3.31E-07	3.31E-07	Mo+6	1.62E-02	Co-60	2.94E-05	Gd+3	2.67E-09
Ge+2	1.13E-08	1.13E-08	1.13E-08	Na+1	4.35E-02	Cs-134	6.86E-06	Ge+2	9.13E-11
Ho+3	3.40E-11	3.40E-11	3.40E-11	Nb+5	1.55E-03	Cs-137	1.12E-01	Ho+3	2.74E-13
In+3	1.74E-08	1.74E-08	1.74E-08	Ni+2	1.46E-02	Eu-154	1.62E-03	In+3	1.41E-10
La+3	1.15E-05	1.15E-05	1.15E-05	Pb+2	1.62E-03	Eu-155	2.03E-04	La+3	9.31E-08
Li+1	5.04E-11	5.04E-11	5.04E-11	Pd+3	9.69E-04	Ru-106	1.56E-08	Li+1	4.08E-13
Pa+4	9.09E-12	9.09E-12	9.09E-12	PO4-3	1.35E-01	Sb-125	3.28E-04	Pa+4	7.35E-14
Pm+3	4.55E-10	4.55E-10	4.55E-10	Rh+3	1.62E-03	Sr-90	1.19E-01	Pm+3	3.68E-12
Po+2	5.26E-18	5.26E-18	5.26E-18	Ru+4	1.62E-02	Tc-99	4.49E-03	Po+2	4.25E-20
Ra	5.75E-14	5.75E-14	5.75E-14	Si+4	4.09E-02	Y-90	1.19E-01	Ra	4.65E-16
Rb+3	7.02E-06	7.02E-06	7.02E-06	Sn+4	8.08E-03	1-129	9.57E-04	Rb+3	5.67E-08
Rh+3	4.66E-06	4.66E-06	4.66E-06	SO4-2	1.48E-01			Rh+3	3.77E-08
Sb+4	8.21E-08	8.21E-08	8.21E-08	Ti+4	1.62E-03			Sb+4	6.64E-10
Sm+3	7.32E-06	7.32E-06	7.32E-06	Zn+2	1.62E-03	Tot TRU	2.37E-02	Sm+3	5.91E-08
Tb+3	2.71E-09	2.71E-09	2.71E-09	Zr+4	1.39E-01			Tb+3	2.19E-11
Te+4	3.68E-06	3.68E-06	3.68E-06	H2O	7.12E-02			Te+4	2.98E-08
Th+4	2.63E-10	2.63E-10	2.63E-10	0	1.74E-01			Th+4	2.12E-12
Ti+4								Ti+4	
TI+3	6.85E-20	6.85E-20	6.85E-20					TI+3	
Tm+3		6.51E-15						Tm+3	5.26E-17
Y+3	8.76E-06	8.76E-06	8.76E-06					Y+3	7.08E-08
Yb+3	1.10E-15	1.10E-15	1.10E-15						
Zn+2									
	<u> </u>				<u> </u>	<u> </u>			
	ļ								
						<u> </u>			
	<u> </u>	ļ			 	ļ			
					ļ				
						ļ			
					<u> </u>				
	<u> </u>	<u> </u>				<u> </u>	L		

Sodium Bearing W	aste	T	09/12/00		ī	Rates has	ed on 3 yea	re operatir	a timo	Page 20
PFD-SBW-	202	202	202	202	202	202	202	202	202	Page 2a
Stream Number	201	202	205	206	208	209	210	216	217	202
Stream Name	UNEX	UNEX	UNEX	UNEX	Scrub	Strip	Strip	Scrub	Extraction	220
	Solvent to		Solvent	Solvent to	Feed	Feed	Effluent	Effluent	E .	Raffinate
	Strip	Wash	Make-up	Extraction	1 650	1 660	Lindent	Emuent	Aqueous	1 1
Volume or Rate	381	381	0.5	381	76	127	127	76	Feed 381	204
Units	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	381
Hours per day	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5	liters/hr
Days per year	200	200	200	200	200	200	200	200	200	23.5
Specific Gravity	1.42	1.42	1.42	1.42	1.03	1.00	1.02	1.04	1.26	200 1.26
Temperature, C	25	25	25	25	25	25	25	25	25	25
Pressure, kPa	100	100	100	100	100	100	100	100	100	100
				100		100	100	100	100	100
Liquid Composition	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Molo/litor	Mole/liter	Maladitar
Ag+1	6.14E-10	3.91E-22	Wioleritei	3.90E-22	Wiolerittei	Moleritei			2.59E-05	Mole/liter
Al+3	1.18E-05	4.04E-06		4.04E-06		-			4.97E-01	2.56E-05
As+3	1.09E-09	6.95E-22		6.95E-22	 	 			4.60E-05	4.92E-01 4.56E-05
B+3	3.94E-07	2.51E-19		2.50E-19					1.66E-02	
E -2	4.13E-05	2.90E-06		2.90E-06	 				5.32E-05	1.64E-02
Ca+2	2.33E-03	1.31E-06		1.31E-06	 				5.32E-05 4.76E-02	1.39E-05
Cd+2	1.01E-07	6.42E-20	-	6.42E-20					4.76E-02 4.25E-03	4.53E-02
Ce+4	4.38E-10	2.79E-22		2.78E-22					4.25E-03 1.85E-05	4.21E-03
CI-1	7.06E-05	4.49E-17		4.49E-17	7.02E-03			7.85E-03		1.83E-05
CO3-2	7.002-00	4.45L-11		4.486-17	7.02L-03	2.50E-01	Z. 12E-04	7.00E-03	2.36E-02	2.34E-02
Cr+3	1.02E-07	6.46E-20		6.46E-20		2.50E-01	2 05E 07	2 445 04	4 205 02	4 245 02
Cs+1	7.08E-06	3.97E-09		3.97E-09				2.14E-04 2.30E-07	4.28E-03	4.24E-03
F-1	2.74E-04				2.72E-02				7.12E-06 8.50E-02	1.08E-08
Fe+3	4.36E-07	2.77E-19		2.77E-19	2.72102				1.84E-02	8.41E-02
H+1	1.04E-02	9.59E-06			1 035+00	9.59E-04			2.56E+00	1.82E-02
Hg+2	6.78E-06	4.77E-07		4.76E-07	1.03E+00	9.09E-04			2.31E-03	
K+1	1.92E-02	1.30E-04		1.30E-04		 			1.40E-01	
Mg+2	1.022 02	1.00L-04		1.50L-04			3.73E-02	1.90E-03	1.40E-01	1.21E-01
Mn+2	3.24E-07	2.06E-19		2.06E-19			0.745.07	6 905 04	1.36E-02	4.055.00
Mo+6	1.87E-08	1.19E-20		1.19E-20					7.89E-04	1.35E-02 7.81E-04
Na+1	1.25E-02	2.58E-03		2.57E-03					1.27E+00	
Nb+5	1.55E-12	9.85E-25		9.85E-25					6.52E-08	1.26E+00
Nd~3	7.32E-10	4.65E-22		4.65E-22					3.08E-05	6.46E-08
Ni	5.02E-08	3.19E-20		3.19E-20					2.11E-03	3.05E-05 2.09E-03
NC -	4.79E-02	2.76E-03			1.00F+00	9.59E-04				
Or -		2 02. 00		2.702-00	1.002.00	3.03L-04	1.302-01	1.100,	3.37 = +00	5.49E÷00
Pb+2	6.65F-04	8.34E-06		8.33E-06			1 075.03	6 705 05	8.76E-04	2.065.04
Pd÷3		5.51E-23		5.50E-23			2 60=-10	1 825-07	3.65E-06	3 61E 06
PC4-3				7.46E-20					4.95E-03	
Pr+3		1.30E-22		1.30E-22					8.60E-06	
Ru+4		2.66E-22		2.65E-22		. -			1.76E-05	
Se+4	2.91E-10	1.85E-22		1.85E-22			8 74F-10	6 12F_07	1.76E-05 1.23E-05	1.74E-05
Si+4							J.7-7L-10	J. 12L-01	1.202-00	1.222-00
3n+4	8.09E-12	5.14E-24		5.14E-24		<u> </u>	2 43F-11	1.70F_08	3.40E-07	3 37E-07
Sr+2		1.36E-11		1.36E-11					9.14E-06	
SO4-2		6.09E-19		6.08E-19					4.03E-02	
Zr+4		1.74E-19		1.74E-19					1.15E-02	
UDS, g/l		3.78E-19		3.78E-19					2.50E-02	
H2O					5.46F+01	5.55F+01	5.55E+01	5.46E±01	4.73E+01	4 73E±01
Oxygen					JJm · U I	3.332.01	3.00L 101	J. TJ L. TU I	-T. / JL TU	7.735.701
										
DTPA						·				
						-				
<u> </u>					L		L			

Sodium Bearing W	laste		36781			Activities d	ecaved to 1	/1/2008		Page 2b
Stream Number	201	202	205	206	208	209	210	216	217	220
Stream Name	UNEX	UNEX	UNEX	UNEX	Scrub	Strip	Strip	Scrub	Extraction	
	Solvent to	Solvent to	Solvent	Solvent to	Feed	Feed	Effluent	Effluent	Aqueous	·
	Strip	Wash	Make-up	Extraction					Feed	
Volume or Rate	381	381	······································	381	76	127	127	76	381	381
Units	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr
									(w/ UDS)	(w/ UDS)
Radionuclides	Ci/liter	Ci/liter	Ci/liter	Ci/liter	Ci/liter	Ci/liter	Ci/liter	Ci/liter	Ci/liter	Ci/liter
Am-241	1.65E-09							3.46E-06		6.86E-05
Am-243	6.80E-13								2.86E-08	2.83E-08
Cm-242	6.02E-13							1.27E-09		2.51E-08
Cm-244	4.39E-11						1.32E-10	9.22E-08	1.85E-06	1.83E-06
Np-237	6.65E-11						2.00E-10	1.40E-07	3.08E-06	3.05E-06
Pu-238	1.15E-08								4.89E-04	4.84E-04
Pu-239	1.45E-09						4.34E-09	3.04E-06	6.14E-05	6.08E-05
Pu-240	3.33E-10						9.98E-10		1.42E-05	1.40E-05
Pu-241	6.93E-09								2.95E-04	2.92E-04
Pu-242	4.00E-13								1.70E-08	1.68E-08
Th-230	2.40E-14							5.04E-11		1.00E-09
U-232	4.19E-14							8.80E-11		1.75E-09
U-233	1.12E-15							2.35E-12		4.67E-11
U-234	1.78E-11								7.49E-07	7.41E-07
U-235	4.98E-13							1.05E-09		2.08E-08
U-236	9.26E-13								3.90E-08	3.86E-08
U-238	3.06E-13						9.17E-13	6.42E-10	1.29E-08	1.27E-08
	<u> </u>									
Ba-137m	3.15E-02	1.77E-05	:	1.77E-05					3.17E-02	7.39E-05
Ce-144	2.36E-13								9.94E-09	
Co-60	4.55E-10							9.56E-07		1.90E-05
Cs-134	1.31E-05			7.38E-09				4.27E-07		2.18E-08
Cs-135	6.64E-07	3.73E-10		3.72E-10					6.68E-07	1.02E-09
Cs-137	3.33E-02	1.87E-05		1.87E-05					3.36E-02	7.83E-05
Eu-152	4.75E-11						1.43E-10	9.98E-08	2.00E-06	1.98E-06
Eu-154	2.82E-09								1.19E-04	1.18E-04
Eu-155	1.37E-09								5.77E-05	5.72E-05
Pm-147	1.43E-09						4.30E-09	3.01E-06	6.03E-05	5.97E-05
Pr-144	0.005.40		 				0.765.00	4 02E 06	2 075 05	2 945 05
Ni-63	9.20E-10 9.44E-13								3.87E-05 3.97E-08	
Ru-106					 				4.87E-06	
Sb-125 Sm-151	1.14E-10 9.76E-09	 	 						4.07E-06 4.11E-04	
Sr-90		4.57E-08		4.57E-08					3.07E-02	
Tc-99	1.28E-07		 	8.64E-10	 				1.41E-05	
Y-90	3.07E-02			4.57E-08					3.07E-02	
H-3	6.83E-10	1	<u> </u>						2.88E-05	
I-129	8.37E-12		i	İ	<u> </u>				3.52E-07	
·	 									
Liquid only	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter
Am+4	1.99E-12								8.38E-08	
ī	3.68E-10								1.55E-05	
Np+4	3.98E-10		<u> </u>				1.19E-09	8.36E-07	1.68E-05	1.66E-05
Pu+4	1.07E-10								4.50E-06	
Tc+7	7.60E-08	5.15E-10		5.15E-10			2.26E-07	7.75E-09	7.75E-06	7.68E-06
U+4	4.88E-09						1.46E-08	1.02E-05	2.05E-04	2.03E-04
	<u> </u>									<u> </u>
				<u> </u>				ļ		
		<u> </u>	<u> </u>		l	l				
										_

Sodium Bearing W	Vaste		09/12/00	1	T	r	1			Dogo 2a
Stream Number	201	202	205	206	208	209	210	216	217	Page 2c 220
Stream Name	UNEX	UNEX	UNEX	UNEX	Scrub	Strip	Strip	Scrub	Extraction	
	Solvent to	Solvent to	Solvent	Solvent to	Feed	Feed	Effluent	Effluent	Aqueous	rvannate
Volume or Rate	381	381	0.5	381	76	127	127	76	381	381
Units	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr
									- "	
Other Species	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter
Ac+3										2.71E-15
At	<u> </u>									
Be+2	4.05E-16						1.21E-15		8.50E-13	1.70E-11
Bi+3	2.85E-22								5.98E-19	1.20E-17
Br-1	7.45E-12						2.23E-11		1.56E-08	3.14E-07
C+4	101505									
Cf+3	4.21E-25									
Cm+3	2.02E-15						6.06E-15		4.24E-12	8.51E-11
Cu+2	4 545 44						4.045.44			
Dy+3	1.54E-14						4.61E-14		3.23E-11	6.47E-10
Er+3	2.52E-16						7.57E-16		5.30E-13	1.06E-11
Eu+3 Fr+1	1.25E-11		·				3.75E-11		2.63E-08	5.26E-07
Ga+3	4.68E-19						1.40E-18		0.005.40	4.075.44
Gd+3	6.35E-12						1.40E-18		9.83E-16 1.33E-08	1.97E-14
Ge+2	2.17E-13						6.50E-11		4.55E-10	2.67E-07 9.13E-09
Ho+3	6.52E-16	 					1.96E-15		1.37E-12	2.74E-11
In+3	3.34E-13						1.00E-12		7.02E-10	1.41E-08
La+3	2.21E-10						6.63E-10		4.64E-07	9.31E-06
Li+1	9.68E-16						2.90E-15		2.03E-12	4.08E-11
Pa+4	1.75E-16						5.24E-16		3.66E-13	7.35E-12
Pm+3	8.74E-15						2.62E-14		1.83E-11	3.68E-10
Po+2									2.12E-19	4.25E-18
Ra	1.10E-18						3.31E-18		2.32E-15	4.65E-14
Rb+3	1.35E-10						4.04E-10		2.83E-07	5.67E-06
Rh+3	8.95E-11						2.69E-10		1.88E-07	3.77E-06
Sb+4	1.58E-12						4.73E-12		3.31E-09	6.64E-08
Sm+3	1.40E-10						4.21E-10		2.95E-07	5.91E-06
Tb+3	5.19E-14						1.56E-13		1.09E-10	2.19E-09
Te+4	7.07E-11						2.12E-10		1.48E-07	2.98E-06
Th+4	5.05E-15						1.51E-14		1.06E-11	2.12E-10
Ti+4	<u> </u>									
TI+3										
Tm+3	1.25E-19						3.75E-19			5.26E-15
Y+3	1.68E-10						5.05E-10		3.53E-07	
Yb+3 Zn+2	2.11E-20								4.43E-17	8.88E-16
<u> </u>		-								
	 	 								
		ļ								
	-									
	+									
	+									
····	 									
	 	 								
	 				}					
				<u>' </u>	•		L	t	L	

Sodium Bearing Wa	ste	09/12/00		Rates hase	d on 3 vea	s operating ti	me	<u> </u>	Dogo 2
PFD-SBW-	202	202	202	202	202	202	202		Page 3 203
Stream Number	231	232	233	235	236	238	239		306
Stream Name	Scrub	Scrub	Guanidine	Strip	FS-13	PEG-	Chlor.		UNEX Strip
000	Make-up	Make-up	Carbonate	Make-up	10-10	400	Cobalt		
	Water	Acid	Carbonate	Water	ł	400	Dicarbol.		Evaporator
Volume or Rate	57.1	19.0	5.7	121.7	40 244	040			Condensate
Units		liters/hr			10,211	813	437	ļ	125
	liters/hr		kg/hr	liters/hr	liters	liters	kg	<u> </u>	liters/hr
Hours per day	24	24	24	24	(UNEX SO	Ivent chemica	ils include m	nake-up	24
Days per year	200	200	200	200	plus initial	inventory of	2 hrs circiro	culation)	200
Specific Gravity	1.00	1.13	0.58	1.00	1.41	1.10	???		1.00
Temperature, C	25	25	25	25	25	25	25		
Pressure, kPa	100	100	100	100	100	100	100		100
Liquid Composition	Mole/liter	Mole/liter	Wt frac	Mole/liter	Wt frac	Wt frac	Wt frac		Mole/liter
Al+3								·	
CI-1		2.81E-02	•						
			-				i		
F-1		1.09E-01							_
H+1	1.00E-03			1.00E-03	i -				3.87E-05
NO3-1	1.00E-03			1.00E-03					3.87E-05
DTPA			-	1.002 00					3.67 E-03
Guanidine Carbonat	ρ		1.00E+00				 		
Guarranto Gui ponat			1.002.00						
FS-13					1.00E+00				
CMPO					1.00=+00				
PEG-400	-					4.005+00			
						1.00E+00			
ChCoDiC	_						1.00E+00		
H2O	5.55E+01			5.55E+01					5.55E+01
							<u> </u>		
									
								 -	
			 -						
	*								
									· · · · · ·
									
									
i									
									

Sodium Bearing Wa	ste	ı —	9/12/00	 	Datas has	od on 2 vees			
PFD-SBW-	203	204	204	204		ed on 3 years			Page 4a
Stream Number	320	401	402		204	204	204	204	204
Stream Name	Dried	LAW	LAW	403	404	405	410	412	414
Su cam Name	1	1		LAW	Recov'd	Fractionator	Total	Excess	Make-up
j	RH	Evaporator	•	Evaporator	HNO3	Overhead		Water Vapo	15.9 Acid
\/-l	Waste	Feed	Bottoms	Overhead			Water	to Stack	Grouting
Volume or Rate	8.0	498	245	260	12.4	248	183	80.2	2
Units	kg/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	sm3/hr	liters/hr
Hours per day	24	24	24	24	24	24	24	24	24
Days per year	200	200	200	200	200	200	200	200	200
Specific Gravity	0.58	1.19	1.35	1.01	1.13	1.00	1.00	0.00	1.41
Temperature, C		25					25		25
Pressure, kPa	100	100	100	100	100	100	100		100
									- 100
Composition	Wt frac	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole/liter	Mole frac	Mole/liter
Ag+1	3.08E-09	1.92E-05	3.89E-05			o.c.	Wiole/itte/	wore mac	Wolerne
AI+3	9.73E-06	3.69E-01	7.48E-01						
As+3	3.81E-09	3.42E-05	6.93E-05		 				
B+3	1.98E-07	1.23E-02	2.50E-02		 				
Ba+2	2.45E-04	1.04E-05	2.11E-05		-				
Ca+2	4.35E-03	3.39E-02	6.88E-02						
Cd+2	5.28E-07	3.15E-03	6.40E-03						
Ce+4	1.74E-09	1.37E-05	2.78E-05						
CI-1				1 705 00	2 2 2 2 2 2				
CO3-2	1.16E-04	1.75E-02	3.36E-02	1.76E-03	3.68E-02				
	2.25E-01	0.405.00							
Cr+3	2.46E-07	3.18E-03	6.44E-03						
Cs+1	4.37E-05	8.11E-09	1.65E-08						
F-1	2.42E-04	6.31E-02	1.27E-01	6.03E-04	1.27E-02				
Fe+3	1.13E-06	1.36E-02	2.76E-02						· · · · · · · · · · · · · · · · · · ·
H+1	5.43E-04	1.89E+00	3.63E+00	1.94E-01	4.05E+00	1.00E-03	1.00E-03		1.59E+01
Hg+2	5.88E-05	1.72E-03	3.50E-03	6.97E-11					
K+1	3.47E-02	9.04E-02	1.83E-01						
Mg+2									
Mn+2	8.27E-07	1.01E-02	2.05E-02						
Mo+6	8.35E-08	5.85E-04	1.19E-03						
Na+1	1.06E-02	9.46E-01	1.92E+00						
Nb+5	6.69E-12	4.84E-08	9.82E-08	— ·					
Nd+3	3.44E-09	2.29E-05	4.64E-05						
Ni+2	1.37E-07	1.57E-03	3.18E-03						
NO3-1	1.34E-01	4.11E+00	8.14E+00	4.005.04	4.005.00	4 005 00			
OH-1	1.54E-01	4.11E+00	0.146+00	1.92E-01	4.00E+00	1.00E-03	1.00E-03		1.59E+01
Pb+2	6 225 02	1 545 04	2405.04						
Pd+3		1.54E-04	3.13E-04						
		2.70E-06	5.49E-06						
PO4-3	5.19E-07		7.44E-03						
Pr+3	1.32E-09		1.29E-05						
Ru+4	2.48E-09	1.30E-05	2.65E-05						
Se+4	1.07E-09	9.10E-06	1.85E-05						
Si+4									
Sn+4	4.46E-11		5.12E-07					***	
Sr+2	3.72E-05	3.80E-11	7.70E-11						
SO4-2	4.27E-06	2.99E-02	6.06E-02						
Zr+4		8.53E-03	1.73E-02						
UDS, g/l		1.86E-02	3.77E-02						
H2O	1.00E-01		4.10E+01	5.52E+01	4.84E+01	5.55E+01	4.84E+01	1.00E+00	4.84E+01
Oxygen						3.002.101	-1.072101	1.002700	7.046701
Crystallization additi	ves								
DTPA									
Guanidine+1	4.44E-01	3.74E-03	7.59E-03						
UNEX solv, g/liter	1.55E-02		1.52E+00			-			
Other org, g/liter	2.43E-02	4.30E-01							
oaiei oig, g/liter	2.435-02	4.302-01	8.73E-01						
									

Sodium Bearing W									Page 4b
Stream Number	320	401	402	403	404	405	410	412	414
Stream Name	Dried	LAW	LAW	LAW	Recov'd	Fractionator	Total	Excess	Make-up
	RH		Evaporator		НИОЗ	Overhead	Recycle	Water Vapo	15.9 Acid
	Waste	Feed	Bottoms	Overhead			Water	to Stack	Grouting
Volume or Rate	8	498	245	260	12	248	183	80	2
Units	kg/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	liters/hr	sm3/hr	liters/hr
Radionuclides	Ci/kg	Ci/liter	Ci/liter						_
Am-241	7.65E-08	5.14E-05	1.04E-04						
Am-243	3.16E-11	2.12E-08	4.31E-08	-					
Cm-242	2.80E-11	1.88E-08	3.82E-08						
Cm-244	2.04E-09	1.37E-06	2.78E-06						
Np-237	3.09E-09	2.29E-06	4.65E-06						
Pu-238	5.35E-07	3.63E-04	7.36E-04						
Pu-239	6.72E-08	4.56E-05	9.25E-05					-	
Pu-240	1.55E-08	1.05E-05	2.13E-05						
Pu-241	3.22E-07	2.19E-04	4.44E-04						
Pu-242	1.86E-11	1.26E-08	2.55E-08						
Th-230	1.12E-12	1.202-00	1.52E-09		*				
U-232	1.95E-12		2.65E-09						
U-233	5.20E-14		7.09E-11						
U-234	8.26E-10	5.56E-07	1.13E-06						
U-235	2.32E-11	1.56E-08							
U-236	4.30E-11	2.89E-08	3.16E-08						
U-238			5.87E-08						
U-230	1.42E-11	9.55E-09	1.94E-08						
Da 427	4.465.00	5 50E 05	4.405.04						
Ba-137m	1.46E+00	5.58E-05	1.13E-04						
Ce-144 Co-60	1.10E-11	7.38E-09	1.50E-08						·
Co-60 Cs-134	2.12E-08	1.42E-05	2.89E-05						
	6.11E-04	1.64E-08	3.32E-08						
Cs-135	3.08E-05	7.61E-10	1.54E-09						
Cs-137	1.55E+00	5.91E-05	1.20E-04		ļ				
Eu-152	2.21E-09	1.48E-06	3.01E-06						
Eu-154	1.31E-07	8.84E-05	1.79E-04						
Eu-155	6.37E-08	4.28E-05	8.69E-05						
Pm-147	6.66E-08	4.47E-05	9.07E-05						
Pr-144	- 								
Ni-63	4.28E-08		5.83E-05						
Ru-106	4.39E-11	2.95E-08	5.98E-08						
Sb-125	5.29E-09	3.62E-06	7.33E-06						
Sm-151		3.05E-04	6.18E-04						
Sr-90		2.21E-05	4.49E-05						
Tc-99			2.13E-05		[
Y-90		2.21E-05	4.49E-05						
H-3			4.33E-05						
-129	3.89E-10	2.61E-07	8.91E-07						
Liquid only	Wt frac	Mole/liter	Mole/liter						
Am+4	2.23E-11	6.22E-08	1.26E-07						
	2.20E-09	1.15E-05	2.33E-05						
Np+4	4.39E-09	1.24E-05	2.52E-05						
Pu+4	1.19E-09	3.34E-06	6.78E-06						
Гс+7	3.47E-07	5.75E-06	1.17E-05					-	
J+4	5.39E-08	1.52E-04	3.09E-04						
	1								
	 								

Sodium Bearing W	aste	09/12/00				r			Dogo 4o
Stream Number	320	401	402	403	404	405	410	412	Page 4c 414
Stream Name	Dried	LAW	LAW	LAW	Recov'd	Fractionator		Excess	Make-up
Stream Name	RH		Evaporator	Evaporator	HNO3	Overhead	•		
	Waste	Feed	Bottoms	Overhead	HIVOS	Overnead		Water Vapo	15.9 Acid
Volume or Rate	8.0	498	245	260	12.4	248	Water 183	to Stack 80.2	Grouting 2
Units	kg/hr	liters/hr	liters/hr	liters/hr	liters/hr				
Office	Kg/III	11(615/11)	111615/111	iileis/iii	IIIEIS/III	liters/hr	liters/hr	sm3/hr	liters/hr
Other Species	wt frac	Mole/liter	Mole/liter						
Ac+3	6.78E-19	2.01E-15	4.07E-15			-			
At	0.70L-13	2.01L-13	4.07 L-13					ļ	
Be+2	1.70E-16	1.26E-11	2.56E-11						
Bi+3	0.00E+00	8.89E-18	1.80E-17						
Br-1	2.77E-11	2.33E-07	4.72E-07						
C+4	2.172-11	2.002-07	4.12L-01	-					
Cf+3									
Cm+3	2.32E-14	6.31E-11	1.28E-10						
Cu+2	UZL-17	5.51E-11	0		····	 		<u> </u>	
Dy+3	1.16E-13	4.80E-10	9.73E-10						
Er+3	1.96E-15	7.88E-12	1.60E-11			 			
Eu+3	8.83E-11	3.91E-07	7.92E-07					 -	· · · · · · · · · · · · · · · · · · ·
Fr+1	0.00L-11	0.01L-01	1.V&LU1					 	
Ga+3	1.52E-18	1.46E-14	2.96E-14						
Gd+3	4.64E-11	1.98E-07	4.02E-07						
Ge+2	7.32E-13	6.77E-09	1.37E-08						
Ho+3	5.00E-15	2.04E-11	4.13E-11						
In+3	1.78E-12	1.04E-08	2.12E-08						
La-3	9.14E-10	6.91E-06	1.40E-05		· · · · · · · · · · · · · · · · · · ·	 			
Li+1	3.12E-16	3.02E-11	6.13E-11						
Pa+4	1.87E-15	5.45E-12	1.11E-11						
Pm+3	5.89E-14	2.73E-10	5.53E-10						
Po+2	0.002	3.16E-18	6.40E-18					 	
Ra	1.16E-17	3.45E-14	6.99E-14			ļ			
Rh+3	8.77E-10	4.21E-06	8.54E-06						
R ¹ - 3 S : E T	4.43E-10	2.80E-06	5.67E-06						
s :	8.92E-12	4.92E-08	9.99E-08			 		 	
8	9.81E-10	4.39E-06	8.90E-06				· · · · · · · · · · · · · · · · · · ·		
 	3.84E-13	1.62E-09	3.29E-09						
7	4.63E-10	2.21E-06	4.48E-06						
Ti	5.44E-14	1.58E-10	3.20E-10						
T - 3									
T						 			
7	9.81E-19	3.90E-15	7.92E-15						
T T Y	1.13E-09	5.25E-06	1.07E-05						
Y5 3	1.70E-19	6.58E-16	1.34E-15						
Zn+2								l	-
						 	·		
									
							-	1	
								1	
								1	
								1	
								 	
							<u> </u>		
						<u> </u>		<u> </u>	
		l		L	L	I	I	1	

Sodium Bearing W	/aste	09/12/00		Rates based	on 3 years	operating tin	ne		Page 5a
PFD-SBW-		205	205	205	205	205	205	205	205
Stream Number		502	510	511	512	514	515	516	530
Stream Name	i	Grout	Portland	Blast	Calcium	Grout	Stack	Mix	
		Mix Tank	Cement	Furnace	Oxide	Mix Tank	Gas		Grouted
		Feed	Ocincia	Slag	Oxide		Gas	Tank	LAW
Volume or Rate	1	245	19	47	70	Vent Gas	 	Air	Waste
Units	 				76	1.1	81	1.1	473
	<u> </u>	liters/hr	kg/hr	kg/hr	kg/hr	sm3/hr	sm3/hr	sm3/hr	kg/hr
Hours per day		24	24	24	24	24	24	24	24
Days per year		200	200	200	200	200	200	200	200
Specific Gravity	<u> </u>	1.35	1.50	1.10	0.90				1.40
Temperature, C		25	25	25	25	25		25	25
Pressure, kPa		100	100	100	100	100	 	100	100
							 		100
Composition		Mole/liter	···			g/sm3	g/sm3		ud food
Ag+1		3.89E-05				9.66E-06	1.59E-13		wt frac
AI+3		7.48E-01			<u>-</u>				2.19E-06
As+3		6.93E-05				4.64E-02	7.62E-10	- ··	1.05E-02
B+3						1.19E-05	1.96E-13		2.70E-06
		2.50E-02				6.21E-04	1.02E-11		1.46E-04
Ba+2		2.11E-05				6.68E-06	1.10E-13		1.51E-06
Ca+2	ļ	6.88E-02		[6.34E-03	1.04E-10		1.44E-03
Cd+2		6.40E-03				1.65E-03	2.72E-11		3.75E-04
Ce+4		2.78E-05				5.46E-06	8.96E-14		1.24E-06
CI-1		3.36E-02				2.74E-03	4.50E-11		6.26E-04
CO3-2	İ			-					0.20L-04
Cr+3		6.44E-03				7.70E-04	1.26E-11		1.75E-04
Cs+1		1.65E-08				5.03E-09	8.26E-17		
F-1		1.27E-01			_	5.56E-03			1.14E-09
Fe+3	<u> </u>	2.76E-02					9.13E-11		1.26E-03
H+1		3.63E+00				3.55E-03	5.83E-11		8.09E-04
Hg+2						8.42E-03	1.38E-10		1.91E-03
		3.50E-03				1.61E-03	2.65E-11		3.66E-04
K+1		1.83E-01				1.65E-02	2.71E-10		3.74E-03
Mg+2									
Mn+2		2.05E-02				2.59E-03	4.26E-11		5.88E-04
Mo+6		1.19E-03				2.62E-04	4.30E-12		6.25E-05
Na+1	19.06	1.92E+00				1.01E-01	1.66E-09		2.30E-02
Nb+5		9.82E-08				2.10E-08	3.44E-16		3.08E-07
Nd+3		4.64E-05				1.08E-05	1.77E-13		2.44E-06
Ni+2		3.18E-03				4.29E-04	7.04E-12		1.00E-04
NO3-1		8.14E+00	•			1.16E+00	1.91E-08		2.63E-01
OH-1	19.06	311.12.55				1.102.00	1.91L-00		
Pb+2		3.13E-04				1 405 04	2 455 40		6.32E-06
Pd+3		5.49E-06				1.49E-04			3.41E-05
PO4-3		7.44E-03				1.30E-06			4.84E-07
Pr+3							2.67E-11		3.95E-04
		1.29E-05				4.14E-06			9.37E-07
Ru+4		2.65E-05				7.77E-06	1.28E-13		4.93E-06
Se+4		1.85E-05				3.35E-06	5.51E-14		7.60E-07
Si+4									8.02E-06
Sn+4		5.12E-07				1.40E-07	2.30E-15		1.62E-06
Sr+2		7.70E-11					2.55E-19		3.51E-12
SO4-2		6.06E-02					2.20E-10		3.06E-03
Zr+4		1.73E-02				3.63E-03	5.96E-11		8.50E-04
JDS, g/l		3.77E-02				J.00E-00	U.UUL-11		1.96E-05
120	42.32	4.10E+01					see below		
Oxygen	.~.~	9.95E-01					ace neigh		3.85E-01
oxygen		9.93L-01	-						
TDA									
OTPA		7.505.00							
Suanidine+1		7.59E-03				1.03E-03	1.69E-11		2.34E-04
JNEX solvent		1.52E+00				3.50E-03	5.74E-11		7.92E-04
		8.73E-01				2.01E-03	3.30E-11		4.55E-04
Other organic		0.73E-01					0.005-111		4.000-04

Sodium Bearing Waste		09/12/00				T "	*	Page 5b
Stream Number	502	510	511	512	514	515	516	530
Stream Name	Grout	Portland	last	Calcium	Grout	Stack	Mix	Grouted
	Mix Tank	Cement	Furnace	Oxide	Mix Tank	Gas	Tank	LAW
i	Feed		Slag	Oxide	Vent Gas	Gas	Air	
Volume or Rate	245	19	47	76	1.1	81	1.1	Waste
Units	liters/hr	kg/hr	kg/hr	kg/hr	sm3/hr	sm3/hr	sm3/hr	473
		119/11	- Kg/III	Kg/III	51113/111	51113/111	Sma/nr	kg/hr
Radionuclides	Ci/liter				Ci/sm3	Ci/sm3		0:0
Am-241	1.04E-04				2.40E-07	Chains		Ci/kg
Am-243	4.31E-08		·	-	9.91E-11	 		5.41E-05
Cm-242	3.82E-08				9.51E-11	 		2.23E-08
Cm-244	2.78E-06							1.98E-08
Np-237	4.65E-06				1.075.00	4 705 40		1.44E-06
Pu-238	7.36E-04				1.07E-08	1.76E-16		2.41E-06
Pu-239	9.25E-05				1.69E-06	2.78E-14	·	3.82E-04
Pu-240	2.13E-05				2.13E-07	3.49E-15		4.80E-05
Pu-241	4.44E-04				4.91E-08	8.06E-16		1.11E-05
Pu-242	2.55E-08				1.02E-06	1.68E-14		2.30E-04
Th-230					5.88E-11			1.32E-08
U-232	1.52E-09				3.50E-12			7.88E-10
U-233	2.65E-09				6.10E-12			1.38E-09
U-234	7.09E-11				1.63E-13	<u> </u>		3.68E-11
U-235	1.13E-06				2.59E-09	<u> </u>		5.84E-07
	3.16E-08				7.27E-11			1.64E-08
U-236 U-238	5.87E-08				1.35E-10			3.04E-08
U-238	1.94E-08				4.46E-11			1.00E-08
5-407	1.100.0							
Ba-137m	1.13E-04				2.60E-07	4.27E-15		5.87E-05
Ce-144	1.50E-08				3.44E-11			7.76E-09
Co-60	2.89E-05				6.64E-08	1.09E-15		1.50E-05
Cs-134	3.32E-08				7.63E-11	1.25E-18		1.72E-08
Cs-135	1.54E-09				3.55E-12	5.83E-20		8.01E-10
Cs-137	1.20E-04				2.76E-07	4.53E-15		6.22E-05
Eu-152	3.01E-06				6.93E-09	1.14E-16		1.56E-06
Eu-154	1.79E-04				4.12E-07	6.77E-15		9.29E-05
Eu-155	8.69E-05				2.00E-07	3.28E-15		4.50E-05
Pm-147	9.07E-05				2.09E-07	3.43E-15		4.70E-05
Pr-144								
Ni-63	5.83E-05				1.34E-07	2.20E-15		3.02E-05
Ru-106	5.98E-08				1.38E-10	2.26E-18		3.10E-08
Sb-125	7.33E-06				1.69E-08	2.77E-16		3.80E-06
Sm-151	6.18E-04					2.33E-14		3.21E-04
Sr-90	4.49E-05				1.03E-07	1.70E-15		2.33E-05
Tc-99	2.13E-05				4.89E-08	8.03E-16		1.10E-05
Y-90	4.49E-05				1.03E-07	1.70E-15		2.33E-05
H-3	4.33E-05				9.95E-08	1.63E-15		2.24E-05
I-129	8.91E-07				2.05E-09	3.36E-17		4.62E-07
								1.026-01
Liquid only	Mole/liter				g/sm3	g/sm3		wt frac
Am+4	1.26E-07				6.99E-08	1.15E-15		1.58E-08
!	2.33E-05				6.91E-06	1.13E-13		1.57E-06
Np+4	2.52E-05					2.26E-13		3.12E-06
Pu+4	6.78E-06					6.12E-14		8.44E-07
Гс+7	1.17E-05					4.36E-14		
U+4	3.09E-04					2.78E-12		6.02E-07
					1.03104	Z.10C-1Z		3.83E-05

09/12/00			<u> </u>		L		Page 5c
502	510	511	512	514	515	516	530
Grout	Portland	Blast	Calcium	Grout	Stack		Grouted
Mix Tank	Cement	Furnace	Oxide	Mix Tank	Gas		LAW
Feed		Slag		Vent Gas			Waste
245	19	47	76	1.1	81		473
liters/hr							kg/hr
					0.1.07111	OIIIO/III	- Kg/III
Ci/liter				Ci/sm3	Ci/sm3		Ci/kg
					0.011.0		5.41E-05
							2.23E-08
	-			0.012-11			1.98E-08
							1.44E-06
				1.07E.08	1 76E 16		
							2.41E-06
							3.82E-04
							4.80E-05
							1.11E-05
					1.68E-14		2.30E-04
							1.32E-08
						<u></u>	7.88E-10
			ļ <u>-</u>				1.38E-09
					_		3.68E-11
							5.84E-07
							1.64E-08
							3.04E-08
1.94E-08				4.46E-11			1.00E-08
					4.27E-15		5.87E-05
				3.44E-11			7.76E-09
2.89E-05				6.64E-08	1.09E-15		1.50E-05
3.32E-08				7.63E-11	1.25E-18		1.72E-08
1.54E-09				3.55E-12	5.83E-20		8.01E-10
1.20E-04				2.76E-07	4.53E-15		6.22E-05
3.01E-06				6.93E-09	1.14E-16		1.56E-06
1.79E-04		·		4.12E-07	6.77E-15		9.29E-05
8.69E-05							4.50E-05
9.07E-05							4.70E-05
5.83E-05				1.34E-07	2.20E-15	 	3.02E-05
							3.10E-08
	~						3.80E-06
	•			· · · · · ·			3.21E-04
							2.33E-05
							1.10E-05
							2.33E-05
·							2.24E-05
							4.62E-07
				2.002.00	0.002-11		4.02L-07
Mole/liter	••			g/sm3	a/sm2	 	wt frac
							1.58E-08
							1.57E-06
				•			3.12E-06
							8.44E-07
							6.02E-07
0.002-04			· · · · · · · · · · · · · · · · · · ·	1.03E-04	4.102-12		3.83E-05
 			·	 -			
1				1			
 				 			· · ·
							<u> </u>
	Grout Mix Tank Feed 245 liters/hr Ci/liter 1.04E-04 4.31E-08 3.82E-08 2.78E-06 4.65E-06 7.36E-04 9.25E-05 2.13E-05 4.44E-04 2.55E-08 1.52E-09 7.09E-11 1.13E-06 3.16E-08 5.87E-08 1.94E-08 1.13E-04 1.50E-08 2.89E-05 3.32E-08 1.54E-09 1.20E-04 3.01E-06 1.79E-04 8.69E-05	Grout Mix Tank Feed 245 19 liters/hr kg/hr Ci/liter 1.04E-04 4.31E-08 3.82E-08 2.78E-06 4.65E-06 7.36E-04 9.25E-05 2.13E-05 4.44E-04 2.55E-08 1.52E-09 2.65E-09 7.09E-11 1.13E-06 3.16E-08 5.87E-08 1.94E-08 1.13E-04 1.50E-08 2.89E-05 3.32E-08 1.54E-09 1.20E-04 3.01E-06 1.79E-04 8.69E-05 9.07E-05 5.88E-08 7.33E-06 6.18E-04 4.49E-05 4.33E-05 8.91E-07 Mole/liter 1.26E-07 2.33E-05 6.78E-06 1.17E-05 19 Missing Mixed Part 1.20E-04 1.26E-07 2.33E-05 6.78E-06 1.17E-05	Grout Mix Tank Feed Slag 245 19 47	Grout Mix Tank Feed 245 19 47 76 Iiters/hr kg/hr kg/hr kg/hr kg/hr Ci/liter 1.04E-04 4.31E-08 3.82E-08 2.78E-06 4.65E-06 7.36E-04 9.25E-05 2.13E-05 4.44E-04 2.55E-08 1.52E-09 2.65E-08 1.94E-08 1.94E-08 1.94E-08 1.94E-08 1.94E-08 1.94E-08 1.94E-08 1.52E-09 1.20E-05 3.32E-08 1.54E-09 1.20E-04 8.69E-05 9.07E-05 1.90	Grout Mix Tank Feed Portland Cement Furnace Slag Calcium Oxide Slag Grout Mix Tank Vent Gas Mix Tank Vent Gas Slag 245 19 47 76 1.1 liters/hr kg/hr kg/hr kg/hr sm3/hr Ci//liter Ci//sm3 2.40E-07 2.40E-07 1.04E-04 2.40E-07 9.91E-11 3.82E-08 9.91E-11 2.78E-06 1.07E-08 9.91E-11 1.07E-08 4.91E-08 4.65E-06 1.07E-08 1.69E-06 2.13E-07 2.13E-07 2.13E-07 2.13E-07 4.91E-08 4.91E-08 4.91E-08 4.91E-08 4.91E-08 4.91E-08 4.91E-08 4.91E-08 5.88E-11 1.02E-06 6.10E-12 7.27E-11 1.63E-13 1.13E-04 1.58E-09 3.50E-12 2.59E-09 3.50E-12 2.59E-09 3.50E-12 4.66E-11 1.13E-04 1.35E-10 4.46E-11 1.13E-04 1.35E-10 4.46E-11 1.13E-04 2.60E-07 3.55E-12 1.35E-10 4.46E-11 1.52E-09 3.57E-12 3.57E-12 3.57E-12 3.57E-12	Grout Mix Tank Cement Furnace Furnace Slag Calcium Oxide Mix Tank Vent Gas Calcium Vent Gas Vent Gas Calcium Vent Gas Vent Gas Calcium Vent Gas	Grout Nix Tank Cement Furnace Slag Slag Slag Vent Cas Slag Air Tank Vent Cas Slag Slag Vent Cas Air Tank Vent Cas Air Tank Vent Cas Air Tank Vent Cas Air Tank Vent Cas Air Vent Cas Vent Cas Air Vent Cas Air Vent Cas Air Vent Cas Air Vent Cas Air Vent Cas

Appendix C - Mass and Energy Balances

ENERGY BALANCES

Energy balances were performed on all major processing equipment requiring significant amounts of energy. The major processes that were evaluated include evaporation, crystallization, and neutralization. The energy requirements were determined for these processes in both the UNEX and Modified UNEX scenarios.

The following assumptions were made for purposes of simplification of the energy balance for the crystallization process, or Thin Film Dryer, in both the UNEX and Modified UNEX processes:

- Operation at constant pressure
- Overhead stream is saturated steam
- Bottom stream is liquid water
- Open system
- No shaft work
- Negligible kinetic and potential energy
- 95% quality steam at 150 psi
- Cooling water at 50°C and capacity for a 25°C temperature rise

Table C-1 provides the heating and cooling process requirements for operation of the TFD (TFD-203-1). (Values for power are given on a yearly basis.)

Table C-1 Crystallization Process Requirements

	Heating		Cooling		
Process	Power (kW)	Steam (lb/hr)	Power (kW)	Cooling Water (lb/hr)	
UNEX	105.0	300.0	-1.93	73.3	
Modified UNEX	89.2	254.9	-1.64	62.3	

The following assumptions were made for purposes of simplification of the energy balance for the low activity waste (LAW) evaporation process), in both the UNEX and Modified UNEX processes:

- Operation at constant pressure
- Overhead stream is saturated steam
- Bottom stream is liquid water
- Open system
- No shaft work
- Negligible kinetic and potential energy
- 95% quality steam at 15 psi
- Cooling water at 50°C and 20°C temperature rise

Table C-2 provides the heating and cooling process requirements for operation of the LAW evaporator (EV-204-1). (Values for power are given on a yearly basis.)

Table C-2 LAW Evaporation (EV-204-1) Process Requirements

	Hea	iting	Cooling		
Process	Power (kW)	Steam (lb/hr)	Power (kW)	Cooling Water (lb/hr)	
UNEX	266.7	832.6	-4.62	175.2	
Modified UNEX	200.4	594.2	-3.40	129.0	

The following assumptions were made for purposes of simplification of the energy balance for the neutralization process, in both the UNEX and Modified UNEX processes:

- Operation at constant pressure
- Neutralization reaction is

$$\text{H}^+ + \text{OH}^- \rightarrow \text{H}_2\text{O}$$

- Neutralization occurs in a 1:1 ratio
 - UNEX: 1 mole NaOH required to neutralize 1 mole of H⁺
 - Modified UNEX: 1 mole CaOH required to neutralize 1 mole H⁺
- Cooling water at 50°C

Table C-3 provides the cooling requirements for neutralization. (Values for power are given on a yearly basis.)

Table C-3 Neutralization Process Requirements

	Cooling				
Process	Power (kW)	Cooling Water (lb/hr)			
UNEX	-15.48	587.0			
Modified UNEX	-14.22	539.3			

TABLE 1 UNIVERSAL SOLVENT EXTRACTION FEASIBILITY STUDY

NORMAL POWER LOADS UNEX PROCESS

LOAD	kVA
General Building Lighting	
Steam Plant	
3,120 Sq. Ft @ 1.5 Watts per sq. Ft = 6240 Watts	6.2
Thin Film Dryer Area	
6,775 Sq. Ft. @ 1.0 Watt per Sq. Ft. = 6,775 Watts	6.8
3,137 Sq. Ft. @ 1.5 Watts per Sq. Ft. = 4,705 Watts	4.7
4,277 Sq. Ft. @ 2.0 Watts per Sq. Ft. =8,554 Watts	8.6
1,800 Sq. Ft. @ 3.0 Watts per Sq. Ft. =5,400 Watts	5.4
Process Building	
52,109 Sq. Ft. @ 0.75 Watts per Sq. Ft. =39,142 Watts	39.1
31,460 Sq. Ft. @ 1.0 Watt per Sq. Ft. = 31,460 Watts	31.5
2,850 Sq. Ft. @ 1.5 Watts per Sq. Ft. = 4,275 Watts	4.3
54,150 Sq. Ft. @ 2.0 Watts per Sq. Ft. = 108,300 Watts	108.3
4,000 Sq. Ft. @ 3.0 Watts per Sq. Ft. = 12,000 Watts	<u>12.0</u>
Total Lighting	226.9
Miscellaneous Loads	
Steam Plant	
3,120 Sq. Ft. @ 1.0 Watt per Sq. Ft = 3,120 Watts	3.1
Thin film Dryer Area	
4,257 Sq. Ft. @ 0.5 Watts per Sq. Ft = 2,129 Watts	2.1
4,381 Sq. Ft. @ 1.0 Watt per Sq. Ft = 4,381 Watts	4.4
1,494 Sq. Ft. @ 2.0 Watts per Sq. Ft = 2,988 Watts	3.0
1,580 Sq. Ft. @ 3.0 Watts per Sq. Ft = 4,740 Watts	4.7
Process Building	
52,190 Sq. Ft. @ 0.5 Watts per Sq. Ft = 26,095 Watts	26.1
17,690 Sq. Ft. @ 1.0 Watt per Sq. Ft = 17,690 Watts	17.7
13,750 Sq. Ft. @ 2.0 Watts per Sq. Ft = 27,500 Watts	27.5
58,150 Sq. Ft. @ 3.0 Watts per Sq. Ft = 174,450Watts	<u>174.5</u>
Total Miscellaneous	263.1
HVAC Loads:	
Supply Fan Motors - 370 HP	370
Exhaust Fan Motors – 755 HP	750
DAMAGS. I all MOIOIS - 133 III	/30
Chillers – 1,019 HP	1,019
Process Equipment:	
Miscellaneous Equipment – 300 HP	300
Total Connected kVA	2,929

TABLE 2 UNIVERSAL SOLVENT EXTRACTION FEASIBILITY STUDY

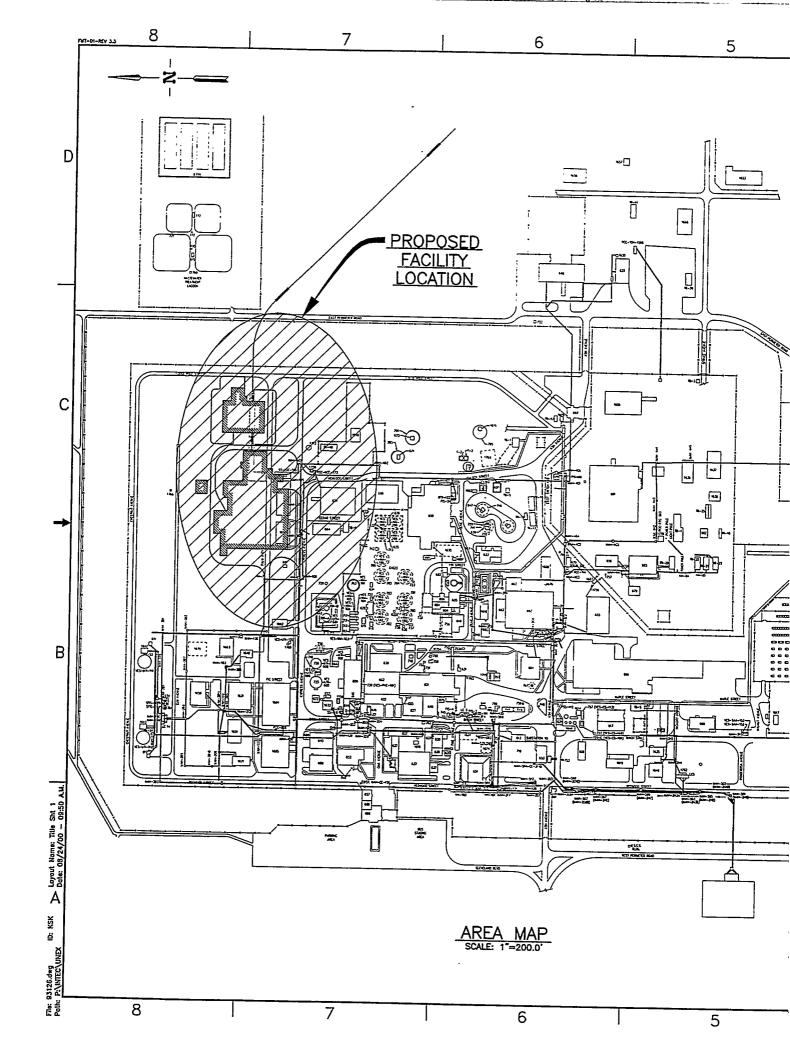
STANDBY POWER LOADS UNEX PROCESS

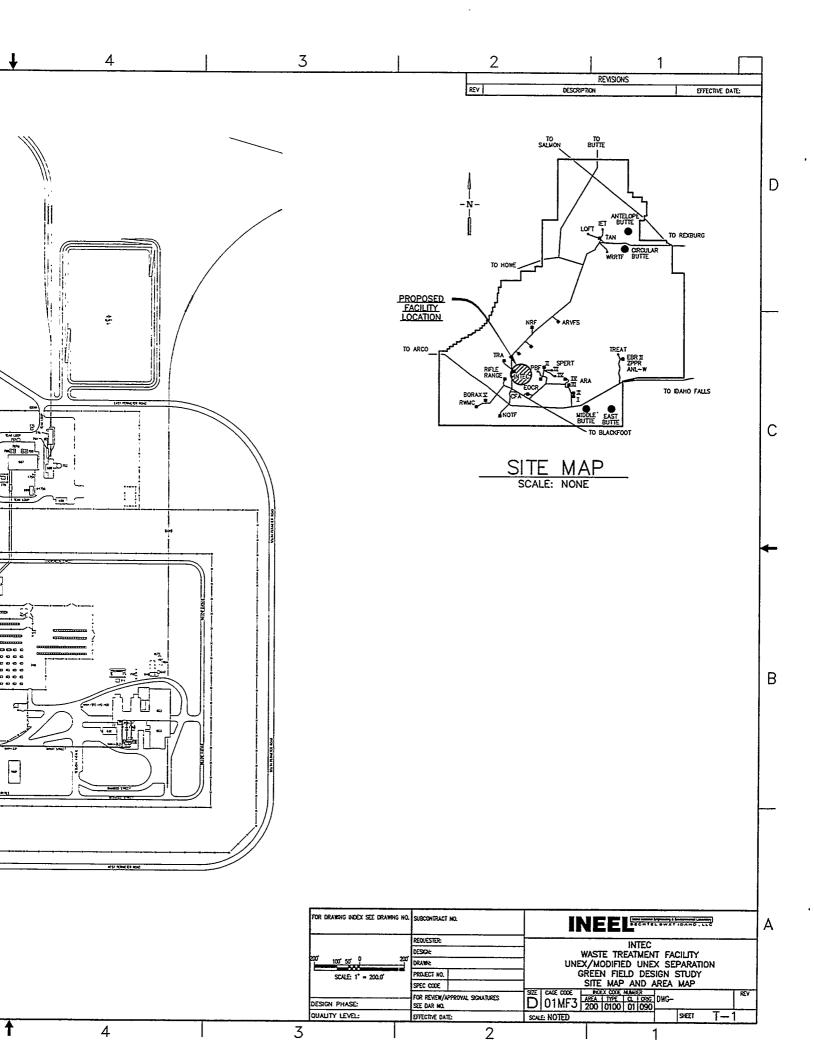
LOAD	kVA
General Building Lighting	
15% of Total Lighting	34.0
Miscellaneous Loads	
20% of Total Misc Loads	52.6
HVAC Loads:	
Exhaust Fan Motors – 480 HP	480
Process Equipment:	
25% of Miscellaneous Equipment – 75 HP	75
Total Connected kVA	642

TABLE 3 UNIVERSAL SOLVENT EXTRACTION FEASIBILITY STUDY

NORMAL POWER LOADS MODIFIED UNEX PROCESS

LOAD	kVA
General Building Lighting	
Steam Plant	
3,120 Sq. Ft @ 1.5 Watts per sq. Ft = 6240 Watts	6.2
Thin Film Dryer Area	
6,775 Sq. Ft. @ 1.0 Watt per Sq. Ft. = 6,775 Watts	6.8
3,137 Sq. Ft. @ 1.5 Watts per Sq. Ft. = 4,705 Watts	4.7
4,277 Sq. Ft. @ 2.0 Watts per Sq. Ft. =8,554 Watts	8.6
1,800 Sq. Ft. @ 3.0 Watts per Sq. Ft. =5,400 Watts	5.4
Process Building	
52,109 Sq. Ft. @ 0.75 Watts per Sq. Ft. =39,142 Watts	39.1
31,460 Sq. Ft. @ 1.0 Watt per Sq. Ft. = 31,460 Watts	31.5
2,850 Sq. Ft. @ 1.5 Watts per Sq. Ft. = 4,275 Watts	4.3
54,150 Sq. Ft. @ 2.0 Watts per Sq. Ft. = 108,300 Watts	108.3
4,000 Sq. Ft. @ 3.0 Watts per Sq. Ft. = 12,000 Watts	12.0
Total Lighting	226.9
Miscellaneous Loads	
Steam Plant	
3,120 Sq. Ft. @ 1.0 Watt per Sq. Ft = 3,120 Watts	3.1
Thin film Dryer Area	
4,257 Sq. Ft. @ 0.5 Watts per Sq. Ft = 2,129 Watts	2.1
4,381 Sq. Ft. @ 1.0 Watt per Sq. Ft = 4,381 Watts	4.4
1,494 Sq. Ft. @ 2.0 Watts per Sq. Ft = 2,988 Watts	3.0
1,580 Sq. Ft. @ 3.0 Watts per Sq. Ft = 4,740 Watts	4.7
Process Building	·
52,190 Sq. Ft. @ 0.5 Watts per Sq. Ft = 26,095 Watts	26.1
17,690 Sq. Ft. @ 1.0 Watt per Sq. Ft = 17,690Watts	17.7
13,750 Sq. Ft. @ 2.0 Watts per Sq. Ft = 27,500 Watts	27.5
58,150 Sq. Ft. @ 3.0 Watts per Sq. Ft = 174,450Watts	<u>174.5</u>
Total Miscellaneous	263.1
HVAC Loads:	
Supply Fan Motors - 315 HP	315
Exhaust Fan Motors – 575 HP	575
Chillers – 1,024 HP	1,024
Process Equipment:	
Miscellaneous Equipment – 300 HP	300
Total Connected kVA	2,704


TABLE 4 UNIVERSAL SOLVENT EXTRACTION FEASIBILITY STUDY


STANDBY POWER LOADS MODIFIED UNEX PROCESS

LOAD	kVA
General Building Lighting	
15% of Total Lighting	34.0
Miscellaneous Loads	
20% of Total Misc Loads	52.6
HVAC Loads:	
Exhaust Fan Motors – 330 HP	330
Process Equipment:	
25% of Miscellaneous Equipment – 75 HP	75
Total Connected kVA	492

Appendix D

Facility Drafting

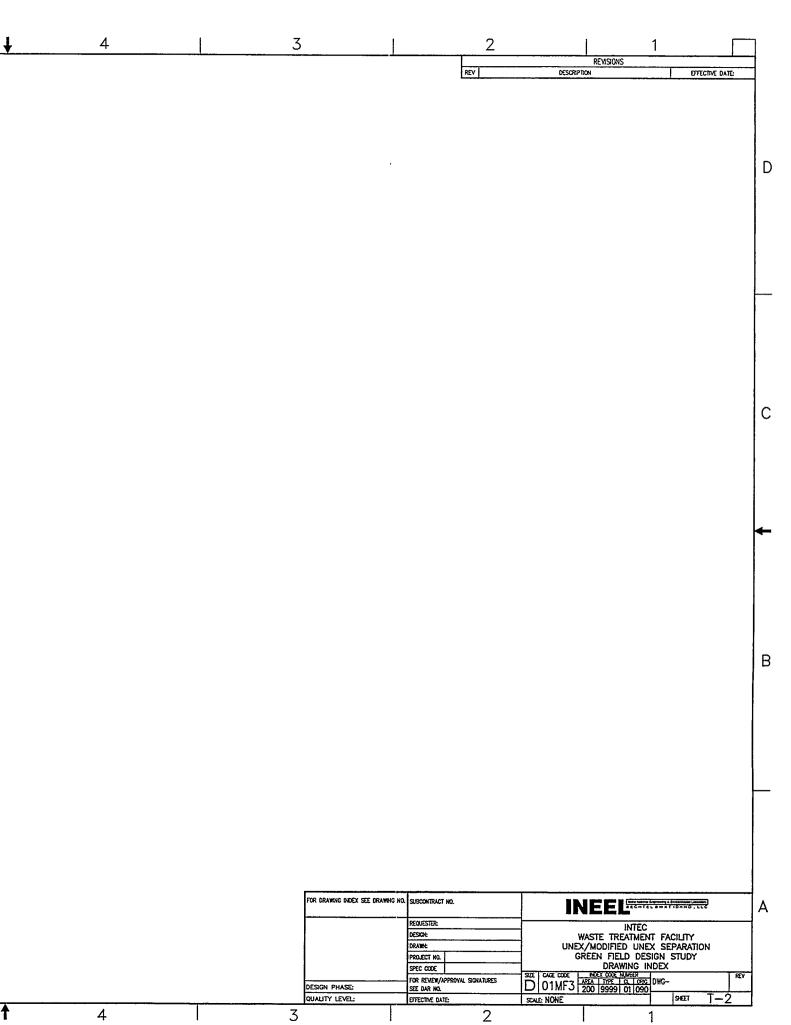
<u>NIT-DI-REY 1.3</u> 8 7 6 5

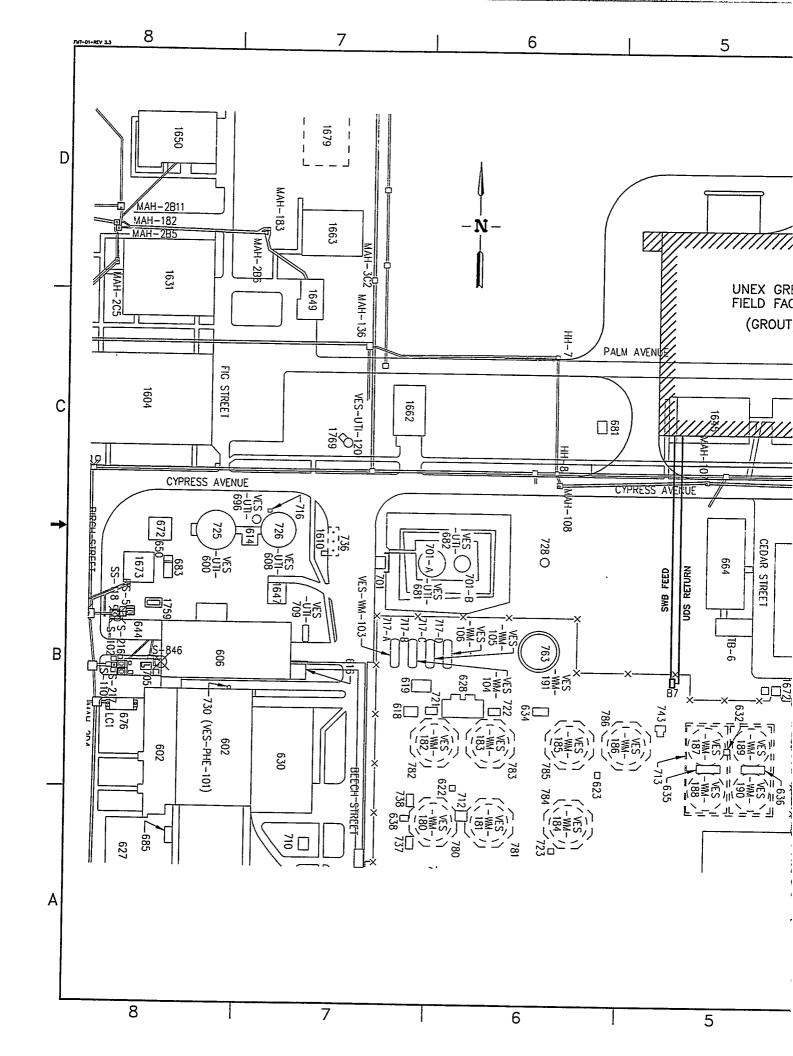
	DRAWING INDEX					
PAGE NO.	DWG	NO.	A-E DWG NO.	REV	DRAWING TITLE	
1			T-1		SITE MAP AND AREA MAP	
2			T-2		DRAWING INDEX	
3			U-1		SBW. FEED & UDS RETURN LINES	
4			U-2	$\neg \uparrow$	COOLING WATER LINE & DEMIN WATER LINE	
5			U-3		POTABLE WATER LINE	
Б			U-4		SANITARY SEWER LINE	
7		-	U-5		HIGH PRESSURE AIR	
8			U-6		FIRE WATER LINE	
9			U-7	_	STORM DRAIN	
10			U-8		SBW & USD LINES	
			1			
11			A-0	\dashv	PERSPECTIVE VIEW	
12			A-1	_	SECOND BASEMENT FLOOR PLAN	
13			A-2		FIRST BASEMENT FLOOR PLAN	
14			A-3		UNEX OPTION FIRST FLOOR PLAN	
15			А-3м		MODIFIED UNEX OPTION FIRST FLOOR PLAN	
16			A-4		SECOND FLOOR PLAN	
17			A-5		THIRD FLOOR PLAN	
18			A-6		FOURTH FLOOR PLAN	
19			A-7	_	FIFTH FLOOR PLAN	
20			A-8	_	SIXTH FLOOR PLAN	
21			A-9	_	ROOF PLAN	
22			A-10		STAIR ROOF PLAN	
23			A-11	\neg	SOUTH EXTERIOR ELEVATION	
24			A-12		NORTH EXTERIOR ELEVATION	
25			A-13		BUIDING CROSS SECTION C-C	
26			P-7	\neg	EQUIPMENT FLOW LAYOUT	
27			P-8	$\neg \uparrow$	BUILDING SECTIONS	
28			P-9	$\neg \dagger$	ELEVATION	
29			P-10	寸	FLOOR PLAN	
30			P-11	7	FLOOR PLAN	
31			P-12	寸	FLOOR PLAN	
32			P-13	$\neg \dagger$	FLOOR PLAN	
33			P-14	$\neg \uparrow$	ELEVATION	
34			E-1	7	ONE LINE DIAGRAM	
35			E-2	\neg	ONE LINE DIAGRAM	
36			E-3	$\neg \dagger$	ONE LINE DIAGRAM	
37			E-4	_	ONE LINE DIAGRAM	
38			E-5	_	DUCT BANK RELOCATION PLAN	

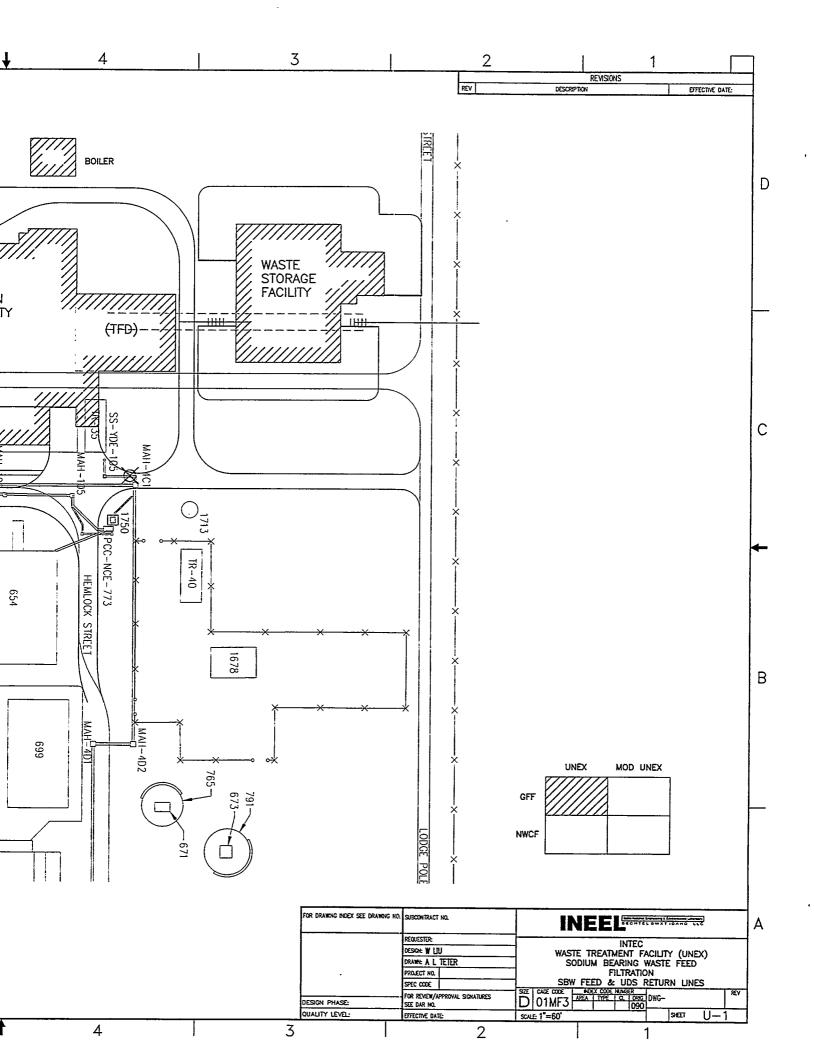
Fib. 93126.4% ID: KSK Doout Name: Tile Sht 2
Polh: P:\NTEC\UNEX Dole: 08/24/00 - 10:34 A

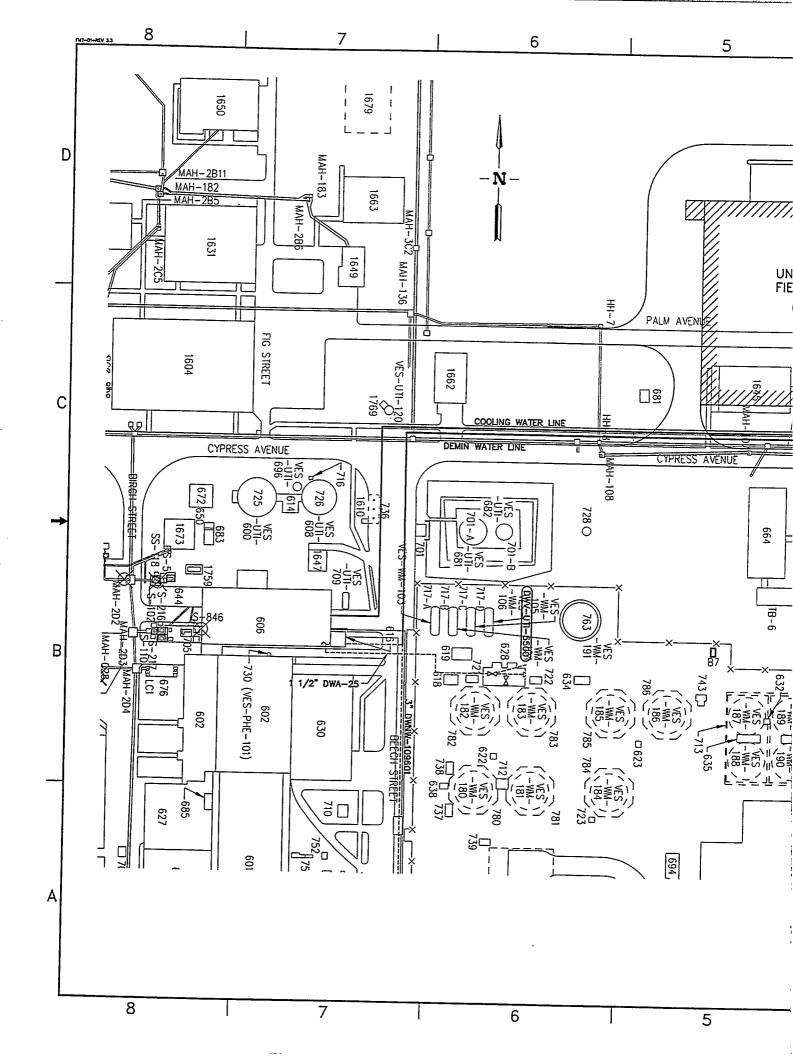
D

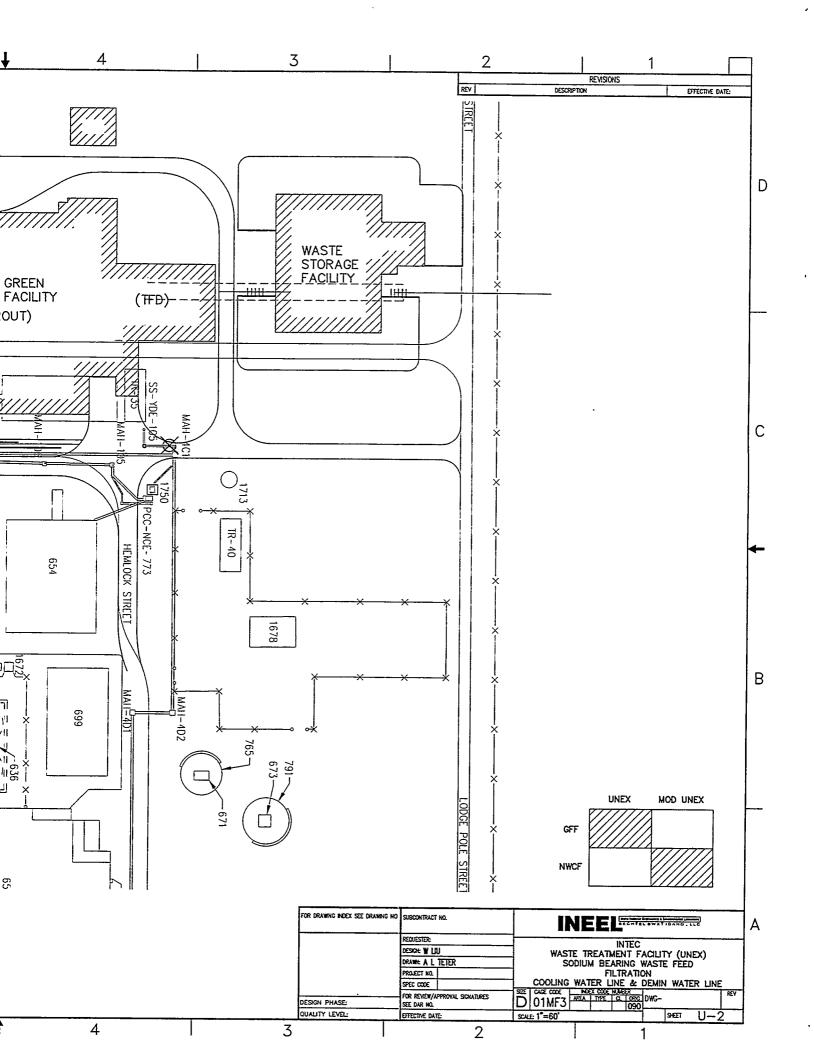
C

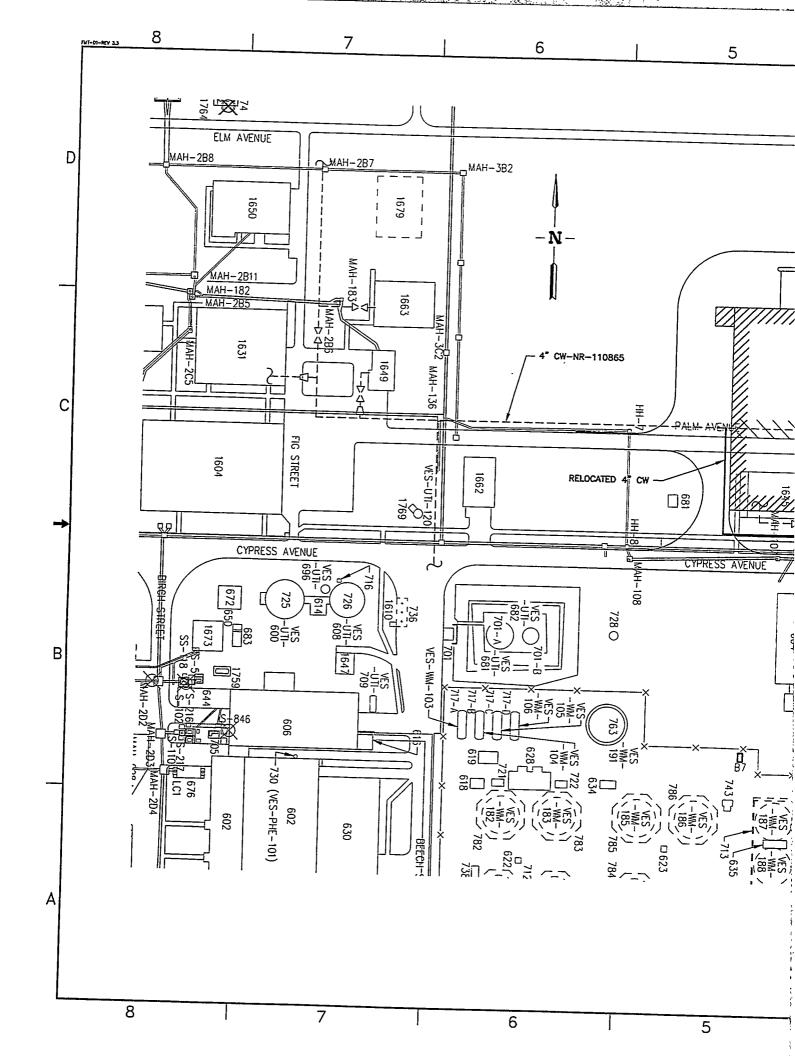

В

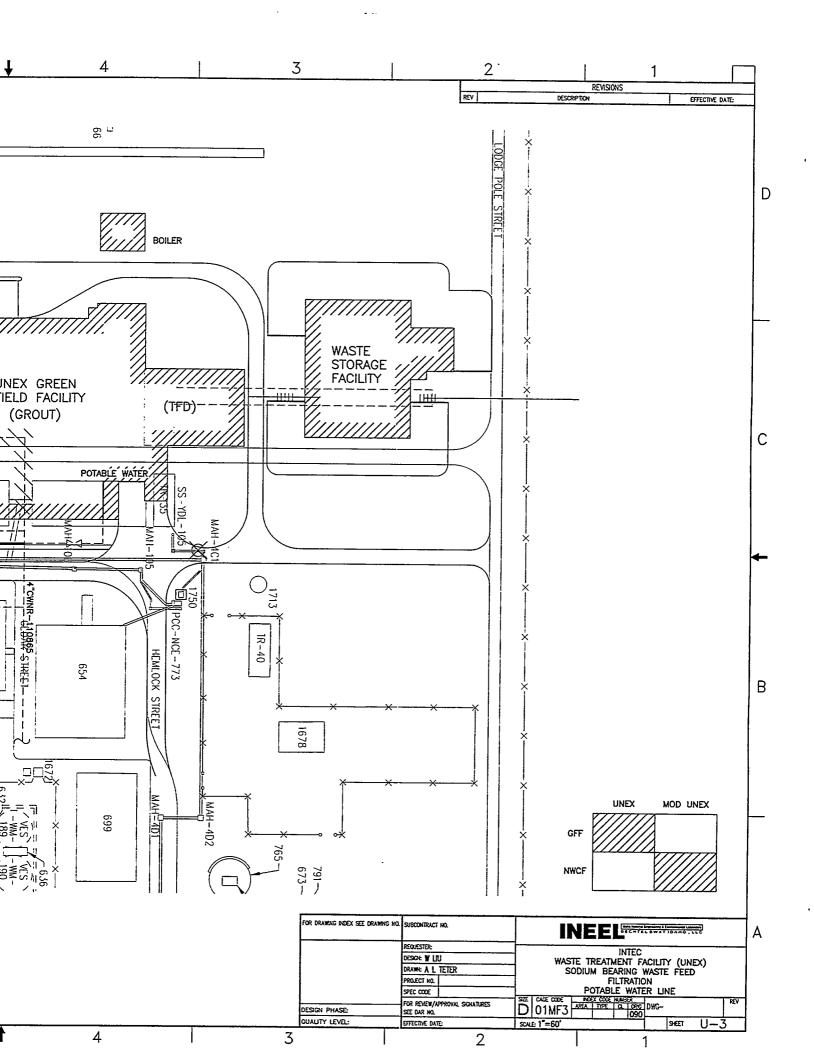

8

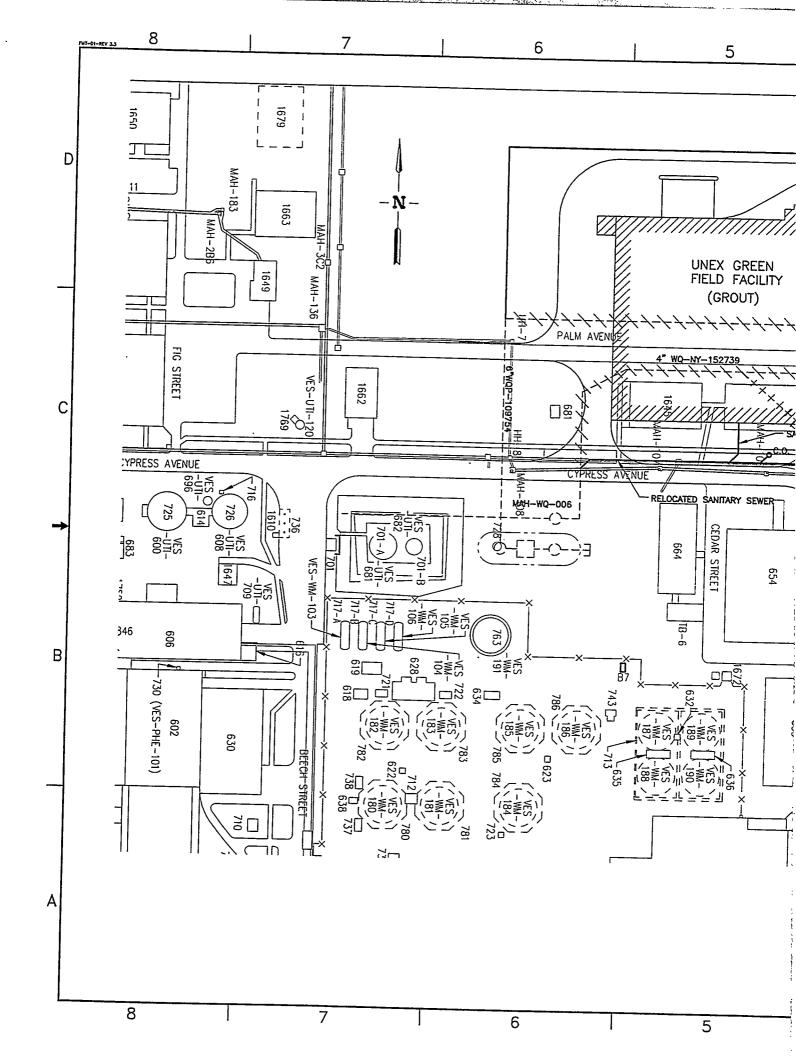

7

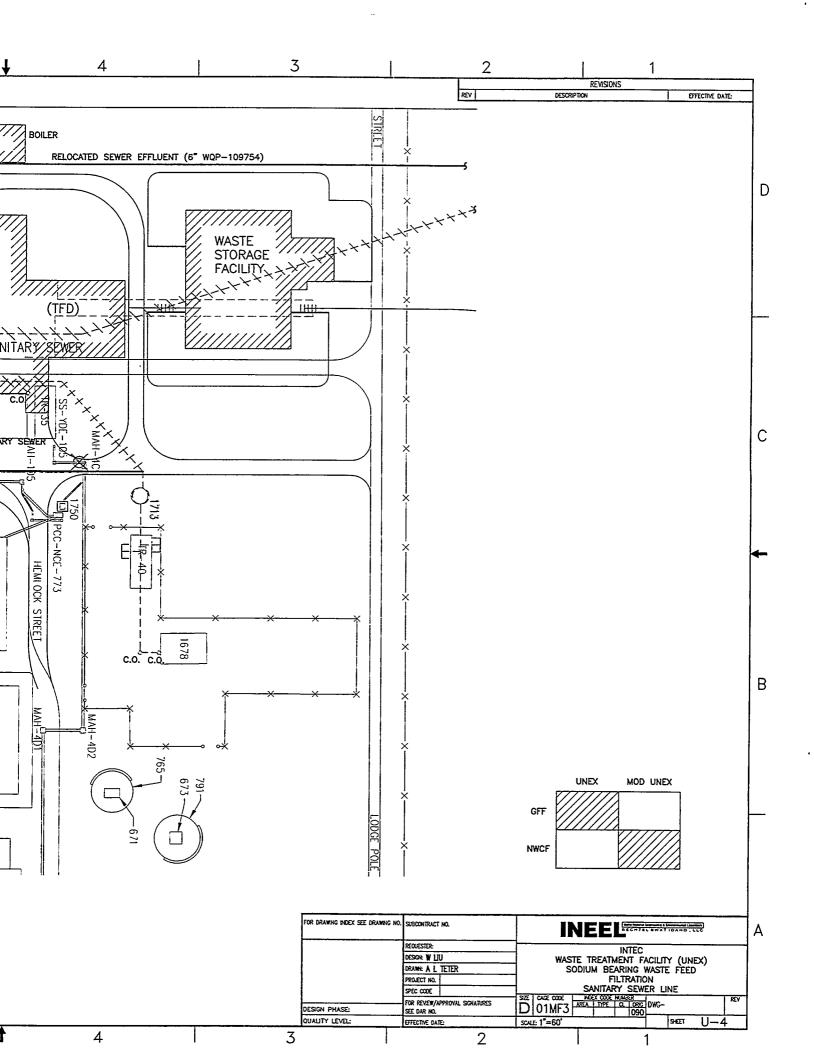

6

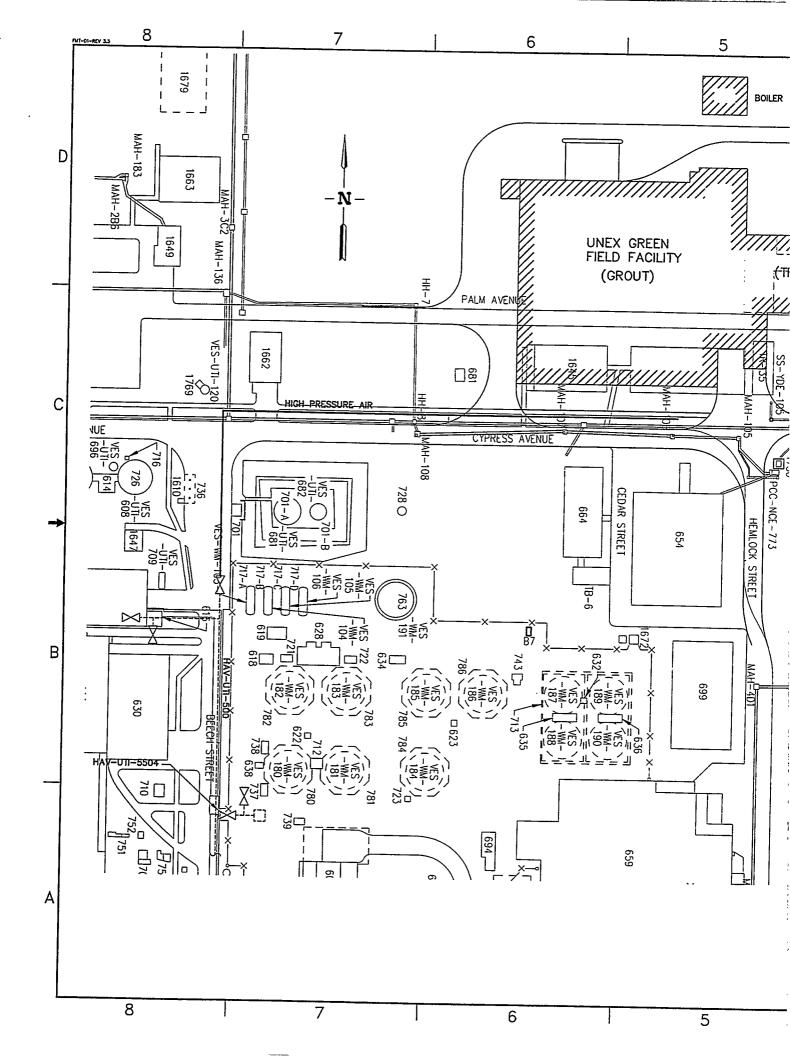

5

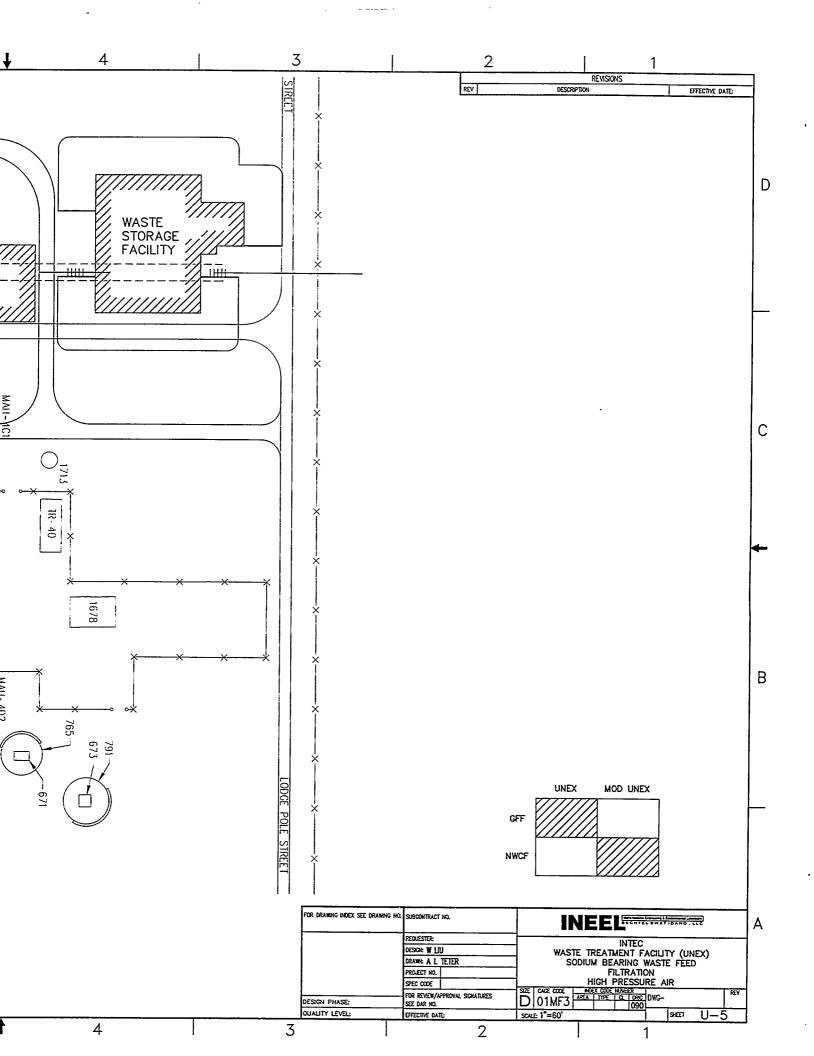


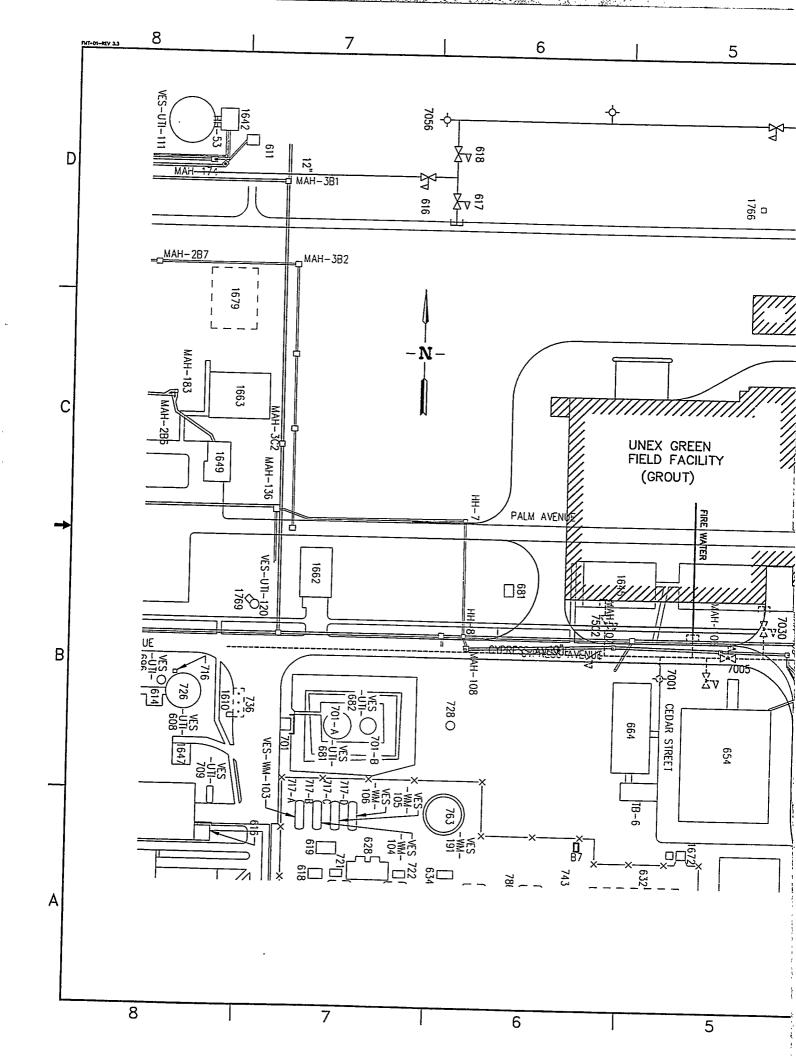


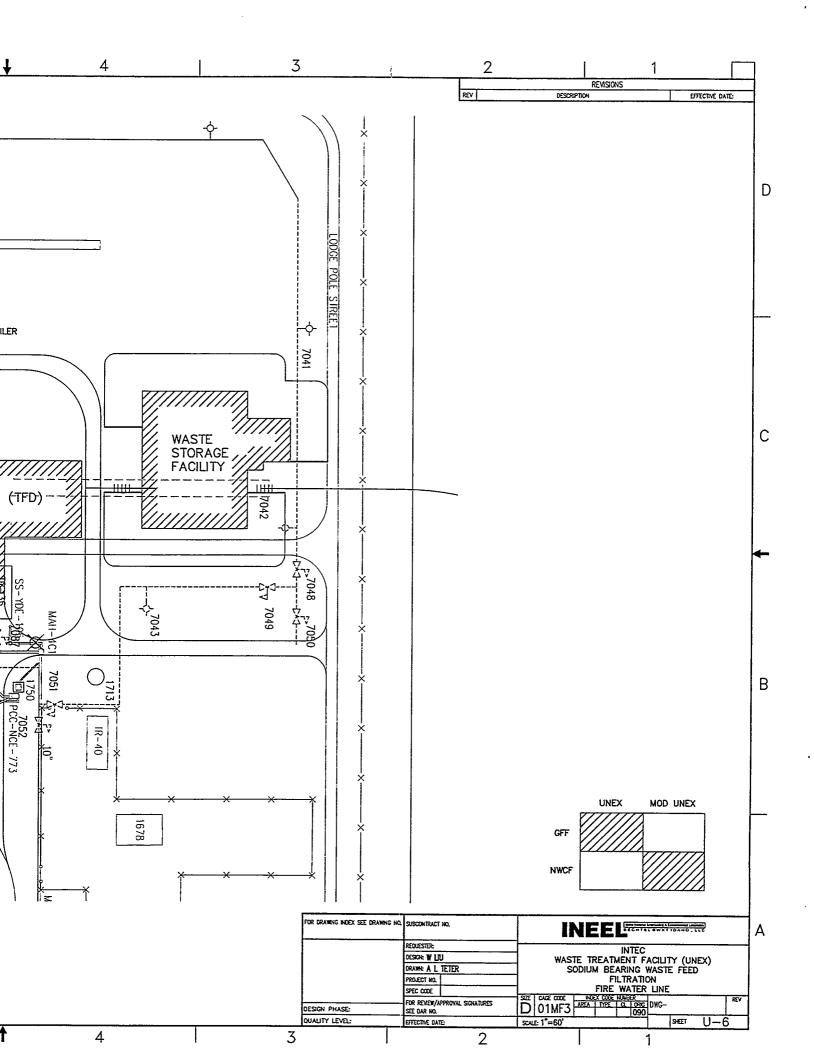


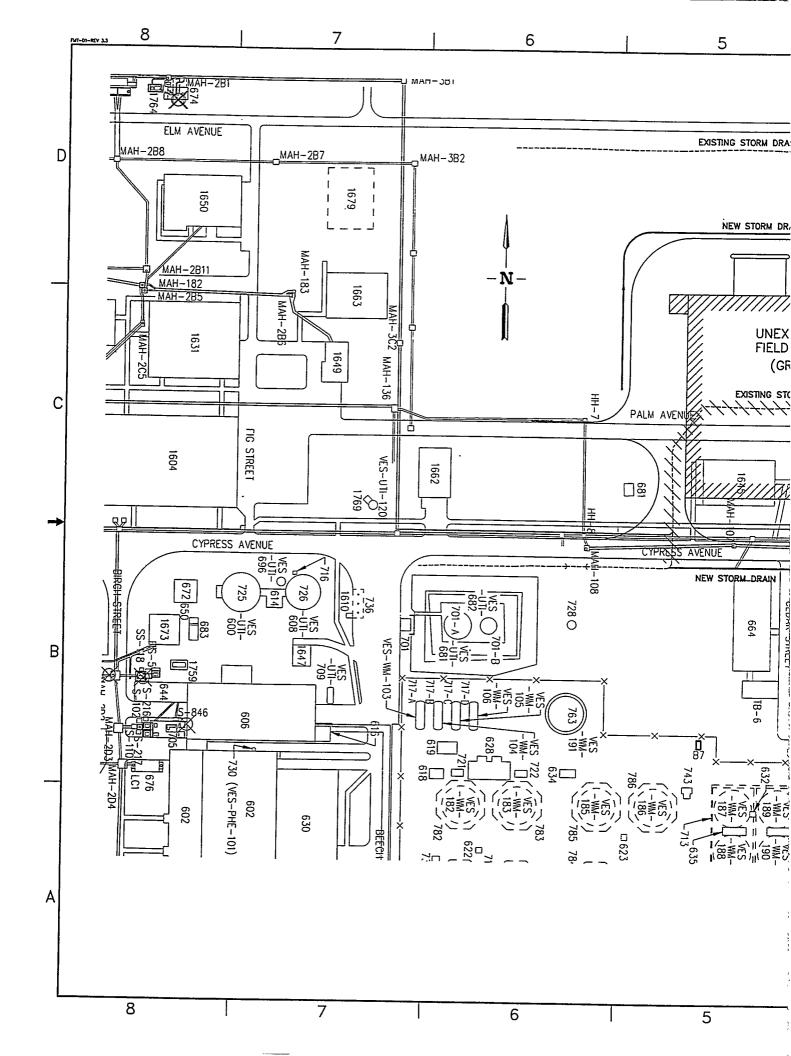


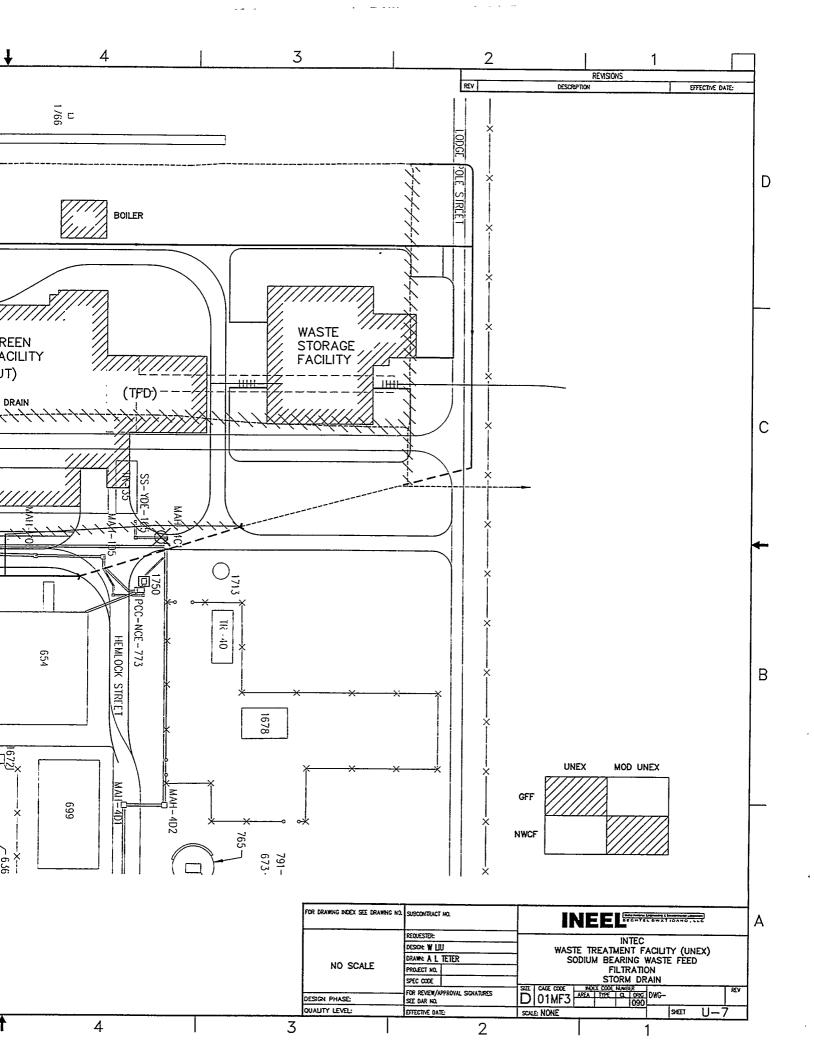


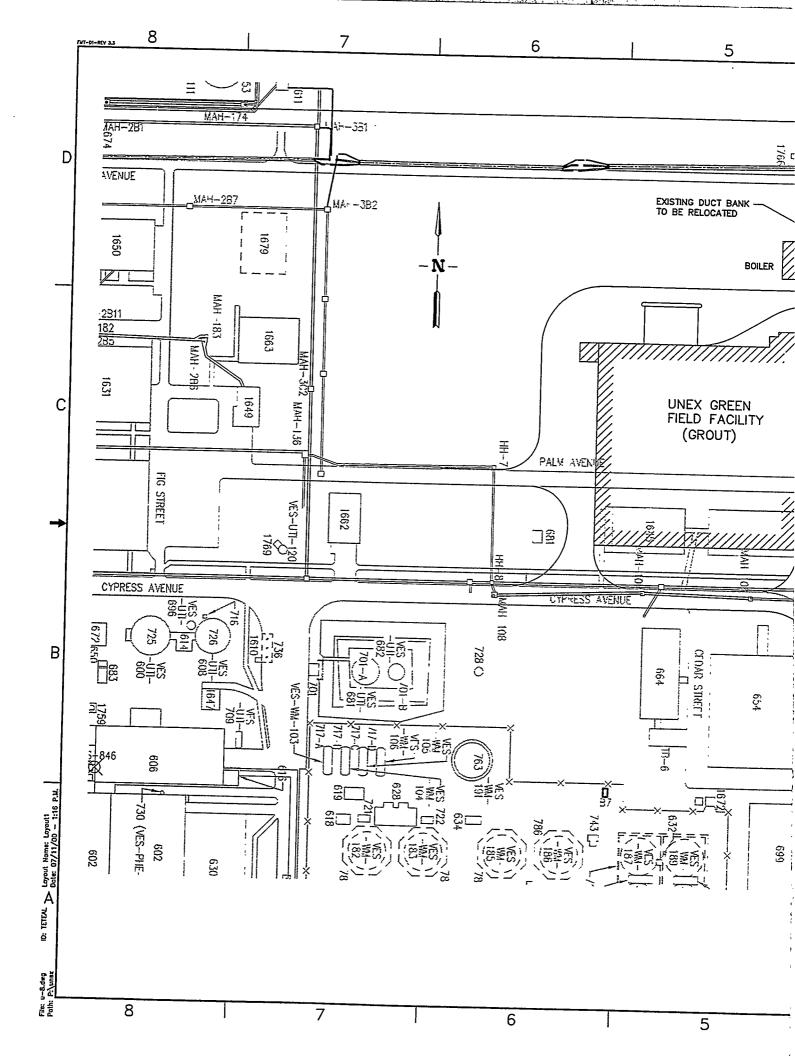


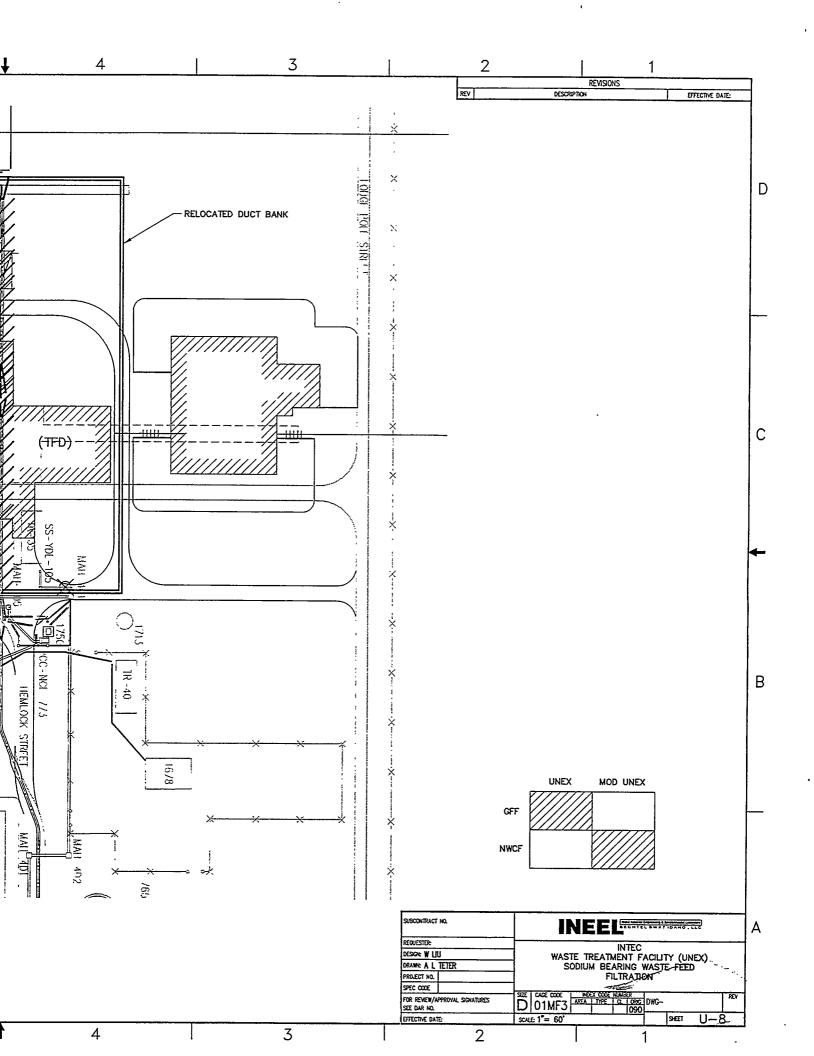


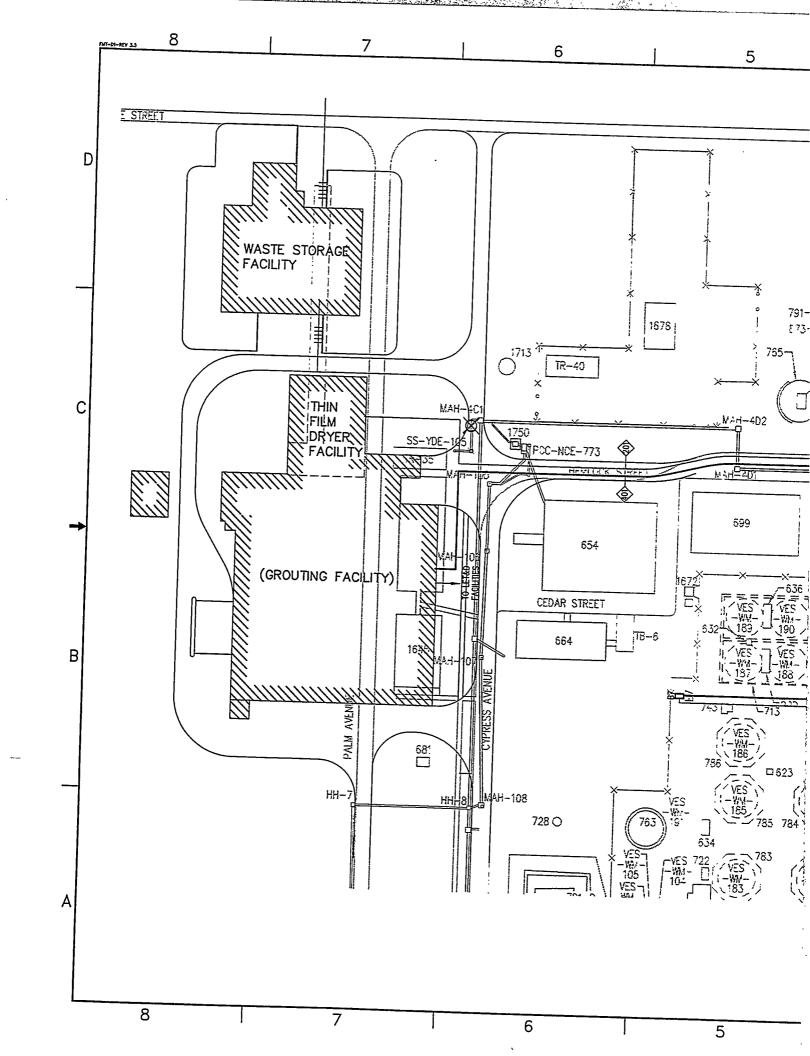




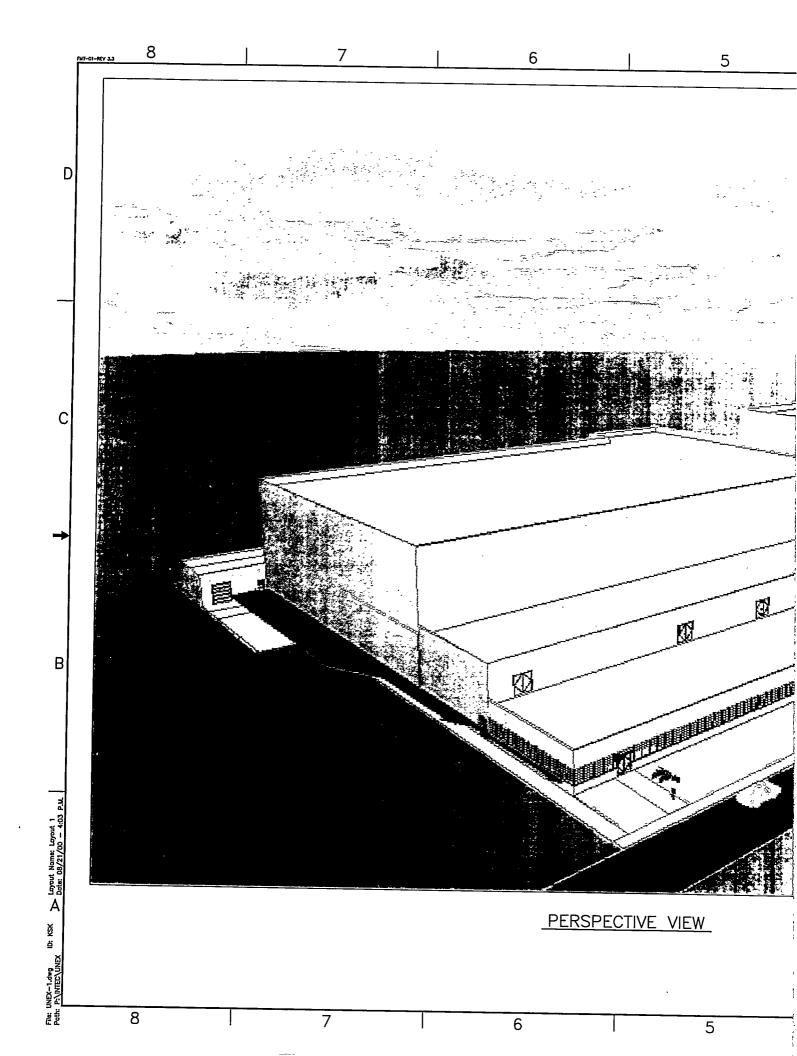


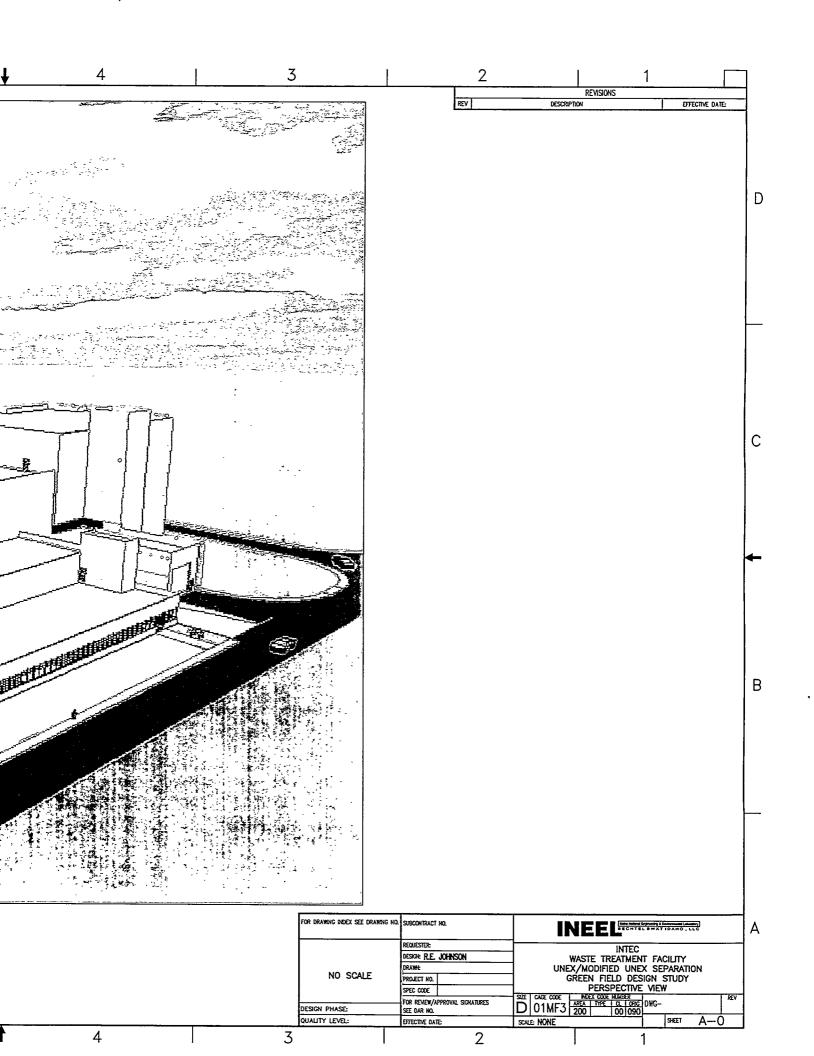


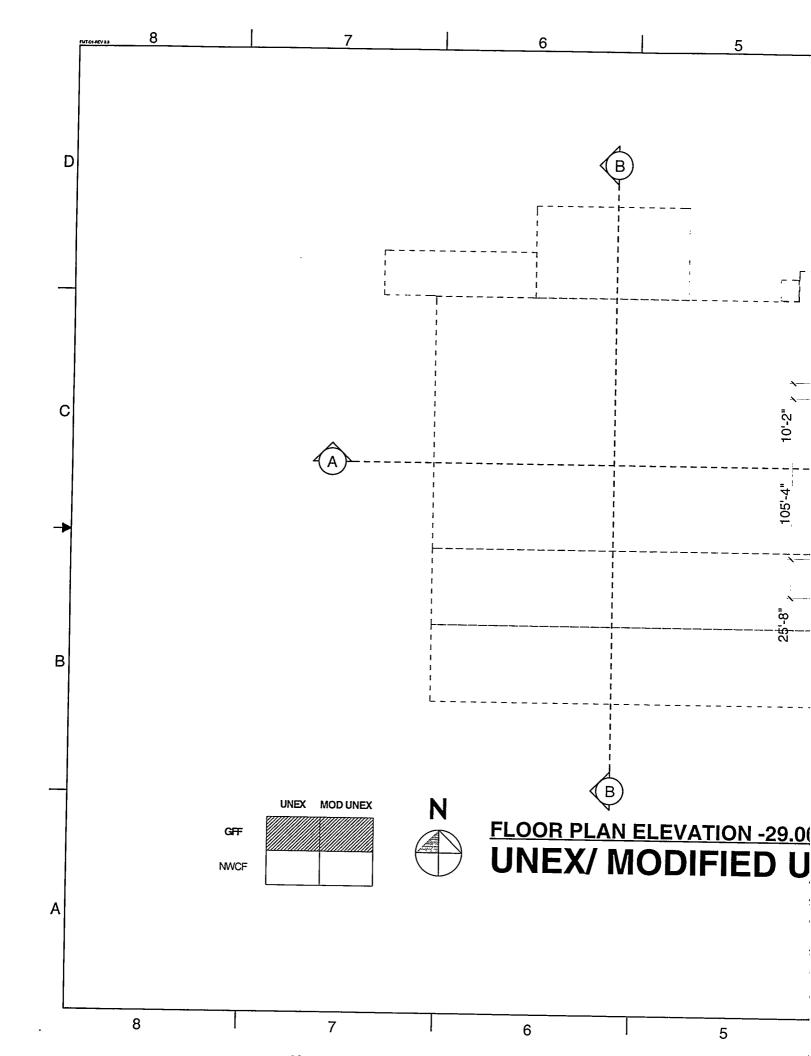


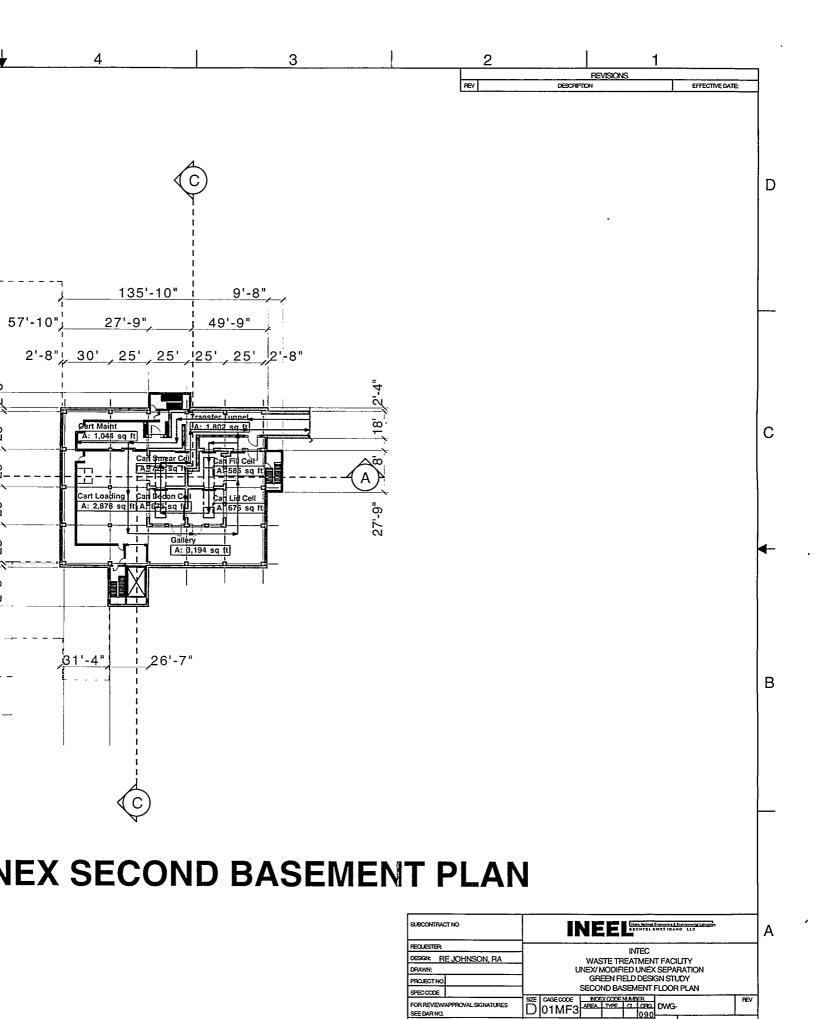


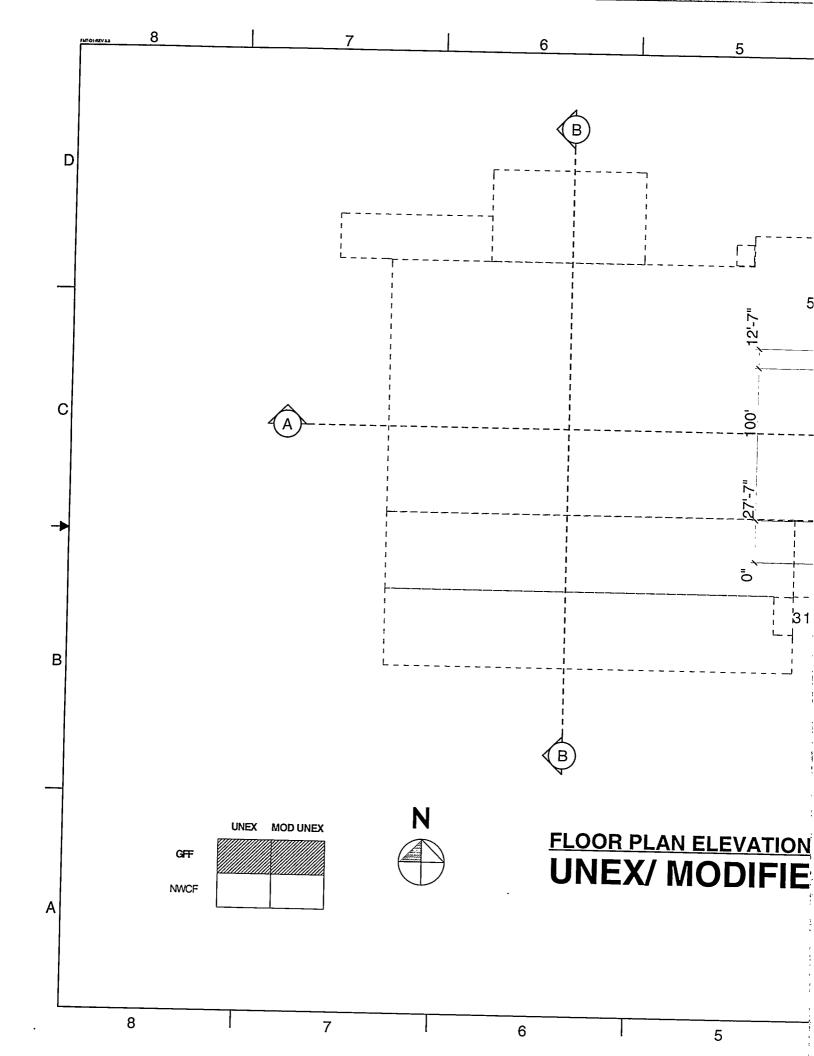


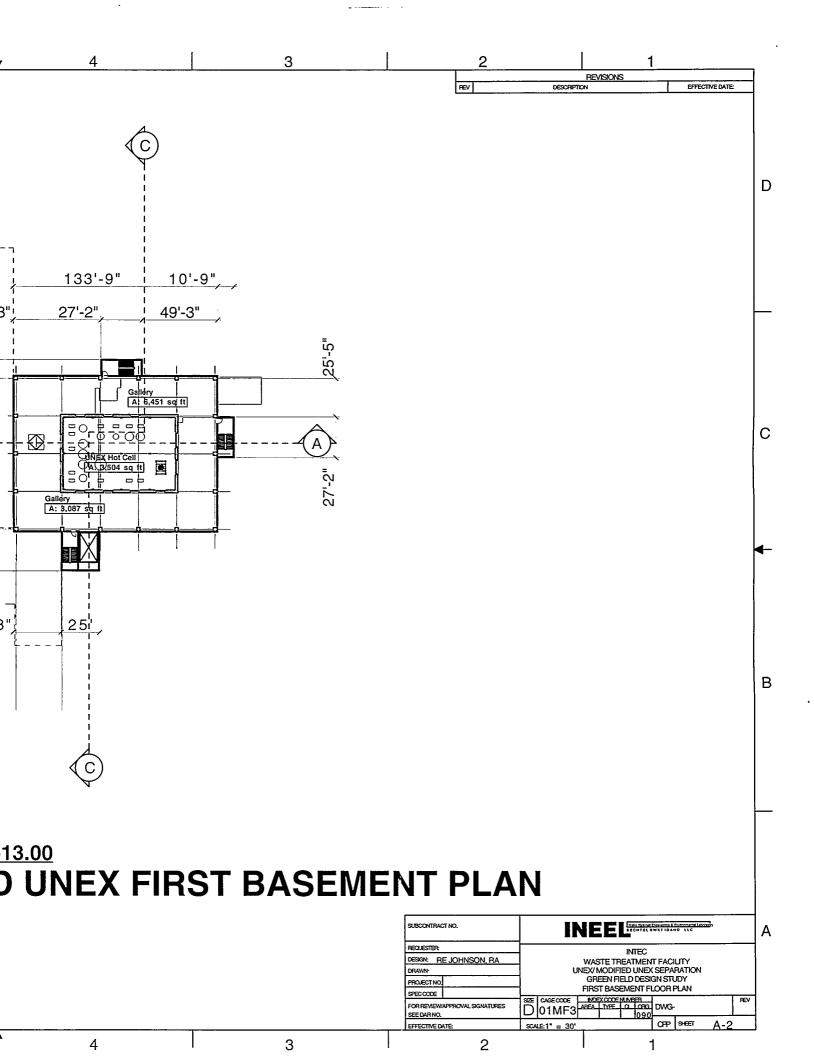


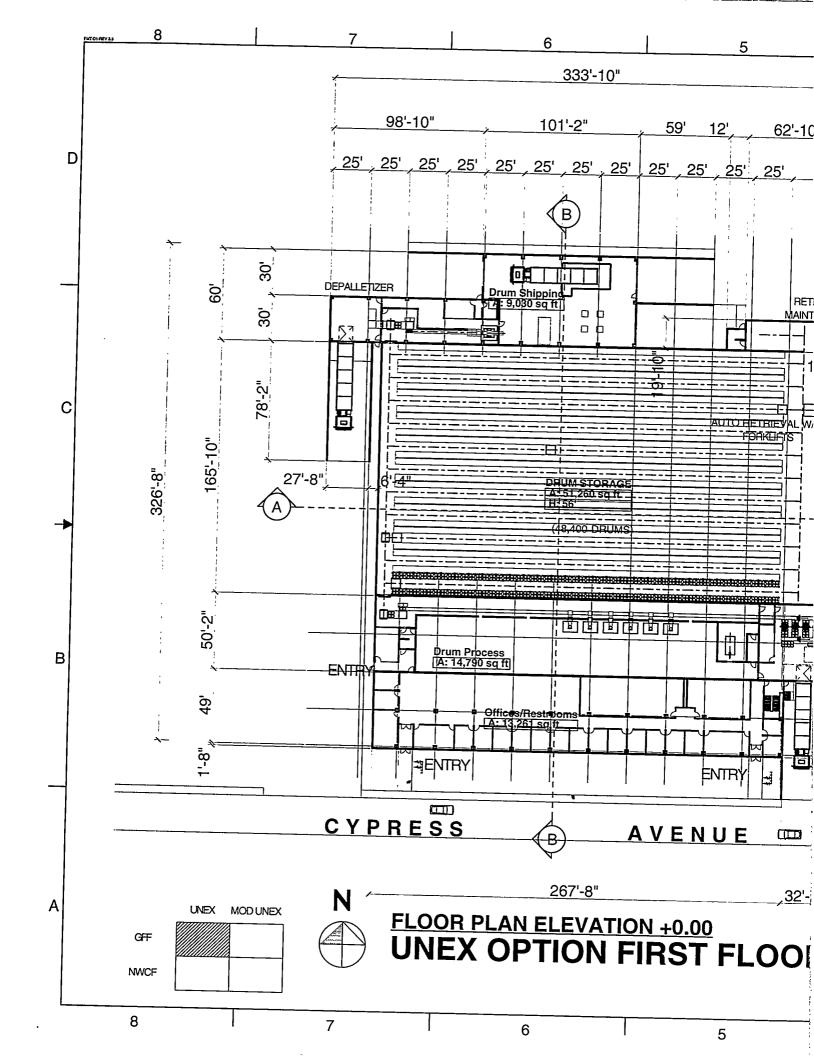


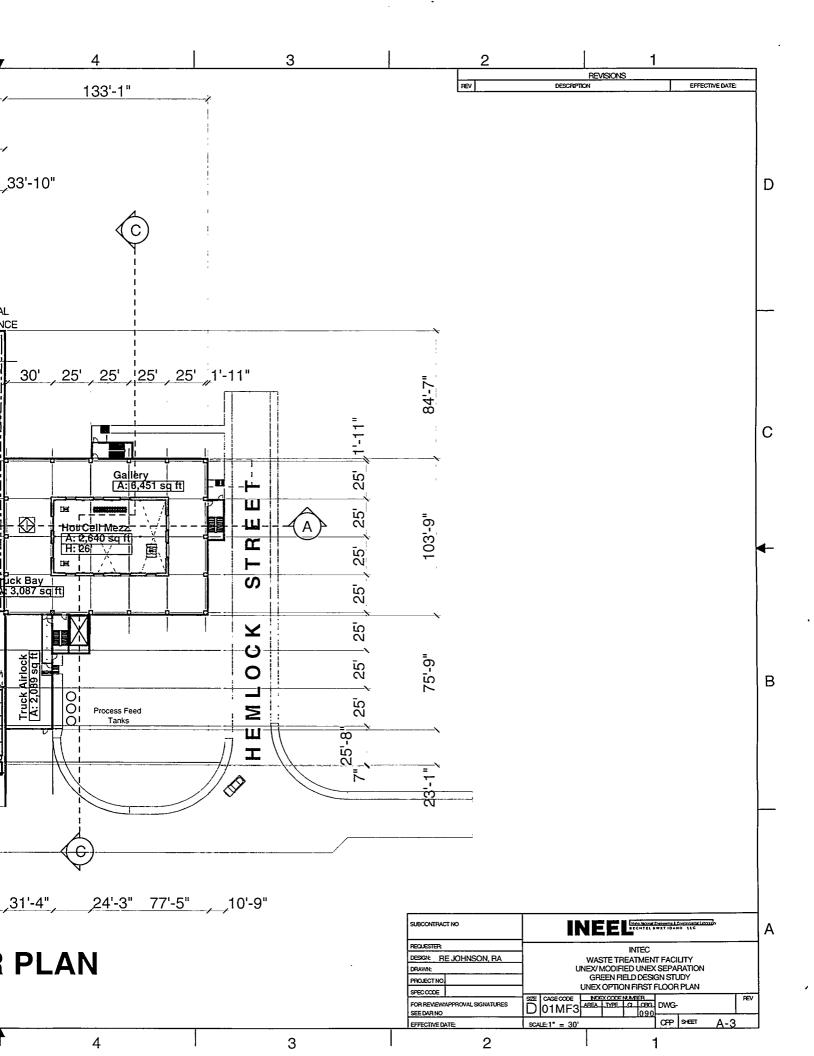


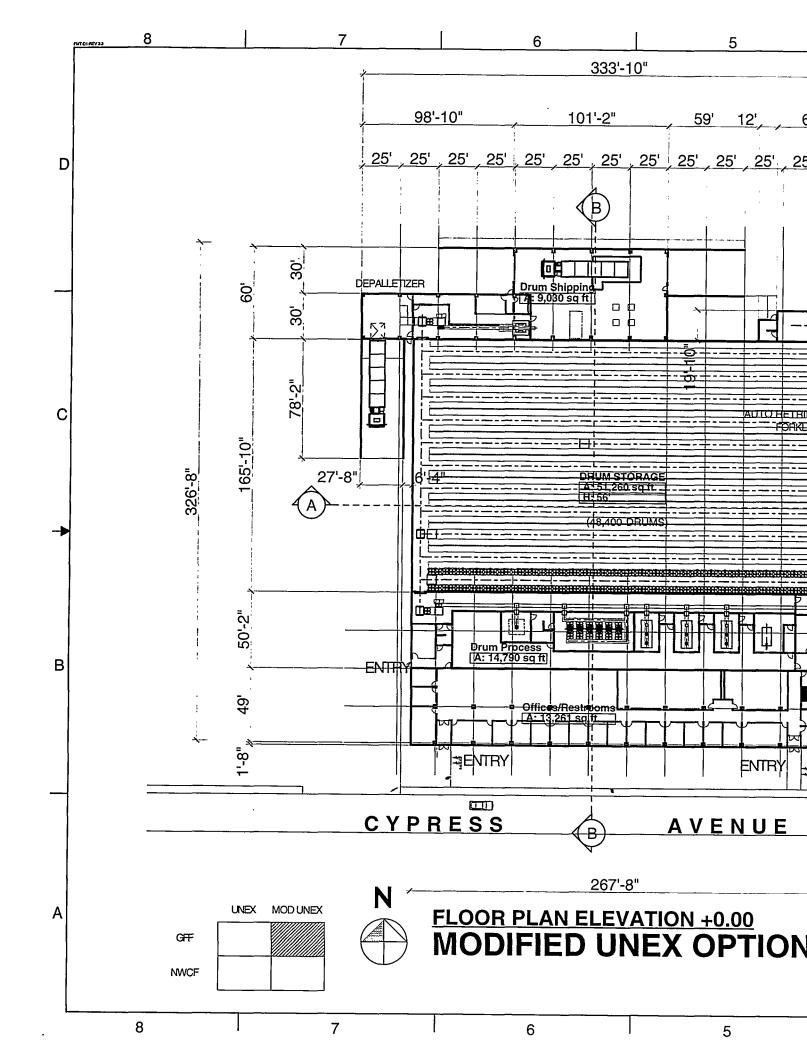


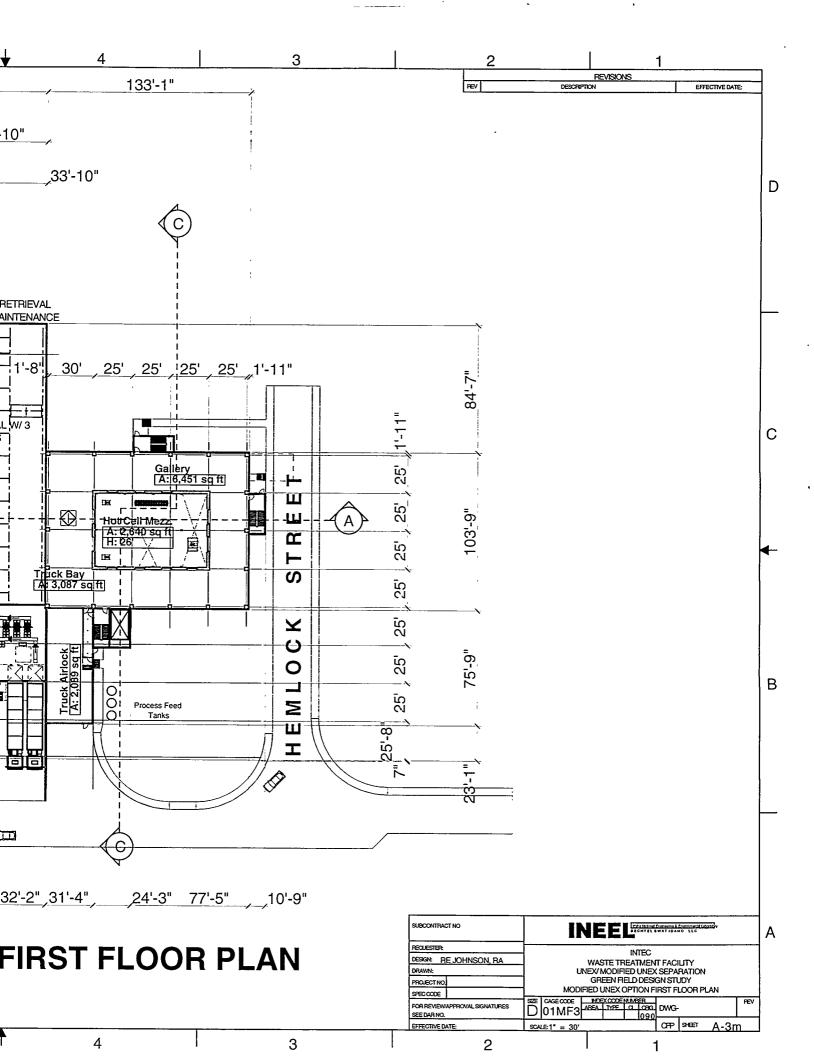


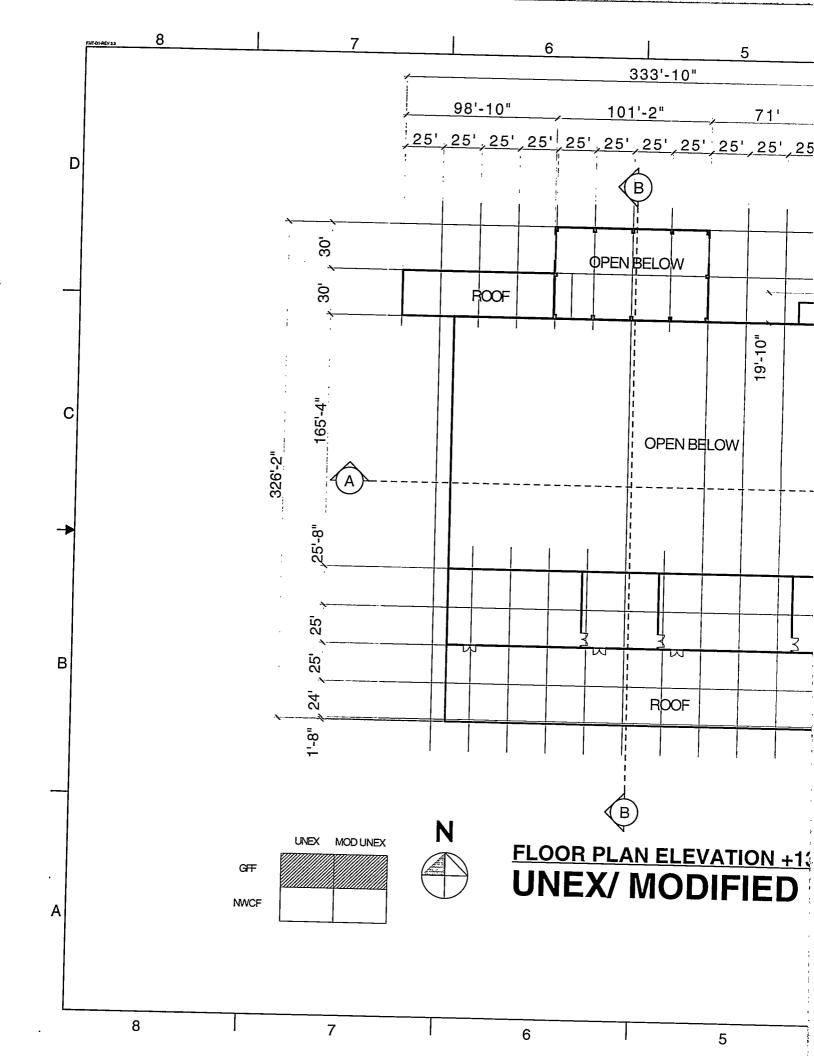


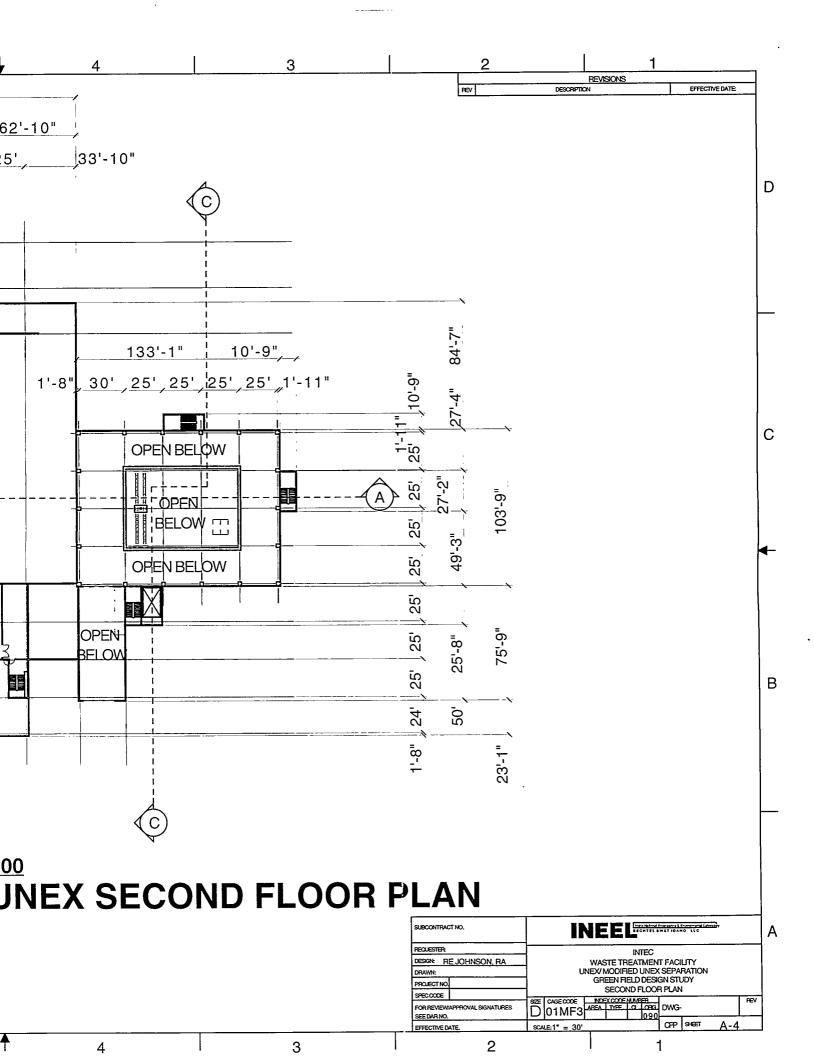


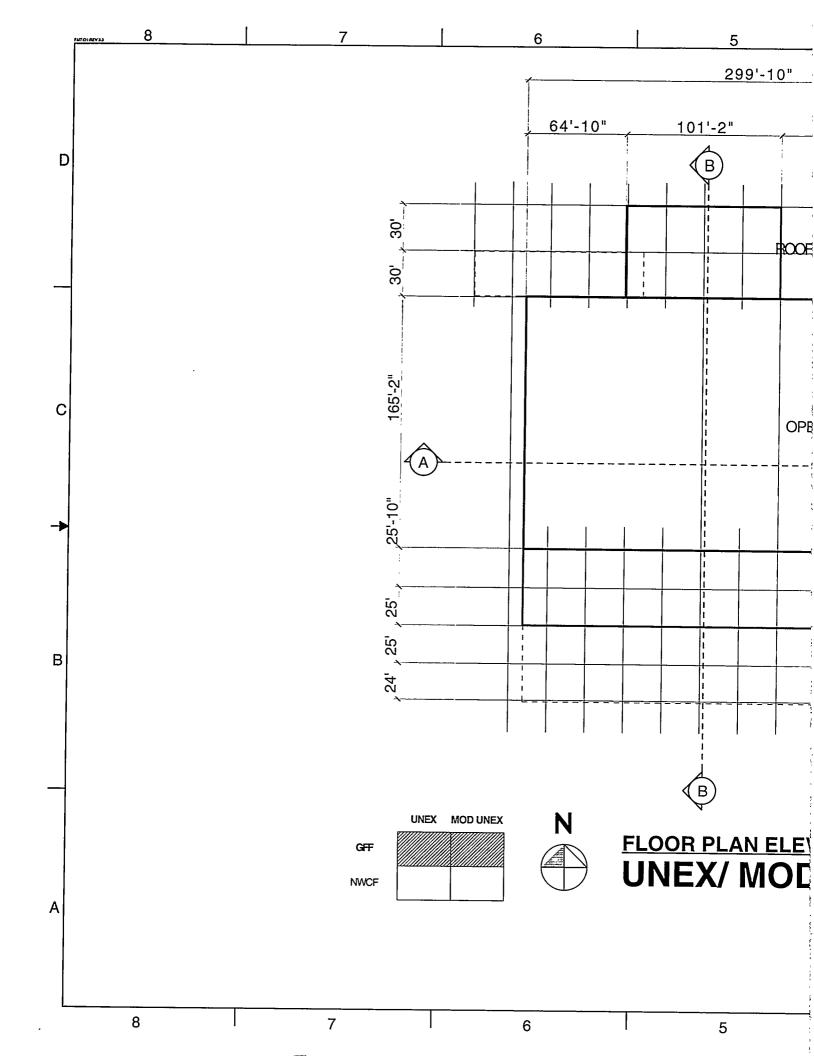

EFFECTIVE DATE.

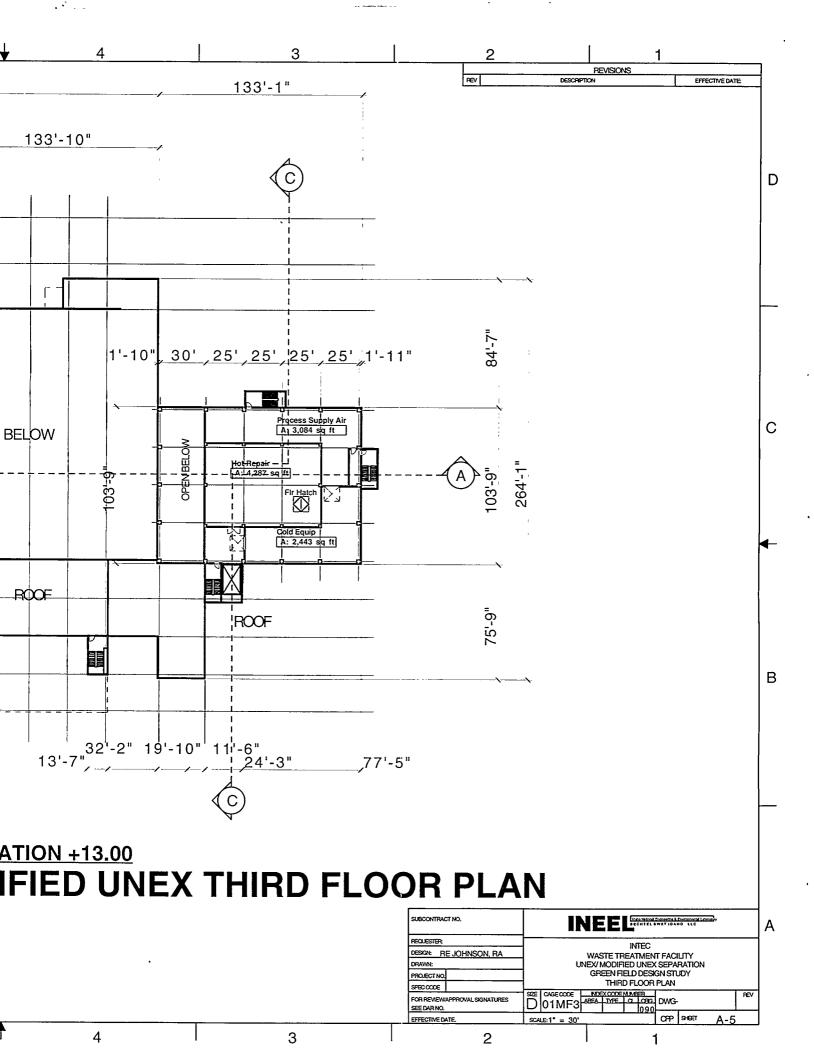

CEP SHEET

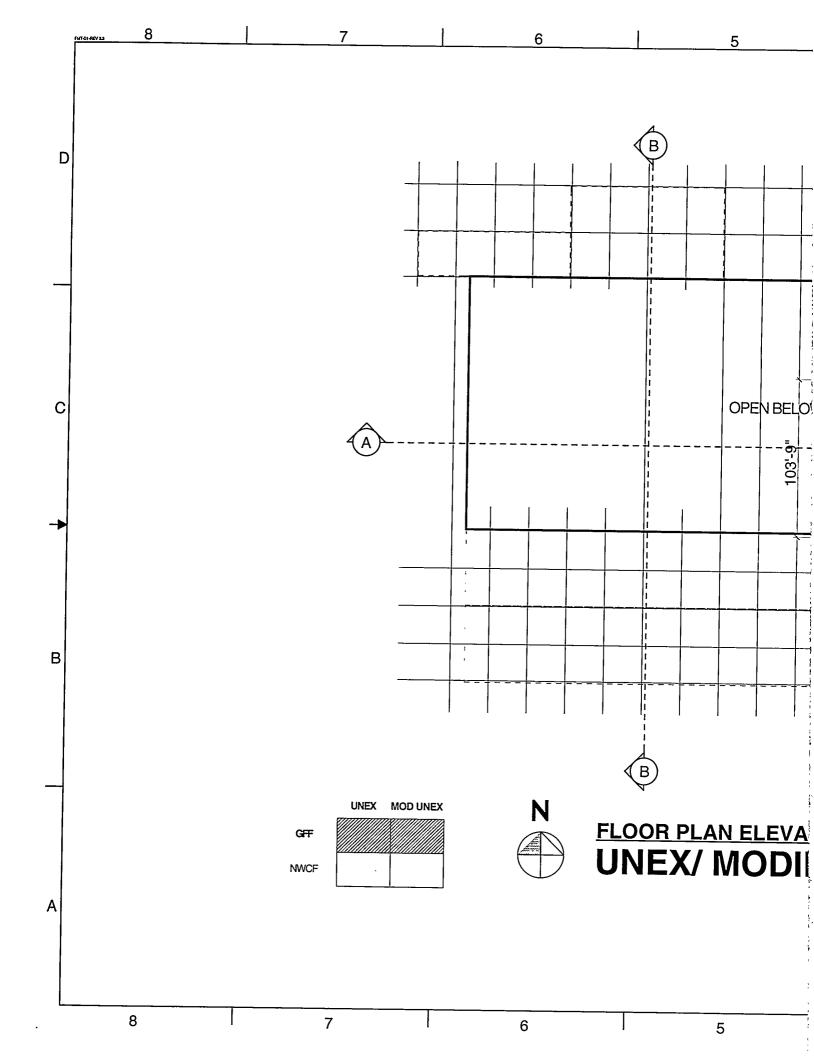


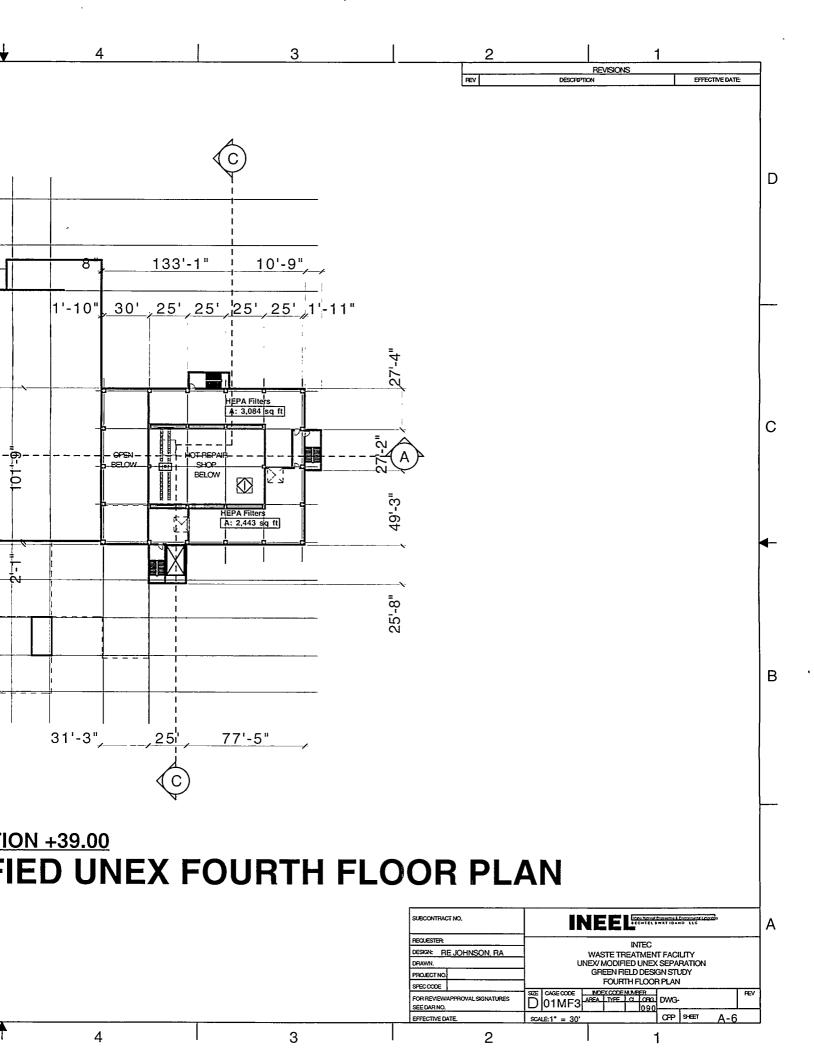


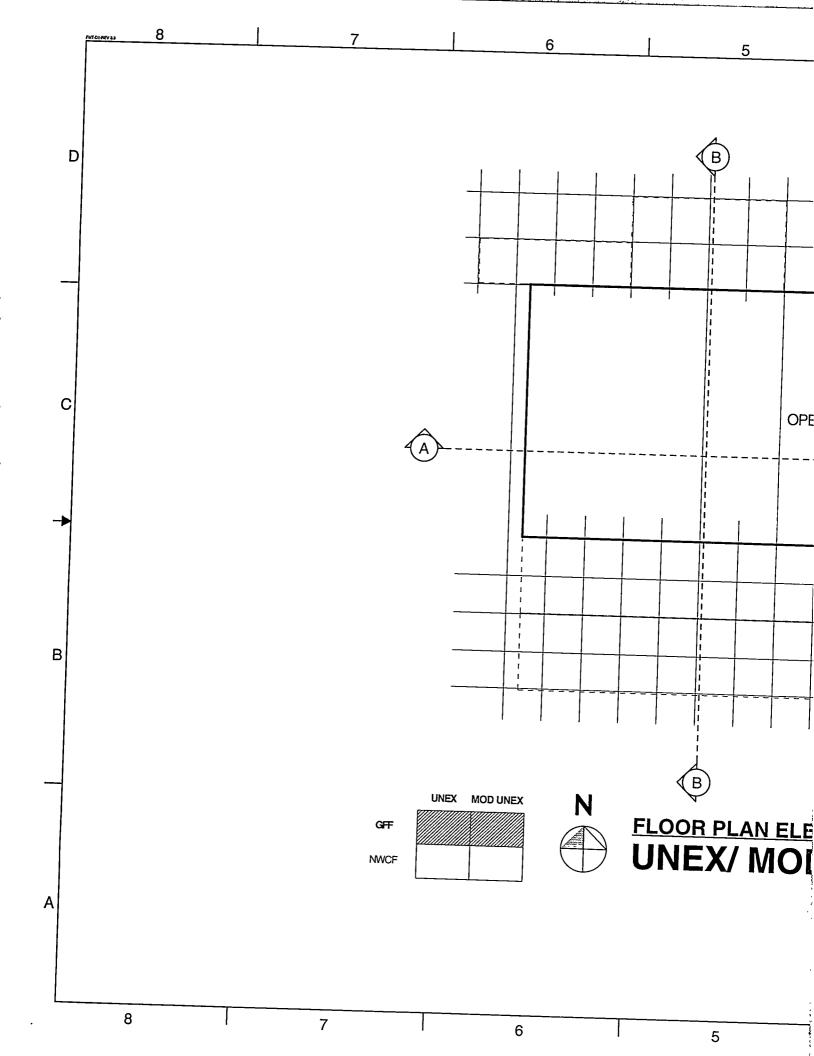


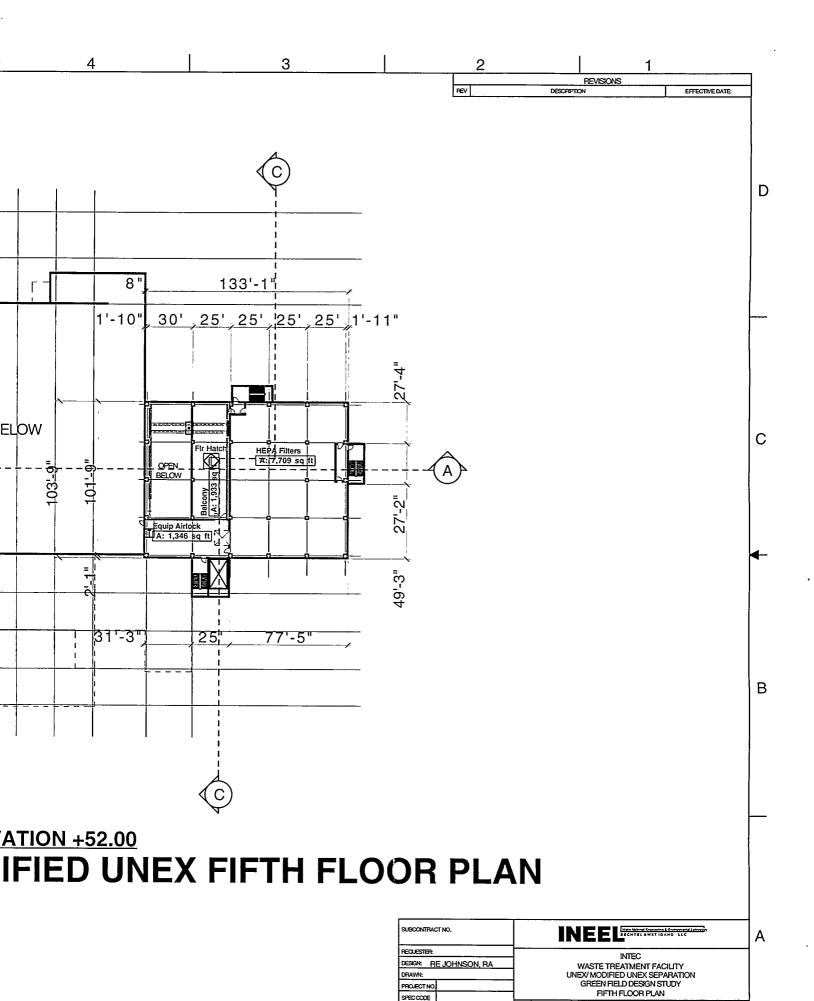


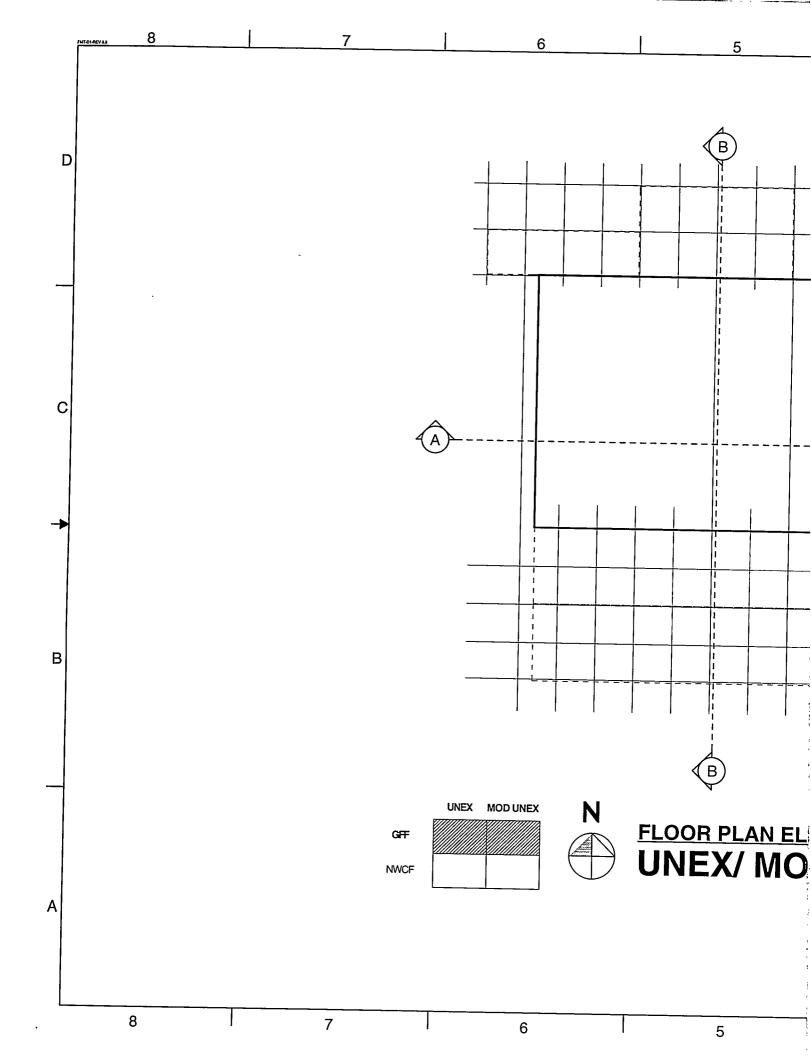


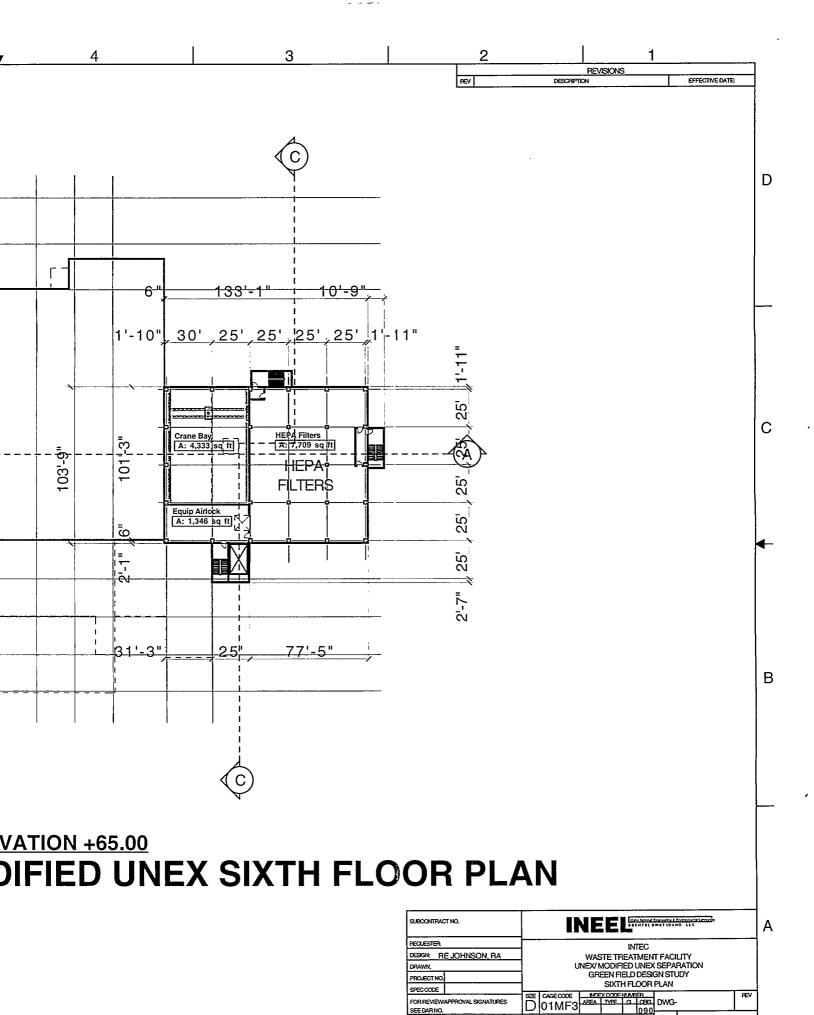









EFFECTIVE DATE: 4 3


FOR REVIEW/APPROVAL SIGNATURES

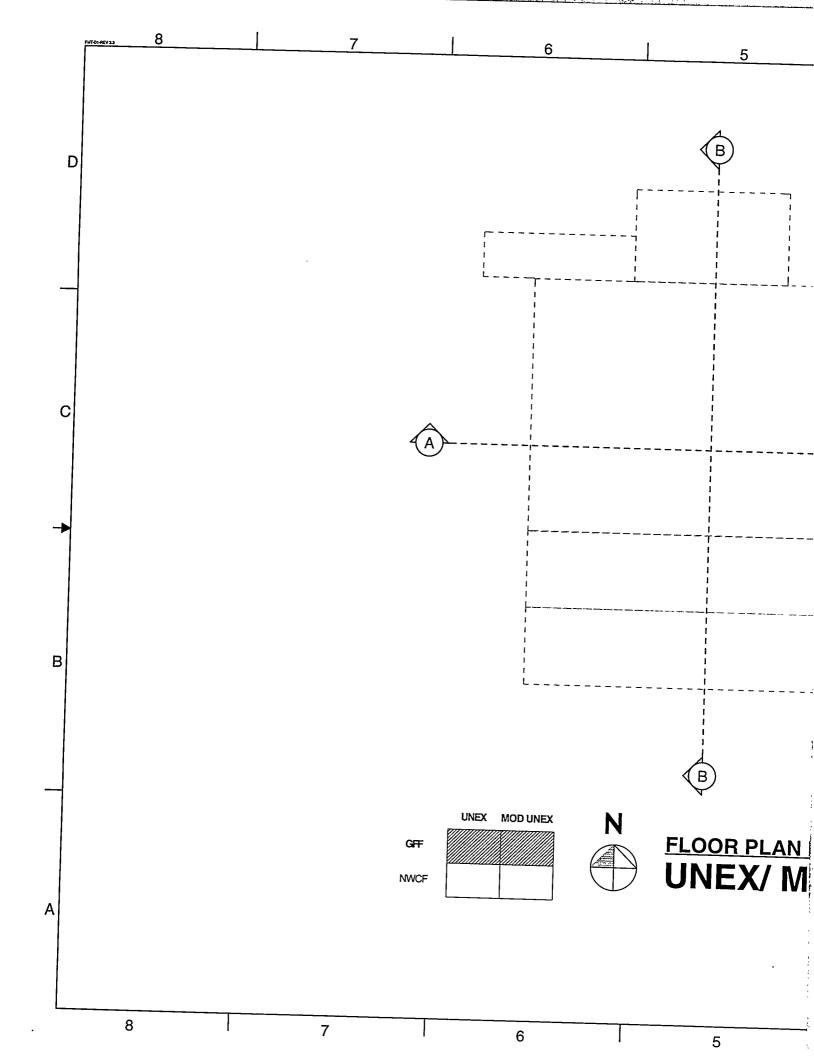
SEE DAR NO.

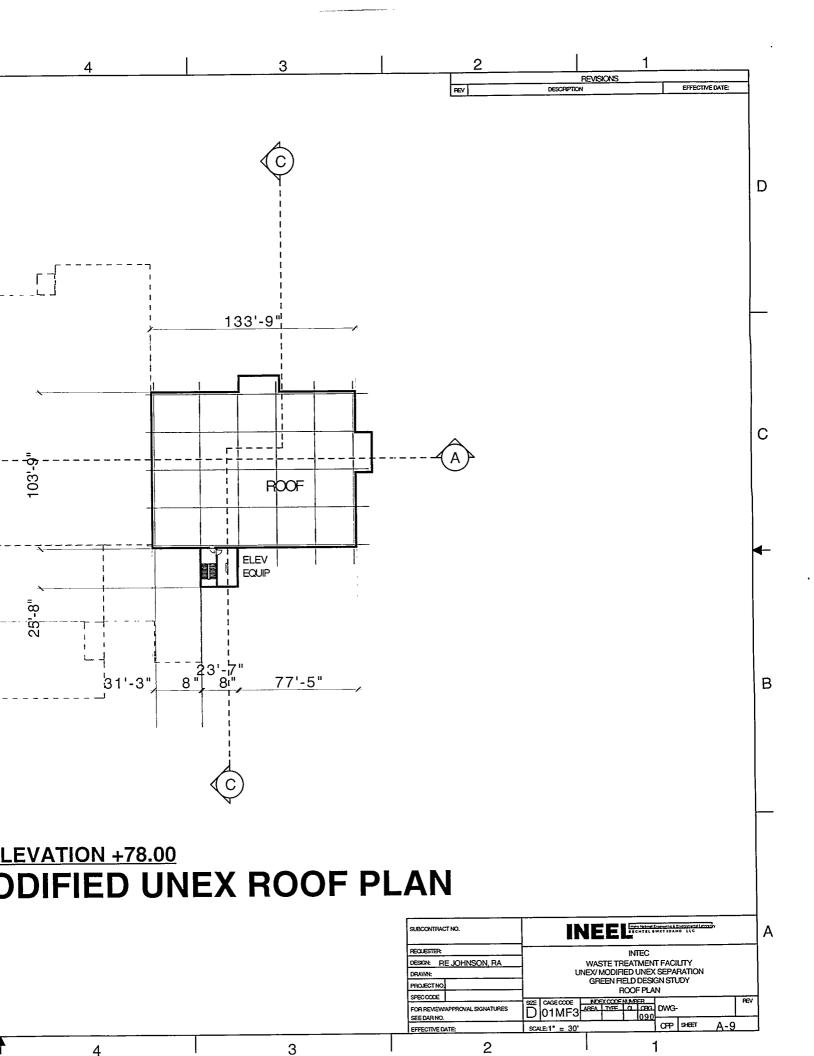
D 01MF3 MOEXCOOF NUMBER
TEA LTYPE CO LORG DWG-SCALE:1" = 30"

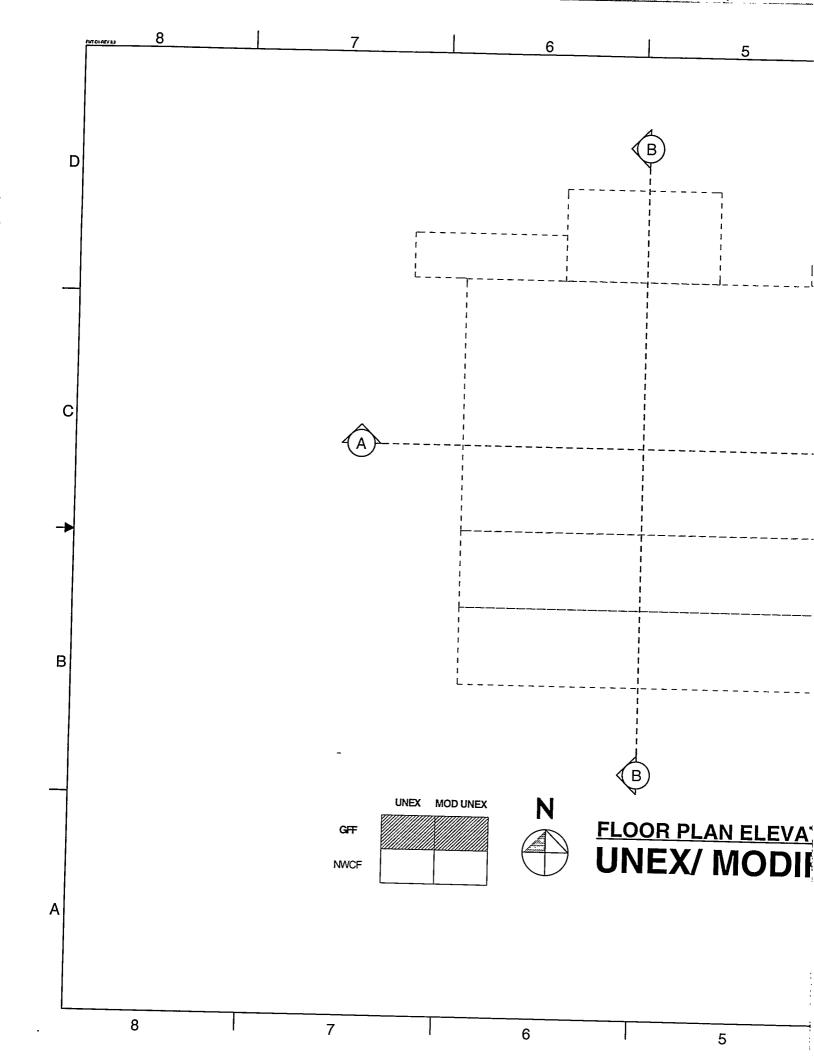
CPP SHEET

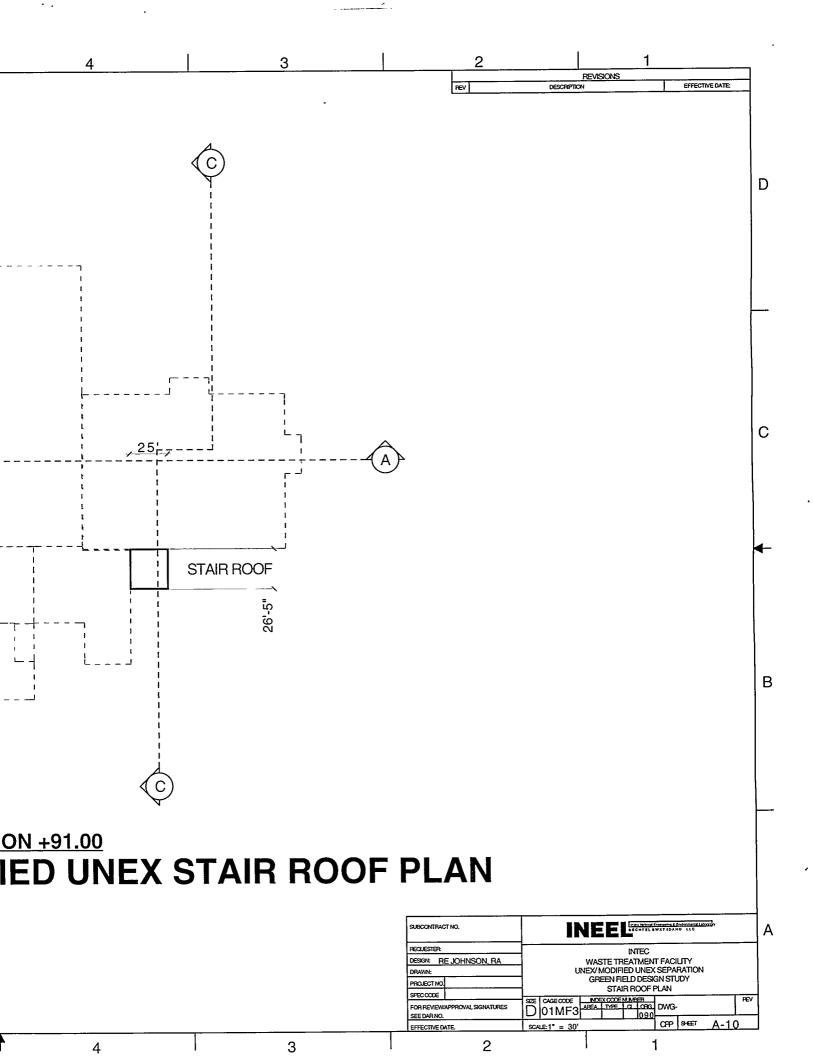
l

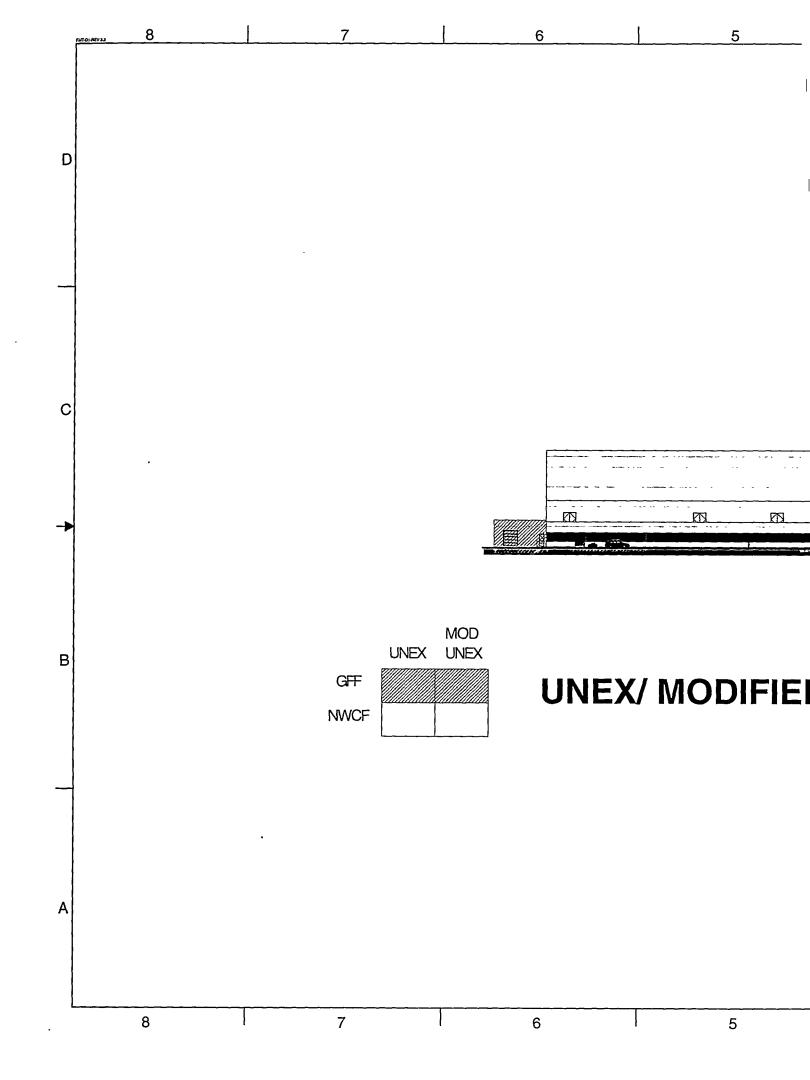
3

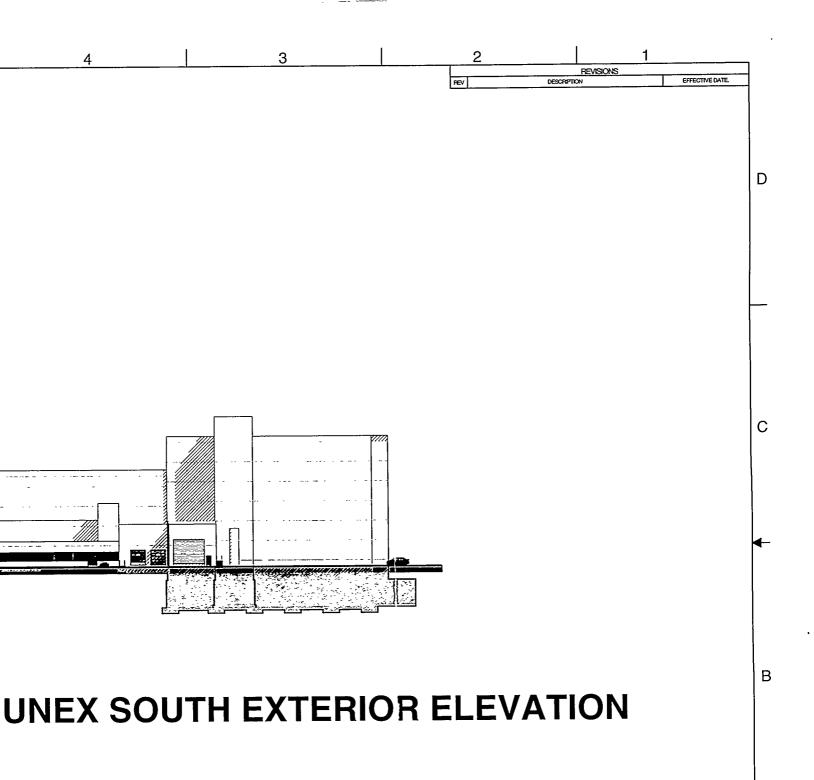

4

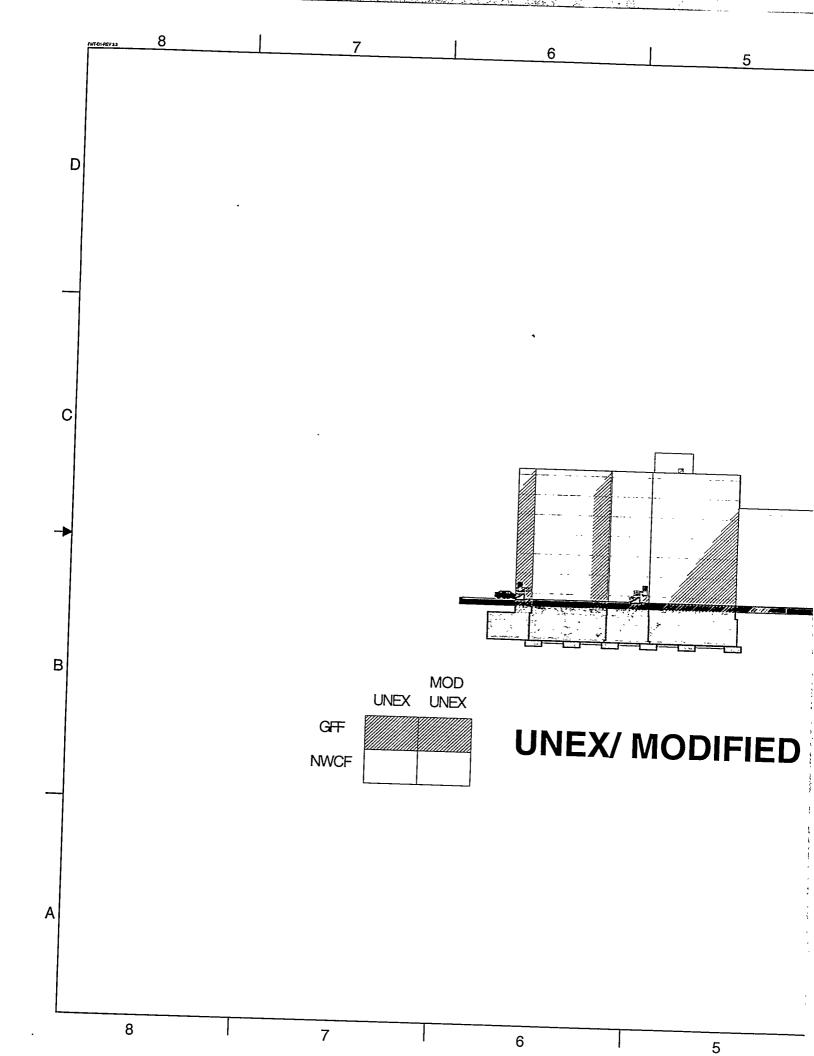

2

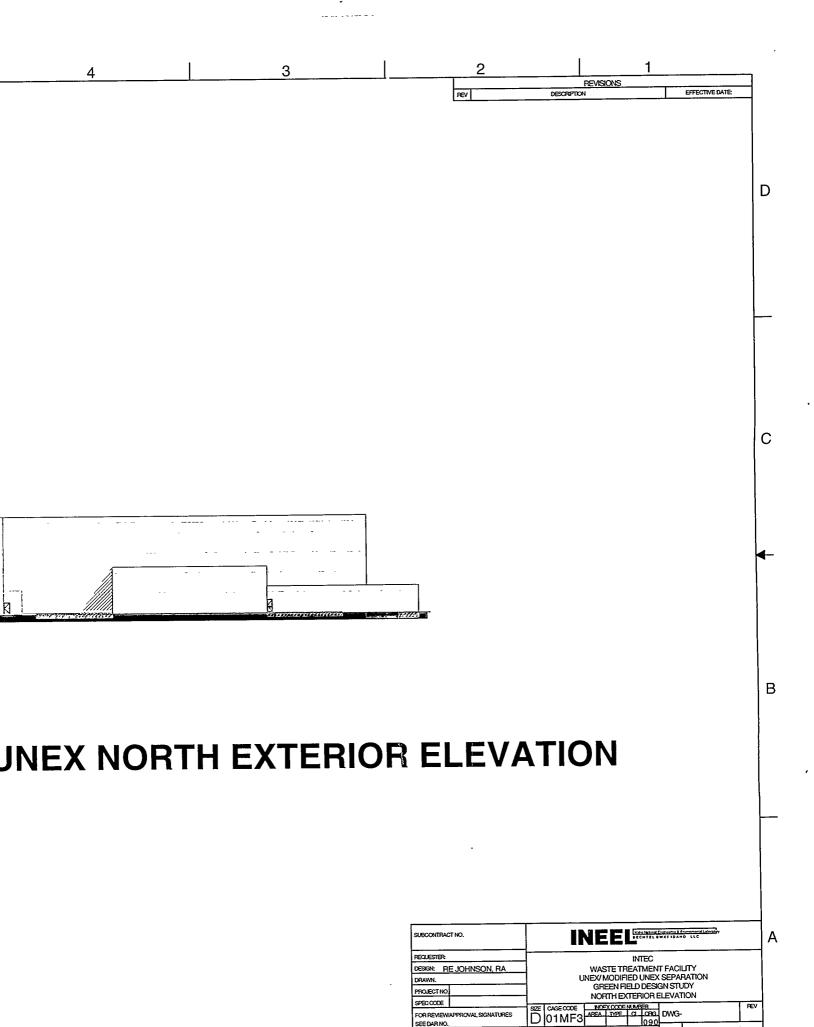

EFFECTIVE DATE:


1

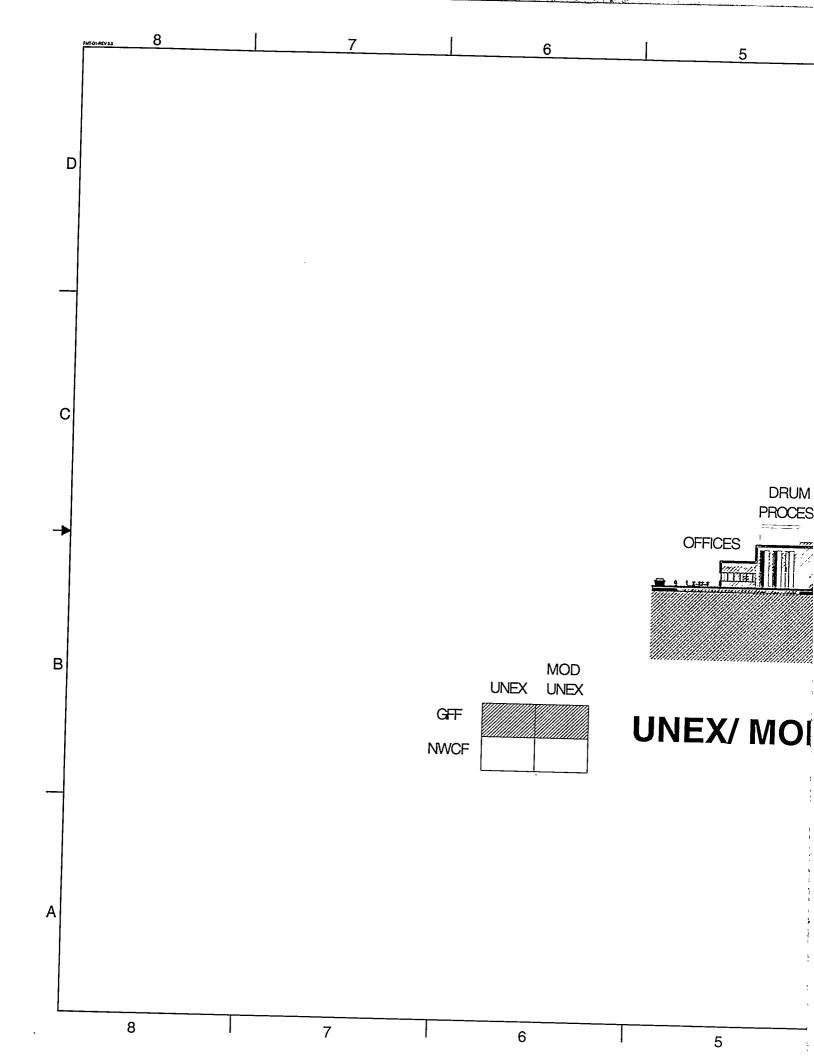

CPP SHEET

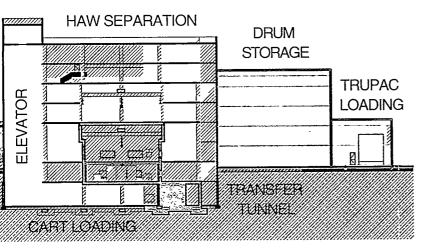






SUBCONTRACT NO	INEEL TECHTEL SWATTDARD LLC	!
REQUESTER	INTEC	\neg
DESIGN: REJOHNSON, RA	WASTE TREATMENT FACILITY	
DRAWN-	UNEX/MODIFIED UNEX SEPARATION	ı l
PROJECT NO.	GREEN FIELD DESIGN STUDY	
SPEC CODE	SOUTH EXTERIOR ELEVATION	€V
FOR REVIEW/APPROVAL SIGNATURES SEE DAR NO.	D 01MF3 AREA THE G ONG-	£V
EFFECTIVE DATE:	SCALE:1" = 30' CPP SHEET A-11	




FOR REVIEW/APPROVAL SIGNATURES

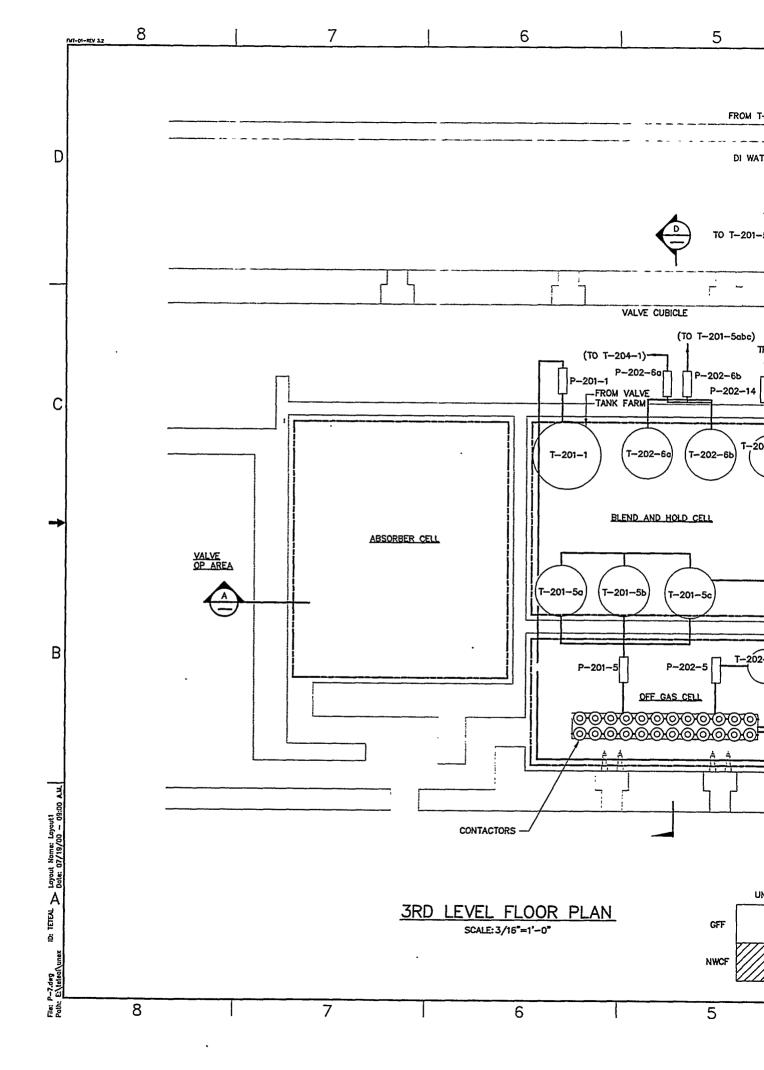
EFFECTIVE DATE

CPP SHEET

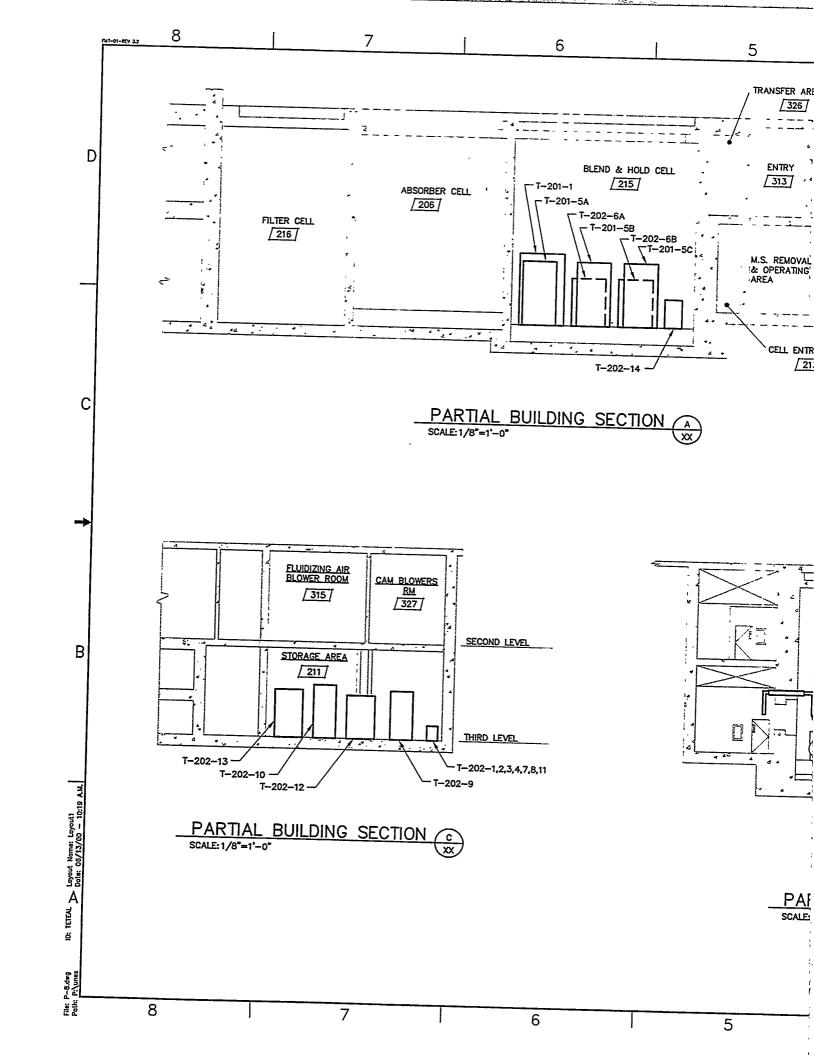
3

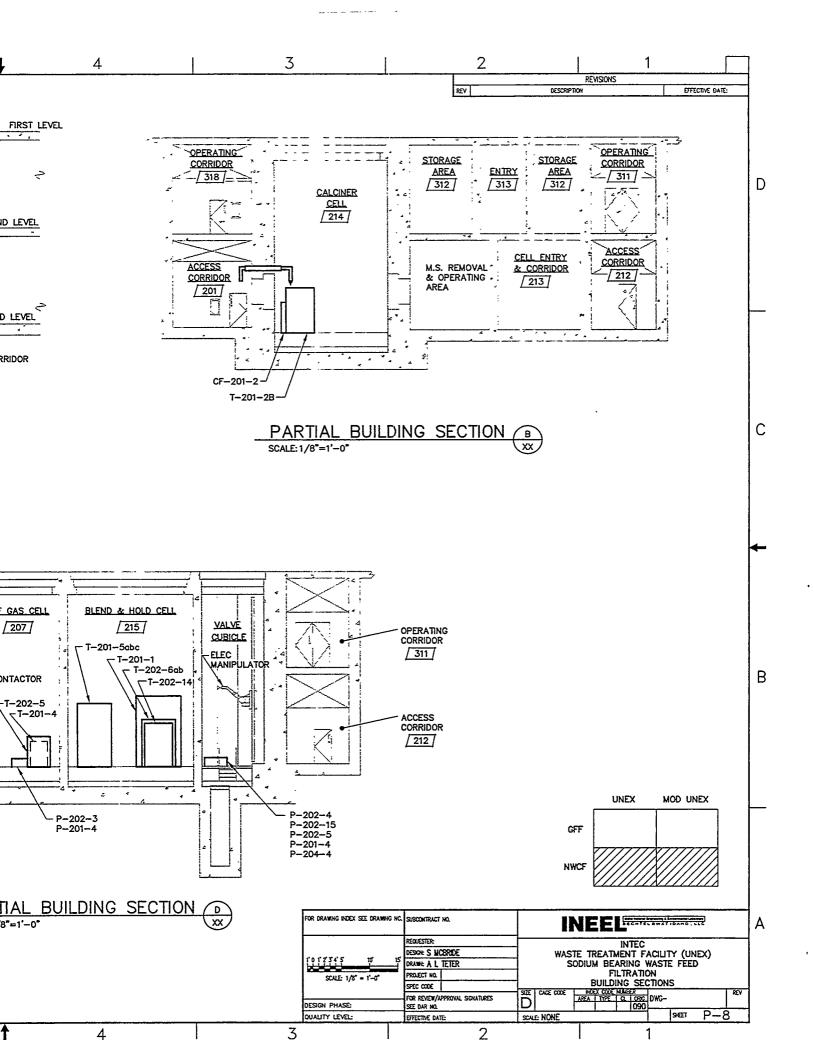
IFIED UNEX CROSS SECTION C-C

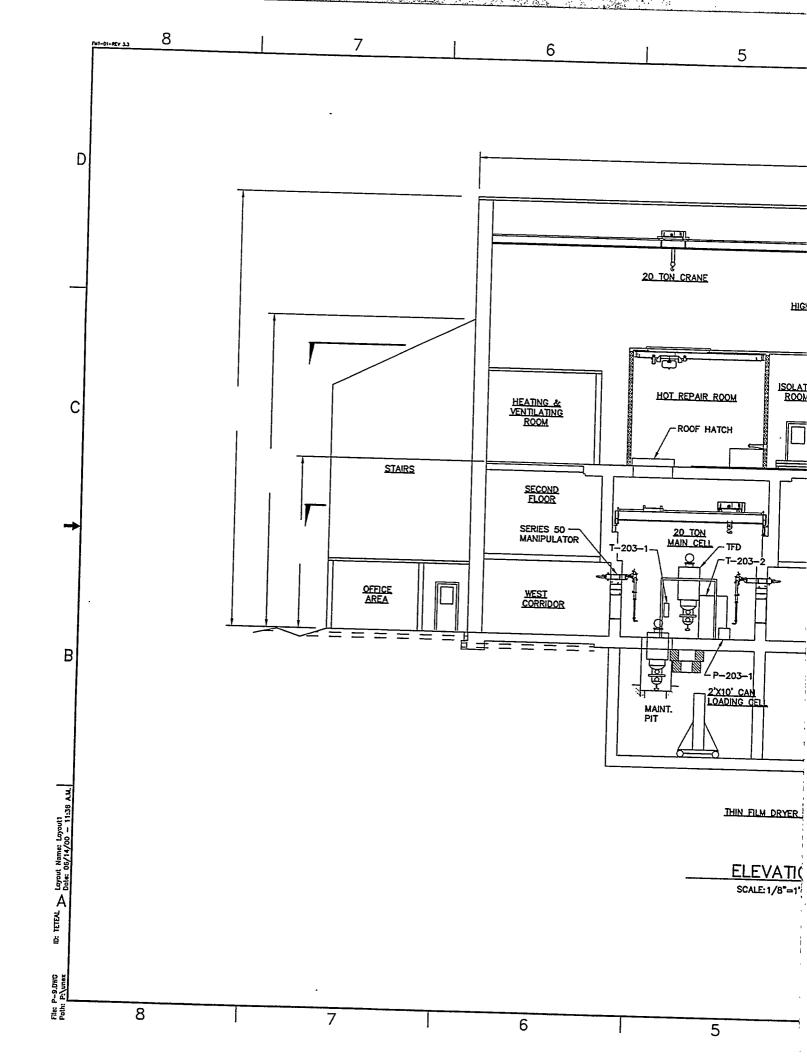
SUBCONTRACT NO.	INEEL BECHTEL BWAT TOANG 11.0										
REQUESTER	INTEC	٦									
DESIGN: RE JOHNSON, RA	WASTE TREATMENT FACILITY	-1									
DRAWN:	UNEX/MODIFIED UNEX SEPARATION GREEN FIELD DESIGN STUDY										
PROJECT NO.											
SPECIOODE	BUILDING CROSS SECTION C-C	Ⅎ									
FOR REVIEW/APPROVAL SIGNATURES SEE DAR NO	D 01MF3 SZE CAGECCOE NDEXCCOE NAMER										
EFFECTIVE DATE:	SCALE:1" = 30' CPP SHEET A-13										

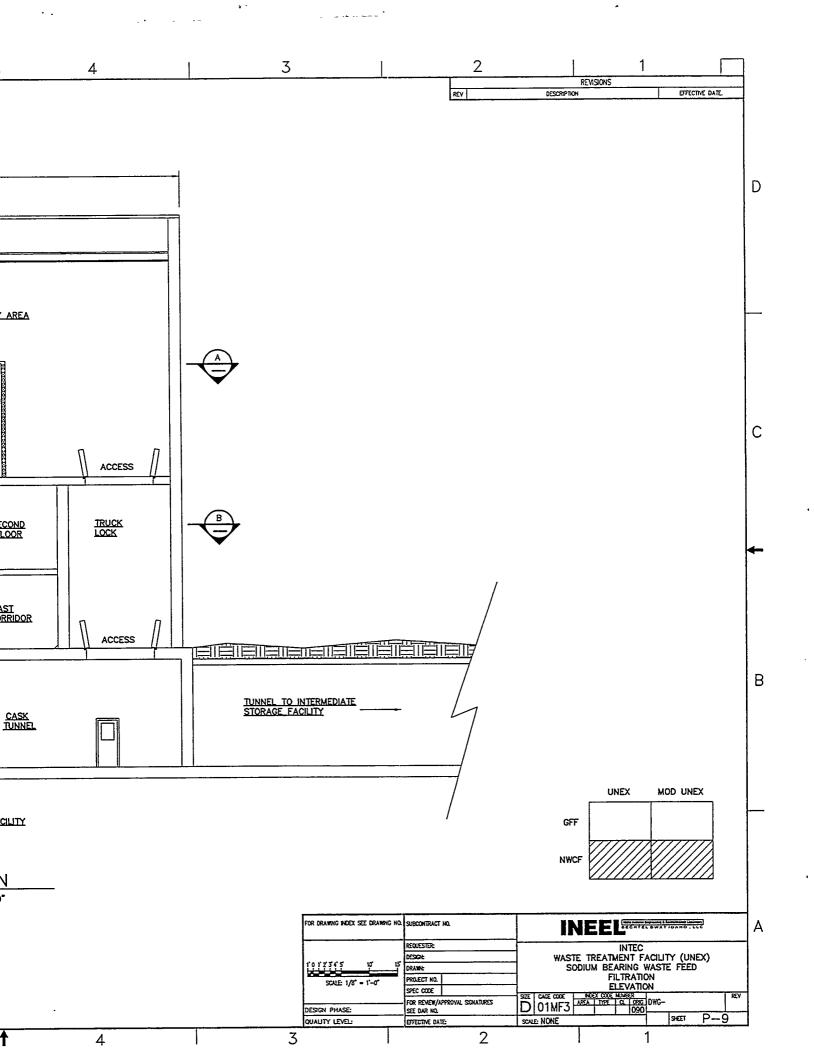

D

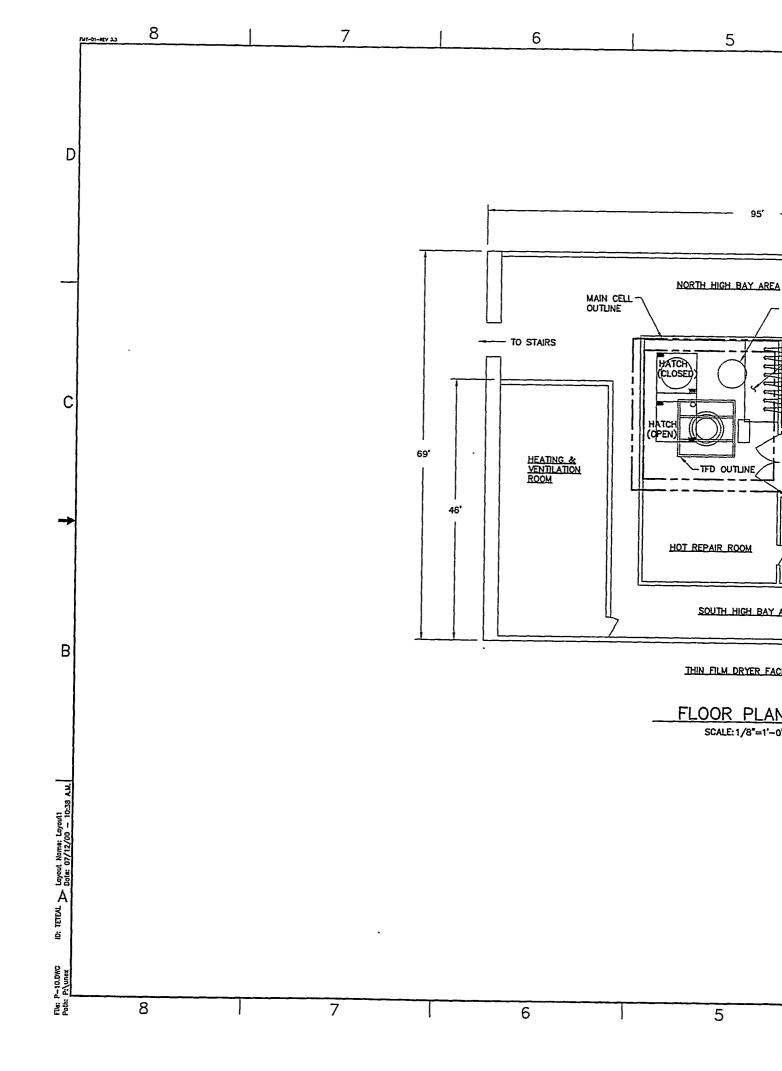

С

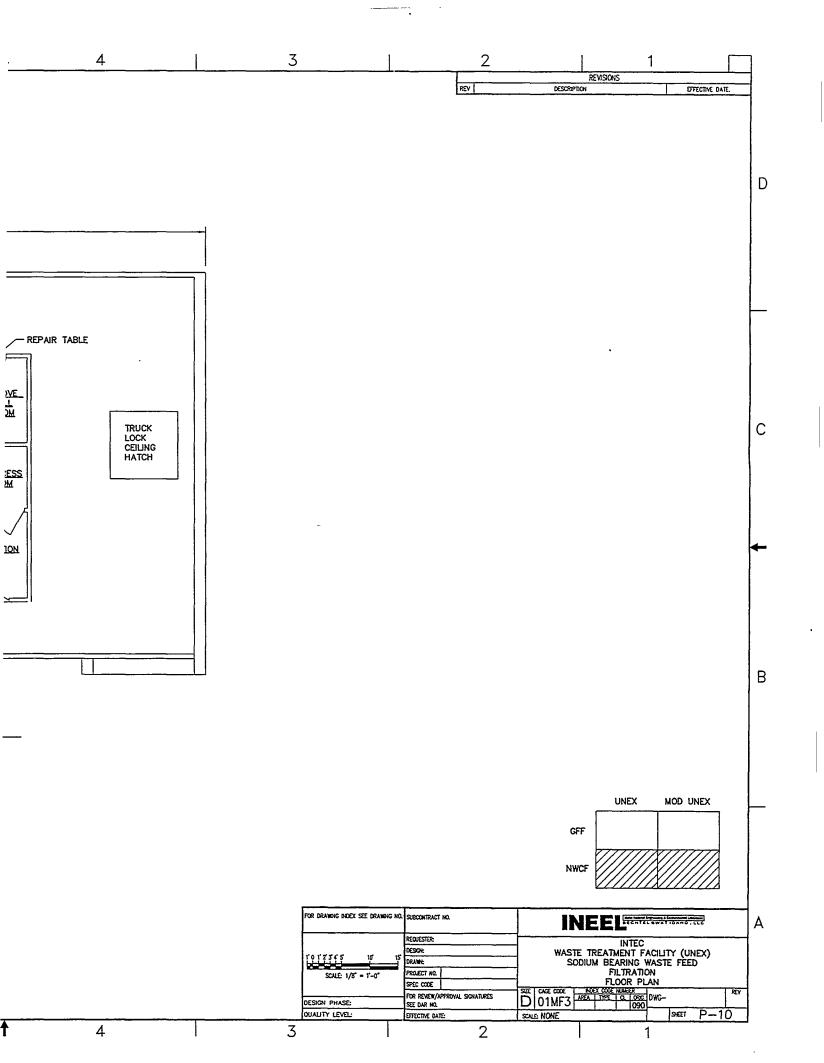

В

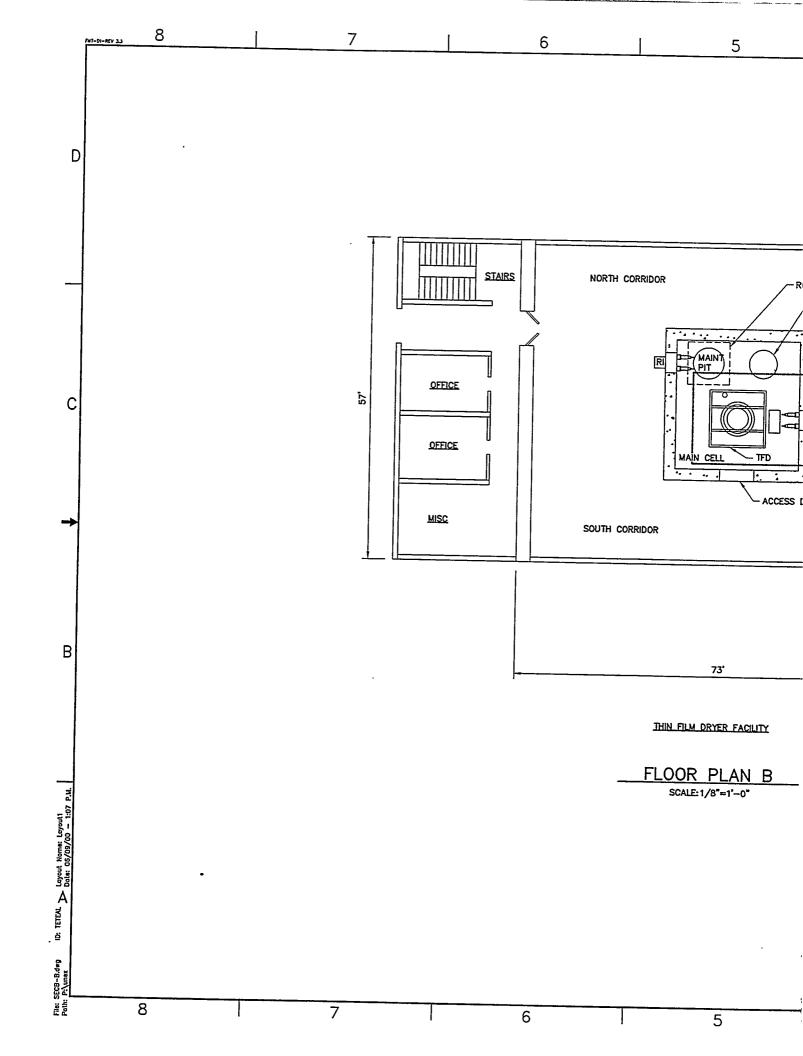

3

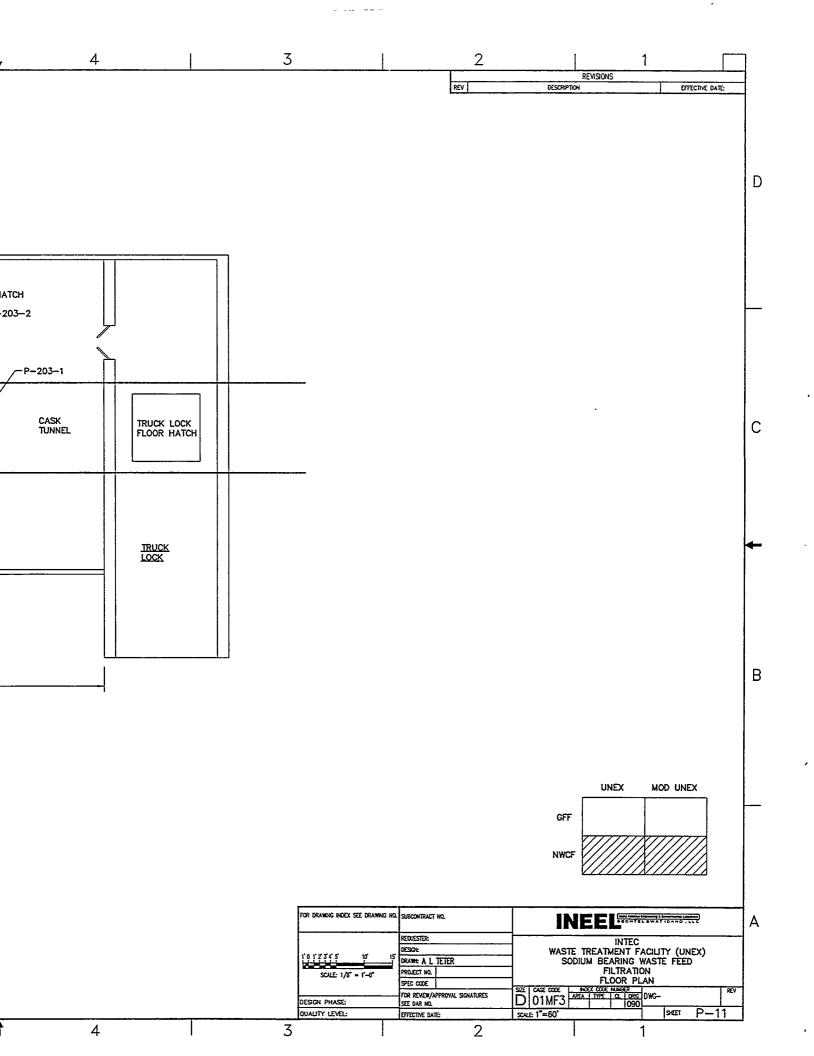

4

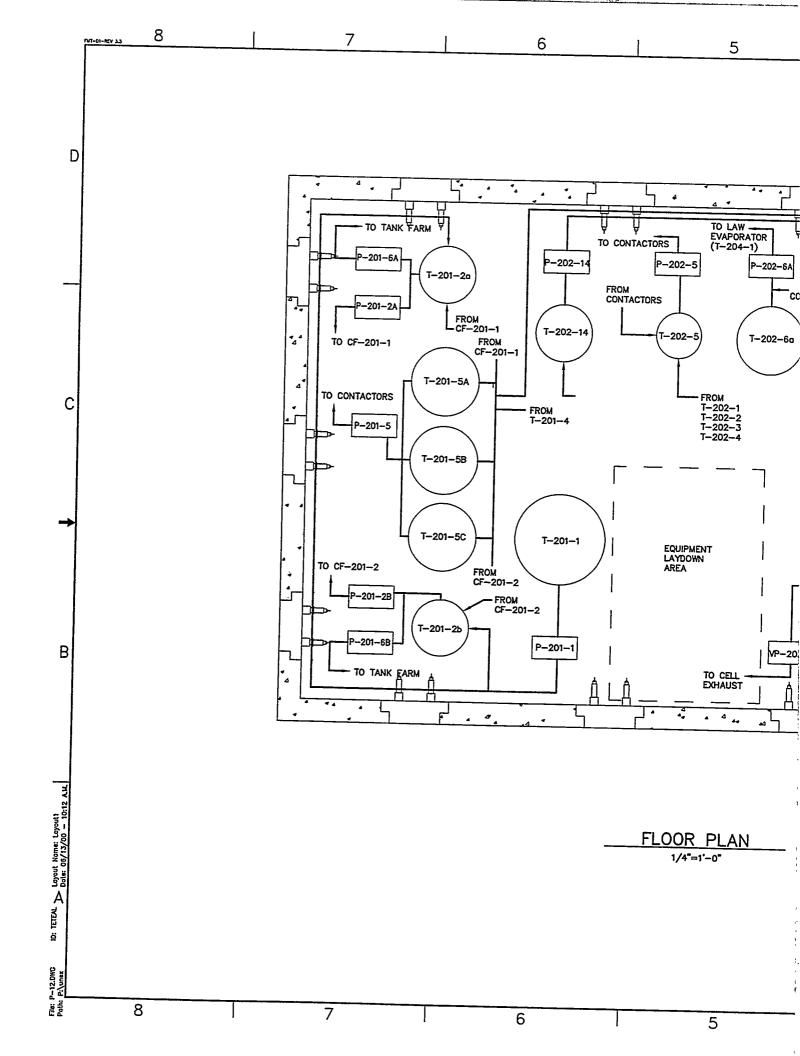


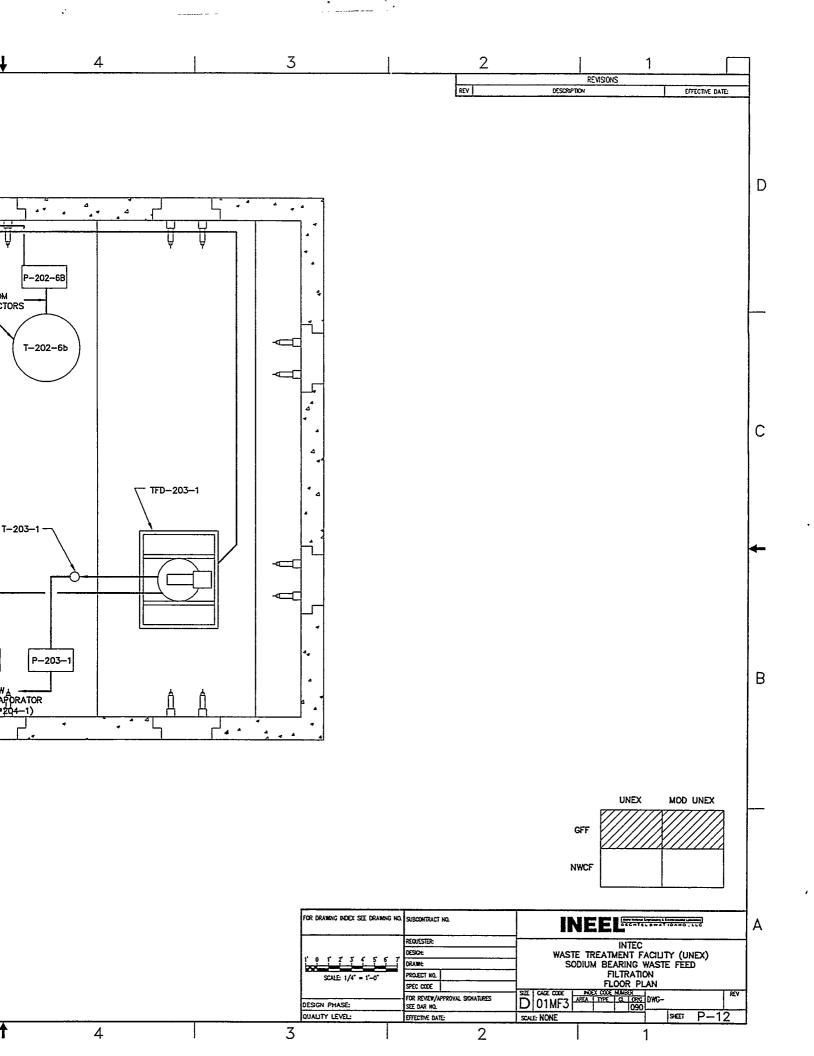


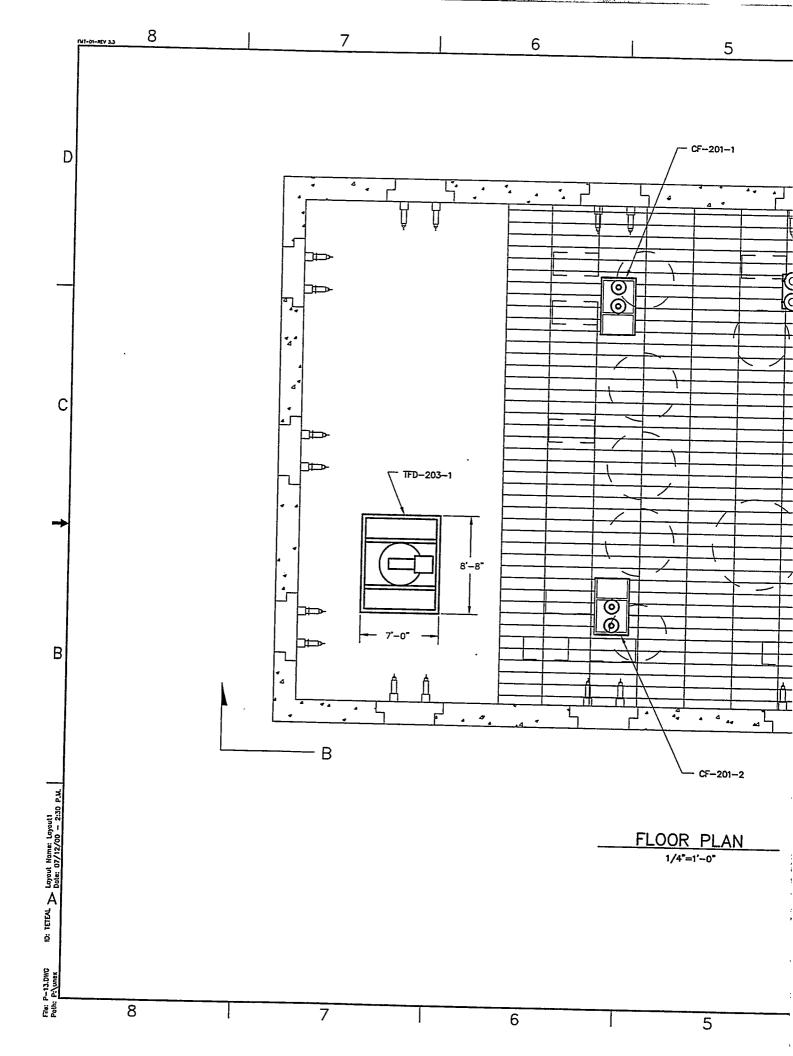


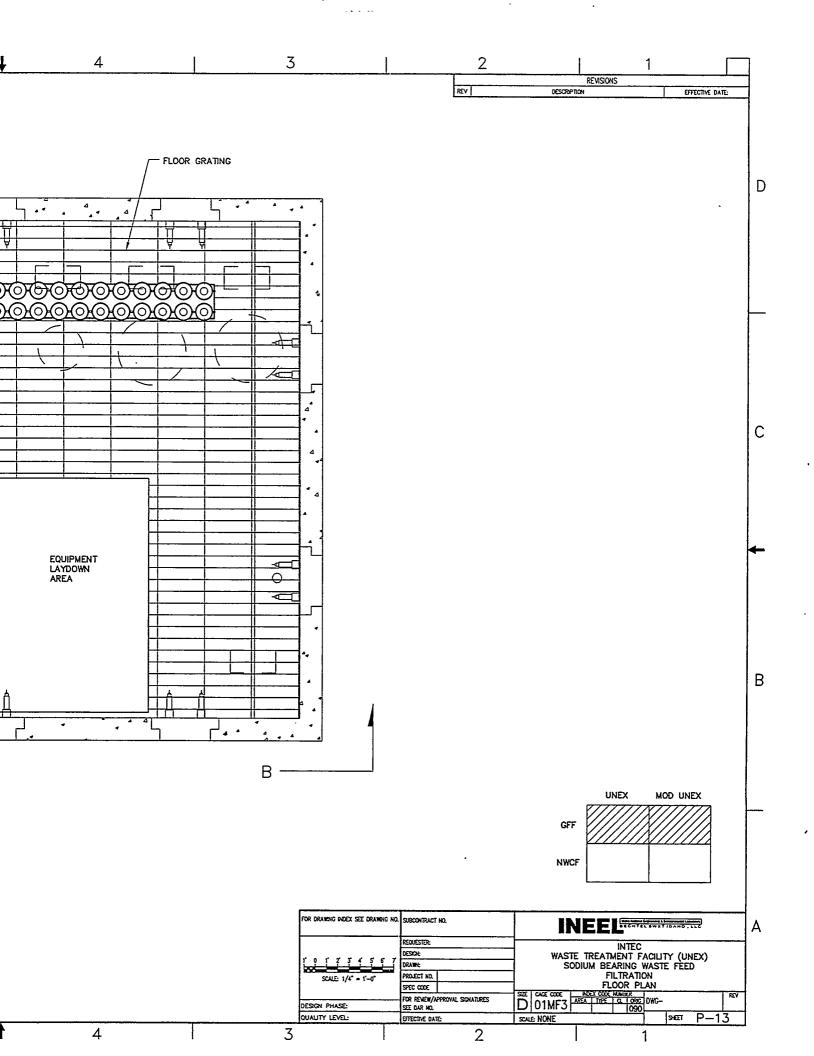


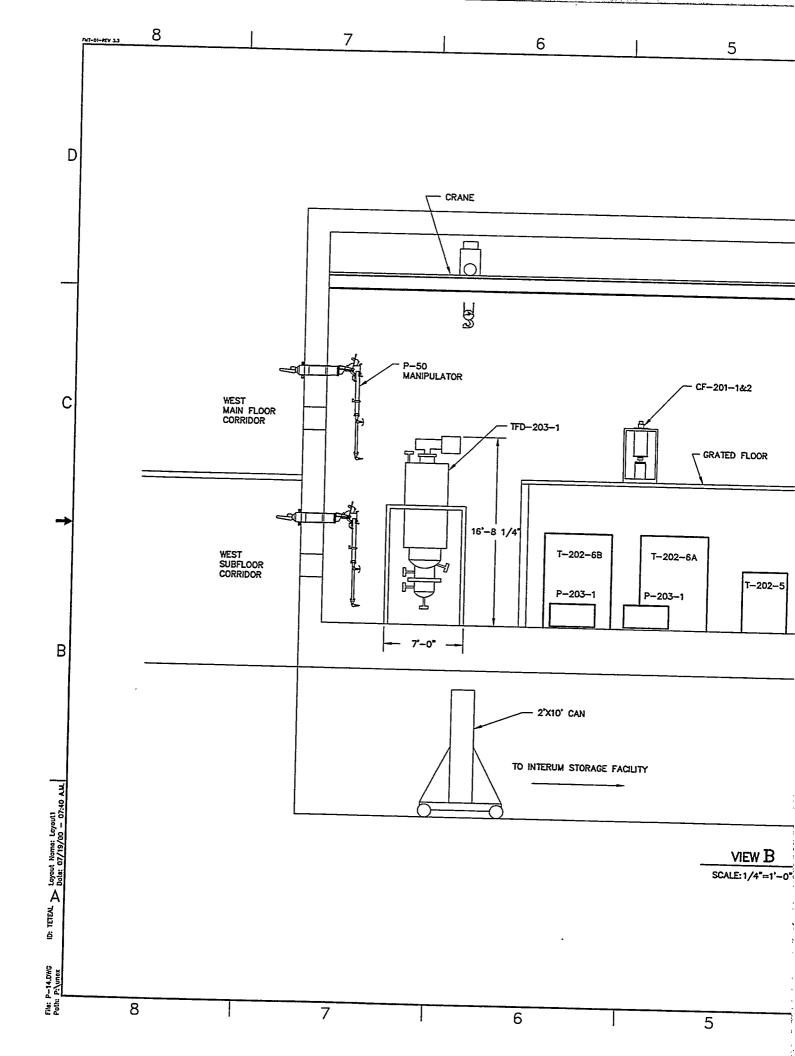


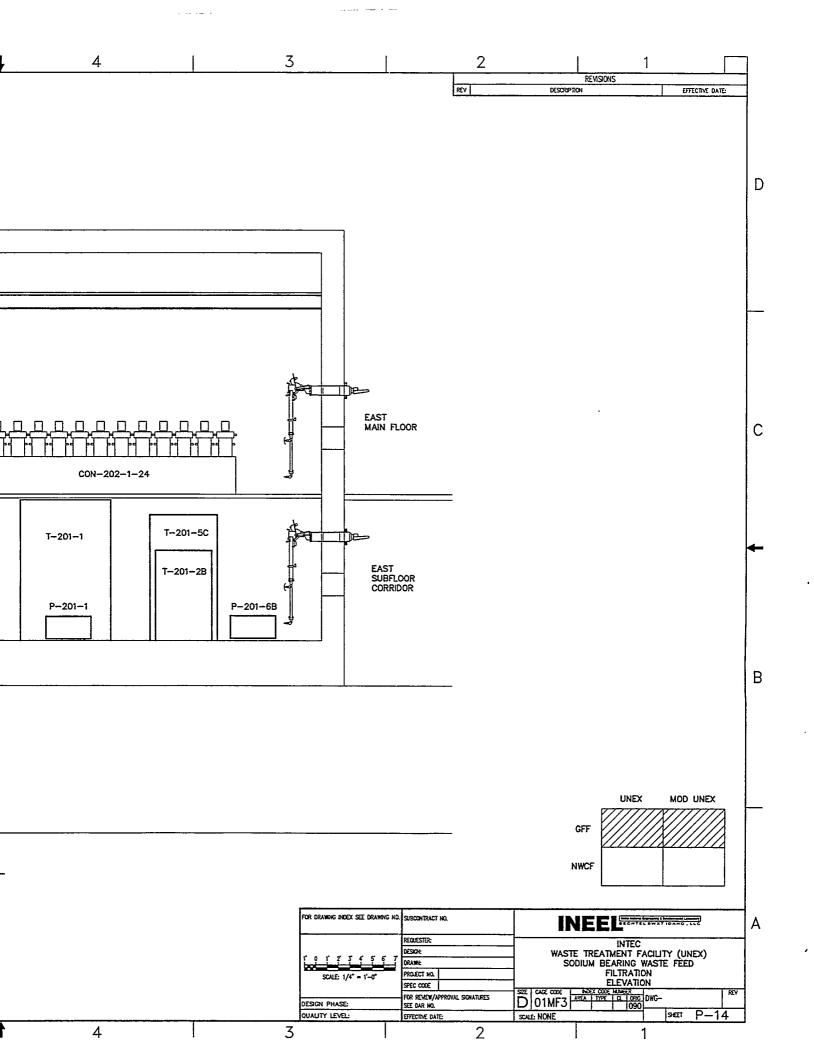


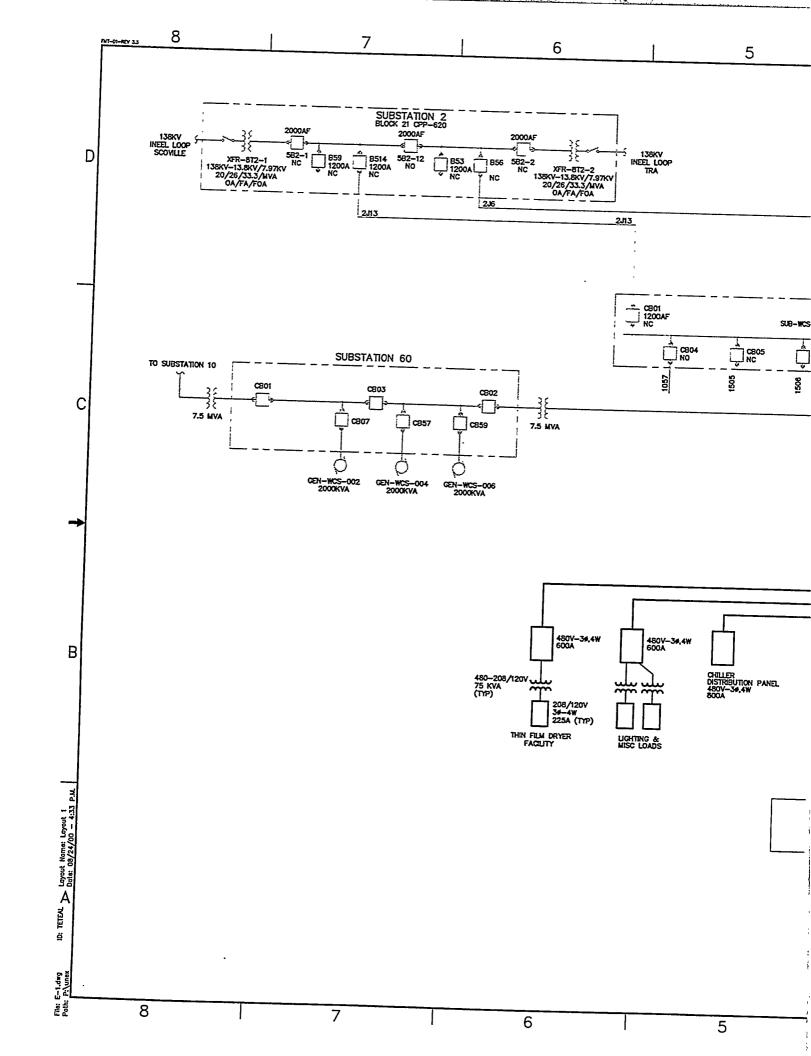


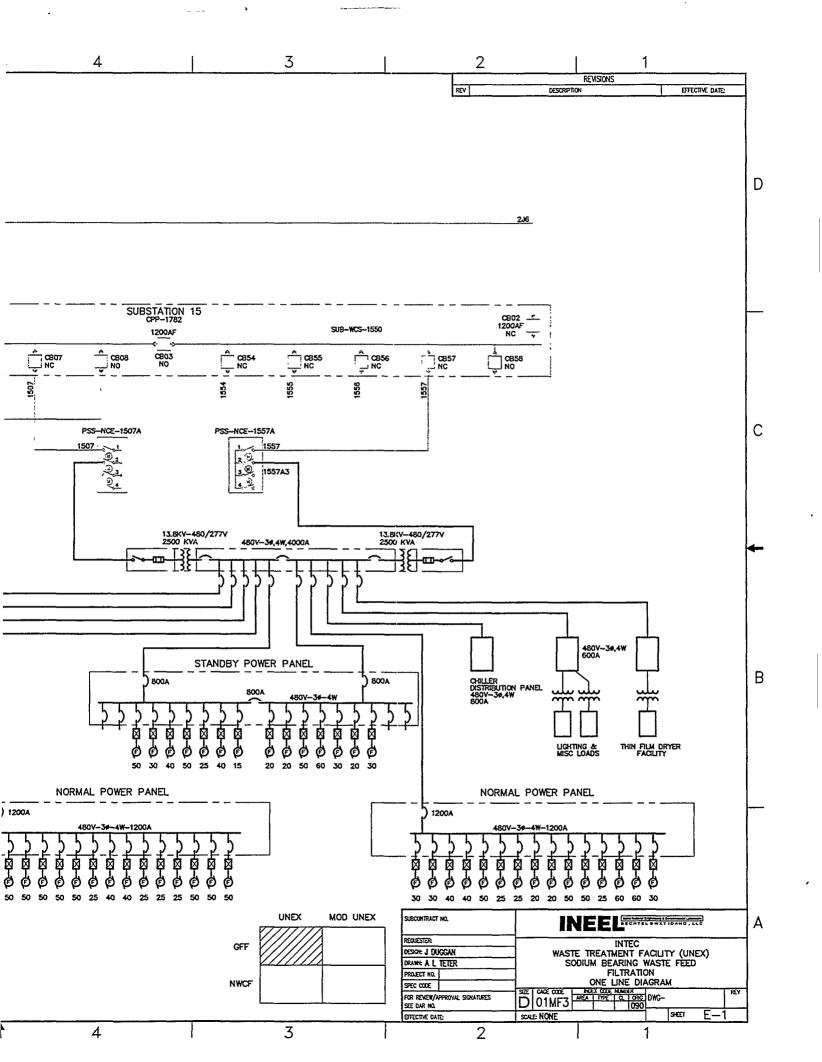


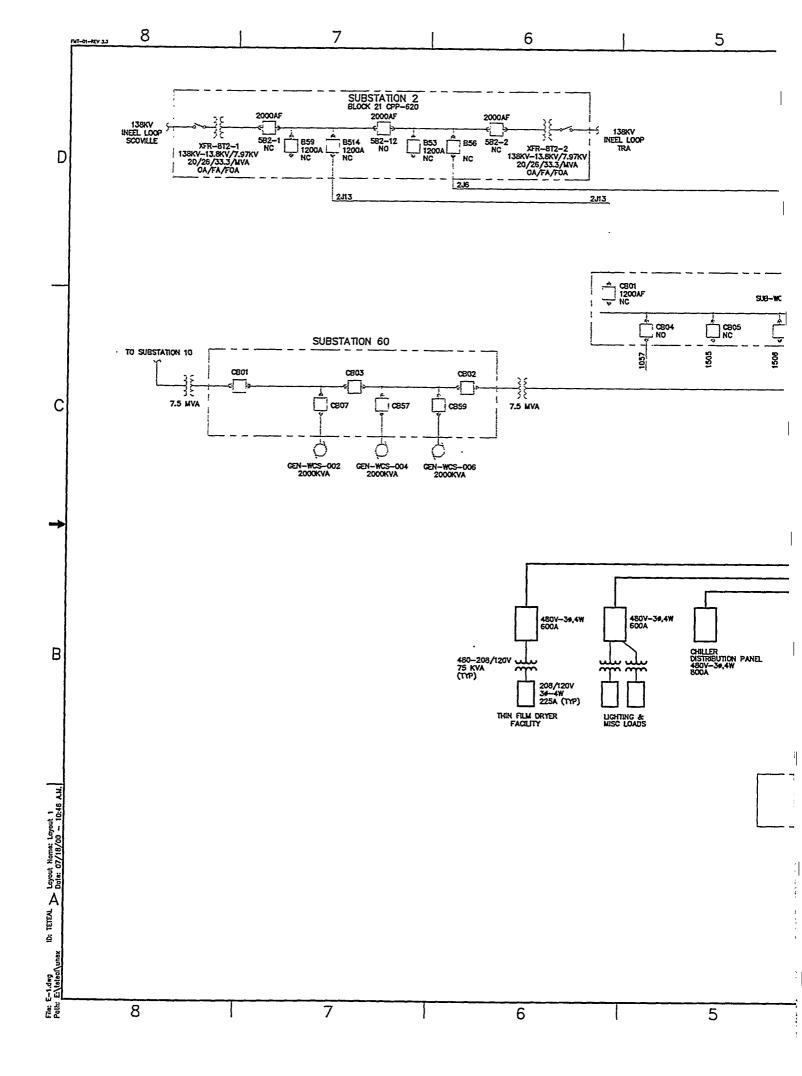


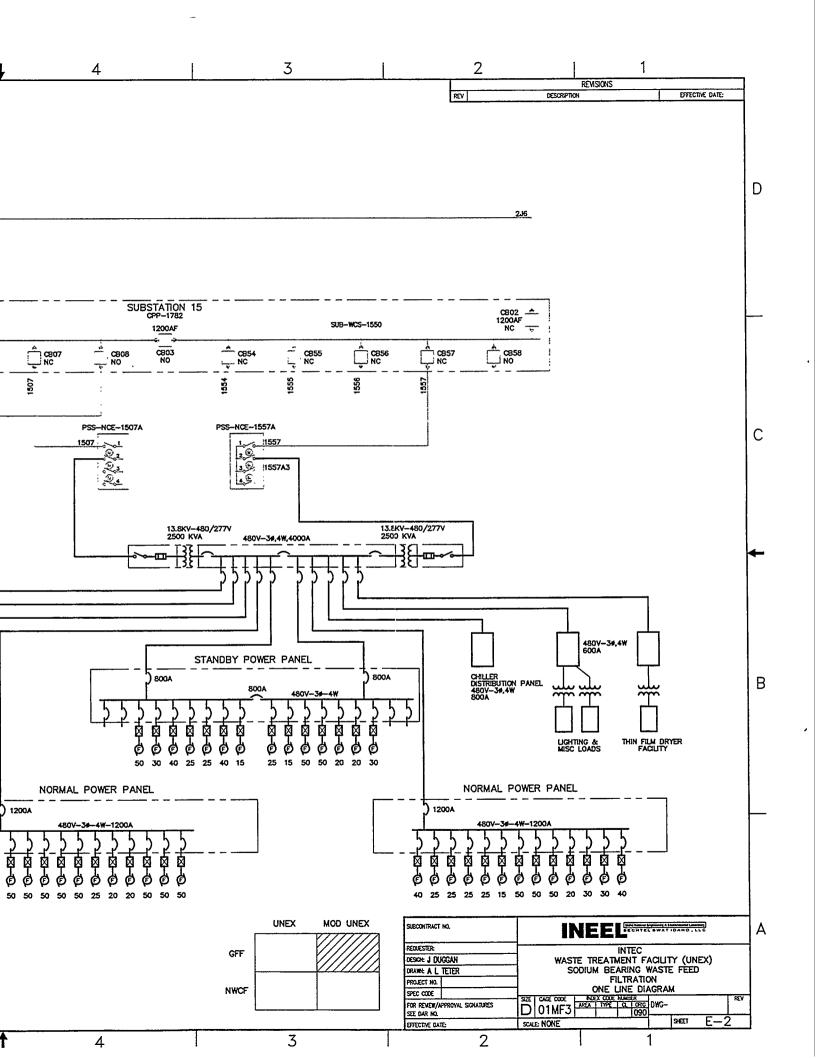


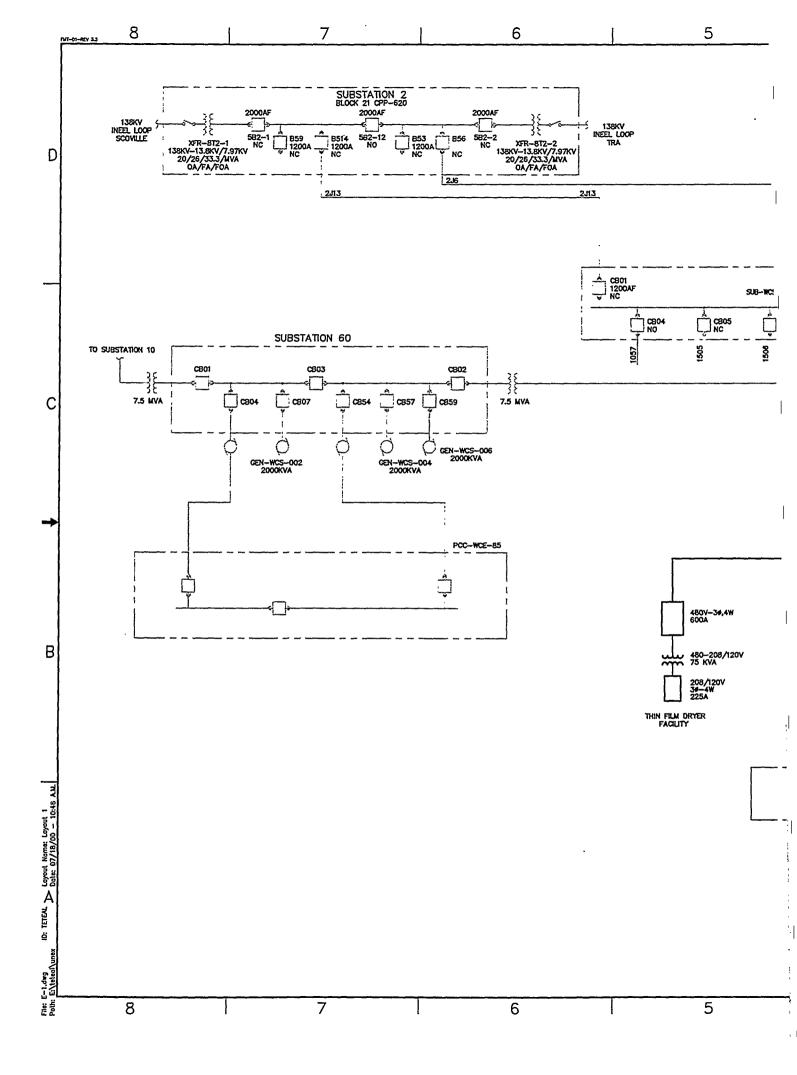


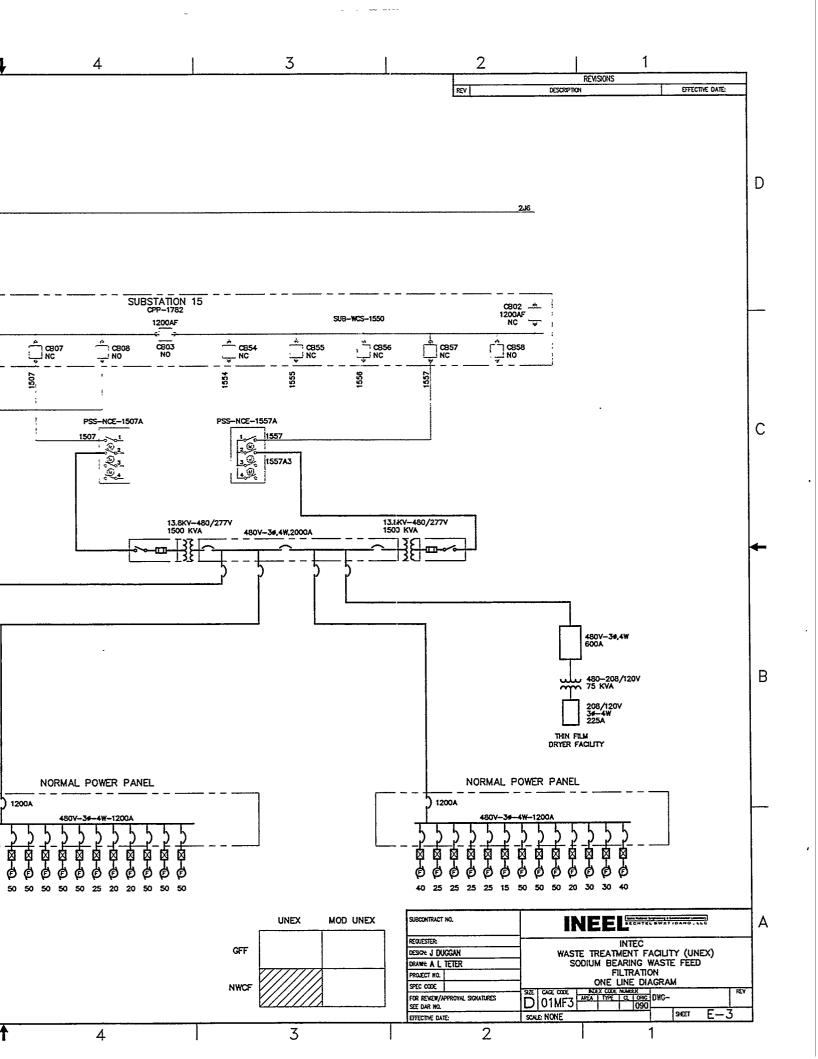


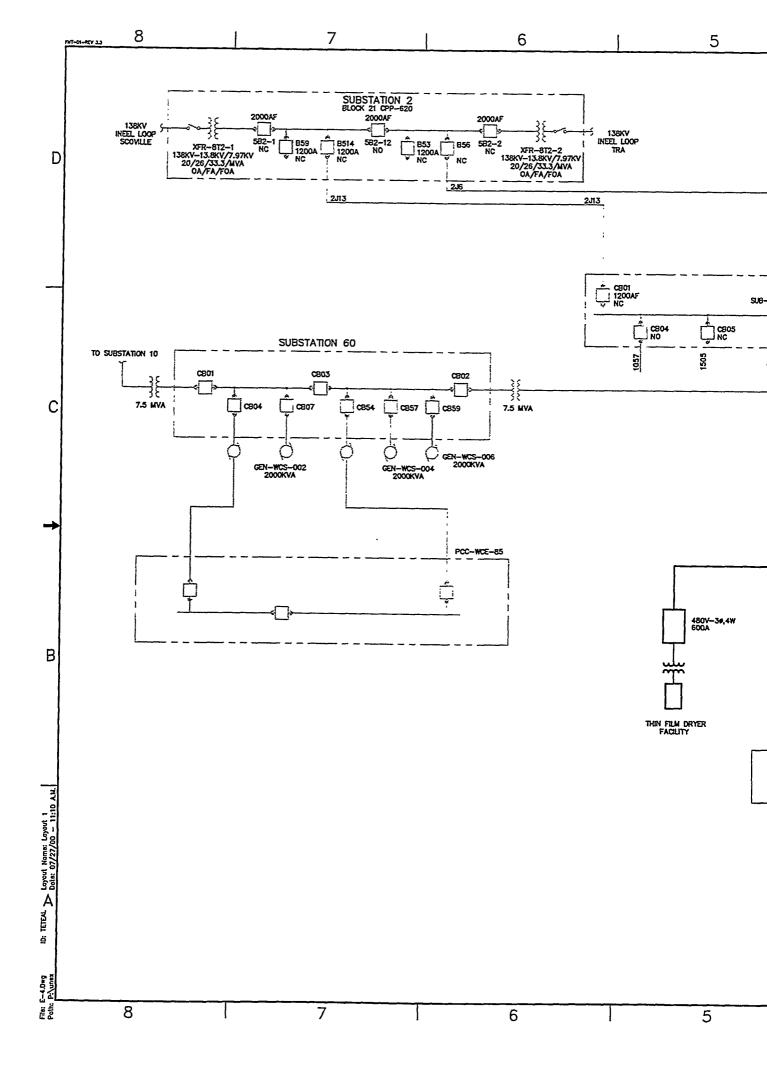


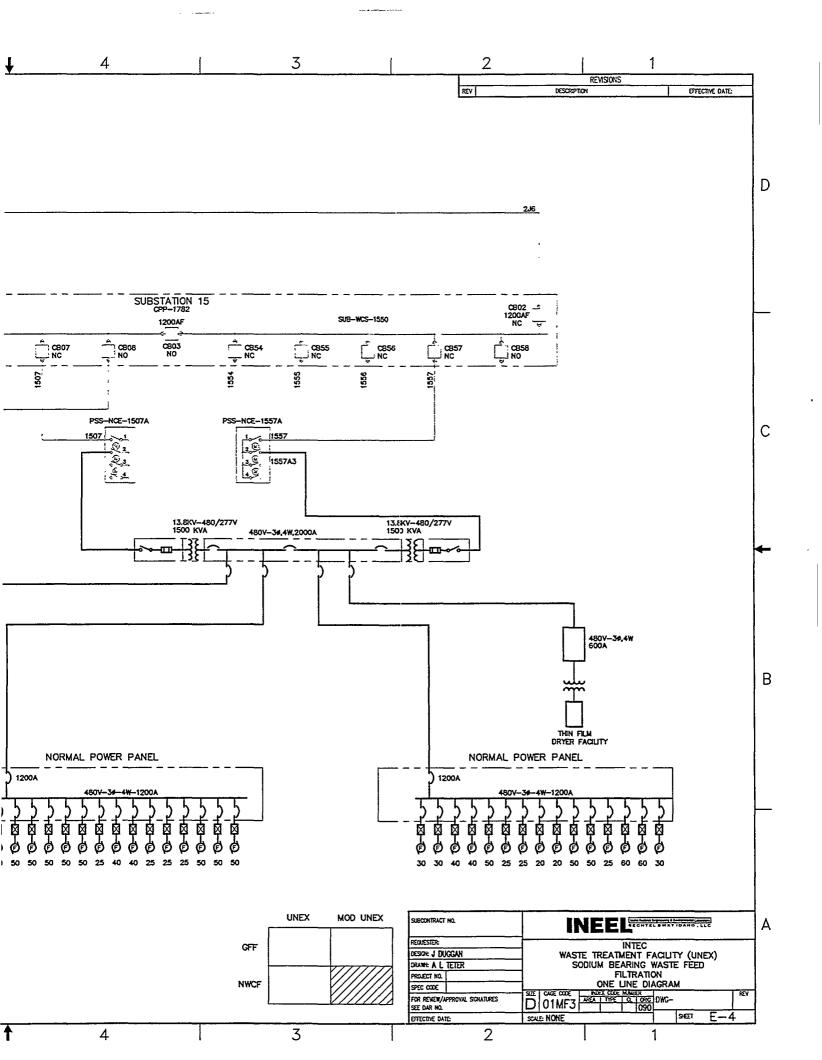


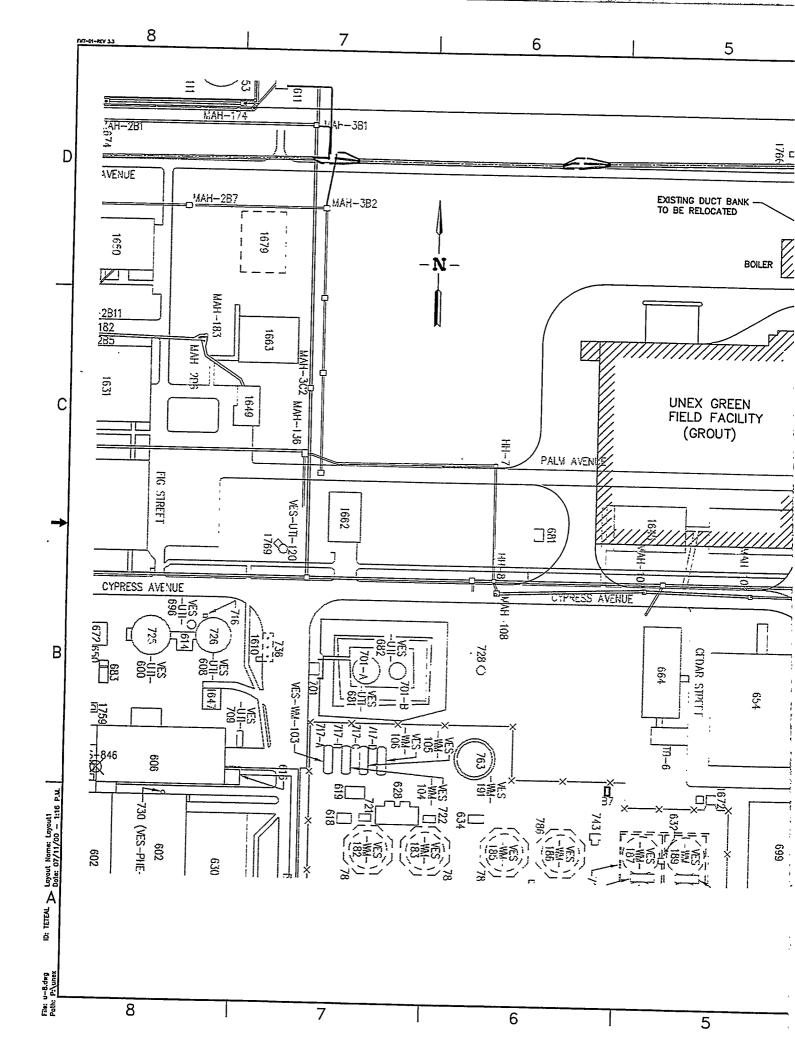


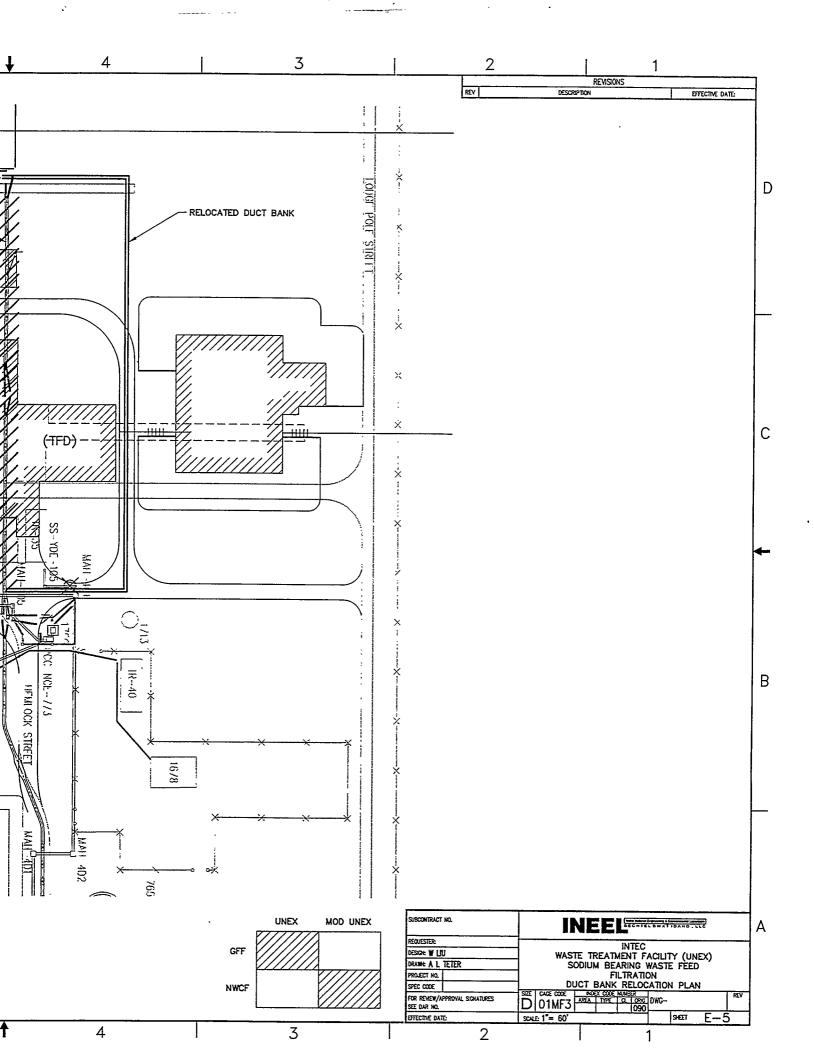












Appendix E Detailed Cost Estimate

INTEROFFICE MEMORANDUM

Date:

4 September 2000

To:

S. Losinski

MS-3625

6-5962

From:

M. M. Plum

MS-3878

6-1108

Subject:

DRAFT RESULTS of AN ECONOMIC EVALUATION for UNEX

TREATMENT of SBW - MMP-12-2000

Reference:

Economic evaluation on the treatment of SBW using the UNEX and Modified

UNEX Treatment Process at either a Greenfield site or combination of the existing

NWCF and a Greenfield site.

I am sending a draft economic evaluation that should be included in the 90% draft study of the UNEX process. Current results suggests that the UNEX Process at a Greenfield site is the lowest cost (discounted life-cycle cost [LCC]). However, I would recommend a final decision on a path of future studies and design until the volumes and disposition path of the treated waste can be clearly defined.

A report and evaluation (both draft) of methodology, assumptions, and analysis is provided as an attachment. I am assuming at this time that we will update these results with comments rendered during the comment period in September. If I may be of further assistance, or if there are any questions, please feel free to contact me during reasonable business hours @ 526-1108 or PLUMMM@INEL.GOV.

ATTACHMENTS

cc:

Vondell Balls

MS-3650

Terry Battiste

MS-6000

Norbert Valles

MS-3625

mmp

Executive Summary insert

From an economics perspective, all four options are very capital intensive relative to the discounted LCC. This is largely the result of the SBW treatment facility size, its throughput requirements, and the duration of the treatment campaign. However, options that employ Greenfield construction have a lower discounted LCC. Additionally, the two options that employ the Modified UNEX Process is more resource intensive since a majority of the treated SBW is disposed at WIPP. As a result, the lowest cost alternative is Option A (a discounted LCC of \$744.3M) which employs both the advantages of a Greenfield site construction and minimizes the volume of waste disposed at WIPP by employing the UNEX Process. The next lowest cost alternative is Option C (a discounted LCC of \$848.5M) which continues to employ the UNEX process. This suggests that the marginal cost differences in the treatment process is more of a cost driver than the marginal cost differences in facility location.

Economic Summary insert to be combined with the Capital Cost Estimate Summary

X. Life Cycle Cost Analysis

The purpose of a life-cycle cost (LCC) analysis is to determine the least cost alternative, from a resource perspective. For Federal Agencies like the U.S. Department of Energy (DOE), the preferred evaluation methodology is discounted LCA as prescribed by the Office of Management and Budgets (OMB) document A-94. Thus, all costs presented are actually discounted Life-cycle analyses.

In general, the purpose of life-cycle analysis is to determine the current value of the resources required to implement the option, assuming each alternative provides equal product and / or service output. In other words, we are interested only in evaluating the cash flows; we will not evaluate the value of the benefits because we have assumed all alternatives will meet the minimum technical performance standard (technical viability).

X.1. Economic Methodology

All costs are estimated in FY-2000 dollars and not inflated (one of two analysis methods accepted by OMB.) For purpose of this feasibility study, all production rates and resulting costs in production were flat-lined (assuming constant production.) As prescribed in OMB Circular A-94, all constant value cash flows are discounted 3.1% (compounded annually) to FY-2000 to calculate the present value (PV) of the projected cash flow. The total of all discounted cash flows over the life of the project is the discounted LCC (dLCC). This methodology, prescribed by OMB in Circular A-94 (discount rate update in January 2000), is used to determine the most cost-effective method in acquiring, operating, and maintaining Government programs and agencies. In general, this test for cost effectiveness mandates that the best alternative is one with lowest PV, assuming each alternative meets minimum performance requirements. Thus, system performance must be ensured in economic analysis. As prescribed by OMB A-94, any previously incurred capital costs for equipment and facilities are considered "sunk" and are not included in cost-effectiveness analysis.

X.2. Operations Cost Methodology

The design team generated most of the operation costs. A majority of these costs were either labor or direct materials consumed in the process of operation. Other incidental costs such as training and working capital were estimated using best engineering judgement equally applied to all options.

Costs were organized into a pre-operations, operations, and post-operations periods. These were decomposed into direct and support activities. These were then decomposed into a functional organization according to the design team's input. This included: 1) material receipt and rough filtration, 2) radionuclide extraction, 3) evaporative drying, 4) neutralizing and drying, 5) packaging, 6) interim storage, 7) transportation to disposition site, 8) and support functions of capital maintenance, facility maintenance, administration, QA /safety / Radcon, and process maintenance. Lastly, some economic evaluations include a cost category for intangible costs that are often mitigated through the administration of additional capital and / or operations investment. Such a methodology usually allows for the inclusion of an operations benefit that is not included when a cost / benefit analysis is not performed (i.e., an intangible cost may be the added cost of a system that fails more often because less costly selected over better performing equipment.) However, discussions with the design team suggested that the stand-alone independence of the facility would not impact other INTEC operations. Additionally, the failure rates of any of the options are probably equal, thus, if there are any intangible costs impacts, they impact the options equally.

Labor costs were estimated based on a general classification of the laborer. The design team provided the labor type and estimated number of laborers. The economic evaluation assumed annual burdened costs of \$100K for operator / technicians, \$125K for scientists / engineers, and \$155K for management and supervisors. The design estimated a total of 110 personnel are required to operate the facility for any option; thus, there are no marginal labor cost advantages between a greenfield and existing facility, or the UNEX and Modified UNEX Process.

The design team provided all consumable materials and unit costs. These were calculated according to the volume throughput of SBW (and because the volume was equal over three years, these costs were equal for three years.) Interim storage and transporting / dispositioning costs for treated SBW was included in the evaluation. Including these costs completes the LCC evaluation and the effect the treatment process has on follow handling. For example, the evaluation assumed that UNEX treated waste could be handled a little more cost-effectively since they could be contact handled (\$250 versus \$500 per drum; \$2500 versus \$3500 for canisters). Similarly, the disposal could be performed on-site (\$600 per drum) versus WIPP (\$8.8K per drum). All contact handled canisters disposed at Hanford cost \$26.4K. Lastly, an operations contingency equal to 35% was included to account for unknown operations / post-operations costs. This cost did not include a contingency on the capital cost estimate which has its own contingency included.

X.3. Schedule Methodology

For all options, the analysis assumed a 5-year construction schedule starting in FY-2003. Although meeting the financial obligations may be accelerated, this was the assumed schedule to meet treatment by the start of FY-2008. All options also assumed a three-year operating schedule, after which the facility would be maintained in standby operations until FY-2020. During standby, the analysis assumed the option would be maintained at 50% of direct capital

maintenance, 33% of support labor and administration, 25% of process maintenance, 50% of facility maintenance, and incur zero costs for QA, radcon, safety and direct operations.

The analysis assumed that the NWCF and the Hg removal system would be decommissioned, decontaminated, and demolished (DD&D) in FY-2021. For purposes of simplicity, this activity of DD&D would occur over a one-year period, although a realistic time period could require 10 or 15 years. The evaluation estimated a DD&D cost to be 13% of the original capital investment because of the expected low levels of contamination and relative ease in dismantling a facility of these construction techniques.

X.4. Life-Cycle Results

From a LCC perspective, all four options are very capital intensive. This result is primarily a factor of the SBW facility size, its throughput requirements, and the duration of the treatment campaign. Option A (Greenfield / UNEX option) has the lowest dLCC because of the less costly capital infrastructure and the disposition path for the treated SBW. The next lowest alternative is Option C which employ the UNEX process. This suggests that the marginal cost differences in the treatment process is more of a cost driver than the marginal cost differences in facility location.

Table ***: Economic Evaluation Results
In discounted FY-2000 dollars

Option A: UNEX @ Greenfield \$744.3M
Option B: Modified UNEX @ Greenfield \$890.1M
Option C: UNEX @ NWCF / Greenfield \$848.5M
Option D: Modified UNEX @ NWCF / Greenfield \$994.6M

X.5. Economic Recommendation

Based on the economic evaluation, it appears that Option A has a significant cost advantage over all other options. This evaluation has estimated that the UNEX Process is at least 20% more cost-effective than the Modified UNEX Process (once the effects of dispositioning are accounted for.) Secondly, Option A includes Greenfield construction which is at least 20% more cost effective than the NWCF / Greenfield option. In both cases, a 20% margins are considered significant enough of a difference to select one alternative over another. However, because a large portion of the overall cost advantages is due to the variable of disposition path, this economic evaluation recommending that additional analysis be provided to validate the volume and the disposition path of treated SBW.

						1 2001	2002	3 2003	4 2004	5 2005	6 2006	7 2007	8 2008	9 2009	10 2010			
Option A UNEX @ Greenfield Facility						all cost in thousands												
dLCC (no intengible costs)	\$744,347																	
Discounted Annual Totals discount factor (to 2001 dollars)						\$0 1,000	\$0 1.031	\$48,355 1.063	\$70,352 1.096	\$136,474 1.130	\$110,395 1.165	\$86,852 1.201	\$60,443 1238	\$58,626 1.277	\$56,863 1.316			
Annual Totals (contingency include	Annual Totals (contingency included; intangible costs not included)						\$0	\$51,400	\$77,100	\$154,200	\$128,600	\$104,312	\$74,844	\$74,844	\$74,844			
contingency ♥ 35.0%	(not calcul	aled (on pre-operation / In	vesla	nent costs)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$19,404	\$19,404	\$19,404			
Pre-Operation						\$0	\$0	\$51,400	\$77,100	\$154,200	\$128,600	\$104,312	\$0	\$0	\$0			
Cepitel Investment Facility I Equipment Investment TEC			\$424,100,0 \$89,000.0					\$42,410.0 \$8,990.0	\$63,615 0 \$13,485 0	\$127,230.0 \$26,970 0	\$106,025.0 \$22,475.0	\$84,820.0 \$17,980.0						
Operations Training Develop training plan Operations training			4,0 Wk(s)	for	all FTE						\$100.0	\$500.0 \$1,011.6						
Operation volume of SBW to treat, in years treated volumes			4.30 M-liters	in	3.0 yrs	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$55,440 1,433,333	\$55,440 1,433,333	\$55,440 1,433,333			
drums - UNEX RH-TRU cylindors - UNEX Direct			45,000 drums 300 canisters										15,000 100	15,000 100	15,000 100			
Material Receipt / Rough Filration													\$1,0800	\$1,0800	\$1,080 0			
Direct operations labor operator / techs supervisors / mgt	24-hr, 7-dys / wk ope 1.0 FTE(dys) 0.0 FTE(dys)	&	8.0 FTE(rotate		\$100.0 /yr \$155.0 /yr								\$900.0 \$165.0	\$900.0 \$155.0	\$900.0 \$155.0			
Direct operation consumables filters	\$25.0 /yr												\$25.0	\$25.0	\$25.0			
power kw	0.5 MW	0	\$0.042 / MWhr										\$0.0	\$0.0	\$0.0			
Radionucide Extraction using UN Direct operations labor	EX 24-hr, 7-dys/wk ope	ation											\$6,3288	\$6,3288	\$6,328 8			
operator / techs supervisors / mgt Direct operation consumables	0.0 FTE(dys) 2.0 FTE(dys)	0	4.0 FTE(rotate 1.0 FTE(rotate		\$100.0 /yr \$155.0 /yr								\$400.0 \$465.0	\$400.0 \$465.0	\$400.0 \$465.0			
HF FS-13 (Phenylishourome ChCoDIC CMPO PEG-400 AI(NO3)3 Guankline Carbonate DIPA HNO3 POwer	430.0 m3	00000000	\$1.875 / m3 \$42.000 / m3 \$3.000 / kg \$1.000 / kg \$1.000 / kg \$0.380 / kg \$17.000 / m3 \$13.700 / m3 \$22.000 / m3 \$16.650 / m3		\$806.3 /yr \$462.0 /yr \$1,410.0 /yr \$294.0 /yr \$111.7 /yr \$1,598.0 /yr \$383.6 /yr \$396.0 /yr								\$806.3 \$462.0 \$1,410.0 \$294.0 \$111.7 \$1,598.0 \$383.6 \$396.0 \$1.7	\$806.3 \$462.0 \$1,410.0 \$294.0 \$111.7 \$1,598.0 \$383.6 \$396.0 \$1.7	\$806.3 \$462.0 \$1,410.0 \$294.0 \$111.7 \$1,508.0 \$383.6 \$396.0 \$1.7			
kw steam in 1000 lbs/hr	5.7 MW 22.6 1000 lbs	0	\$0.042 / MWhr \$0.013 / 1000 lbs		\$1,438.4 /yr \$1,762.8 /yr								\$0.2 \$0.3	\$0.2 \$0.3	\$0.2 \$0.3			
Process HAW with evaporative do	ing												\$3,386.6	\$3,386.6	\$3,386 6			
Oirect operations labor operator / techs supervisors / mgt Direct operation consumables	24-hr, 7-dys / wk oper 0.0 FTE(dys) 1.0 FTE(dys)	0	8.0 FTE(rolate 1.0 FTE(rolate		\$100.0 /yr \$155.0 /yr								\$800.0 \$310.0	\$800,0 \$310.0	\$800.0 \$310.0			
power kw steam in 1000 ibs/hr	1.0 MW 2.9 1000 lbs	0	\$0.042 / MWhr \$0.013 / 1000 lbs	/hr	\$252.0 /yr \$222.3 /yr								\$1,209.6 \$1,067.0	\$1,209.6 \$1,067.0	\$1,209.6 \$1,067.0			

				1 2001	2 2002	3 2003	4 2004	5 2005	6 2006	7 2007	8 2008	9 2009	10 2010
Option A - UNEX @ Green	field Facility							all cos	st in thou	sands			
dLCC (no intangible costs)	\$744,347		•										
Discounted Annual Totals discount factor (to 2001 dollars)				\$0 1000	\$0 1 031	\$48,355 1 063	\$70,352 1 <i>09</i> 6	\$136,474 1.130	\$110,395 1,165	\$86,852 1.201	\$60,443 1.238	\$58,626 1,277	\$56,863 1 316
Annual Totals (contingency include	d; Intangible costs no	l Included)		\$0	\$0	\$51,400	\$77,100	\$154,200	\$128,600	\$104,312	\$74,844	\$74,844	\$74,844
contingency € 35.0%	(not calculated	on pre-operation / inves	itment costs)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$19,404	\$19,404	\$19,404
Process LAW by neutralization & Direct operations labor	grouting 24-hr, 7-dys / wk operation	•									\$25,571 6	\$25,571 6	\$25,571 6
operator / techs supervisors / mgt	0.0 FTE(dys) 0 t 0 FTE(dys) 0	24 0 FTE(rolato) 1 0 FTE(rotato)	\$100.0 / \$155.0 /								\$2,400 0 \$310.0	\$2,400,0 \$310.0	\$2,400.0 \$310.0
Direct operation consumable NaOH portland cament	740 0 m3 Q 360 0 m3 Q	\$2.500 /m3 \$3.250 /m3	\$1,850.0 / \$1,170 0 /	yr							\$1,850 0 \$1,170.0	\$1,850.0 \$1,170.0	\$1,850.0 \$1,170.0
slag Ca(OH)2	4,400.0 m3 Q 970.0 m3 Q	\$3 000 /m3 \$4,500 /m3	\$13,200.0 / \$4,365.0 /								\$13,200.0 \$4,365.0	\$13,200.0 \$4,365.0	\$13,200.0 \$4,365.0
power kw steam in 1000 ibs/h		\$0.042 / MWhr \$0.013 / 1000 lbs / f	\$252.0 / nr \$222.3 /								\$1,209.6 \$1,067.0	\$1,209.6 \$1,067.0	\$1,209.6 \$1,067.0
Socondary Waste Disposal HEPA fillers PPE	24-hr, 7-dys / wk operation 10.0 m3	\$10.0 / m3 \$10.0 / m3	\$100.0 / \$300.0 /	yr							\$100.0 \$300.0	\$100.0 \$300.0	\$100.0 \$300.0
Spent solvent (3rd yr ch Package treated waste		\$25 0 each	\$1,000.0 /	yr							\$0.0 \$3,830 0	\$0.0 \$3,830 0	\$1,000 0 \$3,830 0
Direct operations labor / drun operator / techs supervisors / mgt	8 0 FTE(dys) 0 1.0 FTE(dys) 0	0 0 FTE(rotate) 0 0 FTE(rotate)	\$100.0 / \$155.0 /								\$800 0 \$155.0	\$800.0 \$155.0	\$800.0 \$155 0
Direct operation consumable drums canistors	\$ \$0,025 / drum \$25,000 / canister										\$375.0 \$2,500 0	\$375.0 \$2,500.0	\$375.0 \$2,500.0
Interim Store Treated Waste until UNEX treated drums go to in UNEX treated canisters go t	terim storage O INEEL		\$0 250 / \$2,500 /								\$4,000 0 \$3,750.0 \$250.0	\$4,000 0 \$3,750.0 \$250.0	\$4,000.0 \$3,750.0 \$250.0
Transportation and Final Implace UNEX drums are disposed o UNEX treated canisters go t	ment @ Repository n-site or @ Hanford		\$0.600 / \$26,400 /								\$0 0 \$0 0 \$0 0	\$0 0 \$0 0 \$0 0	\$0 0 \$0 0 \$0 0
Support			•======================================										
Direct capital maintenance capital building general capital equipment			pital invest pital invest								\$6,168 0 \$5,140 00 \$1,028 00	\$6,168 0 \$5,140 0 \$1,028.0	\$6,168 0 \$5,140.0 \$1,028.0
Administration, Support, Training, Support labor	& Tech Support 24-hr, 7-dys / wk operation	1									\$1,4100	\$1,4100	\$1,4100
operator / techs engineer / scientists supervisors / mgt	6.0 FTE(dys) 0 4.0 FTE(dys) 0 2.0 FTE(dys) 0	0.0 FTE(rolate) 0.0 FTE(rolate) 0.0 FTE(rolate)	\$100.0 / \$125.0 / \$155.0 /	yr							\$600.0 \$500.0 \$310.0	\$600.0 \$500.0 \$310.0	\$600.0 \$500.0 \$310.0
QA, Safety, Radcon		•		•							\$1,5550	\$1,5550	\$1,5550
Support labor operator / tochs supportisors / mgt	24-hr, 7-dys / wk operation 2.0 FTE(dys) 0 0.0 FTE(dys) 0	12 0 FTE(rotate) 1.0 FTE(rotate)	\$100.0 / \$155.0 /								\$1,400 0 \$155.0	\$1,400.0 \$155.0	\$1,400.0 \$155.0
Process Maintenance Support labor	24-hr, 7-dys / wk operation	1									\$1,3550	\$1,3550	\$1,355 0
operator / techs supervisors / mgt	0.0 FTE(dys) O 0.0 FTE(dys) O	12 0 FTE(rotate) 1.0 FTE(rotate)	\$100 0 / \$155.0 /								\$1,200.0 \$155.0	\$1,200.0 \$155.0	\$1,200.0 \$155.0
Facility Maintenance Support labor operator / techs	24-hr, 7-dys / wk operation 6.0 FTE(dys) •	0.0 FTE(rotate)	\$100.0 /	yr							\$755 0 \$600.0	\$755 0 \$600 0	\$755 0 \$600 0
supervisors / mgt	1.0 FTE(dys) O	0 0 FTE(rolate)	\$155.0 /								\$155.0	\$155 0	\$155 0
Post-Operation				\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Direct DD&D		10 00% of ca	ipital investme	nt									
Support DD&D planning		300% of ca	apital investme	nt									

							11 2011 stand-by	12 2012 stand-by	13 2013 stand-by	14 2014 stand-by	15 2015 sland-by	16 2016 sland-by	17 2017 sland-by	18 2018 stand by	19 2019 stand-by	20 2020 stand-by	21 2022
Option A - UNEX @	Greenfi	eld Facility	,								all cos	it in thou	sands				
di 00 (na lutanalista		A-44 0 4 m															
dLCC (no intangible o	costs)	\$744,347															
Discounted Annual Totals discount factor (to 2001 dollars							\$4,248 1,357	\$4,120 1.399	\$3,997 1.442	\$3,876 1.487	\$14,008 1,533	\$13,587 1.501	\$13,179 1.630	\$3,431 1600	\$3,328 1732	\$3,228 1.786	\$48,985 1 842
Annual Totals (contingen	cy included;	Intangible cost	s no	t included)			\$5,765	\$5,765	\$5,765	\$5,765	\$21,479	\$21,479	\$21,479	\$5,765	\$5,765	\$5,765	\$90,207
contingency @	35.0%	(not calcu	lated	on pre-operation / inve	estmen	t costs)	\$1,495	\$1,495	\$1,495	\$1,495	\$5,569	\$5,569	\$5,569	\$1,495	\$1,495	\$1,495	\$23,387
Pre-Operation							\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Capital Investment Facility / Equipment	Investment						**	**	**	**	**	40	40	40	40	ŞU	ŞU
TEC O				\$424,100 0 \$89,900 0													
Operations Training Develop training pla	ın.																
Operations training				4.0 wk(s)	or all	FTE											
Operation volume of SBW to tr				400 4414			\$4,270	\$4,270	\$4,270	\$4,270	\$15,910	\$15,910	\$15,910	\$4,270	\$4,270	\$4,270	\$0
treated volumes drums - UNEX	•			45,000 drums	in	3.0 yrs											
RH-TRU cylind Direct	ers - UNEX			300 canisters													
	Samuela Education		٠.														
Materiat Receipt / F Direct operation operator / t	ns labor 2	(90% removal of UD 4-hr, 7-dys / wk ope	ration				\$00	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
supervisore Direct operation	s/mgt	1.0 FTE(dys) 0.0 FTE(dys)		8.0 FTE(rotate) 1.0 FTE(rotate)		100.0 /yı 155.0 /yı		\$0.0 \$0.0									
fillers power	CONSUMBLINGS	\$25.0 /yr					\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
kw		0.5 MW	0	\$0.042 / MWhr			\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Radionuclide Extrac							\$00	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Direct operation operator / t		4-hr, 7-dys / wk ope 0.0 FTE(dys)		4.0 FTE(rotate)		100.0 /yr	\$0.0	\$0.0	\$0.0	40.0							
supervison	s/mgt	2.0 FTE(dys)		1.0 FTE(rotato)		155.0 /yr	\$0.0	\$0.0	\$0.0 \$0.0								
Direct operation HF	consumables	430.0 m3	•	\$1,875 /m3		806.3 /yı	***	***					•	*	•	*	
	nytriflouromot	11.0 m3	ŏ	\$42,000 /m3		462.0 /yı	\$0.0 \$0.0										
ChCoDiC	•	470.0 kg	0	\$3.000 /kg		410.0 /yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
СМРО		294,0 kg	0	\$1.000 /kg		294.0 /yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
PEG-400		294,0 kg	0	\$0.380 /kg		111.7 /yı	\$0.0	\$0.0	\$0,0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
AI(NO3)3		94.0 m3	0	\$17.000 /m3		598,0 /yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Guanidine o DTPA	Carbonale	28.0 m3 18.0 m3	0	\$13.700 /m3 \$22.000 /m3		383.6 /yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$00	\$0.0	\$0.0	\$0.0	\$0.0	
HNO3		0.1 m3	ŏ	\$16.650 /m3	•	396.0 /yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
10000		0.1 110	٠	\$10.050 7 hts		\$1.7 /yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0,0	\$0.0	\$0.0	\$0.0	\$0.0	
, kw		5.7 MW	0	\$0.042 / MWhr	\$1.	436.4 /yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
steam	in 1000 lbs/hr	22.6 1000 lbs	0	\$0.013 / 1000 lbs / l			\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Process HAW with a Direct operation		g 4-hr, 7-dys / wk oper	atla-				\$00	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
operator / to		0 0 FTE(dys)		8.0 FTE(rotate)	•	100.0 /yı	\$0.0	\$0.0	\$0.0	\$0.0	40.0	***	***	***			
supervisors Direct operation power	lgm\t	1.0 FTE(dys)		1.0 FTE(rotate)		155.0 /yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	•
power kw		1.0 MW	0	\$0.042 / MWhr	•	252.0 /yı	\$0.0	\$0.0	\$0.0	***	***	***	** *	4			
	in 1000 lbs/hr		ö	\$0.013 / 1000 lbs / i		222.3 /yı	\$0.0	\$0.0	\$0.0 \$0.0								

					11 2011 stand-by	12 2012 stand-by	13 2013 stand-by	14 2014 stand by	15 2015 stand-by	16 2018 stand by	17 2017 stand-by	16 2018 sland-by	19 2019 stand-by	20 2020 stand-by	21 2022
Option A - UNEX @ Greenfield	I Facility								all cos	t in thou:	sands				
dLCC (no intangible costs)	\$744,347														
Discounted Annual Totals discount factor (to 2001 dollars)					\$4,248 1.357	\$4,120 1.399	\$3,997 1 442	\$3,876 1 407	\$14,008 1 533	\$13,587 1.501	\$13,179 1630	\$3,431 1660	\$3,328 1732	\$3,228 1766	\$48,985 1 842
Annual Totals (contingency included; into	ingible costs not	included)	,		\$5,765	\$5,765	\$5,765	\$5,765	\$21,479	\$21,479	\$21,479	\$5,765	\$5,765	\$5,765	\$90,207
contingency ♥ 35.0%	(not calculated o	n pre-opera	tion / inve	stment costs)	\$1,495	\$1,495	\$1,495	\$1,495	\$5,569	\$5,569	\$5,569	\$1,495	\$1,495	\$1,495	\$23,387
Process LAW by neutralization & growthin Direct operations fabor 24-hr	g . 7-dys / wk operation				\$0.0	\$00	\$00	\$00	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
operator / techs supervisors / mgt	0.0 FTE(dys) © 1.0 FTE(dys) ©		E(rolate) E(rolate)		\$0 0 \$0 0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
	40.0 m3 •	\$2.500 /1		\$1,850 0 /yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
	60.0 m3 ©	\$3.250 / (\$3.000 / (\$1,170.0 / yr \$13,200.0 / yr	\$0 0 \$0 0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
Ca(OH)2 9	70.0 m3 ©	\$4.500 /1	n3	\$4,365.0 / yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
kw ateam in 1000 lbs/hr Secondary Waste Disposal 24-hr	1.0 MW	\$0.042 // \$0.013 / 1		\$252.0 /yr hr \$222.3 /yr	\$0 0 \$0 0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0,0 \$0 0	
HEPA filtors	10 0 m3 😻	\$10.0 /		\$100.0 /yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
11.2	30.0 m3 © 40.0 drums	\$10.0 /r \$25 0 ea		\$300.0 / yr \$1,000 0 / yr	\$0 0 \$0 0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
Package treated waste	3 4 · · 4 · · 4 · · · · · · · · · · · · · · · · · · ·				\$00	\$0.0	\$0.0	\$00	\$0.0	\$0.0	\$0.0	\$0 0	\$0.0	\$0.0	
Direct operations labor / drum 24-hr, operator / techs supervisors / mgt Direct operation consumables	8 0 FTE(dys) 0 1.0 FTE(dys) 0		E(rolate) E(rolate)	\$100.0 / yr \$155.0 / yr	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0 0 \$0 0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
drums \$0	.025 / drum .000 / canister				\$0 0 \$0 0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
Interim Store Treated Waste until Final R UNEX treated drums go to interim st UNEX-treated canisters go to interin	orage C INEEL			\$0.250 / di \$2.500 / ci	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$00 \$00 \$00	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0 0 \$0 0 \$0 0	\$0.0 \$0.0 \$0.0	
Transportation and Final Implacement UNEX drums are disposed on-site or UNEX treated canisters go to WIPP	r C Hanford			\$0.600 / di \$26.400 / ci	\$0 0 \$0 0 \$0 0	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0 0 \$0 0 \$0 0	\$11,640 0 \$9,000.0 \$2,640.00	\$11,640 0 \$9,000.0 \$2,640.00	\$11,640 0 \$9,000.0 \$2,640.00	\$0.0 \$0.0 \$0.0	\$0 0 \$0 0 \$0 0	\$0.0 \$0.0 \$0.0	
Support															
Direct capital maintenance capital building general capital equipment		1.00%		apital Invest apital Invest	\$3,084 0 \$2,570.0 \$514.0	\$3,084 0 \$2,570.0 \$514.0	\$3,084 0 \$2,570 0 \$514.0	\$3,084 0 \$2,570.0 \$514.0	\$3,084 0 \$2,570 0 \$514.0	\$3,084 0 \$2,570.0 \$514,0	\$3,084 0 \$2,570.0 \$514.0	\$3 084 0 \$2,570.0 \$514.0	\$3,084 0 \$2,570.0 \$514.0	\$3,084 0 \$2,570,0 \$514,0	
Administration, Support, Training, & Tech					\$470 0	\$470.0	\$470 0	\$470.0	\$470 0	\$470 0	\$470 0	\$470 0	\$470 0	\$470 0	
operator / techs engineer / scientists	7-dys / wk operation 6 0 FTE(dys) 0 4.0 FTE(dys) 0	0.0 FT	E(rolale) E(rolale)	\$100.0 /yr \$125.0 /yr	\$200 0 \$166.7	\$200.0 \$166.7	\$200.0 \$166.7	\$200.0 \$166.7	\$200 0 \$166.7	\$200 0 \$166 7	\$200.0 \$166.7	\$200.0 \$166.7	\$200.0 \$166.7	\$200.0 \$168.7	
supervisors / mgl QA, Safety, Radoon	2.0 FTE(dys) O	0.0 F1	E(rotate)	\$155,0 /yr	\$103 3 \$0.0	\$103.3 \$0.0	\$103,3 \$0.0	\$103 3 \$0 0	\$103.3 \$0.0	\$103.3 \$0.0	\$103.3 \$0.0	\$103 3 \$0 0	\$103.3 \$0.0	\$103.3 \$0.0	
Support labor 24-hr,	7-dys / wk operation														
operator / techs supervisors / mgt	2 0 FTE(dys) 0 0 0 FTE(dys) 0		E(rotate) E(rotate)	\$100,0 / yr \$155,0 / yr	\$0 0 \$0 0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0 0 \$0 0	\$0.0 \$0.0	\$0.0 \$0.0	\$0 0 \$0 0	
Process Maintenance	7-dys / wk operation				\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	
Support labor 24-hr, operator / techs supervisors / mgt	0.0 FTE(dys) O		E(rotate) E(rotate)	\$100 0 /yı \$155 0 /yı	\$300 0 \$38.75	\$300.0 \$38.8	\$300.0 \$38.8	\$300.0 \$38.8	\$300.0 \$38.8	\$300.0 \$38.8	\$300 0 \$38 8	\$300,0 \$38,8	\$300 0 \$38 8	\$300.0 \$38.8	
Facility Maintenance Support labor 24-hr.	7-dys / wk operation				\$377 5	\$377 5	\$377 5	\$377 5	\$377 5	\$377 5	\$377 5	\$377 5	\$377 5	\$377 5	
operator / techs supervisors / mgt	60 FTE(dys) 0 1.0 FTE(dys) 0		E(rotate) E(rotate)	\$100 0 / yr \$155.0 / yr	\$300 0 \$77.50	\$300.0 \$77.5	\$300.0 \$77.5	\$300.0 \$77.5	\$300.0 \$77.5	\$300.0 \$77.5	\$300 0 \$77.5	\$300.0 \$77.5	\$300.0 \$77.5	\$300.0 \$77.5	
Post-Operation					\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$66,820
Direct DD&D		10 00%	of ca	apıtal investment											\$51,400.0
Support OD&O planning		3 00%	of ca	apital invostment											\$15,4200

							1 2001	2 2001	3 2002	2002	5 2002	6 2005	7 2006	8 2007	9 2008	10 2009
Option B - MODIF	IED UNE	X @ Greenf	ield	Facility							all cos	it in thou	sands			
dLCC (no intangible	e costs)	\$890,140)													
Discounted Annual Tol decount factor (to 2001 d							\$0 1000	\$0 1.031	\$48,355 1.063	\$70,352 1096	\$136,474 1.130	\$110,395 1,165	\$86,383 1201	\$45,666 1,238	\$44,293 1277	\$42,961 1,316
Annual Totals (conting	ency included	l; intangible cost	s noi	included)			\$0	\$0	\$51,400	\$77,100	\$154,200	\$128,600	\$103,748	\$56,547	\$56,547	\$56,547
contingency &	35.0%	(not calcu	dated	on pre-operation / love	stmo	ent costs)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$14,660	\$14,660	\$14,660
Pre-Operation							\$0	\$0	\$51,400	\$77,100	\$154,200	\$128,600	\$103,748	\$0	\$0	\$0
Capital investment Facility / Equipm TEC O	ent Investment			\$424,700.0					\$42,470.0	\$63,705.0	\$127,410.0	\$106,175.0	\$84,940.0			
OPC © Operations Training		•		\$89,300.0					\$8,930.0	\$13,395.0	\$26,790.0	\$22,325.0	\$17,860,0			
Davelop training Operations train	plan			4.0 wk(s) 1	or al	FTE						\$100.0	\$500.0 \$448.0			
Operation volume of SBW treated volumes				4.30 M-liters	in	3 0 yrs	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$41,886 1,433,333	\$41,886 1,433,333	\$41,886 1,433,333
drums - UN				30,000 drums 250 canisters										10,000 83	10,000 83	10,000 83
Material Receip		(90% removal of UE												\$1,080 0	\$1,080 0	\$1,080 0
	itions labor or / techs isons / mgt	24-hr, 7-dys / wk ope 1.0 FTE(dys) 0.0 FTE(dys)	&	8.0 FTE(rolate) 1.0 FTE(rolate)		\$100.0 /y: \$155,0 /y:								\$900.0 \$155.0	\$900.0 \$155,0	\$900.0 \$155.0
filtors	illon consumables	\$25.0 /yr												\$25 0	\$25.0	\$25.0
powar kw	,	0.5 MW	•	\$0.042 / MWhr										\$0.0	\$0.0	\$0.0
Radionucido Ex Direct opera	traction using UNE	:X 24-hr, 7-dys / wk opc	notton											\$4,765.1	\$4,765.1	\$4,765 1
oporate supervi	or / techs sors / mgl ition consumables	0.0 FTE(dys) 2.0 FTE(dys)	0	4.0 FTE(rolate) 1.0 FTE(rotate)		\$100.0 /yi \$155.0 /yi								\$400.0 \$465,0	\$400.0 \$465.0	\$400.0 \$465.0
	Phonyltriflouromet C	9.0 m3 500.0 kg 36.0 kg	0	\$42.000 /m3 \$3.000 /kg \$0.380 /kg	\$	\$378.0 / yı \$1,500.0 / yı \$13.7 / yı	r							\$378.0 \$1,500.0 \$13.7	\$378.0 \$1,500.0 \$13.7	\$378.0 \$1,500.0 \$13.7
	ine Carbonate	142.0 m3 25 0 m3	0	\$13.700 /m3 \$2.500 /m3	\$	\$62.5 /y	r					•		\$1,945.4 \$62.5	\$1,945.4 \$62.5	\$1,945.4 \$62.5
power kw		5.7 MW	•	\$0.042 / MWhr	\$	1,438.4 /vi	,							\$0.2	\$0.2	\$0.2
Secondary 1	am in 1000 lbs/hr Naste Disposal	22.6 1000 lbs 24-hr, 7-dys / wk ope	ration	\$0.013 / 1000 lbs /	hr \$	1,762.8 /yı	r							\$0.3	\$0,3	\$0.3
HEPÅI PPE Spents	illers olvent (3rd yr chai	10.0 m3 30.0 m3 40.0 drums	0	\$10.0 /m3 \$10.0 /m3 \$25.0 each	s	\$100.0 /yi \$300.0 /yi \$1,000.0 /yi	r							\$100.0 \$300.0 \$0.0	\$100,0 \$300.0 \$0.0	\$100.0 \$300.0 \$1,000.0
Process HAW w Direct opers	th evaporative dry	ing 24-hr, 7-dys/wk ope	ration											\$3,386 6	\$3,386.6	\$3,386 6
operate supervi Direct opera	r / techs sors / mgt tion consumables	0.0 FTE(dys) 1.0 FTE(dys)	0	8.0 FTE(rotate) 1.0 FTE(rotate)		\$100.0 /yr \$155.0 /yr								\$800.0 \$310.0	\$800 0 \$310.0	\$800.0 \$310.0
power kw sta	am in 1000 ibs/hr	1.0 MW 2.9 1000 lbs	0	\$0.042 / MWh/ \$0.013 / 1000 lbs/	hr	\$252.0 /yı \$222.3 /yı								\$1,209.6 \$1,067.0	\$1,209.6 \$1,067.0	\$1,209.6 \$1,067.0

				1 2001	2 2001	3 2002	4 2002	5 2002	6 2005	7 2006	2007	9 2008	10 2009
Option B - MODIFIED UNE	X @ Greenfiel	d Facility						all cos	st in thou	sands			
dLCC (no intangible costs)	\$890,140												
Discounted Annual Totals discount lactor (to 2001 dollars)				\$0 1.000	\$0 1031	\$48,355 1003	\$70,352 1.096	\$136,474 1 130	\$110,395 1 165	\$86,383 1201	\$45,666 1 238	\$44,293 1.277	\$42,961 1310
Annual Totals (contingency include	d; intangible costs n	ot included)		\$0	\$0	\$51,400	\$77,100	\$154,200	\$128,600	\$103,748	\$56,547	\$56,547	\$56,547
contingency ♥ 35.0%	(nol calculate	d on pre-operation / Inve	siment costs)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$14,660	\$14,660	\$14,660
Process LAW by neutralization &											\$12,831 6	\$12,831 6	\$12 831 6
Direct operations labor operator / tochs supervisors / mgt Direct operation consumable	24-hr, 7-dys / wk operati 0.0 FTE(dys) 0 1.0 FTE(dys) 0	24.0 FTE(rotate)	\$100.0 / yr \$155.0 / yr								\$2,400.0 \$310.0	\$2,400.0 \$310.0	\$2,400.0 \$310.0
portland cement slag Ca(OH)2	180 0 m3	\$3.000 /m3	\$585.0 / yr \$1,860.0 / yr \$5,400.0 / yr								\$585.0 \$1,860.0 \$5,400.0	\$585.0 \$1,860.0 \$5,400.0	\$585.0 \$1,860.0 \$5,400.0
power kw steam in 1000 ibs/n	1 0 MW 0 r 2 9 1000 lbs 0	40 0 12 7 11111111	\$252.0 /yr hr \$222.3 /yr								\$1,209.6 \$1,067.0	\$1,209.6 \$1,067.0	\$1,209.6 \$1,067.0
Package treated waste Direct operations labor / drun	n 24 hr 7 dus /ud anarati		-								\$3,288 3	\$3,288 3	\$3,288 3
operator / techs supervisors / mgt Direct operator / techs	8 0 FTE(dys) 0 1.0 FTE(dys) 0	0.0 FTE(rotate)	\$100.0 /yr \$155.0 /yr								\$800.0 \$155.0	\$800.0 \$155.0	\$800.0 \$155.0
drums canisters	\$0.025 / drum \$25.000 / canister										\$250 0 \$2,083.3	\$250.0 \$2,083.3	\$250 0 \$2,083 3
Interim Store Treated Waste until MODIFIED UNEX drums go MODIFIED UNEX canisters	to interim storage 👁 INEE		\$0.500 / dru \$3.500 / car								\$5,291 7 \$5,000 0 \$291,7	\$5 291 7 \$5,000.0 \$291.7	\$5,291 7 \$5,000.0 \$291.7
Transportation and Final Implace MODIFIED UNEX drums go MODIFIED UNEX canistors (to WIPP		\$8.800 / dru \$29.400 / car								\$0.0 \$0.0 \$0.0	\$0 0 \$0 0 \$0 0	\$0 0 \$0 0 \$0 0
Support													
Direct capital maintenance capital building general capital equipment			epital Invest								\$6,168 0 \$5,140 00 \$1,028 00	\$6,168.0 \$5,140.0 \$1,028.0	\$6 168 0 \$5,140 0 \$1,028 0
Administration, Support, Training, Support labor	& Tech Support 24-hr, 7-dys / wk operati	••									\$1,4100	\$1,4100	\$1,4100
operator / techs engineer / scientists supervisors / mgt	6.0 FTE(dys) Q 4.0 FTE(dys) Q 2.0 FTE(dys) Q	0 0 FTE(rolate) 0 0 FTE(rolate)	\$100.0 / yr \$125.0 / yr \$155.0 / yr								\$600.0 \$500.0 \$310.0	\$600.0 \$500.0 \$310.0	\$600.0 \$500.0 \$310.0
QA, Salety, Radcon			*								\$1,555 0	\$1,555 0	\$1,555.0
Support labor operator / tochs supervisors / mgt	24-hr, 7-dys / wk operati 2 0 FTE(dys) 0 0 0 FTE(dys) 0	12 0 FTE(rotate)	\$100.0 /yr \$155.0 /yr								\$1,400.0 \$155.0	\$1,400.0 \$155.0	\$1,400.0 \$155.0
Process Maintenance Support labor	24-hr, 7-dys / wk operati										\$1,355 0	\$1,355 0	\$1,3550
operator / techs supervisors / mgt	0 0 FTE(dys) 0 0 0 FTE(dys) 0	12 0 FTE(rolato)	\$100 0 / yr \$155 0 / yr								\$1,200.0 \$155.0	\$1,200.0 \$155.0	\$1,200.0 \$155.0
Facility Maintenance Support labor operator / techs supervisors / mgt	24-hr, 7-dys / wk operation 6.0 FTE(dys) 0 1.0 FTE(dys) 0	0.0 FTE(rolate)	\$100.0 /yr \$155.0 /yr								\$755 0 \$600 0 \$155 0	\$755 0 \$600 0 \$155 0	\$755 0 \$600 0 \$155 0
Post-Operation	1.0	00.12(31010)	Ţ / J.	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Direct DD&D		10 00% of ca	pital Investment		,,	,-	,-	•		,-	,,,		• =
Support DD&D planning			apital Investment										

						11 2010	12 2011	13 2012	14 2013 * sland-by	15 2014 stand-by	18 2015 stand-by	17 2016 stand-by	18 2017 stand-by	19 2018 stand-by	20 2019 stand-by	21 2021
Option B - MODIFIED	UNEX	@ Greenf	eld	Facility						all cos	st in thou	sands				
dLCC (no intangible cos	sts)	\$890,140	ı													
Discounted Annual Totals	,	4000,110				64.040	04400	**	60.070	***	***					
discount factor (to 2001 dollars)						\$4,248 1.357	\$4,120 1.399	\$3,997 1.442	\$3,876 1.487	\$83,398 1.533		\$78,458 1.630	\$3,431 1.600	\$3,328 1.732	\$3,228 1.768	\$36,286 1.842
Annual Totals (contingency	included;	intangible cost	s not	included)		\$5,765	\$5,765	\$5,765	\$5,765	\$127,872	\$127,872	\$127,872	\$5,765	\$5,765	\$5,765	\$66,820
contingency @	35.0%	(not calcu	latod (on pre-operation / Investr	ment costs)	\$1,4 95	\$1,4 95	\$1,495	\$1,495	\$33,152	\$33,152	\$33,152	\$1,495	\$1,495	\$1,495	\$0
Pre-Operation						\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Cepital Investment Facility / Equipment Inv TEC © OPC ©	estment			\$424,700.0 \$89,300.0		•										
Operations Training Dovelop training plan Operations training				4.0 wk(s) for	all FTE											
Operation						\$4,270	\$4,270	\$4,270	\$4,270	\$94,720	\$94,720	\$94,720	\$4,270	\$4,270	\$4,270	\$0
volume of SBW to treat, treated volumes drums - UNEX RH-TRU cylinders	•			4.30 M-liters In 30,000 drums 250 canisters	3.0 yrs											
Direct	· OHEX			250 Cariistors												
Material Receipt / Roug						\$0.0	\$0.0	\$0.0	\$00	\$00	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Direct operations is operator / tech		4-hr, 7-dys / wk ope 1.0 FTE(dys)		8.0 FTE(rotate)	\$100,0 /yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
supervisors / n Direct operation co	ngt	0.0 FTE(dys)		1.0 FTE(rolate)	\$155.0 /y	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
filters power	III DIII III OO	\$25.0 /yr				\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
kw		0.5 MW	0	\$0.042 / MWhr		\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Radionuclide Extraction Direct operations la		: 4-hr, 7-dys / wk ope	relion			\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
operator / tech supervisors / n	is ngt	0.0 FTE(dys) 2 0 FTE(dys)	0	4.0 FTE(rotate) 1.0 FTE(rotate)	\$100.0 /yı \$155.0 /yı	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
Direct operation co FS-13 (Phenyl		9.0 m3	e	\$42.000 /m3	\$378.0 / yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
ChCoDIC		500.0 kg	o	\$3.000 /kg	\$1,500.0 /yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
PEG-400 Guanidino Cari	tonala	36,0 kg 142 0 m3	0	\$0.380 /kg \$13.700 /m3	\$13.7 /yr \$1,945.4 /yr	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0	\$0.0 \$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
NaOH	CONTRIC	25 0 m3	ŏ	\$2.500 /m3	\$62.5 /yr	\$0.0	\$0.0	\$0.0 \$0.0	\$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
power kw		5.7 MW	•	\$0.042 / MWhr	\$1,438.4 /yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	***	
steam in 1	000 lbs/hr	22.6 1000 lbs	0		\$1,762.8 /yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0 \$0.0	
Secondary Waste D HEPA filters	Disposal 2	4-hr, 7-dys / wk ope 100 m3	ration	\$10.0 /m3	\$100,0 /yr	\$0.0	\$0.0	***	***							
PPE		30.0 m3	ŏ	\$10.0 /m3	\$100.0 / yr	\$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
Spent solvent ((3rd yr char	40.0 drums		\$25.0 each	\$1,000.0 /yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Process HAW with evap						\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	500	
Direct operations is operator / tech		4-hr, 7-dys / wk ope 0.0 FTE(dys)		8.0 FTE(rotate)	\$100.0 /yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
supervisors / m Direct operation cos power	ngt	1.0 FTE(dys)		1.0 FTE(rotate)	\$155.0 / yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
kw		1.0 MW	0	\$0.042 / MWhr	\$252.0 / yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
steam in 1	000 lbs/hr	2.9 1000 lbs	0	\$0.013 / 1000 lbs / hr	\$222.3 /yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	

				11 2010	12 2011	13 2012	14 2013 * stand-by	15 2014 stand-by	16 2015 stand-by	17 2016 stand-by	18 2017 stand-by	19 2018 sland-by	20 2019 stand-by	21 2021
Option B - MODIFIED UNEX	@ Greenfield	Facility						all cos	t in thous	ands				
dLCC (no intangible costs)	\$890,140													
Discounted Annual Totals discount factor (to 2001 dollars)				\$4,248 1.357	\$4,120	\$3,997 1 442	\$3,876 1 407	\$83,398	\$80,890	\$78,458 1630	\$3,431 1680	\$3,328 1732	\$3,228 1766	\$36,286 1842
Annual Totals (contingency included; i	intangible costs not i	ncluded)		\$5,765	\$5,765	\$5,765	\$5,765	\$127,872	\$127,872	\$127,872	\$5,765	\$5,765	\$5,765	\$66,820
contingency ♥ 35.0%	(not calculated or	pre-operation / Inv	restment costs)	\$1,495	\$1,495	\$1,495	\$1,495	\$33,152	\$33,152	\$33,152	\$1,495	\$1,495	\$1,495	\$0
Process LAW by neutralization & group	uting			\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
operator / techs supervisors / mgt	4-hr, 7-dys / wk operation 0.0 FTE(dys) • 1.0 FTE(dys) •	24.0 FTE(rotate 1.0 FTE(rotate		\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
Direct operation consumables portland cement	180 0 m3 0 620.0 m3 0	\$3 250 /m3 \$3,000 /m3	\$585.0 / yr \$1,860.0 / yr	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
slag Ca(OH)2 power	1,200.0 m3 0	\$4.500 /m3	\$5,400.0 / yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
kw stoam in 1000 lbs/hr	1.0 MW © 2.9 1000 lbs ©	\$0.042 / MWhr \$0.013 / 1000 lbs	\$252.0 / yr / hr \$222.3 / yr	\$0.0 \$0.0	\$0,0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
Package treated waste		40.010 7 7000 103	7111 4020.0 7 91	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Direct operations labor / drum 2- operator / techs supervisors / mgl	4-hr, 7-dys / wk operation 8.0 FTE(dys) • 1.0 FTE(dys) • •	0.0 FTE(rotate		\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0 0 \$0 0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
Direct operation consumables drums canisters	\$0.025 / drum \$25.000 / canister			\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
Interim Store Treated Waste until Fin MODIFIED UNEX drums go to Ir	nat Repository nterim storage • INEEL		\$0.500 / di \$3.500 / ci	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	
MODIFIED UNEX canisters go Transportation and Final Implacemen MODIFIED UNEX drums go to Y	nt © Repository NIPP	•	\$8.800 / di	\$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$90,450 0 \$88,000.0 \$2,450.00	\$90,450 0 \$88,000.0 \$2,450.00	\$90,450 0 \$88,000.0 \$2,450,00	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0.0 \$0.0 \$0.0	
MODIFIED UNEX canistors go to Support	o Hanford		\$29.400 /ci	\$0.0	\$0.0	\$00	\$0.0	\$2,450.00	\$2,450.00	\$2,450,00	\$0.0	\$0.0	\$0.0	
Direct capital maintenance capital building general capital equipment			capital invest	\$3,084 0 \$2,570.0 \$514,0	\$3,084.0 \$2,570 0 \$514.0	\$3,084 0 \$2,570.0 \$514.0	\$3,084 0 \$2,570.0 \$514.0	\$3,084 0 \$2,570.0 \$514.0	\$3,084 0 \$2,570 0 \$514.0	\$3,084 0 \$2,570.0 \$514.0	\$3,084 0 \$2,570 0 \$514.0	\$3,084 0 \$2,570.0 \$514.0	\$3,084 0 \$2,570 0 \$514.0	
Administration, Support, Training, & Support labor 2:	Tech Support 4-hr, 7-dys / wk operation			\$470 0	\$470.0	\$470.0	\$470.0	\$470.0	\$470 0	\$470 0	\$470 0	\$470 0	\$470 0	
operator / techs engineer / scientists supervisors / mgt	6.0 FTE(dys) Q 4.0 FTE(dys) Q 2.0 FTE(dys) Q	0 0 FTE(rotate 0 0 FTE(rotate 0 0 FTE(rotate	s) \$125.0 / yr	\$200.0 \$166.7 \$103.3	\$200.0 \$166.7 \$103.3	\$200.0 \$166.7 \$103.3	\$200.0 \$166.7 \$103.3	\$200.0 \$166.7 \$103.3	\$200.0 \$166.7 \$103.3	\$200.0 \$166.7 \$103.3	\$200.0 \$166.7 \$103.3	\$200 0 \$166.7 \$103.3	\$200.0 \$168.7 \$103.3	
QA, Safety, Radcon		•		\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0 0	
Support labor 2: operator / tochs supervisors / mgt	4-hr, 7-dys / wk operation 2 0 FTE(dys) • • • • • • • • • • • • • • • • • • •	12.0 FTE(rotate		\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
Process Maintenance			•	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	
Support labor 2 operator / lechs supervisors / mgt	4-hr, 7-dys / wk operation 0.0 FTE(dys) • 0.0 FTE(dys) •	12.0 FTE(rotate 1 0 FTE(rotate		\$300 0 \$38.75	\$300 0 \$38.8	\$300.0 \$38 8	\$300.0 \$38 8	\$300,0 \$38 8	\$300 0 \$38 8	\$300 0 \$38 8	\$300.0 \$38.8	\$300.0 \$38.8	\$300.0 \$38 8	
Facility Maintenance Support labor operator / techs supervisors / mgt	4-hr, 7-dys / wk operation 6 0 FTE(dys) • 1 0 FTE(dys) •	0 0 FTE(rotate		\$377.5 \$300.0 \$77.50	\$377.5 \$300.0 \$77.5	\$377 5 \$300 0 \$77.5	\$377 5 \$300.0 \$77.5	\$377.5 \$300.0 \$77.5	\$377 5 \$300.0 \$77.5	\$377 5 \$300.0 \$77.5	\$377 5 \$300.0 \$77.5	\$377 5 \$300.0 \$77.5	\$377 5 \$300 0 \$77.5	
Post-Operation	,			\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$66,820
Direct		10 00% of	capital Invéstment											\$51,400.0
DD&D Support DD&D planning		3 00% of	capital investment											\$15,4200

			. .	۵,	_	_					_		_				~ -						• -	
2010			\$57,917	\$76,232	\$19,764	\$			\$56,468	15,000	\$1,080.0	\$900.0 \$155.0	\$25.0	\$0.0	\$6,328 B \$400.0	\$806.3	\$1,410.0 \$204.0	\$1,598.0	\$396.0 \$1.7	\$ \$ \$ \$ \$ £	\$100.0	\$3,386 6	\$310.0	\$1,209.6 \$1,067.0
2003		;	\$59, 71 3	\$76,232	\$19,764	S			\$56,468 1,433,333	15,000 100	\$1,080 0	\$900.0 \$155.0	\$25.0	\$0.0	\$0.328 g \$400.0	\$806.3	\$1,410.0 \$294.0	\$1,599.0	\$396.0 \$1.7	200	\$300.0	\$3,386 6	\$800.0 \$310.0	\$1,209.6 \$1,067.0
2008			\$61,564	\$76,232	\$19,764	8			\$56,468	15,000 100	\$1,080 0	\$900.0 \$155.0	\$25.0	\$0.0	\$400.0 \$465.0	\$806.3	\$1,410.0 \$294.0	\$1,598.0	\$396.0 \$1.7	\$0.03	\$300.0	\$3,306 6	\$300.0 \$310.0	\$1,209.6 \$1,067.0
2007	ands		\$101,839 1.201	\$122,312	80	\$122,312	\$91,620.0	\$500.0	0\$															
200e	cost in thousands		\$129,709 1.165	\$151,100	0\$	\$151,100	\$114,525.0	\$1000	0\$															
2002	all cost		\$82,671 \$160,370 \$129,709 \$101,839	\$90,600 \$181,200 \$151,100 \$122,312	%	\$181,200	\$137,430.0		. 0\$															
2004			\$82,671	009'06\$	80	009'06\$	\$68,7150		\$															
2003			\$56,822	\$60,400	80	\$60,400	\$45,810.0 \$14,590.0		0\$															
2002		:	8 <u>\$</u>	S,	8	8			\$															
2001		:	8 8	\$	8	S			\$															
					int costs)			E FTE	3.0 yrs			\$100.0 /yr \$155.0 /yr			\$100.0 /yr \$155.0 /yr	\$806.3 /yr \$462.0 /yr	1,410.0 /yr \$294.0 /yr	1,598.0 /yr	\$396.0 /yr \$1.7 /yr	1,436.4 /yr 1,762.8 /yr	\$100.0 /yr \$300.0 /yr	if a proper	\$100.0 /yr \$155.0 /yr	\$252.0 /yr \$222.3 /yr
				h	investment costs)		0,0	for all FTE	la 3.0 yrs	ø				-	•	\$806.3 /yr \$462.0 /yr	\$1,410.0 /yr \$294.0 /yr	\$1,598.0 /yr \$1,598.0 /yr	\$396.0 /yr \$1.7 /yr		\$100.0 /yr \$300.0 /yr	if a constitu	to) \$100.0 /yr to) \$155.0 /yr	\$252.0 /yr 18/hr \$222.3 /yr
	ıcllity			ncluded)	pre-operation / investment costs)		\$458,100.0 \$145,900.0	ة.		45,000 drums 300 canistors		8.0 FTE(rolate) \$100.0 /yr 1.0 FTE(rolate) \$155.0 /yr		\$0.042 / MWhr	4.0 FTE(rolate) \$100.0 /yr 1.0 FTE(rolate) \$155.0 /yr	E E	22.	2 2 2	55	\$0.042 / MWhr \$1,436.4 /yr \$0.013 / 1000 lbs / hr \$1,762.8 /yr	\$10.0 /m3 \$10.0 /yr \$10.0 /m3 \$300.0 /yr		80 FTE(rotate) \$100.0 / yr 1.0 FTE(rotate) \$155.0 / yr	
	id Facility			s not included)	lated on pre-operation / Investment costs)		\$458,100.0 \$145,900.0	ق	<u>s</u>	45,000 drums 300 canistors	(S)	8.0 FTE(rotato) 1.0 FTE(rotato)		O \$0.042 / MWhr	4.0 FTE(rotato) 1.0 FTE(rotato)	\$1.875 / m3 \$42.000 / m3	\$3.000 /kg \$1.000 /kg	2 2 2	\$22.000 /m3 \$16.650 /m3	\$0.042 / MWhr \$0.013 / 1000 lbs / hr	100 /m3 510.0 /m3 510.0 /m3	000	8 O FTE(rotate) 1.0 FTE(rotate)	o \$0.042 / MWhr \$252.0 /yr o \$0.013 / 1000 lbs / hr \$222.3 /yr
	areenfield Facility	\$848,500		ingible costs not included)	(not calculated on pre-operation / investment costs)		\$458,100.0 \$145,000.0	ق	<u>s</u>	45,000 drums 300 canistors	s removal of UDS) 7-dvs /wk operation	8.0 FTE(rotato) 1.0 FTE(rotato)	25.0 lyr		4.0 FTE(rotato) 1.0 FTE(rotato)	6 \$1.875 / m3 6 \$42.000 / m3	6 \$1.000 /kg	6 \$17,000 /m3	6 \$22.000 /m3 6 \$16.650 /m3	\$0.042 / MWhr \$0.013 / 1000 lbs / hr	100 /m3 510.0 /m3 510.0 /m3	000	8 O FTE(rotate) 1.0 FTE(rotate)	\$0.042 / MWhr \$0.013 / 1000 lbs / hr
	F & Greenfield Facility	\$848,500		ed; intangible costs not included)			\$459,100.0 \$145,000.0	ق	4.30 M-litors In	45,000 drums 300 canistors	on (90% removal of UDS) 24-hr. 7-dvs / W. cognilon	1.0 FTE(dys) & 8.0 FTE(rolato) 0.0 FTE(dys) & 1.0 FTE(rolato)	\$25.0 /yr	0.5 MW •	4-hr, 7-dys / wk operation 4.0 FTE(rolate) 2.0 FTE(dys) 0 1.0 FTE(rolate)	430.0 m3 0 \$1.875 / m3	6 \$1.000 /kg	6 \$17,000 /m3	\$22.000 /m3 \$16.650 /m3	5.7 MW 6 \$0.042 / MWhr 22.6 1000 lbs 9 \$0.013 / 1000 lbs / hr	24-11, 1-078 / WK operation 10.0 m3	to Comments of Table (Action of the Cartes)	1.0 FTE(dys) 0 1.0 FTE(rotate)	1.0 MW O \$0.042 / MWhr 2.9 1000 lbs O \$0.013 / 1000 lbs / hr
	ᄩ	_		cy included; intangible costs not included)	35.0% (not calculated on pre-operation / investment costs)			4.0 wk(s) for	4.30 M-litors In		dough Fitetion (90% removal of UDS) as labor 24-th: 7-dvs t vK coonsilon	1.0 FTE(dys) & 8.0 FTE(rolato) 0.0 FTE(dys) & 1.0 FTE(rolato)		0.5 MW •	4-hr, 7-dys / wk operation 4.0 FTE(rolate) 2.0 FTE(dys) 0 1.0 FTE(rolate)	430.0 m3 0 \$1.875 / m3	6 \$1.000 /kg	294.0 kg d \$0,380 /kg 94.0 m3 d \$17,000 /m3 28.0 m3	18.0 m3 6 \$22,000 /m3	5.7 MW 0 \$0.042 / MWhr hr 22.6 1000 lbs 0 \$0.013 / 1000 lbs /hr	24-fif, -t-0/8 / WK oporation 10.0 m3	to Comments of Table (Action of the Comments	1.0 FTE(dys) 0 1.0 FTE(rotate)	1.0 MW O \$0.042 / MWhr 2.9 1000 lbs O \$0.013 / 1000 lbs / hr
	ᄩ	_	al Totals 5 2001 d-Sun)	ontingency included; intangible costs not included)			onl Invastmont	Man 4.0 v/k(s) for	4.30 M-litors In	EX Indors - UNEX	Receipt / Rough Fitation (90% removal of UDS) 3 operations labor 24-th: 7-dvs / vk cognition	1.0 FTE(dys) & 8.0 FTE(rolato) 0.0 FTE(dys) & 1.0 FTE(rolato)		0.5 MW •	4-hr, 7-dys / wk operation 4.0 FTE(rolate) 2.0 FTE(dys) 0 1.0 FTE(rolate)	430.0 m3 0 \$1.875 / m3	470.0 kg 6 \$3.000 /kg 284.0 kg 6 \$1.000 /kg	294.0 kg d \$0,380 /kg 94.0 m3 d \$17,000 /m3 28.0 m3	18.0 m3 © \$22.000 /m3	5.7 MW 0 \$0.042 / MWhr hr 22.6 1000 lbs 0 \$0.013 / 1000 lbs /hr	24-fif, -t-0/8 / WK oporation 10.0 m3	to Comments of Table (Action of the Comments	1.0 FTE(dys) 0 1.0 FTE(rotate)	4 1.0 MW 0 \$0.042 / MWhr eam in 1000 lbs/hr 2.9 1000 lbs 0 \$0.013 / 1000 lbs/hr
	ᄩ	_	d Ajfiluli 1 Otalis sel teker (to 2001 dekan)	tals (contingency included; intangible costs not included)	35.0%	eration	onl Invastmont	Man 4.0 vk(s) for	mo of SBW to treat, in years in	ialod Volumos drums • UNEX RH-TRU cylindons • UNEX	tatorial Receipt / Rough Filration Direct operations tabor	1.0 FTE(dys) & 8.0 FTE(rotato) 0.0 FTE(dys) & 1.0 FTE(rotato)		0.5 MW •	4-hr, 7-dys / wk operation 4.0 FTE(rolate) 2.0 FTE(dys) 0 1.0 FTE(rolate)	430.0 m3 0 \$1.875 / m3	470.0 kg 6 \$3.000 /kg 294.0 kg 6 \$1.000 /kg	6 \$17,000 /m3	18.0 m3 © \$22.000 /m3	5.7 MW 0 \$0.042 / MWhr hr 22.6 1000 lbs 0 \$0.013 / 1000 lbs /hr	100 /m3 510.0 /m3 510.0 /m3	to Comments of Table (Action of the Comments	0.0 FTE(dys) 0 80 FTE(rolate) 1.0 FTE(dys) 0 1.0 FTE(rolate) nables	1.0 MW O \$0.042 / MWhr 2.9 1000 lbs O \$0.013 / 1000 lbs / hr
	- UNEX @ NWCF	_	Southed Aphula Totals Geomal lader (to 2001 delan)	ual Totals (contingency included; intangible costs not included)	35.0%	Pre-Operation	ent uipmonl Invasimoni	ق	mo of SBW to treat, in years in	ialod Volumos drums • UNEX RH-TRU cylindons • UNEX	ılration	1.0 FTE(dys) & 8.0 FTE(rolato) 0.0 FTE(dys) & 1.0 FTE(rolato)		/ 0.5 MW O	4-hr, 7-dys / wk operation 4.0 FTE(rolate) 2.0 FTE(dys) 0 1.0 FTE(rolate)	430.0 m3 0 \$1.875 / m3	470.0 kg 6 \$3.000 /kg 284.0 kg 6 \$1.000 /kg	294.0 kg d \$0,380 /kg 94.0 m3 d \$17,000 /m3 28.0 m3	18.0 m3 © \$22.000 /m3	5.7 MW 0 \$0.042 / MWhr hr 22.6 1000 lbs 0 \$0.013 / 1000 lbs /hr	24-fif, -t-0/8 / WK oporation 10.0 m3	the dying 24-hr 7-dws / wis nonsallon	1.0 FTE(dys) 0 1.0 FTE(rotate)	4 1.0 MW 0 \$0.042 / MWhr eam in 1000 lbs/hr 2.9 1000 lbs 0 \$0.013 / 1000 lbs/hr
	ᄩ	osts)	Discounided Amula Totals Geomal lader to 2001 dežun)	Annual Totais (contingency included; intangible costs not included)		Pre-Operation	onl Invastmont	Man 4.0 vk(s) for	4.30 M-litors In	ialod Volumos drums • UNEX RH-TRU cylindons • UNEX	tatorial Receipt / Rough Filration Direct operations tabor	1.0 FTE(dys) & 8.0 FTE(rolato) 0.0 FTE(dys) & 1.0 FTE(rolato)		0.5 MW •	4-hr, 7-dys / wk operation 4.0 FTE(rolate) 2.0 FTE(dys) 0 1.0 FTE(rolate)	430.0 m3 0 \$1.875 / m3	470.0 kg 6 \$3.000 /kg 284.0 kg 6 \$1.000 /kg	294.0 kg d \$0,380 /kg 94.0 m3 d \$17,000 /m3 28.0 m3	18.0 m3 © \$22.000 /m3	5.7 MW 0 \$0.042 / MWhr hr 22.6 1000 lbs 0 \$0.013 / 1000 lbs /hr	24-fif, -t-0/8 / WK oporation 10.0 m3	to Comments of Table (Action of the Comments	1.0 FTE(dys) 0 1.0 FTE(rotate)	4 1.0 MW 0 \$0.042 / MWhr eam in 1000 lbs/hr 2.9 1000 lbs 0 \$0.013 / 1000 lbs/hr

9/4/00 9:36 PM

							1 200)	2 2002	3 2003	3	4 2004	5 2005	6 2006	7 2007	6 2008	2009	10 2010
Option C - UNEX @	NWCF	& Greenfiel	d F	acility									all cos	it in thou	sands			
dLCC (no intangible c	osts)	\$848,500																
Discounted Annual Totals discount factor (to 2001 dollars)	1							\$0 1000	\$0 1001		822 1063	\$82,671 1000	\$160,370 1.130	\$129,709 1.165	\$101,839 1 201	\$61,564 1,238	\$59, 7 13	\$57,917 1 316
Annual Totals (contingend	cy included	; intangible cost	s not	included)				\$0	\$0	\$60,4	400	\$90,600	\$181,200	\$151,100	\$122,312	\$76,232	\$76,232	\$76,232
contingency @	35.0%	(not calcu	latod c	on pre-operation / Inves	slment c	osts)		\$0	\$0		\$ 0	\$0	\$0	\$0	\$0	\$19,764	\$19,764	\$19,764
Process LAW by neu																\$25,571 6	\$25,571 6	\$25,571 6
Direct operation operator / to supervisors	ochs :/mgt	24-hr, 7-dys / wk ope 0 0 FTE(dys) 1 0 FTE(dys)	0	24.0 FTE(rotate) 1.0 FTE(rotate)		00.0 / 55.0 /										\$2,400.0 \$310.0	\$2,400.0 \$310.0	\$2,400.0 \$310.0
Direct operation NaCH portland car slag Ca(OH)2		740 0 m3 360,0 m3 4,400 0 m3 970.0 m3	0000	\$2.500 / m3 \$3 250 / m3 \$3 000 / m3 \$4.500 / m3	\$1,17 \$13,20	50,0 / 70.0 / 00.0 / 65.0 /	yr yr									\$1,850.0 \$1,170.0 \$13,200.0 \$4,365.0	\$1,850 0 \$1,170.0 \$13,200.0 \$4,365.0	\$1,850.0 \$1,170.0 \$13,200.0 \$4,365.0
power kw steam	in 1000 lbs/hr	1 0 MW 2,9 1000 lbs	0	\$0.042 / MWhr \$0,013 / 1000 lbs / h		52.0 / 1 22.3 / 1										\$1,209.6 \$1,067.0	\$1,209 6 \$1,067.0	\$1,209.6 \$1,067.0
Package treated was	ito				-											\$3,830 0	\$3 830 0	\$3,830 0
Direct oporation: operator / fic supervisors Direct oporation	ochs / mgt	24-hr, 7-dys / wk ope 8 0 FTE(dys) 1 0 FTE(dys)	0	0.0 FTE(rotato) 0.0 FTE(rotato)		00.0 / 55.0 / 5										\$800.0 \$155.0	\$800.0 \$155.0	\$800.0 \$155.0
drums canisters	CONSONIADIOS	\$0.025 / drum \$25.000 / canister														\$375.0 \$2,500.0	\$375.0 \$2,500.0	\$375.0 \$2,500.0
	rums go to inte	inal Repository irim storage © INEEL interim storage © INI				250 /c	drum canister									\$4,000 0 \$3,750 0 \$250,0	\$4,000 0 \$3,750 0 \$250,0	\$4,000 0 \$3,750 0 \$250,0
Transportation and F	inal Implacement of the contract of the contra	ent @ Repository site or @ Hanford				600 /	drum canister									\$0 0 \$0 0 \$0 0	\$0 0 \$0 0 \$0 0	\$0 0 \$0 0 \$0 0
Support					•											***	•••	•
Direct capital maintei capital building general capital e					pital Inv pital Inv											\$7,196 0 \$6,168.00 \$1,028.00	\$7,196 0 \$6,168.0 \$1,028.0	\$7,196 0 \$6,168.0 \$1,028.0
Administration, Supp Support labor		i Tech Support 24-hr, 7-dys / wk ope	ration													\$1,4100	\$1,4100	\$1,4100
operator / to engineer / s supervisors	chs cientists	6.0 FTE(dys) 4 0 FTE(dys) 2.0 FTE(dys)	0	0 0 FTE(rotate) 0 0 FTE(rotate) 0.0 FTE(rotate)	\$12	00.0 / 1 25.0 / 1 55.0 / 1	γr									\$600.0 \$500.0 \$310.0	\$600.0 \$500.0 \$310.0	\$600.0 \$500.0 \$310.0
QA, Safety, Radcon	·															\$1,555.0	\$1,5550	\$1,555 0
Support labor operator / te supervisors	chs	24-hr, 7-dys / wk ope 2.0 FTE(dys) 0 0 FTE(dys)	0	12 0 FTE(rotato) 1.0 FTE(rotato)		00 0 /1 55 0 /1										\$1,400.0 \$155.0	\$1,400.0 \$155.0	\$1,400.0 \$155.0
Process Maintenance Support labor operator / te		24-hr, 7-dys / wk ope 0 0 FTE(dys)		12 0 FTE(rotato)	\$10	00.0 /	Įr									\$1,355 0 \$1,200.0	\$1,355 0 \$1,200 0	\$1,355 0 \$1,200 0
supervisors Facility Maintenance	/ mgt	0.0 FTE(dys)		1 0 FTE(rotate)		55.0 /										\$155.0 \$755.0	\$155 0 \$755 0	\$155.0 \$755.0
Support labor operator / te supervisors	chs	24-hr, 7-dys / wk ope 6 0 FTE(dys) 1,0 FTE(dys)	0	0 0 FTE(rotate) 0 0 FTE(rotate)		00.0 / j 55.0 / j										\$600.0 \$155.0	\$600.0 \$155.0	\$600.0 \$155.0
Post-Operation					• • • •			\$0	\$0		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Direct DD&D				12 00% of ca	pital inv	estmen	it											
Support DD&D planning				300% of ca	pital inv	restmen	ıt											

				11 2011 stand-by	12 2012 stand-by	13 2013 stand-by	14 2014 stand-by	15 2015 stand-by	16 2016 stand-by	17 2017 stand-by	18 2018 sland-by	19 2019 stand-by	20 2020 stand-by	21 2022
Option C - UNEX @ NWCF	& Greenfield	Facility						all cos	t in thous	sands				
dLCC (no intangible costs)	\$848,500		,											
Discounted Annual Totals decount factor (to 2001 delars)				\$4,759 1,357	\$4,616 1.399	\$4,478 1.442	\$4,343 1.487	\$14,461 1533	\$14,026 1581	\$13,604 1.630	\$3,844 1.680	\$3,728 1,732	\$3,616 1,786	\$66,418 1.842
Annual Totals (contingency included;	Intangible costs n	ot included)		\$6,459	\$6,459	\$6,459	\$6,459	\$22,173	\$22,173	\$22,173	\$6,459	\$6,459	\$6,459	\$122,310
contingency ⊕ 35.0%	(not calculate	d on pre-operation / invest	ment costs)	\$1,674	\$1,674	\$1,674	\$1,674	\$5,748	\$5,748	\$5,748	\$1,674	\$1,674	\$1,674	\$31,710
Pre-Operation				\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Capital Investment Facility / Equipment Investment TEC ← OPC ←		\$458,100.0 \$145,900.0			••	•	••	••	••	**	••	4 5	V	V V
Operations Training Develop training plan Operations training		4.0 wk(s) for	all FTE											
Operation volume of SBW to treat, in years treated volumes drums - UNEX		4.30 M-liters in	3.0 yrs	\$4,784	\$4,784	\$4,784	\$4,784	\$16,424	\$16,424	\$16,424	\$4,784	\$4,784	\$4,784	\$0
RH-TRU cylinders - UNEX Direct		300 canisters												
Material Receipt / Rough Filration	(90% removal of UDS) 24-hr, 7-dys / wk operation	_		\$0.0	\$0 0	\$0.0	\$0.0	\$00	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
operator / lochs supervisors / mgt	1.0 FTE(dys) & 0.0 FTE(dys) &	8.0 FTE(rotato) 1.0 FTE(rotato)	\$100.0 /yr \$155.0 /yr	\$0,0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0							
Direct operation consumables filters	\$25.0 /yr	,		\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	. \$0.0	\$0.0	\$0.0	\$0.0	\$0.0 \$0.0	
power kw	0.5 MW Q	\$0.042 / MWhr		\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
	(24-hr , 7-dys / wk operatio	on.		\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$00	
operator / techs supervisors / mgt Direct operation consumables	0.0 FTE(dys) O 2.0 FTE(dys) O	4.0 FTE(rotato) 1.0 FTE(rotato)	\$100.0 /yr \$155.0 /yr	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0								
HF FS-13 (Phenyltriflouromet	430.0 m3 Q	\$1.875 /m3 \$42.000 /m3	\$806.3 /yı \$462.0 /yı	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0								
ChCoDiC CMPO	470.0 kg Q 294.0 kg Q	\$3.000 /kg \$1.000 /kg	\$1,410.0 /yr \$294.0 /yr	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0 \$0.0	\$0.0	\$0.0	
PEG-400	294.0 kg O	\$0.380 /kg	\$111.7 /yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
Al(NO3)3 Guankline Carbonate	94.0 m3 Q 28.0 m3 Q	\$17,000 /m3 \$13,700 /m3	\$1,598.0 /yr \$383.6 /yr	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0	\$0.0	
DTPA	18.0 m3 O	\$22.000 / m3	\$396.0 /yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
HNO3 power	0.1 m3 🗷	\$16.650 /m3	\$1.7 /yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0,0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
kw steam in 1000 ibs/hr Secondary Waste Disposal 2	5.7 MW 0 22.6 1000 lbs 0 4-hr, 7-dys / wk operation	\$0.042 / MWhr \$0.013 / 1000 lbs / hr	\$1,438.4 / yr \$1,762.8 / yr	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
HEPA fillers	100 m3 O	11 \$10.0 /m3	\$100.0 /yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
PPE Construction (Sed or about	30.0 m3 0	\$10.0 /m3	\$300.0 / yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Spont solvent (3rd yr char Process HAW with evaporative dryin	40 0 drums	\$25.0 each	\$1,000.0 /yı	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Direct operations labor 2	4-hr, 7-dys / wk operatio					\$0.0	\$0.0	\$00	\$0.0	\$00	\$0 0	\$0.0	\$0.0	•
operator / techs supervisors / mgt Direct operation consumables	0.0 FTE(dys) O 1.0 FTE(dys) O	8.0 FTE(rotate) 1.0 FTE(rotate)	\$100.0 /yr \$155.0 /yr	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0								
power kw steam in 1000 ibs/hr	1.0 MW © 2.9 1000 lbs ©	\$0.042 /MWhr \$0.013 / 1000 lbs / hr	\$252.0 /yı \$222.3 /yı	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0								

				11 2011 stand-by	12 2012 stand-by	13 2013 stand-by	14 2014 stand-by	15 2015 stand-by	16 2016 stand-by	17 2017 stand-by	16 2018 sland-by	19 2019 stand-by	20 2020 stand-by	21 2022
Option C - UNEX @ NWCF	& Greenfield F	acility						all cos	t in thou:	sands				
dLCC (no intangible costs)	\$848,500													
Discounted Annual Totals discount lactor (to 2001 dollars)				\$4,759 1.357	\$4,616 1.399	\$4,478 1.442	\$4,343 1 487	\$14,461 1,533	\$14,026 1581	\$13,604 1630	\$3,844 1.600	\$3,728 1,732	\$3,616 1788	\$66,418 1 642
Annual Totals (contingency include	d; intangible costs not	included)		\$6,459	\$6,459	\$6,459	\$6,459	\$22,173	\$22,173	\$22,173	\$6,459	\$6,459	\$6,459	\$122,310
contingency ♥ 35.0%	(not calculated of	n pre-operation	/ Investment costs)	\$1,674	\$1,674	\$1,674	\$1,674	\$5,748	\$5,748	\$5,748	\$1,674	\$1,674	\$1,674	\$31,710
Process LAW by neutralization &				\$0.0	\$0.0	\$0.0	\$0.0	\$00	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Direct operations labor operator / techs	24-hr, 7-dys / wk operation 0.0 FTE(dys) 0	24.0 FTE(ro		\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
supervisors / mgt Direct operation consumable		1.0 FTE(ro	•	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0,0	\$0.0	\$0.0	
NaOH portland cement	740.0 m3 Q 360.0 m3 Q	\$2.500 / m3 \$3.250 / m3	\$1,850.0 / yı \$1,170.0 / yı	\$00 \$00	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$00 \$00	
slag Ca(OH)2	4,400.0 m3 9 970,0 m3 9	\$3 000 /m3 \$4.500 /m3	\$13,200.0 /yı	\$0.0	\$0.0	\$0.0	\$0.0 \$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
power			\$4,385.0 / yı	\$0.0	\$0.0	\$0.0		\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
kw steam in 1000 lbs/h	1.0 MW O r 2.9 1000 lbs O	\$0.042 / MWh \$0.013 / 1000		\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0 0 \$0 0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
Package treated waste			•	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$00	\$0.0	\$0.0	\$0.0	\$0.0	
Direct operations tabor / drur operator / techs	n 24·hr, 7-dys / wk operation 8.0 FTE(dys) ©	0.0 FTE(ro	tate) \$100 0 / yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
supervisors / mgt Direct operation consumable	1.0 FTE(dys) O	0.0 FTE(ro		\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0,0	\$0.0	\$0.0	
drums canisiors	\$0.025 / drum \$25.000 / canister			\$0.0 \$0.0	\$0.0 \$0.0	\$0 0 \$0 0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
Interim Store Treated Waste until				\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
UNEX treated drums go to in UNEX treated canisters go t			\$0.250 / dr \$2,500 / cr	\$00 \$00	\$0,0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
Transportation and Final Implace UNEX drums are disposed o	n-site or @ Hanford		\$0.600 / di	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0 0 \$0 0	\$11,640 0 \$9,000 0	\$11,640 0 \$9,000 0	\$11,640 0 \$9,000.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0 0 \$0 0	
UNEX treated canisters go t	o WIPP		\$28,400 /ci	\$00	\$0.0	\$0.0	\$0.0	\$2,640.00	\$2,640 00	\$2,640 00	\$0.0	\$0.0	\$0.0	
Support Direct capital maintenance				\$3,598 0	\$3,598 0	\$3,598 0	\$3,598 0	\$3,598.0	\$3,598 0	\$3,598 0	\$3,598 0	\$3,598 0	\$3,598 0	
capital building general capital equipment		1 20% of 0.20% of	capital invest capital invest	\$3,084.0 \$514.0	\$3,084.0 \$514.0	\$3,084.0 \$514.0	\$3,084.0 \$514.0	\$3,084.0 \$514.0	\$3,084 0 \$514.0	\$3,084.0 \$514.0	\$3,084.0 \$514.0	\$3,084.0 \$514.0	\$3,084.0 \$514.0	
Administration, Support, Training				\$470 0	\$470 0	\$470 0	\$470 0	\$470 0	\$470 0	\$470 0	\$470 0	\$470 0	\$470 0	
Support labor operator / techs	24-hr, 7-dys / wk operation 6.0 FTE(dys) •	0 0 FTE(ro	tate) \$100.0 / yr	\$200 0	\$200.0	\$200.0	\$200.0	\$200.0	\$200.0	\$200 0	\$200.0	\$200.0	\$200 0	
engineer / scientists supervisors / mgt	4.0 FTE(dys) 0 2.0 FTE(dys) 0	0.0 FTE(ro		\$166.7 \$103.3	\$166.7 \$103.3	\$166.7 \$103.3	\$166.7 \$103.3	\$166.7 \$103.3	\$166.7 \$103.3	\$166.7 \$103.3	\$166.7 \$103.3	\$166.7 \$103.3	\$166,7 \$103.3	
QA, Safety, Radcon	2.0		,	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Support labor operator / techs	24-hr, 7-dys / wk operation 2.0 FTE(dys) •	12.0 FTE(ro	tato) \$100.0 /yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
suparvisors / mgt	0 0 FTE(dys) O	1.0 FTE(ro		\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Process Maintenance Support labor	24-hr, 7-dys / wk operation			\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	\$338 8	
operator / techs supervisors / mgt	0 0 FTE(dys) © 0 0 FTE(dys) ©	12 0 FTE(ro 1,0 FTE(ro		\$300,0 \$38.75	\$300 0 \$38 8	\$300.0 \$38.8	\$300.0 \$38.8	\$300.0 \$38.8	\$300.0 \$38.8	\$300.0 \$38.8	\$300.0 \$38.8	\$300.0 \$38 8	\$300.0 \$38.8	
Facility Maintenance Support tabor	04 h = 7 d = 4 d + 4 d = 4 d +			\$377 5	\$377 5	\$377 5	\$377.5	\$377 5	\$377 5	\$377 5	\$377 5	\$377 5	\$377 5	
operator / techs supervisors / mgt	24-hr, 7-dys / wk operation 6 0 FTE(dys) O 1 0 FTE(dys) O	0 0 FTE(ro		\$300.0 \$77,50	\$300.0 \$77.5	\$300.0 \$77.5	\$300.0 \$77.5	\$300.0 \$77.5	\$300 0 \$77,5	\$300.0 \$77.5	\$300.0 \$77.5	\$300.0 \$77.5	\$300 0 \$77.5	
Post-Operation	- • •	•	•	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$90,600
Direct														
DD&D Support		12 00% of	capital investment											\$72,480.0
Support DD&D planning		3 00% of	capital investment											\$18,120.0

					1 200	1	2 2001	3 2002	4 2002	5 2002	6 2005	7 2006	a 2007	9 2008	10 2009
Ontion D. MODIEJED LINEY	e muce		waamfiald Ca	-11/4											
Option D - MODIFIED UNEX	@ NWCF	& C	reentiela Fai	cility						all cos	t in thou	sands			
dLCC (no intangible costs)	\$994,568														
Discounted Annual Totals decount factor (to 2001 dollars)						\$0 1.000	\$0 1001	\$57,293 1.063	\$83,355 1096	\$161,698 1.130	\$130,782 1.165	\$102,203 1.201	\$46,787 1.238	\$45,380 1,277	\$44,016 1.316
Annual Totals (contingency included;	Intangible cost	s not	included)			\$0	\$0	\$60,900	\$91,350	\$182,700	\$152,350	\$122,748	\$57,934	\$57,934	\$57,934
contingency ♂ 35.0%	(not calcu	latod (on pre-operation / Investr	nent costs)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$15,020	\$15,020	\$15,020
Pre-Operation						\$0	\$0	\$60,900	\$91,350	\$182,700	\$152,350	\$122,748	\$0	\$0	\$0
Capital investment Facility / Equipment investment TEC Φ			\$459,500.0					\$45.950.0	#60 00E 0	#127 BEO.O	****	*** ***			
OPC •			\$149,500.0					\$14,950.0	\$22,425.0	\$137,850.0 \$44,850.0	\$37,375,0				
Operations Training Dovolop training plan Operations training			4.0 wk(s) for	ell FTE							\$100 0	\$500.0 \$448.0			
Operation volume of SBW to treat, in years treated volumes			4.30 M-liters in	30	угв	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$42,914 1,433,333	\$42,914 1,433,333	\$42,914 1,433,333
drums • UNEX RH-TRU cylinders • UNEX			30,000 drums 250 canistors										10,000 83	10,000 83	10,000 83
Direct Material Receipt / Rough Filration													\$1,080.0	\$1,080 0	\$1,080 0
Direct operations tabor 2 operator / techs supervisors / mgt	4-hr, 7-dys / wk ope 1.0 FTE(dys) 0.0 FTE(dys)	ă.	B.O FTE(rolate) 1.0 FTE(rolate)	\$100.0 \$155.0									\$900.0 \$155.0	\$900,0 \$155.0	\$900.0 \$155.0
Direct operation consumables filters	\$25.0 /yr												\$25.0	\$25.0	\$25.0
power kw	0.5 MW	•	\$0,042 / MWhr										\$0.0	\$0.0	\$0.0
Radionuclide Extraction using UNEX Direct operations labor 2	: 4-hr, 7-dys / w/k ope	ration											\$4,765.1	\$4,765.1	\$4,765.1
oporator / tochs suporvisors / mgt Direct operation consumables	0.0 FTE(dys) 2.0 FTE(dys)		4.0 FTE(rotate) 1.0 FTE(rotate)	\$100.0 \$155.0									\$400,0 \$465,0	\$400.0 \$465.0	\$400.0 \$465.0
FS-13 (Phenythitlourome) ChCoDiC	9.0 m3 500.0 kg	0	\$42,000 /m3 \$3,000 /kg	\$378.0 \$1,500.0									\$378.0 \$1,500.0	\$378.0 \$1,500.0	\$378.0 \$1,500.0
PEG-400 Guankling Carbonale	36.0 kg 142.0 m3	Ô	\$0.380 /kg \$13,700 /m3	\$13.7	/yr								\$13.7	\$13.7	\$13.7
NaOH power	25.0 m3	ö	\$2.500 / m3	\$1,945.4 \$62.5									\$1,945.4 \$62.5	\$1,945.4 \$62.5	\$1,945.4 \$62.5
kw steam in 1000 lbs/hr	5.7 MW 22.6 1000 lbs	0	\$0.042 / MWhr \$0.013 / 1000 lbs / hr	\$1,436.4 \$1,762.8									\$0.2 \$0.3	\$0.2 \$0.3	\$0.2 \$0.3
Secondary Waste Disposal 2 HEPA filters	4-hr, 7-dys / wk ope 10.0 m3	ration	\$10.0 /m3	\$100.0	•								\$100.0	\$100.0	\$100.0
PPE Spent solvent (3rd yr char	30.0 m3 40.0 drums	0	\$10.0 /m3 \$25.0 each	\$300.0 \$1,000.0	/ yr								\$300.0 \$0.0	\$300.0	\$300.0
Process HAW with evaporative dryin	9		\$20.0 0001	41,000.0	.,.								\$3,386 6	\$0.0 \$3,386 6	\$1,000.0 \$3,388.6
Direct operations labor 2 operator / techs	4-hr, 7-dys / wk ope 0.0 FTE(dys)		8.0 FTE(rotate)	\$100.0	/yr								\$800.0	\$800.0	\$800.0
supervisors / mgt Direct operation consumables power	1.0 FTE(dys)		1.0 FTE(rotato)	\$155.0									\$310.0	\$310.0	\$310.0
kw stoam in 1000 lbs/hr	1.0 MW 2.9 1000 lbs	0	\$0.042 / MWhr \$0.013 / 1000 lbs / hr	\$252.0 \$222.3									\$1,209.6 \$1,067.0	\$1,209.6 \$1,067.0	\$1,209 6 \$1,067.0

the first of the second

			:	1 2001	2 2001	3 2002	2002	5 2002	0 2005	7 2006	6 2007	9 2008	10 2009
Option D - MODIFIED UN	NEX @ NWCF &	Greenfield Fa	cility					all cos	st in thou	ısands			
dLCC (no intangible costs)	\$994,568												
Discounted Annual Totals discount factor (to 2001 dollars)	•			\$0 1000	\$0 101	\$57,293 1063	\$83,355	\$161,698 1.130	\$130,782 1.165	\$102,203	\$46,787 1 238	\$45,380 1277	\$44,016 1 316
Annual Totals (contingency inclu	ided; intangible costs n	ot Included)		\$0	\$0	\$60,900	\$91,350	\$182,700	\$152,350	\$122,748	\$57,934	\$57,934	\$57,934
contingency ⊕ 35.	.0% (not calculate	d on pre-operation / Invest	lment costs)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$15,020	\$15,020	\$15,020
Process LAW by neutralization											\$12,831 6	\$12,831 6	\$12,831 6
Direct operations labor operator / fechs supervisors / mgt Direct operation consum:	24-hr, 7-dys / wk operati 0 0 FTE(dys) 0 1.0 FTE(dys) 0	24 0 FTE(rotate)	\$100.0 / yr \$155.0 / yr								\$2,400.0 \$310.0	\$2,400.0 \$310.0	\$2,400.0 \$310.0
portland coment stag Ca(OH)2 power	180.0 m3	\$3 000 /m3	\$585.0 /yr \$1,860.0 /yr \$5,400.0 /yr								\$585.0 \$1,860.0 \$5,400.0	\$585 0 \$1,860 0 \$5,400.0	\$585.0 \$1,860.0 \$5,400.0
kw steam in 1000 it	1.0 MW G os/hr 2.9 1000 lbs G		\$252,0 / yr r \$222,3 / yr								\$1,209 6 \$1,067.0	\$1,209.6 \$1,067.0	\$1,209.6 \$1,067.0
Package treated waste Direct operations labor / o operator / techs supervisors / mgt	drum 24-hr, 7-dys/wk operati 8.0 FTE(dys) 0 1.0 FTE(dys) 0		\$100.0 /yr \$155.0 /yr								\$3,288 3 \$800.0 \$155.0	\$3,288 3 \$800.0 \$155,0	\$3,288 3 \$800.0 \$155.0
Direct operation consums drums canisters	\$0.025 / drum \$25.000 / canister										\$250.0 \$2,083.3	\$250.0 \$2,083.3	\$250.0 \$2,083.3
	intil Final Repository go to Interim storago @ INEE ers go to Interim storago @ IN		\$0.500 / drum \$3.500 / canisto	or .							\$5,291,7 \$5,000.0 \$291,7	\$5,291 7 \$5,000.0 \$291.7	\$5,291 7 \$5,000 0 \$291.7
Transportation and Final Impl MODIFIED UNEX drums MODIFIED UNEX caniste	go to WIPP		\$8.800 / drum \$29.400 / canisto	or				•			\$0 0 \$0 0 \$0 0	\$0 0 \$0 0 \$0 0	\$0 0 \$0 0 \$0 0
Support							•						
Direct capital maintenance capital buiking general capital equipmen	I		oital invest ital invest								\$7,196 0 \$6,168.00 \$1,028.00	\$7,196 0 \$6,168.0 \$1,028.0	\$7,196 0 \$6,168.0 \$1,028.0
Administration, Support, Train Support labor	ing, & Tech Support 24-hr, 7-dys / wk operate	on									\$1,4100	\$1,4100	\$1,4100
operator / tochs engineer / scientists supervisors / mgt	6.0 FTE(dys)	0.0 FTE(rotate) 0.0 FTE(rotate) 0.0 FTE(rotate)	\$100 0 / yr \$125.0 / yr \$155.0 / yr								\$600 0 \$500 0 \$310 0	\$600.0 \$500.0 \$310.0	\$600.0 \$500.0 \$310.0
QA, Safety, Radcon Support labor	24-hr, 7-dys / wk operation	on .									\$1,555 0	\$1 555 0	\$1,555.0
operator / techs supervisors / mgt	2 0 FTE(dys) 0 0 0 FTE(dys) 0	12 0 FTE(rotate) 1 0 FTE(rotate)	\$100.0 /yr \$155.0 /yr								\$1,400.0 \$155.0	\$1,400.0 \$155.0	\$1,400 0 \$155 0
Process Maintenance Support labor	24-hr, 7-dys / wk operation	on									\$1,3550	\$1,3550	\$1,3550
operator / techs supervisors / mgt	0.0 FTE(dys) O 0.0 FTE(dys) O	12 0 FTE(rotate) 1.0 FTE(rotate)	\$100.0 / yr \$155.0 / yr								\$1,200.0 \$155.0	\$1,200 0 \$155,0	\$1,200.0 \$155.0
Facility Maintenance Support labor operator / techs	24-hr, 7-dys / wk operation	0 0 FTE(rolate)	\$100.0 /yr								\$755 0 \$600 0	\$755 0 \$600.0	\$755 0 \$600.0
supervisors / mgt Post-Operation	1.0 FTE(dys) O	0.0 FTE(rotate)	\$155.0 /yr	\$0	\$0	\$0	\$0	\$0	so	\$0	\$155 O \$0	\$155 0 \$0	\$155.0 \$0
Direct		10.00t ol	sital investment	40	40	40	40	40	ŞŪ	30	V 0	40	Ų
OD&O Support OD&O planning		•	oital investment ostat investment										

						11 2010	12 2011	13 2012	14 2013 ° stand-by	15 2014 stand-by	16 2015 sland-by	17 2016 stand-by	18 2017 sland-by	19 2018 sland-by	20 2019 sland-by	21 2021
Option D - MODIFIED U	JNEX	@ NWCF	& G	ireenfield Fa	cility					all cos	st in thou	sands				
dLCC (no intengible cost	۵)	\$004 EC0														
, ,	s)	\$994,568	i													
Discounted Annual Totals discount factor (to 2001 dollars)						\$4,759 1.357	\$4,616 1.399	\$4,478 1.442	\$4,343 1.487	\$83,850 1.533	\$81,329 1.581	\$78,884 1600	\$3,844 1600	\$3,728 1.732	\$3,616 1.788	\$49,606 1.842
Annual Totals (contingency in	cluded; l	ntangible cost	s not	Included)		\$6,459	\$6,459	\$6,459	\$6,459	\$128,566	\$128,566	\$128,566	\$6,459	\$6,459	\$6,459	\$91,350
contingency &	35.0%	(not calcu	lated o	on pre-operation / invest	ment costs)	\$1,674	\$1,674	\$1,674	\$1,674	\$33,332	\$33,332	\$33,332	\$1,674	\$1,674	\$1,674	\$0
Pre-Operation						\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	¢n.
Capital investment Facility / Equipment investi TEC © OPC ©	ment			\$459,500.0 \$149,500.0		••	40	4 0	40	30	\$0	Şu	ŞU	\$0	\$0	\$0
Operations Training Davelop training plan Operations training				4.0 wk(s) for	all FTE											
Operation volume of SBW to treat, in treated volumes drums - UNEX	-			4.30 M-ktors in 30,000 drums	3.0 yrs	\$4,784	\$4,784	\$4,784	\$4,784	\$95,234	\$95,234	\$95,234	\$4,784	\$4,784	\$4,784	\$0
RH-TRU cylinders - Ul Direct	NEX			250 canisters												
Material Receipt / Rough F		10% removal of UD	S)			\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	500	\$0.0	\$0.0	
Direct operations tabor operator / techs	r 24	-hr, 7-dys / wk ope 1.0 FTE(dys)		8 0 FTE(rolate)	\$100.0 /yr	\$0.0	***	***					• • •			
supervisors / mgt Direct operation consu		0.0 FTE(dys)		1.0 FTE(rolate)	\$155.0 /yı	\$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0,0 \$0.0	
filters power		\$25.0 /yr				\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
kw		0.5 MW	0	\$0.042 / MWhr		\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Radionuclido Extraction usi						\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Direct operations labor operator / techs	r 24	hr, 7-dys / wk opo 0.0 FTE(dys)		4.0 FTE(rotate)	\$100.0 /yı	\$0.0	\$0.0	\$0.0	\$0.0	*00	***	***	4			
supervisors / mgt Direct operation consu		2.0 FTE(dys)		1.0 FTE(rotate)	\$155.0 /yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0 0 \$0 0	
FS-13 (Phenyltrific	ouromel	9.0 m3		\$42.000 /m3	\$378.0 / yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
ChCoDiC PEG-400		500.0 kg 36.0 kg	0	\$3.000 / kg \$0.380 / kg	\$1,500.0 /yr \$13.7 /yr	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Guankline Carbon	nate	142.0 m3		\$13.700 /m3	\$1,945.4 /yr	\$0.0	\$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0	\$0.0	\$0.0	
NaOH power		25.0 m3	0	\$2.500 /m3	\$62.5 /yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
kw		5.7 MW	0	\$0.042 / MWhr	\$1,436.4 /yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	***	***	
steam in 1000 Secondary Waste Disp		22.6 1000 lbs hr, 7-dys / wk ope	etion	\$0.013 / 1000 lbs / hr		\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
HEPA fillers		10.0 m3	0	\$10.0 /m3	\$100.0 /yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
PPE	den aka.	30 0 m3	0	\$10.0 /m3	\$300.0 /yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Spent solvent (3rd	-	40 O drums		\$25.0 oach	\$1,000.0 /yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0,0	
Process HAW with evaporal Direct operations labor		hr, 7-dys / wk ope	ation			\$0.0	\$0.0	\$0.0	\$00	\$00	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
operator / techs supervisors / mgt Direct operation consus power		0.0 FTE(dys)		8.0 FTE(rolate) 1.0 FTE(rolate)	\$100.0 /yr \$155.0 /yr	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	\$0.0 \$0.0	
kw		1.0 MW	0	\$0.042 / MWhr	\$252.0 /yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
steam in 1000	O lbs/hr	2.9 1000 lbs	0	\$0.013 / 1000 lbs / hr	\$222.3 /yı	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	

## Counting Discourted Annual Totals					11 2010	12 2011	13 2012	14 2013 * stand-by	15 2014 sland-by	16 2015 stand-by	17 2016 stand-by	18 2017 stand-by	19 2018 stand-by	20 2019 stand-by	21 2021
Discounted Annual Totals Section 4	Option D - MODIFIED UNE	X @ NWCF & G	reenfield	Facility					all cos	t in thou	sands				
Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intenglatic costs not Included) Annual Total (contingency Included; Intendlatic Costs not Included) Annual Total (contingency Included) Annual Total (contingency Included; Intendlatic Costs not Included) Annual Total (contingency Included) Annual Total (contingency Included) Annual Total (contingency Included) Annual Total (contingency Included) Annual Total (contingency Included) Annual Total (contingency Included) Annual Total (contingency Included) Annual Total (contingency Included) Annual Total (contingency Included) Annual Total (contin	dLCC (no intangible costs)	\$994,568													
## Process LAW by resultable on a per-operation investment costs) \$1,674															
Process LAW by muchasharlands of growing Direct operations index 2 - Ha. 7-Gyr / W. operation 2 - Ha. 7-Gyr / W. operation 2 - Ha. 7-Gyr / W. operation 2 - Ha. 7-Gyr / W. operation 2 - Ha. 7-Gyr / W. operation 3 - Ha. 7-Gyr / W. operation 4 - Ha. 7-Gyr / W. operation 4 - Ha. 7-Gyr / W. operation 4 - Ha. 7-Gyr / W. operation 4 - Ha. 7-Gyr / W. operation 5 - Ha. 7-Gyr / W. operation	Annual Totals (contingency include	ed; intangible costs not	included)		\$6,459	\$6,459	\$6,459	\$6,459	\$128,566	\$128,566	\$128,566	\$6,459	\$6,459	\$6,459	\$91,350
Direct operations label 24-lsr 7-pg / Mex Commission 24-	contingency € 35.09	% (not calculated a	n pre-operation /	investment costs)	\$1,674	\$1,674	\$1,674	\$1,674	\$33,332	\$33,332	\$33,332	\$1,674	\$1,674	\$1,674	\$0
Control Fields Cont	Process LAW by neutralization 8	grouting			\$0.0	\$0.0	\$0.0	\$00	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Supervisor Ingill Lo FTE(pink) 1.6 FTE(pink) 15.50 p'n 15.50			24.0 FTE(rola	ate) \$100.0 / yr	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
portiand comment 190.0 m/s 0 32,250 m/s 350.50 m/s 150.0 m/s 150.0 m/s 150.0 m/s 150.00 m/s	supervisors / mgt	1.0 FTE(dys) O			\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0,0	\$0.0	
CalChts 1,200.0 m3	portland cement	180.0 m3 🕠													
March 1.0 M 0 50.0 2 Althoris 50.0 2 Althoris 522.0 1/9 50.0 50.	Ca(OH)2														
Package frested water Direct operations labor / dronn 24-ht, 7-dys / lwk operation operator frochs supported from 10 FreE(polys) © 0.0 FFE(polis) \$10.0 / Jy \$10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	kw														
Direct operations labor / down 32-km, 7-dys / wk operation operation / solar for files \$0 of FTE(polate) \$1000 / yr \$5.00 \$5		nr 2.9 1000 lbs 0	\$0.013 / 1000	bs/hr \$222,3/yr						-					
Support Supp	Direct operations labor / dru			-1-1 4400 0 4:					***	• • • •				•	
Griums \$0,025 /clum \$0,025 /clum \$0,000 \$0,0	supervisors / mgt	1.0 FTE(dys) O													
Inform Elect Treated Waste until Final Appealancy MODIFIED UNEX Came go to Inform alterage of INEEL. \$1,500 / 16, 500 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00					\$0.0	\$0.0	\$0.0								
MODIFIED UNEX domago of Intelling Index domago of Intelling (Intelling Intelling Operation Support S														• • • •	
MODIFIED UNEX drains go to WIPP \$88.00 / dr \$0.0 \$	MODIFIED UNEX drums go	to Interim storage O INEEL	L		\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	
Support Direct capital maintenance capital building peneral capital maintenance capital building peneral capital building peneral capital building peneral capital coupment 1.20% of capital invest \$3,084.0 \$3,08	MODIFIED UNEX drums go	to WIPP			\$0.0	\$0.0	\$0.0	\$0.0	\$88,000.0	\$88,000 0	\$88,000.0	\$0.0	\$0.0	\$0.0	
Capital building		•													
Support labor operator / lochs engineer / scientify Support labor operator / lochs engineer / scientify Support labor operator / lochs supportsoors / mgl 24-hr, 7-dys / wk operation 24-hr, 7-dys / wk operat	capital building				\$3,084.0	\$3,084.0	\$3,084.0	\$3,084.0	\$3,084 0	\$3,084.0	\$3,0840	\$3,084.0	\$3,084 0	\$3,084 0	
Comparisor / Inchis enginer / Inchis engin enginer / Inchis enginer / Inchis enginer / Inchis enginer / In					\$470 0	\$470 0	\$470 0	\$470 0	\$470.0	\$470 0	\$470 0	\$470 0	\$470 0	\$470 0	
Supervisors/ mglt 20 FTE(dys)		60 FTE(dys) O													
OA, Safety, Fladcon Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance Support labor operator / Icoha supervisors / mgl Process Maintenance / Icoha supervisors / mgl Process Maintenance / Icoha supervisors / mgl Process Maintenance / Icoha supervisors / mgl Process Maintenance / Icoha supervisors / mgl Process Maintenance / Icoha supervisors / mgl Process Maintenance / Icoha supervisors / mgl Process Maintenance / Icoha supervisors / Icoha supervisors / mgl Process Maintenance / Icoha supervisors / mgl Process Maintenance / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervisors / Icoha supervis															
Operator / techs supervisors / mgl	QA, Safety, Radcon		,		\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0 0	\$0.0	\$0.0	\$0.0	
Process Maintonance Support labor operator / Idehs supervisors / mgl Process Maintonance Support labor operator / Idehs supervisors / mgl Process Maintonance Support labor operator / Idehs supervisors / mgl Process Maintonance Support labor operator / Idehs supervisors / mgl Process Maintonance Support labor operator / Idehs supervisors / mgl Process Maintonance Support labor operator / Idehs supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process Maintonance Supervisors / mgl Process / mgl	operator / techs	2.0 FTE(dys) O													
Support labor operator Inches supervisors / mg Post-Operation Direct DDSD Support S	, -	0 0 FTE(dys) O	1.0 FTE(rota	ato) \$155 0 / yr											
Supervisors / mgl	Support labor														
Support labor															
Operator / lochs 6 of FTE(dys) O O O FTE(dys) O O O O O O O O O		04 h. 7 d. 1. d			\$377 5	\$377 5	\$377.5	\$377.5	\$377 5	\$377.5	\$377 5	\$377 5	\$377 5	\$377 5	
Direct DD&D 12 00% of capital invostment \$73,080 0 Support	operator / techs	60 FTE(dys) O													
DD&D 12 00% of capital invostment \$73,080 0 Support	Post-Operation				\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$91,350
Support			12 00% of	capital investment											\$73,080 0
			3 00% of	capital investment											\$18,270 0

INTEROFFICE MEMORANDUM

Date:

August 31, 2000

To:

V. J. Balls

MS 3650

6-2703

From:

D. A. Rowley

MS 3655

6-2978

Subject:

COST ESTIMATE - UNIVERSAL SOLVENT EXTRACTION (UNEX)

FEASIBILITY STUDY - FOUR OPTIONS

Transmitted herewith are the four Planning Cost Estimate options for the above referenced project. The estimate options are as follows:

Option A – UNEX Process in a new Greenfield Facility.

Option B - Modified UNEX in a new Greenfield Facility.

Option C - UNEX in the existing New Waste Calcining Facility (NWCF).

Option D – Modified UNEX in the existing NWCF.

Included in each estimate are Other Project Cost (OPC) allowances for Project Development, Technical Development, Project Execution, and Project Acceptance / Closeout.

Also included in each estimate are Total Estimated Cost (TEC) allowances for Engineering and Design (Title I and II), Quality Assurance, Project Management, Construction Management, Construction A/E Support, Construction (direct and indirect costs), Procurement, Escalation, G&A allowance, and Contingency.

These estimates combine TEC and OPC to arrive at the Total Project Cost (TPC).

TPC for Option A is	\$514,000,000.
TPC for Option B is	\$514,000,000.
TPC for Option C is	\$604,000,000.
TPC for Option D is	\$609,000,000

Due to minimal detail and scoping definition, this estimate is considered a Planning estimate and is not intended to be used to establish a cost baseline.

Please refer to the attached detail, Recapitulation and Summary sheets for cost breakdowns, descriptions, and cost estimating basis.

V. J. Balls August 31, 2000 DAR-20-00 Page 2

If you have any questions or comments please contact me at 526-2978 or e-mail "drowley".

DAR

Attachments

cc:

S. J. Losinski MS 3625 Estimate File 2570

Estimate File 2570

D. A. Rowley File (DAR-20-00)

Bechtel BWXT Idaho, LLC

COST ESTIMATE SUPPORT DATA RECAPITULATION

Project Title: Universal Solvent Extraction (UNEX) Feasibility Study – Four Options

Estimator: D. A. Rowley / T. R. Mitchell / L. L. Marler

Date: August 31, 2000

Estimate Type: Planning File: 2570 /

Approved By:

I. SCOPE OF WORK: Brief description of the proposed project.

Included in this package are four estimate options relative to the Universal Solvent Extraction (UNEX) study.

A. Option A – UNEX Process In A New Green Field Facility:

- 1. Construction of a new Green Field Facility (GFF) approximately 89,100 s.f. The new GFF shall include areas for Drum Shipping (9,030 s.f.), Drum Storage (51,993 s.f.), Drum Processing (14,790 s.f.), and Office / Restroom area (13,261 s.f.). The facility shall be slab-on-grade partly of precast concrete construction and partly of pre-engineered metal building construction.
- 2. Construction of a new Thin Film Dryer (TFD) Facility 13,700 s.f. The TDF shall be of precast concrete construction and shall include two basement levels and a roof height of 82 feet.
- 3. Construction of a Truck Airlock Area 2,089 s.f. The Truck Airlock shall be slab-on-grade and of precast concrete construction.
- 4. Construction of a new Boiler House 3,120 s.f. The Boiler House shall be slab-on-grade and of pre-engineered metal construction.
- 5. Construction of a new Interim Storage Facility (ISF) 20,440 s.f. The Interim Storage Facility shall be a concrete and steel structure.
- 6. Construction of a concrete tunnel between the TFD and ISF.
- 7. Installation of all utilities to support the new buildings.
- 8. Procurement and installation of all equipment to support the new process.
- B. Option B Modified UNEX Process In A New GFF: Facility and structure requirements are the same as Option A. The Modified UNEX process is somewhat different than the UNEX process.
- C. Option C UNEX Process In The New Waste Calciner Facility (NWCF):
 - 1. Perform demolition in the Calciner Cell, Offgas Cell, Blend and Hold Cell, Valve Cubicle, and Storage Area of NWCF in preparation for installation of the UNEX process in those areas. Decontamination will have to be performed in contaminated areas.
 - 2. Install the UNEX process in designated areas.

Continued –

Project Title: Universal Solvent Extraction (UNEX) Feasibility Study

File:

2570

Page 2

I. SCOPE OF WORK: (Continued)

- 3. Construction of a new TFD 13,700 s.f. The TDF shall be concrete slab-on-grade and precast concrete construction. Roof height of 82 feet. A portion of the tunnel shall run under the TFD to the Main Cell Area.
- 4. Construction of a Truck Airlock Area 2,089 s.f. The Truck Airlock shall be slab-on-grade and of precast concrete construction.
- 5. Construction of a new Boiler House 3,120 s.f. The Boiler House shall be slab-on-grade and of pre-engineered metal construction.
- 6. Construction of a new ISF -20,440 s.f. The ISF shall be a concrete and steel structure.
- 7. Construction of a concrete tunnel between the TFD and ISF.
- 8. Installation of all utilities to support the new buildings.
- 9. Procurement and installation of all equipment to support the new process.
- D. Option D Modified UNEX Process In NWCF: Facility and structure requirements are the same as Option C. The Modified UNEX process is somewhat different than the UNEX process.
- II. BASIS OF THE ESTIMATE: Drawings, Design Report, Engineers Notes and/or other documentation upon which the estimate is originated.

The estimate is based on the 60% review package and discussions held with S. J. Losinski (Project Technical Lead), J. L. Benson (Mechanical Engineer), J. E. Duggan (Electrical Engineer), K. D. Weaver (Nuclear Engineer), R. E. Johnson (Architectural Engineer), and S. D. McBride (ANLW, Mechanical Engineer).

- III. <u>ASSUMPTIONS</u>: Conditions statements accepted or supposed true without proof of demonstration. An assumption has a direct impact on total estimated cost.
 - A. Assume the Conceptual Design schedule shall be FY2001 through FY2003. The Title Design schedule shall be FY2004 through FY2006. The Construction schedule shall be FY2006 through FY2010. The Facility Acceptance schedule shall be FY2010 through FY2012. (Per schedule provided by D. J. Harrell).
 - B. Assume the construction activities will be awarded through the competitive bidding process and performed by subcontractors familiar with doing work at the INEEL.
 - C. Assume the only construction related activity to be performed by INEEL labor personnel is the decontamination of the necessary NWCF locations.
 - D. Assume all equipment and service subcontracts shall be bid competitively and that "sole source" equipment or service subcontracts shall be minimal.

Continued -

Project Title: Universal Solvent Extraction (UNEX) Feasibility Study

File:

2570

Page 3

III. ASSUMPTIONS: (Continued)

- E. Cost allowances for non-construction activities are per historical estimating allowances provided by R. D. Adams.
- F. Assume a new TFD facility will be required for the NWCF options.
- G. Assume the new ISF shall be approximately 140' x 146'. The facility shall be constructed for remote container handling only.
- H. Assume a new boiler house shall be approximately 40' x 78'.
- I. Assume the new concrete tunnel from the TFD to the ISF shall be 100' long and buried at a depth of 23' to the bottom of the tunnel. The tunnel size shall be 10' wide x 15' high. Thickness of all walls, floors and ceilings shall be 12".
- J. Assume all excavation areas shall be sloped 1½ to 1.
- K. Assume no radiological contamination will be encountered during excavation.
- L. Assume no excavated soils will have to be "hot boxed" as contaminated.
- M. Assume no excavated soil piles will have to be covered, monitored, or maintained.
- N. Assume an additional 10% will be added to the cost of all materials and subcontracts to adhere to DOE/RW/0333P Quality Standards.
- O. Assume all existing NWCF piping and equipment to be demolished shall be decontaminated to a point where it can be contact handled without exposing workers to radiation levels where "stay time" is limited.
- P. Assume no existing contaminated piping and equipment will be demolished by use of remote equipment.
- Q. Assume the Truck Air Lock and Tru-Pak areas are to be pre-engineered metal buildings. Each shall be insulated on the inside but shall include no gypsum board or painting.
- R. Assume roofs for the TFD, ISF, and portions of the roof for the GFF shall be prestressed concrete double tees.
- S. Assume the restroom/locker areas within the Offices/Restrooms building will have a tile floor covering along with a tile covering 4' up each wall.
- T. Assume pavement will need to be repaired 15' wide for the entire length of the building.
- U. Assume there will be an asphalt parking area on the east end of the GFF (100' long x 165').
- V. Assume sidewalks that lead to double-doors are 8' wide, with all others being 4' wide.
- W. Assume no interconnecting roadways will be required between facilities.
- X. Assume no RCRA floors will be required except in the Grouting Facility.
- Y. Assume the GFF and NWCF shall require a Tru-Pak loading area for the Modified UNEX options. (Options B and D)
- Z. Assume all estimate options will require certifications from WIPP and Hanford.

Continued –

Project Title: Universal Solvent Extraction (UNEX) Feasibility Study

File:

2570

Page 4

IV. CONTINGENCY GUIL LINE IMPLEMENTATION: The percentage used for contingency as determined by the contingency allowance guidelines can be altered to reflect the type of construction and conditions that may impact the total estimated cost.

A meeting was held with Cost Estimators (R. D. Adams, T. R. Mitchell, and D. A. Rowley), the Project Technical Lead Engineer (S. J. Losinski), and the Project Manager (D. J. Harrell). The meeting was to establish high and low confidence percentages for each level of the estimate. The agreed upon percentages were used to perform a contingency analysis using the "@Risk" computer software.

"@Risk" is a risk application tool which links with the estimating software ("Success"). In "@Risk" the likely estimate key levels were assigned high and low values, equal to the low and high estimates received. These bounding values were then run through a Monte Carlo sampling simulation two thousand times to arrive at the additional money required to address risk at various levels of confidence. A confidence level of eighty per cent (or an accepted level of risk of twenty per cent) was chosen for this report. The risk output is shown both tabularly and graphically. The appropriate risk amount, represented as a percentage of the key level referred to above, was added to the estimate to result in a Total Project Cost (TPC) including risk for each option.

Contingency for each option of this project has been calculated as follows:

Option A – UNEX In A Greenfield Facility	41.24%.
Option B - Modified UNEX In A Greenfield Facility	
Option C – UNEX In NWCF	
Option D - Modified UNEX In NWCF	43 69%

The complete contingency analysis has been included with the estimate as an attachment.

Major considerations used in establishing confidence levels were:

- A. Historical performance for past INEEL major projects.
- B. Potential that the project schedule will be delayed.
- C. Potential that shipments to WIPP and Hanford cannot be made as planned.
- D. Potential that safety requirements will impact the construction process.
- E. Potential that the new technology will not work as planned.
- F. Potential that radioactive waste will be encountered during excavation and higher than anticipated radioactive contamination levels will be encountered while working in NWCF.
- G. Potential that the decontamination of NWCF will be much more labor intensive than is presently believed.

Continued -

Project Title:

Universal Solvent Extraction (UNEX) Feasibility Study

File:

2570

Page 5

IV. CONTINGENCY GUIDELINE IMPLEMENTATION: (Continued)

- H. Potential that the projected 1,000,000 gallons of decontamination solution required to decontaminate the NWCF equipment will either not be allowed to be sent to the Tank Farm or that the cost to store / process the solution will be in excess of the estimated cost.
- I. Potential that more equipment will be required than is presently included in the design.

V. OTHER COMMENTS/CONCERNS SPECIFIC TO THE ESTIMATE:

- A. Due to minimal detail and scope definition, this estimate is considered a "Planning" estimate and is not intended to be used to establish a cost baseline.
- B. Costs for each activity represent present day costs escalated to the appropriate activity midpoint.
- C. Subcontractor labor costs reflect present day INEEL Site Jurisdictional Agreement craft labor rates.
- D. Costs for General and Administrative allowance (G&A) and procurement fee have been applied to construction activities and GFE at the rate of .8%. (Per R. D. Adams)
- E. Costs and impacts related to "Conduct of Operations / Conduct of Maintenance" requirements are included in the estimate.

	·· -	
·		
		•
		•

TPC Summary Report 2

Project Name:

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Project Number: 2570 - Option A

ESTIMATE ELEMENT	Estimate Subtotal	<u>Escalation</u>	Contingency	TOTAL
Total Estimated Cost (TEC)	\$252,890,982	<i>24.19%</i> \$61,173,957	<i>35.02%</i> \$109,998,479	\$424,063,418
Other Project Cost (OPC)	\$40,971,600	21.94% \$8,990,412	80.31% \$40,126,748	\$90,088,760
		23.88%	. 41.24%	
Total Project Cost (TPC)	\$293,862,582	\$70,164,368	\$150,125,227	\$514,152,178
Rounded TPC (Rounded to the nearest \$ 1000000)				\$514,000,000

		Remarks
Type of Estimate:	Planning	
Estimator:	Rowley / Mitchell / Marler	
Checked By:	ROA,	
Approved By:	gol	

INEEL

-- ·

.

Project Summary Report

Project Name:
Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL OPC1000	PROJECT DEVELOPMENT	Estimate Subtotal \$16,326,700	Escalation \$973,071	Contingency \$13,691,174	Contingency % 79.14%	<u>TOTAL</u> \$30,990,946
OPC1001	PROJECT DEVELOPMENT	\$5,326,700	\$317,471	\$1,919,018		
OPC1001.1		•			34.00%	\$7,563,190
	CONCEPTUAL DESIGN	\$3,403,500	\$202,849	\$1,226,159	34.00%	\$4,832,507
OPC1001.2	PROJECT EXECUTION PLAN	\$170,200	\$10,144	\$61,317	34.00%	\$241,661
OPC1001.3	WORK PACKAGE DEVELOPMENT	\$391,400	\$23,327	\$141,007	34.00%	\$555,735
OPC1001.4	TASK BASELINE AGREEMENT	\$561,600	\$33,471	\$202,324	34.00%	\$797,396
OPC1001.5	PRELIMINARY SAFETY ANALYSIS REPORT (PSAR)	\$800,000	\$47,680	\$288,211	34.00%	\$1,135,891
OPC1600	TECHNICAL DEVELOPMENT	\$11,000,000	\$655,600	\$11,772,156	. 101.00%	\$23,427,756
OPC2000	PROJECT EXECUTION	\$9,605,300	\$2,464,720	\$5,431,509	45.00%	\$17,501,529
OPC2100	PROJECT SUPPORT	\$5,105,300	\$1,310,020	\$2,886,894	45.00%	\$9,302,214
OPC2200	PERMITTING	\$4,500,000	\$1,154,700	\$2,544,615	45.00%	\$8,199,315
1000	CONSTRUCTION MANAGEMENT	\$18,379,100	\$4,716,077	\$8,314,264	36.00%	\$31,409,441
1100	CONSTRUCTION SUPERVISION & ENGINEERING	\$15,315,800	\$3,930,034	\$6,928,500	36.00%	\$26,174,335
1110	CM - CONDUCT OF OPERATIONS/CONDUCT OF MAINTENANCE	\$340,400	\$87,347	\$153,989	36.00%	\$581,735
1200	CM PROJECT CONTROLS	\$1,191,200	\$305,662	\$538,870	36.00%	\$2,035,732
1300	CM ENVIRONMENTAL SAFETY & HEALTH (ES&H)	\$850,900	\$218,341	\$384,927	36.00%	\$1,454,168
1400	CM TRAINING	\$340,400	\$87,347	\$153,989	36.00%	\$581,735
1500	CM - OTHER DIRECT COSTS	\$340,400	\$87,347	\$153,989	36.00%	\$581,735
2000	TITLE I DESIGN	\$10,210,500	\$1,234,449	\$4,120,182	36.00%	\$15,565,131
2400	DESIGN ACTIVITIES	\$10,210,500	\$1,234,449	\$4,120,182	36.00%	\$15,565,131
	,					

INEEL

08/30/2000 14:30:57 Success Estimating and Cost Management System

Page No.

Project Name:
Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

Project Summary Report

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL		Estimate Subtotal	Escalation	Contingency	Contingency %	TOTAL
3000	TITLE II DESIGN	\$19,229,800	\$2,949,851	\$6,432,099	29.00%	\$28,611,750
3400	DESIGN ACTIVITIES	\$19,229,800	\$2,949,851	\$6,432,099	29.00%	\$28,611,750
4000	QUALITY ASSURANCE	\$8,508,800	\$2,183,358	\$3,314,569	31.00%	\$14,006,727
4100	QUALITY ASSURANCE	\$8,508,800	\$2,183,358	\$3,314,569	31.00%	\$14,006,727
5000	PROJECT MANAGEMENT	\$22,489,100	\$5,770,703	\$10,738,725	38.00%	\$38,998,528
5100	PM ADMINISTRATION	\$13,614,000	\$3,493,352	\$6,500,794	38.00%	\$23,608,146
5110	PM - CONDUCT OF OPERATIONS/CONDUCT OF MAINTENANCE	\$68,100	\$17,474	\$32,518	38.00%	\$118,093
5200	PM PROJECT CONTROLS	\$3,403,500	\$873,338	\$1,625,198	38.00%	\$5,902,037
5300	PM RECORDS MANAGEMENT	\$3,403,500	\$873,338	\$1,625,198	38.00%	\$5,902,037
5400	SAFETY ANALYSIS	\$2,000,000	\$513,200	\$955,016	38.00%	\$3,468,216
6000	CONSTRUCTION AE SUPPORT	\$2,552,600	\$654,997	\$898,127	28.00%	\$4,105,724
9000	CONSTRUCTION	\$170,165,707	\$43,664,521	\$75,218,197	35.18%	\$289,048,425
9100	CONSTRUCTION SUBCONTRACTS	\$168,621,873	\$43,268,373	\$74,519,804	35.17%	\$286,410,049
9101	GENERAL CONDITIONS	\$15,622,490	\$4,008,731	\$8,048,801	41.00%	\$27,680,022
9101.1	GENERAL CONDITIONS	\$14,633,812	\$3,755,036	\$7,539,428	41.00%	\$25,928,276
9101.2	GC - CONDUCT OF OPERATIONS/CONDUCT OF MAINTENANCE	\$988,678	\$253,695	\$509,373	41.00%	\$1,751,746
9102	SITEWORK	\$1,342,619	\$344,516	\$1,147,252	68.00%	\$2,834,388
9102.1	SITEWORK - UTILITIES	\$68,438	\$17,561	\$58,479	68.00%	\$144,478
9102.2	SITEWORK - GFF	\$361,242	\$92,695	\$308,677	68:00%	\$762,614
9102.3	SITEWORK - TFD FACILITY	\$336,396	\$86,319	\$287,446	68.00%	\$710,162
9102.4 INEEL	SITEWORK - BOILER HOUSE	\$71,579	\$18,367	\$61,163	68.00%	\$151,109

Project Summary Report

Client: V. J. Balls
Prepared By: Rowley / Mitchell / Marler
Estimate Type: Planning

Project Name: Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF Project Location: INTEC Estimate Number:2570 - Option A

LEVEL		Estimate Subtotal	Escalation	Contingency	Continuency %	TOT
9102.5	SITEWORK - STORAGE FACILITY	\$150,574	\$38,637	\$128,663	68.00%	\$317,874
9102.5	SITEWORK • TUNNEL	\$187,700	\$48,164	\$160,387	68.00%	\$396,251
9102.6	SITEWORK - PAVING	\$166,691	\$42,773	\$142,435	68.00%	\$351,899
9103	CONCRETE	\$8,539,012	\$2,191,111	\$2,789,832	26.00%	\$13,519,955
9103.1	CONCRETE - GFF	\$4,602,876	\$1,181,098	\$1,503,833	26.00%	\$7,287,807
9103.2	CONCRETE - TFD FACILITY	\$2,570,437	\$659,574	\$839,803	26.00%	\$4,069,813
9103.3	CONCRETE - BOILER HOUSE	\$46,061	\$11,819	\$15,049	26.00%	\$72,929
9103.4	CONCRETE - STORAGE FACILITY	\$1,230,990	\$315,872	\$402,184	26.00%	\$1,949,047
9103.5	CONCRETE - TUNNEL	\$88,649	\$22,747	\$28,963	26.00%	\$140,359
9105	METALS	\$6,099,156	\$1,565,043	\$1,992,692	26.00%	\$9,656,891
9105.2	METALS - GFF	\$1,300,866	\$333,802	\$425,014	26.00%	\$2,059,681
9105.3	METALS - TFD FACILITY	\$546,606	\$140,259	\$178,585	26.00%	\$865,451
9105.4	METALS - BOILER HOUSE	\$147,342	\$37,808	\$48,139	26.00%	\$233,290
9105.5	METALS - STORAGE FACILITY	\$4,104,341	\$1,053,174	\$1,340,954	26.00%	\$6,498,469
9107	THERMAL & MOISTURE PROTECTION	\$2,677,943	\$687,160	\$874,927	26.00%	\$4,240,030
9107.1	THERMAL & MOISTURE PROTECTION - GFF	\$1,439,697	\$369,426	\$470,372	26.00%	\$2,279,496
9107.2	THERMAL & MOISTURE PROTECTION - TFD FACILITY	\$692,200	\$177,618	\$226,153	26.00%	\$1,095,971
9107.3	THERMAL & MOISTURE PROTECTION - BOILER HOUSE	\$82,533	\$21,178	\$26,965	26.00%	\$130,676
9107.4	THERMAL & MOISTURE PROTECTION - STORAGE FACILITY	\$463,513	\$118,937	\$151,437	26.00%	\$733,887
9108	DOORS & WINDOWS	\$411,474	\$105,584	\$134,435	26.00%	\$651,493
9108.1	DOORS & WINDOWS - GFF	\$142,969	\$36,686	\$46,710	26.00%	\$226,364
9108.2	DOORS & WINDOWS - TFD FACILITY	\$175,925	\$45,142	\$57,478	26.00%	\$278,545
INEEL						

ო

Page No.

Success Estimating and Cost Management System

14:30:57

08/30/2000

Project Name:

Project Summary Report

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF Project Location: INTEC Estimate Number: 2570 - Option A

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL	20000 A WILLIAM TO LIGHT	Estimate Subtotal	<u>Escalation</u>	Contingency	Contingency % 26.00%	TOTAL \$53,110
9108.3	DOORS & WINDOWS - BOILER HOUSE	\$33,544	\$8,607	\$10,959		. ,
9108.4	DOORS & WINDOWS - STORAGE FACILITY	\$59,036	\$15,149	\$19,288	26.00%	\$93,473
9109	FINISHES	\$1,257,389	\$322,646	\$410,809	26.00%	\$1,990,844
9109.1	FINISHES - GFF	\$454,273	\$116,566	\$148,418	26.00%	\$719,257
9109.2	FINISHES - TFD FACILITY	\$500,276	\$128,371	\$163,448	26.00%	\$792,095
9109.3	FINISHES - BOILER HOUSE	\$1,902	\$488	\$621	26.00%	\$3,011
9109.4	FINISHES - STORAGE FACILITY	\$300,938	\$77,221	\$98,321	26.00%	\$476,481
9110	SPECIALTIES	\$73,623,461	\$18,891,780	\$28,679,725	31.00%	\$121,194,965
9110.1	SPECIALTIES - GFF	. \$2,364,886	\$606,830	\$921,232	31.00%	\$3,892,947
9110.2	SPECIALTIES - TFD FACILITY	\$17,521,957	\$4,496,134	\$6,825,608	31.00%	\$28,843,699
9110.3	SPECIALTIES - BOILER HOUSE	\$59,374	\$15,235	\$23,129	31.00%	\$97,739
9110.4	SPECIALTIES - STORAGE FACILITY	\$53,677,244	\$13,773,581	\$20,909,756	31.00%	\$88,360,580
9111	EQUIPMENT	\$37,275,088	\$9,564,788	\$25,293,533	54.00%	\$72,133,409
9111.1	EQUIPMENT - IN GFF	\$7,765,897	\$1,992,729	\$5,269,658	54.00%	\$15,028,284
9111.1.1	EQUIPMENT - GFF	\$2,251,358	\$577,698	\$1,527,691	54.00%	\$4,356,747
9111.1.2	EQUIPMENT - GROUT FACILITY	\$5,514,538	\$1,415,031	\$3,741,967	54.00%	\$10,671,536
9111.2	EQUIPMENT - THIN FILM DRYER FACILITY	\$1,621,050	\$415,962	\$1,099,986	54.00%	\$3,136,999
9111.3	EQUIPMENT - BOILER HOUSE	\$1,343,561	\$344,758	\$911,692	54.00%	\$2,600,012
9111.4	EQUIPMENT - GROUTING FACILITY	\$5,514,538	\$1,415,031	\$3,741,967	54.00%	\$10,671,536
9111.5	EQUIPMENT - STORAGE FACILITY	\$21,030,041	\$5,396,309	\$14,270,229	54.00%	\$40,696,579
9114	CONVEYING SYSTEMS	\$9,395,361	\$2,410,850	\$1,062,559	9.00%	\$12,868,769
9114.4	CONVEYING SYSTEMS - STORAGE FACILITY	\$9,395,361	\$2,410,850	\$1,062,559	9.00%	\$12,868,769

INEEL

08/30/2000 14:30:57 Success Estimating and Cost Management System

Page No.

Project Summary Report

Client: V. J. Balls
Prepared By: Rowley / Mitchell / Marier
Estimate Type: Planning

Project Name: Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX in GFF Project Location: INTEC Estimate Number:2570 - Option A

LEVEL		Estimate Subtotal	Escalation	Contingency	Contingency %	TOTAL
9115	MECHANICAL	\$9,768,612	\$2,506,626	\$3,068,809	25.00%	\$15,344,047
9115.2	MECHANICAL - NEW - GFF - UNEX	\$6,270,168	\$1,608,925	\$1,969,773	25.00%	\$9,848,866
9115.2.1	HVAC EQUIPMENT - NEW - GFF - UNEX	\$6,270,168	\$1,608,925	\$1,969,773	25.00%	\$9,848,866
9115.3	MECHANICAL - NEW - TFD FACILITY	\$2,415,785	\$619,890	\$758,919	25.00%	\$3,794,594
9115.2.1	HVAC - TFD FACILITY - HOT CELL	\$607,407	\$155,861	\$190,817	25.00%	\$954,084
9115.2.2	HVAC - TFD FACILITY - OPERATING CORRIDORS	\$1,523,564	\$390,947	\$478,628	25.00%	\$2,393,138
9115.2.3	PLUMBING / PIPING - TFD FACILITY	\$284,814	\$73,083	\$89,474	25.00%	\$447,372
9115.4	MECHANICAL - NEW - BOILER HOUSE	\$381,698	\$97,944	\$119,911	25.00%	\$599,553
9115.4.2	HVAC - NEW - BOILER HOUSE	\$68,261	\$17,516	\$21,444	25.00%	\$107,221
9115.4.3	PLUMBING - BOILER HOUSE	\$4,739	\$1,216	\$1,489	25.00%	\$7,444
9115.4.4	PIPING - NEW - BOILER HOUSE	\$293,199	\$75,235	\$92,109	25.00%	\$460,543
9115.4.5	FIRE PROTECTION · NEW · BOILER HOUSE	\$15,499	\$3,977	\$4,869	25.00%	\$24,345
9115.4	MECHANICAL - NEW - STORAGE FACILITY	\$700,961	\$179,867	\$220,207	25.00%	\$1,101,034
9116	ELECTRICAL	\$2,609,269	\$669,538	\$1,016,430	31.00%	\$4,295,237
9116.2	ELECTRICAL - NEW - GFF	\$1,915,729	\$491,576	\$746,265	31.00%	\$3,153,570
9116.2.1	SWITCHGEAR AND TRANSFORMERS - GFF	\$717,408	\$184,087	\$279,464	31.00%	\$1,180,959
9116.2.2	RACEWAYS, CONDUCTORS, AND GROUNDING - GFF	\$175,000	\$44,905	\$68,171	31.00%	\$288,076
9116.2.3	MISC, COSTS - GFF	\$517,472	\$132,783	\$201,579	31.00%	\$851,834
9116.2.4	LIGHTING - GFF	\$505,849	\$129,801	\$197,052	31.00%	\$832,702
9116.3	ELECTRICAL - NEW - TFD FACILITY	\$188,994	\$48,496	\$73,622	31.00%	\$311,112
9116.3.1	SWITCHGEAR AND TRANSFORMERS - TFD	\$14,068	\$3,610	\$5,480	31.00%	\$23,158
9116.3.2	RACEWAYS, CONDUCTORS, AND GROUNDING - TFD	\$35,000	\$8,981	\$13,634	31.00%	\$57,615
INEEL						

ß

Page No.

Success Estimating and Cost Management System

14:30:57

08/30/2000

Project Summary Report

Project Name:

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL		Estimate Subtotal	Escalation	Contingency	Contingency %	
9116.3.3	MISC. COSTS - TFD	\$86,496	\$22,195	\$33,694	31.00%	\$142,385
9116.3.4	LIGHTING - TFD	\$53,430	\$13,710	\$20,813	31.00%	\$87,954
9116.4	ELECTRICAL - BOILER HOUSE	\$56,186	\$14,417	\$21,887	31.00%	\$92,490
9116.4.2	RACEWAYS, CONDUCTORS, AND GROUNDING - BOILER HOUSE	\$12,000	\$3,079	\$4,675	31.00%	\$19,754
9116.4.3	······MISC, COSTS - BOILER HOUSE	\$30,901	\$7,929	\$12,037	31.00%	\$50,868
9116.4.4	LIGHTING - BOILER HOUSE	\$13,285	\$3,409	\$5,175	31.00%	\$21,869
9116.5	ELECTRICAL - STORAGE FACILITY	\$435,854	\$111,840	\$169,785	31.00%	\$717,479
9116.5.1	SWITCHGEAR AND TRANSFORMERS - INTERIM STORAGE	\$172,275	\$44,206	\$67,109	31.00%	\$283,590
9116.5.2	RACEWAYS, CONDUCTORS, AND GROUNDING - INTERIM STORAGE	\$21,000	\$5,389	\$8,180	31.00%	\$34,569
9116.5.3	MISC. COSTS - INTERIM STORAGE	\$141,040	\$36,191	\$54,942	31.00%	\$232,173
9116.5.4	LIGHTING - INTERIM STORAGE	\$101,539	\$26,055	\$39,554	31.00%	\$167,148
9116.6	ELECTRICAL - TRANSFER TUNNEL	\$12,505	\$3,209	\$4,871	31.00%	\$20,585
9301	CONSTRUCTION MISCELLANEOUS	\$1,543,834	\$396,148	\$698,394	36.00%	\$2,638,376
9301.1	CONSTRUCTION SUPPORT	\$522,734	\$134,134	\$236,472	36.00%	\$893,340
9301.2	CONSTRUCTION QUALITY CONTROL	\$170,200	\$43,673	\$76,994	36.00%	\$290,868
9301.3	CONSTRUCTION DOCUMENTATION	\$850,900	\$218,341	\$384,927	36.00%	\$1,454,168
OPC3000	PROJECT ACCEPTANCE/CLOSEOUT	\$15,039,600	\$5,552,620	\$21,004,065	102.00%	\$41,596,285
OPC3100	TESTING AND TURNOVER PLANNING	\$340,400	\$125,676	\$475,397	102.00%	\$941,473
OPC3200	S. O. TESTING	\$8,508,800	\$3,141,449	\$11,883,254	102.00%	\$23,533,503
OPC3300	ORR SUPPORT	\$374,400	\$138,228	\$522,881	102.00%	\$1,035,510
OPC3400	FACILITY ACCEPTANCE REVIEW	\$255,300	\$94,257	\$356,548	102.00%	\$706,105

INEEL

Success Estimating and Cost Management System 08/30/2000 14:30:57

Page No.

Project Name:

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

Project Summary Report

V. J. Balls Client:

Prepared By: Rowley/Mitchell/Marler Estimate Type: Planning

LEVEL OPC3500	RADIOLOGICAL CONTROL SUPPORT	Estimate Subtotal \$187,200	Escalation \$69,114	Contingency \$261,441	Contingency % 102.00%	TOTAL \$517,755
OPC3600	OPERATOR TRAINING	\$3,403,500	\$1,256,572	\$4,753,274	102.00%	\$9,413,346
OPC3700	OPERATING PROCEDURES	\$748,800	\$276,457	\$1,045,762	102.00%	\$2,071,019
OPC3800	START-UP COORDINATION	\$221,200	\$81,667	\$308,924	102.00%	\$611,791
OPC3900	SPARES	\$1,000,000	\$369,200	\$1,396,584	102.00%	\$2,765,784
GAPIF	Non-Org G&A and PROCUREMENT	\$1,355,375	\$0	\$962,316	71.00%	\$2,317,691
Total UNE	X IN GFF - OPTION A	\$293,862,582	\$70,164,368	\$150,125,227	41.24%	\$514.152.178

INEEL

08/30/2000 14:30:57 Success Estimating and Cost Management System

Project Name:

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor OPC1001.1 CONCEPTUAL DESIGN	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	SIC	<u>Other</u>	TOTAL
CONCEPTUAL DESIGN (2% OF TCC)	U.C. per LOT	1.00	0		3403500 \$3,403,500	0 \$0	0 \$0	0 \$0	0 \$0	3403500 \$3,403,500
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$3,403,500 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,403,500 \$0 \$0
Subtotal Estimate Escalation Contingency					\$202,849 \$1,226,159	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,403,500 \$202,849 \$1,226,159
Total OPC1001.1 CONCEPTUAL DESIGN			0		\$4,832,507	\$0	\$0	\$0	\$0	\$4,832,507
OPC1001,2 PROJECT EXECUTION PLAN BWI ACDC/SOW,CPDS,PEP,DC,/SOW REVIEWS @ .1% OF TCC	U.C. per LOT	1.00	0		170200 \$170,200	0 \$0	0 \$0	0 \$0	0 \$0	170200 \$170,200
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$170,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$170,200 \$0 \$0
Subtotal Estimate Escalation Contingency					\$10,144 \$61,317	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$170,200 \$10,144 \$61,317
Total OPC1001.2 PROJECT EXECUTION PLAN			0		\$241,661	\$0	\$0	\$0	\$0	\$241,661
OPC1001.3 WORK PACKAGE DEVELOPMENT BWI Work Package Development23% Of TCC	U.C. per Lot	1.00	0		391400 \$391,400	\$0	0 \$0	0 \$0	0 \$0	391400 \$391,400
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$391,400 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$391,400 \$0 \$0
Subtotal Estimate Escalation Contingency					\$23,327 \$141,007	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$391,400 \$23,327 \$141,007
Total OPC1001.3 WORK PACKAGE DEVELOPMENT			0		\$555,735	\$0	\$0	\$0	\$0	\$555,735
OPC1001.4 TASK BASELINE AGREEMENT BWI Task Baseline Agreement33% Of TCC	U.C. per Lot	1.00	0		561600 \$561,600	0 \$0	0 \$0	0 \$0	0 \$0	561600 \$561,600

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Project Name:

Estimate Number: 2570 - Option A

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor OPC1001.4 TASK BASELINE AGREEMENT	_QTY	Hrs Cr	ew/Rate Labor	Const Eqp	Mati	S/C_	Other	TOTAL
Subtotal			\$561,600	\$0	\$0	\$0	\$0	\$561,600
Sales Tax INEEL ORG Labor/Subcontractor Overheads	•		\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0
Subtotal Estimate				····	· · · · · · · · · · · · · · · · · · ·			\$561,600
Escalation Contingency			\$33,471 \$202,324	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$33,471 \$202,324
Total OPC1001.4 TASK BASELINE AGREEMEN	NT	0	\$797,396	\$0	\$0	\$0	\$0	\$797,396
OPC1001.5 PRELIMINARY SAFETY ANALYSI BWI			20000		_	_		
Preliminary Safety Analysis Report (PSAR)	U.C. per Lot 1.00	. 0	800000 \$800,000	0 \$0	0 \$0	0 \$0	0 \$0	800000 \$800,000
Subtotal			\$800,000	\$0	\$0	\$0	\$0	\$800,000
Sales Tax INEEL ORG Labor/Subcontractor Overheads			\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0
Subtotal Estimate						· · · · · · · · · · · · · · · · · · ·		\$800,000
Escalation Contingency			\$47,680 \$288,211	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$47,680 \$288,211
Total OPC1001.5 PRELIMINARY SAFETY ANAI	LYSIS REPORT (PSAR)	0	\$1,135,891	\$0	\$0	\$0	\$0	\$1,135,891
OPC1600 TECHNICAL DEVELOPMENT								
BWI	U.C. per Lot	_	11000000	0	0	0	0	11000000
(*)UNEX Process Development Memo: Cost for process development is per the HL	1.00 W SBW Process Development Costs (A	0 rlin L. Olson).	\$11,000,000	\$0	\$0	\$0	\$0	\$11,000,000
Subtotal		1	\$11,000,000	\$0	\$0	\$0	\$0	\$11,000,000
Sales Tax			\$0	\$0	\$0	\$0	\$0	\$0
INEEL ORG Labor/Subcontractor Overheads			\$0	\$0	\$0	\$0	\$0	\$0
Subtotal Estimate			#0ff 000		•			\$11,000,000
Escalation Contingency			\$655,600 \$11,772,156	\$0 \$ 0	\$0 \$0	\$0 \$0	\$0 \$0	\$655,600 \$11,772,156
Total OPC1600 TECHNICAL DEVELOPMENT		0	\$23,427,756	\$0	\$0	\$0	\$0	\$23,427,756
OPC2100 PROJECT SUPPORT				_				
BWI	U.C. per Lot		5105300	0	0	0	0	5105300

Project Support - 3% OF TCC

\$5,105,300

\$0

\$0

1.00

\$0

\$0

\$5,105,300

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF Project Location: INTEC Estimate Number: 2570 - Option A

Project Name:

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL OPC2100 PROJE	Org/Subcontractor ECT SUPPORT	QTY	_	Hrs	Crew/R	<u>Labor</u>	Const Eqp	<u>Mati</u>	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labora	/Subcontractor Overheads					\$5,105,300 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$5,105,300 \$0 \$0
Subtotal Estimate Escalation Contingency						\$1,310,020 \$2,886,894	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$5,105,300 \$1,310,020 \$2,886,894
Total OPC2100 PI	ROJECT SUPPORT			0)	\$9,302,214	\$0	\$0	\$0	\$0	\$9,302,214
OPC2200 PERM Permitting	ITTING BWI	U.C. per Lot	1.00	o)	1500000 \$1,500,000	0 \$0	0 \$0	0 \$0	0 \$0	1500000 \$1,500,000
WIPP Certification	BWI	U.C. per Lot	1.00	0)	2500000 \$2,500,000	0 \$0	o \$0	0 \$0	0 \$0	2500000 \$2,500,000
Hanford Certification	BWI .	U.C. per Lot	1.00	O)	500000 \$500,000	0 \$0	0 \$0	0 \$0	0 \$0	500000 \$500,000
Subtotal Sales Tax INEEL ORG Labor	/Subcontractor Overheads					\$4,500,000 \$0 \$0	\$0 \$0 \$0 .	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$4,500,000 \$0 \$0
Subtotal Estimate Escalation Contingency						\$1,154,700 \$2,544,615	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$4,500,000 \$1,154,700 \$2,544,615
-Total OPC2200 PI	ERMITTING			0)	\$8,199,315	\$0	\$0	\$0	\$0	\$8,199,315
1100 CONSTRUCTION O0401400 Construction Manage	CTION SUPERVISION & ENGINEERING BWI ment - 9% Of TCC	U.C. per Lot	1.00	1	! i \$**	15315800 *.** \$15,315,800	0 \$0	0 \$0	o \$0	0 \$0	15315800 \$15,315,800
Subtotal Sales Tax INEEL ORG Labor	/Subcontractor Overheads					\$15,315,800 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$15,315,800 \$0 \$0
Subtotal Estimate Escalation Conlingency	,					\$3,930,034 \$6,928,500	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$15,315,800 \$3,930,034 \$6,928,500
Total 1100 CONS	TRUCTION SUPERVISION & ENGINEERI	NG		1]	\$26,174,335	\$0	\$0	\$0	\$0	\$26,174,335
00401400	OUCT OF OPERATIONS/CONDUCT OF MA BWI erations / Conduct Of Maintenance -	AINTENANCE U.C. per Lot	1.00	1	l I \$**	340400 •.•• \$340,400	0 \$0	o \$0	o \$0	0 \$0	340400 \$340,400

08/30/2000

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF Project Location: INTEC

Estimate Number: 2570 - Option A

Cllent:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor 1110 CM - CONDUCT OF OPERATIONS/CONDUCT	QTY OF MAINTENANCE		Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$340,400 \$0 \$0	\$0 \$0 · \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$340,400 \$0 \$0
Subtotal Estimate Escalation Contingency					\$87,347 \$153,989	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$340,400 \$87,347 \$153,989
Total 1110 CM - CONDUCT OF OPERATIONS/COND	UCT OF		1		\$581,735	\$0	\$0	\$0	\$0	\$581,735
1200 CM PROJECT CONTROLS BWI CM Project Controls7% Of TCC	U.C. per Lot	1.00	0		1191200 \$1,191,200	0 \$0	0 \$0	0 \$0	0 \$0	1191200 \$1,191,200
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				**************************************	\$1,191,200 \$0 \$0	\$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$1,191,200 \$0 \$0
Subtotal Estimate Escalation Contingency					\$305,662 \$538,870	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$1,191,200 \$305,662 \$538,870
Total 1200 CM PROJECT CONTROLS			0		\$2,035,732	\$0	\$0	\$0	\$0	\$2,035,732
1300 CM ENVIRONMENTAL SAFETY & HEALTH (E BWI CM - ES&H5% Of TCC	U.C. per Lot	1.00	0		850900 \$850,900	0 \$0	0 \$0	0 \$0	0 \$0	850900 \$850,900
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$850,900 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$850,900 \$0 \$0
Subtotal Estimate Escalation Contingency					\$218,341 \$384,927	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$850,900 \$218,341 \$384,927
Total 1300 CM ENVIRONMENTAL SAFETY & HEALT	TH (ES&H)		0		\$1,454,168	\$0	\$0	\$0	\$0	\$1,454,168
1400 CM TRAINING BWI CM - Training2% Of TCC	U.C. per Lot	1.00	0		340400 \$340,400	0 \$0	0 \$0	o \$0	0 \$0	340400 \$340,400

Page No.

Project Name:

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC Estimate Number: 2570 - Option A Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor 1400 CM TRAINING	QTY	-	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$340,400 \$0 \$0	- \$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$340,400 \$0 \$0
Subtotal Estimate Escalation Contingency					\$87,347 \$153,989	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$340,400 \$87,347 \$153,989
Total 1400 CM TRAINING			0		\$581,735	\$0	\$0	\$0	\$0	\$581,735
1500 CM - OTHER DIRECT COSTS BWI CM - Other Direct Costs2% Of TCC	U.C. per Lot	1.00	o		340400 \$340,400	0 \$0	0 \$0	0 \$0	0	340400 \$340,400
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$340,400 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$340,400 \$0 \$0
Subtotal Estimate Escalation Contingency					\$87,347 \$153,989	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$340,400 \$87,347 \$153,989
Total 1500 CM - OTHER DIRECT COSTS			0		\$581,735	\$0	\$0	\$0	\$0	\$581,735
2400 DESIGN ACTIVITIES BWI Title I Design - 6% Of TCC	U.C. per Lot	1.00	0		10210500 \$10,210,500	0 \$0	0 \$0	0 \$0	0 \$0	10210500 \$10,210,500
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$10,210,500 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$10,210,500 \$0 \$0
Subtotal Estimate Escalation Contingency					\$1,234,449 \$4,120,182	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$10,210,500 \$1,234,449 \$4,120,182
Total 2400 DESIGN ACTIVITIES			0		\$15,565,131	\$0	\$0	\$0	\$0	\$15,565,131
3400 DESIGN ACTIVITIES BWI Title II Design - 11.3% Of TCC	U.C. per Lot	1.00	0		19229800 \$19,229,800	0 \$0	0 \$0	0 \$0	0 \$0	19229800 \$19,229,800

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF Project Location: INTEC

Project Name:

Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor 3400 DESIGN ACTIVITIES	QTY		<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		· · · · · · · · · · · · · · · · · · ·			\$19,229,800 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$19,229,800 \$0 \$0
Subtotal Estimate Escalation Conlingency					\$2,949,851 \$6,432,099	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$19,229,800 \$2,949,851 \$6,432,099
Total 3400 DESIGN ACTIVITIES			0		\$28,611,750	\$0	\$0	\$0	\$0	\$28,611,750
4100 QUALITY ASSURANCE BWI Quality Assurance - 5% Of TCC	U.C. per Lot	1.00	0.1 0	\$***.* *	8508800 \$8,508,800	0 \$0	0 \$0	0 \$0	0 \$0	8508800 \$8,508,800
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$8,508,800 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$8,508,800 \$0 \$0
Subtotal Estimate Escalation Contingency					\$2,183,358 \$3,314,569	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$8,508,800 \$2,183,358 \$3,314,569
Total 4100 QUALITY ASSURANCE			0		\$14,006,727	\$0	\$0	\$0	\$0	\$14,006,727
5100 PM ADMINISTRATION BWI Project Management - 8% Of TCC	U.C. per Lot	1.00	0		13614000 \$13,614,000	0 \$0	0 \$0	0 \$0	0 \$0	13614000 \$13,614,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$13,614,000 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$13,614,000 \$0 \$0
Subtotal Estimate Escalation Contingency		-			\$3,493,352 \$6,500,794	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$13,614,000 \$3,493,352 \$6,500,794
Total 5100 PM ADMINISTRATION			0		\$23,608,146	\$0	\$0	\$0	\$0	\$23,608,146
5110 PM - CONDUCT OF OPERATIONS/CONDUCT OF BWI PM Conduct Of Operations / Conduct Of Maintenance04% Of TCC	MAINTENANCE U.C. per Lot	1.00	0.1 0	\$*** <u>.</u> **	68100 \$68,100	0 \$0	0 \$0	0 \$0	0 \$0	68100 \$68,100

Project Name:

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor 5110 PM - CONDUCT OF OPERATIONS/COND	QTY UCT OF MAINTENANCE	-	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$68,100 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	. \$0 \$0 \$0	\$68,100 \$0 \$0
Subtotal Estimate Escalation Contingency					\$17,474 \$32,518	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$68,100 \$17,474 \$32,518
Total 5110 PM - CONDUCT OF OPERATIONS/C MAINTENANCE	ONDUCT OF		0		\$118,093	\$0	\$0	\$0	\$0	\$118,093
5200 PM PROJECT CONTROLS BWI PM Project Controls - 2% Of TCC	U.C. per Lot	1.00	0		3403500 \$3,403,500	0 \$0	0 \$0	0 \$0	0 \$0	3403500 \$3,403,500
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$3,403,500 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,403,500 \$0 \$0
Subtotal Estimate Escalation Contingency					\$873,338 \$1,625,198	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,403,500 \$873,338 \$1,625,198
Total 5200 PM PROJECT CONTROLS	,		0		\$5,902,037	\$0	\$0	\$0	\$0	\$5,902,037
5300 PM RECORDS MANAGEMENT BWI PM Records Management - 2% Of TCC	U.C. per Lot	1.00	0		3403500 \$3,403,500	0 \$0	0 \$0	0 \$0	0 \$0	3403500 \$3,403,500
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$3,403,500 \$0 . \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,403,500 \$0 \$0
Subtotal Estimate Escalation Contingency					\$873,338 \$1,625,198	\$0 \$0	\$0 \$0	\$0 \$0	.\$0 \$0	\$3,403,500 \$873,338 \$1,625,198
Total 5300 PM RECORDS MANAGEMENT			0		\$5,902,037	\$0	\$0	\$0	\$0	\$5,902,037
5400 SAFETY ANALYSIS BWI Safety Analysis Report (SAR)	U.C. per Lot	1.00	0		2000000 \$2,000,000	o \$0	0 \$0	0 \$0	0 \$0	2000000 \$2,000,000

Project Name: Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC
Estimate Number: 2570 - Option A

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor 5400 SAFETY ANALYSIS	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$2,000,000 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$2,000,000 \$0 \$0
Subtotal Estimate Escalation Conlingency					\$513,200 \$955,016	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$2,000,000 \$513,200 \$955,016
Total 5400 SAFETY ANALYSIS			0		\$3,468,216	\$0	\$0	\$0	\$0	\$3,468,216
6000 CONSTRUCTION AE SUPPORT BWI Construction AE Support - 1.5% Of TCC	U.C. per Lot	1.00	0		2552600 \$2,552,600	0 \$0	o \$0	0 \$0	0 \$0	2552600 \$2,552,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$2,552,600 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$2,552,600 \$0 \$0
Subtotal Estimate Escalation Contingency					\$654,997 \$898,127	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$2,552,600 \$654,997 \$898,127
Total 6000 CONSTRUCTION AE SUPPORT			0		\$4,105,724	\$0	\$0	\$0	\$0	\$4,105,724
9101.1 GENERAL CONDITIONS GEN Supervision - 15% Of Labor Hours	U.C. per Lot	1.00	41619 41,619	CN-SUPR \$40.00	1664760 \$1,664,760	0 \$0	0 \$0	0 \$0	0 \$0	1664760 \$1,664,760
GEN Training - 7% Of Labor Hours	U.C. per Lot	1.00	19422 19,422	CN-LABR \$30,09	584407.98 \$584,408	0 \$0	0 \$0	0 \$0	0 \$0	584407.98 \$584,408
GEN Mobilization & Demobilization5% Of Labor Hours	U.C. per Lot	1.00	1387 1,387	CN-LABR \$30.09	41734.83 \$41,735	10000 \$10,000	0 \$0	0 \$0	0 \$0	51734.83 \$51,735
GEN (*)Material Adjustment - Additional 10% On Material & Subcontracts Memo: Adjustment for DOE/RW/0333P Quality Standards.	U.C. per Lot	1.00	0		0 \$0	0 \$0	8610000 \$8,610,000	0 \$0	0 \$0	8610000 \$8,610,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$2,290,903 \$0 \$665,049	\$10,000 \$0 \$2,903	\$8,610,000 \$430,500 \$2,624,457	\$0 \$0 \$0	\$0 \$0 \$0	\$10,910,903 \$430,500 \$3,292,409
Subtotal Estimate Escalation Contingency					\$758,497 \$1,522,924	\$3,311 \$6,648	\$2,993,228 \$6,009,856	\$0 \$0	\$0 \$0	\$14,633,812 \$3,755,036 \$7,539,428
Total 9101.1 GENERAL CONDITIONS			62,428		\$5,237,373	\$22,862	\$20,668,041	\$0	\$0	\$25,928,276

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balis

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

(*)Labor Adjustment	Org/Subcontractor NDUCT OF OPERATIONS/CONDUCT GEN Operations / Conduct of Maintenance -	. U.C. per Hr 277,4			2.762 \$766,239	Const Eqp 0 \$0	Matl 0 \$0	S/C 0 \$0	Other 0 \$0	2.762 \$766,239
Subtotal Sales Tax INEEL ORG Labo	or/Subcontractor Overheads				\$766,239 \$0 \$222,439	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$766,239 \$0 \$222,439
Subtotal Estimates Escalation Contingency	de			,	\$253,695 \$509,373	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$988,678 \$253,695 \$509,373
Total 9101.2 GC	- CONDUCT OF OPERATIONS/COND	UCT OF	22,19	7	\$1,751,746	\$0	\$0	\$0	\$0	\$1,751,746
(*)Excavation & Bac	ORK - UTILITIES GEN skill - Firewater littles to be 300 feet. Trench to be 6' to b		0. 00.00 56		21.063 \$16,850	5 \$4,000	0 \$0	o \$0	0 \$0	26.063 \$20,850
Piping - Firewater	GEN	U.C. per Lf	0. 00.00 15		15.045 \$4,514	2 \$600	12 \$3,600	0 \$0	0 \$0	29.045 \$8,714
(*)Excavation & Bac Memo: Assume uti	GEN kfill - Sewer lities to be 300 feet. Trench to be 6' to t		0.00,00 56		21.063 \$16,850	5 \$4,000	0 \$0	0 \$0	0 \$0	26.063 \$20,850
Piping - Sewer	GEN .	U.C. per Lf 3	0.0	3 CN-LABR 9 \$30.09	0.903 \$271	2 \$600	5 \$1,500	0 \$0	0 \$0	7.903 \$2,371
Subtotal Sales Tax INEEL ORG Labo	or/Subcontractor Overheads				\$38,485 \$0 \$11,172	\$9,200 \$0 \$2,671	\$5,100 \$255 \$1,555	\$0 \$0 \$0	\$0 \$0 \$0	\$52,785 \$255 \$15,398
Subtotal Estima Escalation Contingency	le				\$12,742 \$42,432	\$3,046 \$10,143	\$1,773 \$5,904	\$0 \$0	\$0 \$0	\$68,438 \$17,561 \$58,479
Total 9102.1 SIT	EWORK - UTILITIES	•	1,27	9	\$104,831	\$25,060	\$14,587	\$0	\$0	\$144,478
9102.2 SITEWO	ORK - GFF GEN	U.C. per Sf 100,0	0.0 00.00 3,00		0.903 \$90,270	0.5 \$50,000	o \$0	0 \$0	0 \$0	1.403 \$140,270

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Project Name:

Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/S	Subcontractor	_QT	Υ	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C_	<u>Other</u>	TOTAL
GEN Excavation & Backfill - Footing	İ	U.C. per Cy	5,360.00	0.7 3,752	CN-LABR \$30.09	21.063 \$112,898	5 \$26,800	o \$0	0 \$0	0 \$0	26.063 \$139,698
Subtotal Sales Tax INEEL ORG Labor/Subcont	ractor Overheads	,				\$203,168 \$0 \$58,980	\$76,800 \$0 \$22,295	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$279,968 \$0 \$81,275
Subtotal Estimate Escalation Contingency						\$67,267 \$224,002	\$25,428 \$84,676	\$0 \$0	\$0 \$0	\$0 \$0	\$361,242 \$92,695 \$308,677
Total 9102.2 SITEWORK -	GFF			6,752		\$553,416	\$209,198	\$0	\$0	\$0	\$762,614
9102.3 SITEWORK - TFD GEN Site Grading			27,000.00	0.03 810	CN-LABR \$30.09	0.903 \$24,373	0.5 \$13,500	o \$0	0 \$0	0 \$0	1.403 \$37,873
GEN Excavation & Backfill		U.C. per Cy	8,550.00	0.7 5,985	CN-LABR \$30.09	21.063 \$180,089	5 \$42,750	0 \$0	0 \$0	0 \$0	26.063 \$222,839
Subtotal Sales Tax INEEL ORG Labor/Subcontr	raclor Overheads					\$204,462 \$0 \$59,355	\$56,250 \$0 \$16,329	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$260,712 \$0 \$75,685
Subtotal Estimate Escalation Contingency					- 11.11	\$67,695 \$225,428	\$18,624 \$62,018	\$0 \$0	\$0 \$0	\$0 \$0	\$336,396 \$86,319 \$287,446
Total 9102,3 SITEWORK -	TFD FACILITY			6,795		\$556,940	\$153,221	\$0	\$0	\$0	\$710,162
9102.4 SITEWORK - BOIL GEN Site Grading		U.C. per Sf	4,000.00	0.03 120	CN-LABR \$30,09	0.903 \$3,611	0.5 \$2,000	0 \$0	0 \$0	0 \$0	1.403 \$5,611
GEN Excavation & Backfill		U.C. per Cy	500.00	0.7 350	CN-LABR \$30.09	21.063 \$10,532	5 \$2,500	0 \$0	0 \$0	0 \$0	26.063 \$13,032
GEN (*)Excavation & Backfill - Stear Memo: Assume utilities to be		U.C. per Cy f trench.	800.00	0.7 560	CN-LABR \$30.09	21.063 \$16,850	5 \$4,000	0 \$0	0 \$0	0 \$0	26.063 \$20,850

GEN

Piping - Steam & Condensate

CN-LABR

\$30.09

1.505

\$903

2

\$3,000

\$1,200

0.05

30

U.C. per Lf

600.00

0

\$0

0

\$0

8.505

\$5,103

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF Project Location: INTEC
Estimate Number: 2570 - Option A

Client:

V. J. Balls

LEVEL Org/Subcontractor — 9102.4 SITEWORK - BOILER HOUSE	QTY	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	Matl	_S/C_	Other	TOTAL
GEN Gilsulate Insulation	U.C. per Cf 477.00	0.17 81	CN-LABR \$30.09	5.115 \$2,440	0 \$0	16.55 \$7,894	0 \$0	0 \$0	21.665 \$10,334
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$34,335 \$0 \$9,968	\$9,700 \$0 \$2,816	\$10,894 \$545 \$3,321	\$0 \$0 \$0	\$0 \$0 \$0	\$54,930 \$545 \$16,104
Subtotal Estimate Escalation Contingency			· · · · · · · · · · · · · · · · · · ·	\$11,368 \$37,856	\$3,212 \$10,695	\$3,787 \$12,612	\$0 \$0	\$0 \$0	\$71,579 \$18,367 \$61,163
Total 9102.4 SITEWORK - BOILER HOUSE		1,141		\$93,527	\$26,422	\$31,159	\$0	\$0	\$151,109
9102.5 SITEWORK - STORAGE FACILITY GEN BUILDING EXCAVATION	U.C. per CY 17,160.00	0.012 206	CN-ENGR \$32.56	0.391 \$6,705	2 \$34,320	o \$0	0 \$0	0 \$0	2.391 \$41,025
GEN BUILDING BACKFILL	U.C. per CY 12,240.00	0.06 734	CN-ENGR \$32.56	1.954 \$23,912	2 \$24,480	0 \$0	o \$0	0 \$0	3.954 \$48,392
GEN BUILDING BERM FILL	U.C. per CY 6,900.00	0.06 414	CN-ENGR \$32.56	1.954 \$13,480	2 \$13,800	0 \$0	0 \$0	0 \$0	3,954 \$27,280
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		****	,	\$44,097 \$0 \$12,801	\$72,600 \$0 \$21,076	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$116,697 \$0 \$33,877
Subtotal Estimate Escalation Contingency				\$14,600 \$48,619	\$24,037 \$80,045	\$0 \$0	\$0 \$0	\$0 \$0	\$150,574 \$38,637 \$128,663
Total 9102.5 SITEWORK - STORAGE FACILITY		1,354	•	\$120,117	\$197,758	\$0	\$0	\$0	\$317,874
9102.5 SITEWORK - TUNNEL GEN (*)Excavate & Backfill For Tunnel Memo: Tunnel bottom to be 23' below existing grade. Tu	U.C. per Cy 4,500.00 nnel shall be 10' wide at the boltom,	0.6 2,700 15' high and	CN-LABR \$30,09 d 100' long.	18.054 \$81,243	12 \$54,000	0 \$0	0 \$0	0 \$0	30.054 \$135,243

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Project Name:

Estimate Number: 2570 - Option A

Memo: Includes formwork, concrete, and rebar.

08/30/2000

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor QTY Hrs Crew/Rate Labor **Const Eqp** Mati S/C Other TOTAL 9102.5 SITEWORK - TUNNEL GEN U.C. per Cy CN-LABR 90.27 12 0 0 0 102.27 3 300 \$0 Allowance For Hand Excavation 100,00 \$30.09 \$9,027 \$1,200 \$0 \$0 \$10,227 \$90,270 \$55,200 \$0 \$0 \$0 \$145,470 Subtotal Sales Tax \$0 \$0 \$0 \$0 \$0 \$0 INEEL ORG Labor/Subcontractor Overheads \$26,205 \$16.025 \$0 \$0 \$0 \$42,230 **Subtotal Estimate** \$187,700 \$0 Escalation \$29,888 \$18,276 \$0 \$0 \$48,164 \$60,861 \$0 \$0 \$0 \$160,387 Contingency \$99,527 --- Total 9102.5 SITEWORK - TUNNEL 3,000 \$245,890 \$150,361 \$0 \$0 \$0 \$396,251 --- 9102.6 SITEWORK - PAVING U.C. per Sf 0.05 CN-SKWK 1.726 1.2 0 0 0 2.926 GEN 7.050.00 \$0 \$0 Pavement Removal 353 \$34,52 \$12,168 \$8,460 \$0 \$20,628 GEN 0.03 CN-SKWK 1.036 4.036 U.C. per Sf 2 0 0 26,250.00 788 \$34.52 \$27,185 \$26,250 \$52,500 \$0 \$0 \$105,935 **New Pavement** \$39,353 \$34,710 \$52,500 \$0 \$0 \$126,563 Subtotal \$2,625 \$0 \$0 \$2,625 \$0 \$0 Sales Tax \$11,424 \$10,076 \$16,003 \$0 \$0 \$37,503 INEEL ORG Labor/Subcontractor Overheads \$166,691 **Subtotal Estimate** \$13.029 \$11,492 \$18,251 \$0 \$0 \$42,773 Escalation \$43,388 \$38,269 \$60,778 \$0 \$0 \$142,435 Contingency \$0 --- Total 9102.6 SITEWORK - PAVING 1,140 \$107,195 \$94,548 \$150,157 \$0 \$351,899 --- 9103.1 CONCRETE - GFF CN-SKWK U.C. per Cy 5 172.6 0 180 0 0 352.6 \$34.52 953.00 4,765 \$164,488 \$0 \$171,540 \$0 \$0 \$336,028 (*)Concrete Footings Memo: Includes formwork, concrete, and rebar. **GEN** U.C. per Cy 5 CN-SKWK 172.6 0 180 0 0 352.6 1,690,00 8,450 \$34.52 \$291,694 \$0 \$304,200 \$0 \$0 \$595,894 (*)Concrete Floors - 6" Thick Memo: Includes formwork, concrete, and rebar. GEN U.C. per Cy 5 CN-SKWK 172.6 0 180 0 0 352.6 (*)Concrete Walls - 12" Thick 755.00 3,775 \$34.52 \$130,313 \$0 \$135,900 \$0 \$0 \$266,213 Memo: Includes formwork, concrete, and rebar. CN-SKWK 172.6 0 180 0 352.6 U.C. per Cy 5 0 \$0 (*)Concrete Roof Topping - 4" Thick 824.00 4,120 \$34.52 \$142,222 \$0 \$148,320 \$0 \$290,542 Memo: Includes formwork, concrete, and rebar. GEN U.C. per Cy 5 CN-SKWK 172.6 0 180 0 0 352.6 \$34.52 \$43,150 \$0 \$0 \$0 \$88,150 250.00 1,250 \$45,000 (*)Concrete Misc.

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF Project Location: INTEC

Prepared By: Rowley / Mitchell / Marler

Estimate Number: 2570 - Option A

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
— 9103.1 CONCRETE - GFF GEN Misc. Concrete Pads	U.C. per Lot 1.00	120 120	CN-SKWK \$34.52	4142.4 \$4,142	0 \$0	2500 \$2,500	0 \$0	0 \$0	6642.4 \$6,642
GEN Precast Concrete Walls - 6" Thick	U.C. per Sf 56,560.00	0	CN-SKWK	0 \$0	0 \$0	0 \$0	12.25 \$692,860	0 \$0	12.25 \$692,860
GEN Pre-Stressed Concrete Double Tee Roof Panels	U.C. per Sf 66,800.00	0	CN-SKWK	· \$0	0 \$0	9 \$601,200	0 \$0	0 \$0	9 \$601,200
GEN Pre-Cast Concrete Inverted Tees	U.C. per Lf 600.00	o		0 \$0	0 \$0	0 \$0	170 \$102,000	0 \$0	170 \$102,000
GEN Pre-Cast Concrete Columns - 24" x 24"	U.C. per Lf 672.00	0		0 \$0	0 \$0	0 \$0	150 \$100,800	0 \$0	150 \$100,800
GEN Installation Of Pre-Stressed Wall Panels - 56' Long	U.C. per Ea	8	CN-SKWK	276.16	0	0	0	0	276.16
	118.00	944	\$34.52	\$32,587	\$0	\$0	\$0	\$0	\$32,587
GEN Installation Of Pre-Stressed Roof Panels	U.C. per Ea	8	CN-SKWK	276.16	0	0	0	0	276.16
	114.00	912	\$34.52	\$31,482	\$0	\$0	\$0	\$0	\$31,482
GEN Installation Of Pre-Cast Columns	U.C. per Ea	8	CN-SKWK	276.16	0	0	0	0	276.16
	12.00	96	\$34.52	\$3,314	\$0	\$0	\$0	\$0	\$3,314
GEN Installation Of Pre-Cast Inverted Tees	U.C. per Ea	8	CN-SKWK	276.16	0	0	0	0	276.16
	10.00	80	\$34.52	\$2,762	\$0	\$0	\$0	\$0	\$2,762
GEN Craning For Panels & Columns	U.C. per Day	20	CN-SKWK	690.4	0	0	o	0	690.4
	36,00	720	\$34.52	\$24 , 854	\$0	\$0	\$0	\$0	\$24,854
GEN	U.C. per Ea	8	CN-SKWK	276.16	0	20	0	0	296.16
Welding & Patching Of Panels	254.00	2,032	\$34.52	\$70,145	\$0	\$5,080	\$0	\$0	\$75,225
GEN	U.C. per Ea	250	CN-SKWK	8630	0	45000	0	0	53630
Stairwell - 56' High	2.00	500	\$34.52	\$17,260	\$0	\$90,000	\$0	\$0	\$107,260
GEN	U.C. per Lf	0.2	CN-SKWK	6.904	0	5	0	0	11.904
Concrete Sidewalks - 5' Wide	1,200.00	240	\$34.52	\$8,285	\$0	\$6,000	\$0	\$0	\$14,285
GEN Concrete Ramp	U.C. per Ea	150	CN-SKWK	5178	1000	3500	0	0	9678
	2.00	300	\$34.52	\$10,356	\$2,000	, \$7,000	\$0	\$0	\$19,356

Project Name: Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX in GFF Project Location - INTEC

Estimate Number 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C_	<u>Other</u>	TOTAL
9103.1 CONCRETE - GFF GEN Loading Dock	U.C. per Ea 2.00	0		0 \$0	0 \$0	0 \$0	50000 \$100,000	0 \$0	50000 \$100,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$977,054 \$0 \$283,639	\$2,000 \$0 \$581	\$1,516,740 \$75,837 \$462,325	\$995,660 \$0 \$289,040	\$0 \$0 \$0	\$3,491,454 \$75,837 \$1,035,585
Subtotal Estimate Escalation Contingency				\$323,494 \$411,889	\$662 \$843	\$527,288 \$671,369	\$329,654 \$419,732	\$0 \$0	\$4,602,876 \$1,181,098 \$1,503,833
Total 9103.1 CONCRETE - GFF		28,304		\$1,996,075	\$4,086	\$3,253,559	\$2,034,086	\$0	\$7,287,807
9103.2 CONCRETE - TFD FACILITY GEN (*)Concrete Footings Memo: Includes formwork, concrete, and rebar.	U.C. per Cy 430.00	5 2,150	CN-SKWK \$34.52	172.6 \$74,218	0 \$0	180 \$77,400	0 \$0	0 \$0	352.6 \$151,618
GEN (*)Concrete Floors - 12" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy 725.00	5 3,625	CN-SKWK \$34.52	172.6 \$125,135	0 \$0	180 \$130,500	0 \$0	0 \$0	352.6 \$255,635
GEN (*)Concrete Walls - 12" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy 200.00	5 1,000	CN-SKWK \$34.52	172.6 \$34,520	0 \$0	180 \$36,000	0 \$0	0 \$0	352.6 \$70,520
GEN (*)Concrete Roof Topping Memo: Includes formwork, concrete, and rebar.	U.C. per Cy 170.00	5 850	CN-SKWK \$34.52	172.6 \$29,342	0 \$0	180 \$30,600	0 \$0	0 \$0	352.6 \$59,942
GEN (*)Concrete Misc. Memo: Includes formwork, concrete, and rebar.	U.C. per Cy 250.00	5 1,250	CN-SKWK \$34.52	172.6 \$43,150	0 \$0	180 \$45,000	0 \$0	0 \$0	352.6 \$88,150
GEN Misc. Concrete Pads	U.C. per Lot 1.00	120 120	CN-SKWK \$34.52	4142.4 \$4,142	0 \$0	2500 \$2,500	0 \$0	0 \$0	6642.4 \$6,642
GEN Precast Concrete Walls - 12" Thick	U.C. per Sf 36,345.00	0	CN-SKWK	0 \$0	· \$0	0 \$0	12.25 \$445,226	0 \$0	12.25 \$445,226
GEN Pre-Stressed Concrete Double Tee Roof Panels	U.C. per Sf 13,700.00	0	CN-SKWK	0 \$0	0 \$0	9 \$123,300	0 \$0	0 \$0	9 \$123,300
GEN Installation Of Pre-Stressed / Precast Panels	U.C. per Ea 170.00	8 1,360	CN-SKWK \$34.52	276.16 \$46,947	0 \$0	° \$0	0 \$0	0 \$0	276.16 \$46,947
GEN Craning For Panels & Beams	U.C. per Day 24.00	20 480	CN-SKWK \$34.52	690.4 \$16,570	0 \$0	o \$0	0 \$0	0 \$0	690,4 \$16,570
GEN Welding & Patching Of Panels	U.C. per Ea 170.00	8 1,360	CN-SKWK \$34.52	276.16 \$46,947	0 \$0	20 \$3,400	0 \$0	0 \$0	296.16 \$50,347

CONSTRUCTION DETAIL ITEM REPORT

V. J. Balls Client:

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

LEVEL Org/Subcontractor 9103,2 CONCRETE - TFD FACILITY	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
GEN Stairwell - 100' High	U.C. per Ea	1.00	400 400	CN-SKWK \$34.52	13808 \$13,808	0 \$0	60000 \$60,000	0 \$0	0 \$0	73808 \$73,808
GEN (*)Concrete Floors - 24" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	585,00	5 2,925	CN-SKWK \$34.52	172.6 \$100,971	0 \$0	180 \$105,300	0 \$0	0 \$0	352.6 \$206,271
GEN (*)Concrete Shielding Walls - 24" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy 1	1,005.00	5 5,025	CN-SKWK \$34.52	172.6 \$173,463	0 \$0	180 \$180,900	0 \$0	0 \$0	352.6 \$354 , 363
GEN Concrete Sidewalks - 5' Wide	U.C. per Lf	250,00	0.2 50	CN-SKWK \$34.52	6.904 \$1,72 6	0 \$0	5 \$1,250	0 \$0 ·	0 \$0	11.904 \$2,976
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$710,939 \$0 \$206,386	\$0 \$0 \$0	\$796,150 \$39,808 \$242,678	\$445,226 \$0 \$129,249	\$0 \$0 \$0	\$1,952,316 \$39,808 \$578,313
Subtotal Estimate Escalation Conlingency					\$235,386 \$299,705	\$0 \$0	. \$276,778 \$352,408	\$147,410 \$187,690	\$0 \$0	\$2,570,437 \$659,574 \$839,803
Total 9103.2 CONCRETE - TFD FACILITY			20,595		\$1,452,416	\$0	\$1,707,822	\$909,576	\$0	\$4,069,813
9103.3 CONCRETE - BOILER HOUSE GEN (*)Concrete Footings & Floors Memo: Includes formwork, concrete, and rebar.	Ú.C. per Cy	92.00	5 460	CN-SKWK \$34.52	172.6 \$15,879	. 0 \$0	180 \$16,560	0 \$0	0 \$0	352.6 \$32,439
GEN Concrete Sidewalks - 5' Wide	U.C. per Lf	100.00	0.2 20	CN-SKWK \$34.52	6.904 \$690	0 \$0	5 \$500	0 \$0	0 \$0	11.904 \$1,190
GEN Misc. Concrete Pads	U.C. per Lot	1.00	20 20	CN-SKWK \$34.52	690.4 \$690	0 \$0	500 \$500	0 \$0	0 \$0	1190.4 \$1,190
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$17,260 \$0 \$5,011	\$0 \$0 \$0	\$17,560 \$878 \$5,353	\$0 \$0 \$0	\$0 \$0 \$0	\$34,820 \$878 \$10,363
Subtotal Estimate Escalation Conlingency					\$5,715 \$7,276	\$0 \$0	\$6,105 \$7,773	\$0 \$0	\$0 \$0	\$46,061 \$11,819 \$15,049
Total 9103.3 CONCRETE - BOILER HOUSE			500		\$35,261	\$0	\$37,668	\$0	\$0	\$72,929
9103.4 CONCRETE - STORAGE FACILITY GEN Hatch Plugs	U.C. per EA	3.00	0		0 \$0	0 \$0	o \$0	75000 \$225,000	0 \$0	75000 \$225,000

08/30/2000

--- Total 9103.4 CONCRETE - STORAGE FACILITY

(*)Concrete For Tunnel - 12" Thick All Surfaces

GEN

-- 9103.5 CONCRETE - TUNNEL

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor 9103,4 CONCRETE - STORAGE FACILITY	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
GEN Precast Concrete Walls - 6" Thick	U.C. per Sf 17,160.00	0	CN-SKWK	0 \$0	0 \$0	0 \$0	8.5 \$145,860	0 \$0	8.5 \$145,860
GEN Pre-Stressed Concrete Double Tee Roof Panels	U.C. per Sf 20,440.00	o	CN-SKWK	0 \$0	0 \$0	9 \$183,960	0 \$0	0 \$0	9 \$183,960
GEN	U.C. per Ea	8	CN-SKWK	276.16	0	0	0	0	276.16
Installation Of Pre-Stressed / Precast Panels	126.00	1,008	\$34.52	\$34,796	\$0	\$0	\$0	\$0	\$34,796
GEN Craning For Panels & Beams	U.C. per Day	20	CN-SKWK	690.4	°0	0	0	0	690.4
	22.00	440	\$34.52	\$15,189	\$0	\$0	\$0	\$0	\$15,189
GEN	U.C. per Ea	8	CN-SKWK	276.16	0	20	0	0	296.16
Welding & Patching Of Panels	126.00	1,008	\$34.52	\$34,796	\$0	\$2,520	\$0	\$0	\$37,316
GEN (*)Concrete Footings Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	5	CN-SKWK	172,6	0	180	0	0	352.6
	260.00	1,300	\$34.52	\$44,876	\$0	\$46,800	\$0	\$0	\$91,676
GEN (*)Concrete Floors - 6" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	5	CN-SKWK	172.6	0	. 180	0	0	352.6
	380.00	1,900	\$34.52	\$65,588	\$0	\$68,400	\$0	\$0	\$133,988
GEN (*)Concrete Partition Wall - 12" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy		CN-SKWK	172.6	o	180	0	0	352.6
	180.00	900	\$34.52	\$31,068	\$0	\$32,400	\$0	\$0	\$63,468
GEN	U.C. per Lf	0.2	CN-SKWK	6.904	0	5	0	0	11.904
Concrete Sidewalks - 5' Wide	500.00	100	\$34.52	\$3,452	\$0	\$2,500	\$0	\$0	\$5,952
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$229,765 \$0 \$66,701	\$0 \$0 \$0	\$336,580 \$16,829 \$102,595	\$370,860 \$0 \$107,661	\$0 \$0 \$0	\$937,205 \$16,829 \$276,956
Subtotal Estimate Escalation Contingency				\$76,073 \$96,860	\$0 \$0	\$117,011 \$148,984	\$122,788 \$156,340	\$0 \$0	\$1,230,990 \$315,872 \$402,184

CN-SKWK

\$34.52

\$469,399

172.6

\$32,794

\$0

0

\$0

\$721,998

180

\$34,200

\$757,649

0

\$0

6,656

5

950

U.C. per Cy

Memo: Includes formwork, concrete, and rebar. Tunnel bottom to be 23' below existing grade. Tunnel shall be 10' wide at the bottom, 15' high and 100' long.

190.00

\$0

0

\$0

\$1,949,047

352.6

\$66,994

CONSTRUCTION DETAIL ITEM REPORT

V. J. Balls Client:

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

LEVEL Org/Subcontractor — 9103.5 CONCRETE - TUNNEL	<u>QTY</u>	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$32,794 \$0 \$9,520	\$0 \$0 \$0	\$34,200 \$1,710 \$10,425	\$0 \$0 \$0	\$0 \$0 \$0	\$66,994 \$1,710 \$19,945
Subtotal Estimate Escalation Contingency				\$10,858 \$13,825	\$0 \$0	\$11,889 \$15,138	\$0 \$0	\$0 \$0	\$88,649 \$22,747 \$28,963
Total 9103.5 CONCRETE - TUNNEL		950		\$66,997	\$0	\$73,362	\$0	\$0	\$140,359
9105.2 METALS - GFF STEEL Structural Steel - Superstructure	U.C. per Sf 66,790,00	0.04 2,672	CN-IRON \$40.16	1.606 \$107,291	0 \$0	2.4 \$160,296	0 \$0	0 \$0	4.006 \$267,587
STEEL Grating & Misc. Metals	U.C. per Lot 1.00	1000 1,000	CN-IRON \$40.16	40160 \$40,160	. \$0	150000 \$150,000	0 \$0	0 \$0	190160 \$190,160
GEN (*)Pre-Engineered Metal Building Memo: Office / restroom, Tru-Pak, and truck airlock areas.	U.C. per Sf 24,380.00	0		0 \$0	0	0 \$0	20 \$487,600	0 \$0	20 \$487,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$147,451 \$0 \$61,831	\$0 \$0 • \$0	\$310,296 \$15,515 \$136,622	\$487,600 \$0 \$141,550	\$0 \$0 \$0	\$945,347 \$15,515 \$340,003
Subtotal Estimate Escalation Contingency				\$53,702 \$68,376	\$0 \$0	\$118,660 \$151,084	\$161,440 \$205,553	\$0 \$0	\$1,300,866 \$333,802 \$425,014
Total 9105.2 METALS - GFF		3,672		\$331,360	\$0	\$732,178	\$996,144	\$0	\$2,059,681
9105.3 METALS - TFD FACILITY STEEL Liner Plate - 4' Up From Floor	U.C. per Sf 1,025.00	2 2,050	CŅ-IRON \$40.16	80.32 \$82,328	0 \$0	10 \$10,250	0 \$0	0 \$0	90.32 \$92,578
STEEL	U.C. per Lot 1.00	200 200	CN-IRON \$40.16	8032 \$8,032	0 \$0	25000 \$25,000	0 \$0	0 \$0	33032 \$33,032
STEEL Grating & Misc. Metals	U.C. per Lot 1.00	1000 1,000	CN-IRON \$40.16	40160 \$40,160	0 \$0	150000 \$150,000	0 \$0	0 \$0	190160 \$190,160
STEEL Structural Steel - Superstructure	U.C. per SI 13,700.00	0.04 548	CN-IRON \$40.16	1.606 \$22,008	0 \$0	2.4 \$32,880	0 \$0	0 \$0	4.006 \$54,888

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
9105.3 METALS - TFD FACILITY STEEL Stairway	U.C. per Ea 1.00	10 10	CN-IRON \$40.16	401.6 \$402	0 \$0	3000 \$3,000	0 \$0	0 \$0	3401.6 \$3,402
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$152,929 \$0 \$64,128	\$0 \$0 \$0	\$221,130 \$11,057 \$97,363	\$0 \$0 \$0	\$0 \$0 \$0	\$374,059 \$11,057 \$161,491
Subtotal Estimate Escalation Contingency	·			\$55,697 \$70,916	\$0 \$0	\$84,562 \$107,669	\$0 \$0	\$0 \$0	\$546,606 \$140,259 \$178,585
Total 9105.3 METALS - TFD FACILITY		3,808		\$343,670	\$0	\$521,781	\$0	\$0	\$865,451
9105.4 METALS - BOILER HOUSE GEN Pre-Engineered Metal Building	U.C. per Sf 3,120.00	0		0 \$0	0 \$0	0 \$0	18 \$56,160	0 \$0	18 \$56,160
GEN Misc. Metals	U.C. per Lot 1.00	40 40	CN-IRON \$40.16	1606.4 \$1,606	. \$0	1200 \$1,200	0 \$0	0 \$0	2806.4 \$2,806
STEEL BOILER STACK SUPPORTS	U.C. per EA 2.00	40 80	CN-IRON \$40.16	1606.4 \$3,213	0 \$0	275 \$550	· \$0	0 \$0	1881.4 \$3,763
STEEL BOILER BUILDING PLATFORMS	U.C. per LBS 11,000.00	0.018 198	CN-IRON \$40.16	0.723 \$7,952	0 \$0	1.62 \$17,820	0 \$0	0 \$0	2.343 \$25,772
STEEL BOILER BUILDING ROOF FRAMING	U.C. per LBS 21,840,00	0.012 262	CN-IRON \$40.16	0.482 \$10,525	0 \$0	0.4 \$8,736	. \$0	0 \$0	0.882 \$19,261
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$23,296 \$0 \$9,561	\$0 \$0 \$0	\$28,306 \$1,415 \$12,300	\$56,160 \$0 \$16,303	\$0 \$0 \$0	\$107,762 \$1,415 \$38,165
Subtotal Estimate Escalation Contingency				\$8,431 \$10,735	\$0 \$0	\$10,783 \$13,729	\$18,594 \$23,675	\$0 \$0	\$147,342 \$37,808 \$48,139
Total 9105.4 METALS - BOILER HOUSE		580		\$52,024	\$0	\$66,534	\$114,732	\$0	\$233,290
9105.5 METALS - STORAGE FACILITY STEEL CHARGE FACE SLAB FRAME	U.C. per TON 780.00	6 4,680	CN-IRON \$40.16	240.96 \$187,949	0 \$0	1100 \$858,000	0 \$0	0 \$0	1340.96 \$1,045,949
STEEL BUILDING STRUCTURAL STEEL	U.C. per TON 756.00	10 7,560	CN-IRON \$40.16	401.6 \$303,610	0 \$0	1200 \$907,200	0 \$0	0 \$0	1601.6 \$1,210,810
STEEL GANTRY CRANE RAILS, EMBEDS, ETC.	U.C. per LF 400.00	3.85 1,540	CN-IRON \$40.16	154,616 \$61,846	0 \$0	161 \$64,400	0 \$0	0 \$0	315.616 \$126,246

A SERVICE TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC
Estimate Number:2570 - Option A

Client:

V. J. Balls

LEVEL Org/Subcontractor — 9105,5 METALS - STORAGE FACILITY	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
STEEL RAILROAD TRACKS - WITHIN BUILDING	U.C. per LF	2	CN-IRON	80.32	0	92.	0	0	172,32
	180.00	360	\$40.16	\$14,458	\$0	\$16,560	\$0	\$0	\$31,018
STEEL	U.C. per LF	2	CN-IRON	80.32	0	92	0	0	172,32
TRANSFER CART RAILS	210.00	420	\$40.18	\$16,867	\$0	\$19,320	\$0	\$0	\$36,187
STEEL .	U.C. per SF	0,25	CN-IRON	10.04	0	40	0	0	50.04
BIRD SCREEN AND VENT LOUVERS	2,300.00	575	\$40.16	\$23,092	\$0	\$92,000	\$0	\$0	\$115,092
STEEL AIR OUTLET WALL (INSIDE)	U.C. per SF 12,600.00	0	CN-IRON	0 \$0	0 \$0	0 \$0	12 \$151,200	0 \$0	12 \$151,200
STEEL (*)Misc. Steel Memo: Handralls, stairways, grating, and etc.	U.C. per Lot	750	CN-IRON	30120	0	45000	0	0	75120
	. 1.00	750	\$40.16	\$30,120	\$0	\$45,000	\$0	\$0	\$75,120
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$637,942 \$0 \$267,508	\$0 \$0 \$0	\$2,002,480 \$100,124 \$881,685	\$151,200 \$0 \$63,403	\$0 \$0 \$0	\$2,791,622 \$100,124 \$1,212,596
Subtotal Estimate Escalation Contingency				\$232,338 \$295,825	. \$0 . \$0	\$765,769 \$975,015	\$55,067 \$70,114	\$0 \$0	\$4,104,341 \$1,053,174 \$1,340,954
Total 9105.5 METALS - STORAGE FACILITY		15,885		\$1,433,613	\$0	\$4,725,072	\$339,784	\$0	\$6,498,469
9107.1 THERMAL & MOISTURE PROTECTION - GFF GEN 2" Thick Foundation Insulation Board	U.C. per Sf	0.033	CN-CARP	1.143	0	0.6	0	0	1.743
	6,700.00	221	\$34.64	\$7,659	\$0	\$4,020	\$0	\$0	\$11,679
GEN	U.C. per Sf	0.06	CN-CARP	2.078	·	2.1	0	0	4.178
3" Thick Extruded Polystyrene Insulation Board	46,000.00	2,760	\$34.64	\$95,606		\$96,600	\$0	\$0	\$192,206
GEN	U.C. per Sf	0.08	CN-LABR	2.407	0	4.5	0	0	6.907
Stucco Finish - 1/2" Thick	46,000.00	3,680	\$30,09	\$110,731	\$0	\$207,000	\$0	\$0	\$317,731
GEN 4" Rigid Roof Insulation - 2 Ea. 2" Layers Of Polyisocyanurate Insulation Board	U.C. per Sf 66,790.00	0.02 1,336	CN-LABR \$30.09	0.602 \$40,194	0 \$0	0.95 \$63, 451	0 \$0	. 0 \$0	1.552 \$103,645
ROOF	U.C. per Sf	0.014	CN-ROFC	0,419	0	2.2	0	0	2.619
EPDM Single Ply Membrane Roofing	66,790.00	935	\$29.95	\$28,005	\$0	\$146,938	\$0	\$0	\$174,943
ROOF	U.C. per Lot	300	CN-ROFC	8985	0	7500	0	0	16485
Redwood, Flashing, & Etc.	1.00	300	\$29.95	\$8,985	\$0	\$7,500	\$0	\$0	\$16,485
GEN	U.C. per Sf	0.016	CN-CARP	0.554	0	0.35	0	0	0.904
3-1/2" Thick Batt Insulation - Metal Building Walls	35,360.00	566	\$34.64	\$19,598	\$0	\$12,376	\$0	\$0	\$31,974
GEN	U.C. per Sf	0.018	CN-CARP	0.624	0	0.4	0	0	1.024
6" Vinyl Faced Batt Insulation - Metal Building Walls	35,360.00	636	\$34.64	\$22,048	\$0	\$14,144	\$0	\$0	\$36,192

Project Name: Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNFY in GFF Project Location: INTEC

Estimate Number: 2570 - Option A

Client:

V. J. Balls

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
9107.1 THERMAL & MOISTURE PROTECTION - GFF GEN Insul-Basket - Metal Building Roof	U.C. per Sf 24,380.00	0.045 1,097	CN-CARP \$34.64	1.559 \$38,004	0 \$0	1.1 \$26,818	0 \$0	0 \$0	2.659 \$64,822
GEN 3" Unfaced Batt Insulation - Metal Building Roof	U.C. per SF 24,380.00	0,007 171	CN-CARP \$34.64	0.242 \$5,912	0 \$0	0.2 \$4,876	0 \$0	0 \$0	0.442 \$10,788
GEN 6" Vinyl Faced Batt Insulation - Metal Building Roof	U.C. per Sf 24,380.00	0.007 171	CN-CARP \$34.64	0.242 \$5,912	0 \$0	0.33 \$8,045	0 \$0	0 \$0	0.572 \$13,957
Subtotal Sales Tax				\$382,653 \$0	\$0 \$0	\$591,768 \$29,588	\$0 \$0	\$0 \$0	\$974,421 \$29,588
INEEL ORG Labor/Subcontractor Overheads				\$137,872	\$0	\$297,816 	\$0	\$0 	\$435,688
Subtotal Estimate Escalation Contingency				\$133,567 \$170,064	\$0 \$0	\$235,859 \$300,308	\$0 \$0	\$0 \$0	\$1,439,697 \$369,426 \$470,372
Total 9107.1 THERMAL & MOISTURE PROTECTION - GF		11,873		\$824,156	\$0	\$1,455,339	\$0	\$0	\$2,279,496
9107.2 THERMAL & MOISTURE PROTECTION - TFD FA	CILITY								
GEN	U.C. per Sf	0.033	CN-CARP	1.143	0	0.6	0	0	1.743
2" Thick Foundation Insulation Board	2,000.00	66	\$34.64	\$2,286	\$0	\$1,200	\$0	\$0	\$3,486
GEN 3" Thick Extruded Polystyrene Insulation Board	U.C. per Sf 37,000.00	0.06 2,220	CN-CARP \$34.64	2.078 \$76,901	0 \$0	2.1 \$77,700	0 \$0	0 \$0	4.178 \$154,601
GEN Stucco Finish - 1/2" Thick	U.C. per Sf 37,000.00	0.08 2,960	CN-LABR \$30.09	2.407 \$89,066	0 \$0	4.5 \$166,500	0 \$0	0 \$0	6.907 \$255,566
GEN High Work Allowance - Add 25% To Labor	U.C. per Hr 1,290.00	0.25 323	CN-LABR \$30.09	7,523 \$9,704	0 \$0	0 \$0	0 \$0	0 \$0	7.523 \$9,704
GEN Manilift Allowance	U.C. per Lot 1,00	0		0 \$0	3000 \$3,000	o \$0	0 \$0	0 \$0	3000 \$3,000
GEN 4" Rigid Roof Insulation - 2 Ea. 2" Layers Of Polyisocyanurate Insulation Board	U.C. per Sf 13,700.00	0.02 274	CN-LABR \$30.09	0.602 \$8,245	0 \$0	0.95 \$13,015	0 \$0	0 \$0	1.552 \$21,260
ROOF EPDM Single Ply Membrane Roofing	U.C. per Sf 13,700.00	0,014 192	CN-ROFC \$29.95	0.419 \$5,744	0 \$0	2.2 \$30,140	0 \$0	0 \$0	2.619 \$35,884

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF Project Localion: INTEC Estimate Number: 2570 - Option A

LEVEL	Org/Subcontractor	TQ	Υ	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Mati	· S/C	<u>Other</u>	TOTAL
Redwood, Flashing,	ROOF	U.C. per Lot	1.00	200 200	CN-ROFC \$29.95	5990 \$5,990	0 \$0	5000 \$5,000	0 \$0	0 \$0	10990 \$10,990
Sublotal Sales Tax INEEL ORG Labor	r/Subcontractor Overheads		•	···		\$197,937 \$0 \$65,959	\$3,000 \$0 \$871	\$293,555 \$14,678 \$116,201	\$0 \$0 \$0	\$0 \$0 \$0	\$494,492 \$14,678 \$183,031
Subtotal Estimate Escalation Contingency	В					\$67,716 \$86,219	\$993 \$1,265	\$108,910 \$138,669	\$0 \$0	\$0 \$0	\$692,200 \$177,618 \$226,153
Total 9107.2 THE	RMAL & MOISTURE PROTECTION - 1	TFD FACILITY		6,234		\$417,830	\$6,129	\$672,012	\$0	\$0	\$1,095,971
	AL & MOISTURE PROTECTION - BOIL INSUL ISULATION W/ Z-GIRTS	ER HOUSE U.C. per SF	6,720,00	0		0 \$0	0 \$0	0 \$0	1.9 \$12,768	0 \$0	1.9 \$12,768
ROOF INSULATION	INSUL	U.C. per SF	3,120.00	0		0 \$0	0 \$0	0 \$0	1 \$3,120	0 \$0	1 \$3,120
EXTERIOR WALL M	GEN IETAL SIDING	U.C. per SF	6,720.00	0.023 155	CN-SHEE \$35.48	0.816 \$5,484	0 \$0	3 \$20,160	0 \$0	0 \$0	3.816 \$25,644
STANDING SEAM N	GEN METAL ROOF	U.C. per SF	3,120.00	0.016 50	CN-SHEE \$35,48	0.568 \$1,771	0 \$0	5 \$15,600	0 \$0	0 \$0	5.568 \$17,371
2" Thick-Foundation	GEN Insulation Board	U.C. per Sf	950.00	0.033 31	CN-CARP \$34,64	1.143 \$1, 086	0 \$0	0.6 \$570	0 \$0	0 \$0	1.743 \$1,656
Subtotal Sales Tax INEEL ORG Labo	r/Subcontractor Overheads	 				\$8,341 \$0 \$2,421	\$0 \$0 \$0	\$36,330 \$1,817 \$11,074	\$15,888 \$0 \$6,662	\$0 \$0 \$0	\$60,559 \$1,817 \$20,158
Subtotal Estimate Escalation Contingency	9					\$2,762 \$3,516	\$0 \$0	\$12,630 \$16,081	\$5,786 \$7,368	\$0 \$0	\$82,533 \$21,178 \$26,965
Total 9107.3 THE	RMAL & MOISTURE PROTECTION - E	BOILER HOUSE		236		\$17,040	\$0	\$77,931	\$35,704	\$0	\$130,676
- 9107.4 THERMA 2" Thick Foundation	AL & MOISTURE PROTECTION - STOP · GEN Insulation Board	RAGE FACILITY U.C. per Sf	2,300.00	0.033 76	CN-CARP \$34.64	1.143 \$2,629	0 \$0	0.6 \$1,380	0 \$0	0 \$0	1.743 \$4,009
3" Thick Extruded Po	GEN olystyrene Insulation Board	U.C. per Sf	17,200.00	0,08 1,032	CN-CARP \$34.64	2.078 \$35,748	0 \$0	2.1 \$36,120	0 \$0	0 \$0	4.178 \$71,868
Stucco Finish - 1/2"	GEN Thick	U.C. per Sf	17,200.00	0.08 1,376	CN-LABR \$30.09	2.407 \$41,404	0 \$0	4.5 \$77,400	0 \$0	0 \$0	6,907 \$118,804

Project Name. **CONSTRUCTION DETAIL ITEM REPORT**

U.C. per Ea

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option A

GEN

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Client:

LEVEL Org/Subcontractor — 9107.4 THERMAL & MOISTURE PROTECTION - STORA	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	Other	TOTAL
GEN High Work Allowance - Add 25% To Labor	U.C. per Hr	0.25	CN-LABR	7.523	0	0	0	0	7.523
	2,408.00	602	\$30.09	\$18,114	\$0	\$0	\$0	\$0	\$18,114
GEN Manlift Allowance	U.C. per Lot 1.00	0		0 \$0	3000 \$3,000	0 \$0	0 \$0	0 \$0	3000 \$3,000
GEN 4" Rigid Roof Insulation - 2 Ea. 2" Layers Of Polyisocyanurate Insulation Board	U.C. per Sf	0.02	CN-LABR	0.602	0	0.95	0	0	1.552
	20,500.00	410	\$30.09	\$12,337	\$0	\$19,475	\$0	\$0	\$31,812
ROOF	U.C. per Sf	0.014	CN-ROFC	0.419	0	2.2	0	0	2.619
EPDM Single Ply Membrane Roofing	20,500.00	287	\$29.95	\$8,596	\$0	\$45,100	\$0	\$0	\$53,696
ROOF	U.C. per Lot	200	CN-ROFC	5990	0	5000	0	0	10990
Redwood, Flashing, & Etc.	1.00	200	\$29.95	\$5,990	\$0	\$5,000	\$0	\$0	\$10,990
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$124,818 \$0 \$46,798	\$3,000 \$0 \$871	\$184,475 \$9,224 \$94,327	\$0 \$0 \$0	\$0 \$0 \$0	\$312,293 \$9,224 \$141,996
Subtotal Estimate Escalation Contingency				\$44,037 \$56,070	\$993 \$1,265	\$73,907 \$94,103	\$0 \$0	\$0 \$0	\$463,513 \$118,937 \$151,437
Total 9107.4 THERMAL & MOISTURE PROTECTION - ST FACILITY	TORAGE	3,983		\$271,722	\$6,129	\$456,036	\$0	\$0	\$733,887
9108.1 DOORS & WINDOWS - GFF GEN Single HM Doors & Hardware	U.C. per Ea	10	CN-CARP	346.4	0	1000	0	0	1346.4
	30.00	300	\$34.64	\$10,392	\$0	\$30,000	\$0	\$0	\$40,392
GEN	U.C. per Ea	15	CN-CARP	519,6	0	1800	0	0	2319.6
Double HM Doors & Hardware	2.00	30	\$34.64	\$1,039	\$0	\$3,600	\$0	\$0	\$4,639
GEN	U.C. per Ea	12	CN-CARP	415.68	0	2000	0	0	2415.68
Exterior Doors - Single	7.00	84	\$34.64	\$2,910	\$0	\$14,000	\$0	\$0	\$16,910

Exterior Doors - Double

CN-CARP

\$34.64

20

40

2.00

692.8

\$1,386

0

\$0

3000

\$6,000

0

\$0

0

\$0

3692.8

\$7,386

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Project Location: INTEC

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Estimate Number: 2570 - Option A

LEVEL Org/Subcontractor 9108,1 DOORS & WINDOWS - GFF	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
12'x12' Overhead Roll-Up Door	U.C. per Ea	2.00	75 150	CN-CARP \$34.64	2598 \$5,196	0 \$0	16000 \$32,000	0 \$0	0 \$0	18598 \$37,196
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		 			\$20,923 \$0 \$6,074	\$0 \$0 \$0	\$85,600 \$4,280 \$26,092	\$0 \$0 \$0	\$0 \$0 \$0	\$106,523 \$4,280 \$32,166
Subtotal Estimate Escalation Contingency					\$6,927 \$8,820	\$0 \$0	\$29,758 \$37,890	\$0 \$0	\$0 \$0	\$142,969 \$36,686 \$46,710
Total 9108.1 DOORS & WINDOWS - GFF			604		\$42,744	\$0	\$183,621	\$0	\$0	\$226,364
9108.2 DOORS & WINDOWS - TFD FACILITY GEN Single HM Doors & Hardware	U.C. per Ea	12.00	10 120	CN-CARP \$34.64	346.4 \$4,157	0 \$0	1000 \$12,000	0 \$0	0 \$0	1346.4 \$16,157
GEN Double HM Doors & Hardware	U.C. per Ea	6.00	15 90	CN-CARP \$34.64	519.6 \$3,118	0 \$0	1800 \$10,800	0 \$0	0 \$0	2319.6 \$13,918
GEN Exterior Doors	U.C. per Ea	4.00	12 48	CN-CARP \$34.64	415.68 \$1,663	0 \$0	2000 \$8,000	0 \$0	0 \$0	2415.68 \$9,663
GEN 3' x 7' Shielding Doors	U.C. per Ea	2.00	40 80	CN-CARP \$34.64	1385.6 \$2,771	500 \$1, 000	25000 \$50,000	0 \$0	0 \$0	26885.6 \$53,771
GEN 12'x12' Overhead Roll-Up Door	U.C. per Ea	2.00	75 150	CN-CARP \$34.64	2598 \$5,196	0 \$0	16000 \$32,000	0 \$0	0 \$0	18598 \$37,196
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$16,904 \$0 \$4,907	\$1,000 \$0 \$290	\$112,800 \$5,640 \$34,383	\$0 \$0 \$0	\$0 \$0 \$0	\$130,704 \$5,640 \$39,581
Subtotal Estimate Escalation Conlingency					\$5,597 \$7,126	\$331 \$422	\$39,214 \$49,930	\$0 \$0	\$0 \$0	\$175,925 \$45,142 \$57,478
Total 9108.2 DOORS & WINDOWS - TFD FACILITY			488		\$34,535	\$2,043	\$241,967	\$0	\$0	\$278,545
9108.3 DOORS & WINDOWS - BOILER HOUSE GEN Single HM Doors & Hardware	U.C. per Ea	3.00	10 30	CN-CARP \$34.64	346.4 \$1,039	0 \$0	1000 \$3,000	0 \$0	0 \$0	1346.4 \$4,039
GEN	U.C. per Ea	4.00	15	CN-CARP	519.6	0	1800	0	0	2319.6

\$34.64

\$520

\$0

\$1,800

15

1.00

\$2,320

\$0

\$0

Double HM Doors & Hardware

A CONTRACTOR OF THE SECOND SEC

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF Project Location: INTEC

Estimate Number: 2570 - Option A

Client: V. J. Balls

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	_S/C_	<u>Other</u>	TOTAL
9108.3 DOORS & WINDOWS - BOILER HOUSE GEN 12'x12' Overhead Roll-Up Door	U.C. per Ea 1.00	75 75		2598 \$2,598	0 \$0	16000 \$16,000	0 \$0	0 \$0	18598 \$18,598
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$4,157 \$0 \$1,207	\$0 \$0 \$0	\$20,800 \$1,040 \$6,340	\$0 \$0 \$0	\$0 \$0 \$0	\$24,957 \$1,040 \$7,547
Subtotal Estimate Escalation Contingency				\$1,37 6 \$1,752	\$0 \$0	\$7,231 \$9,207	\$0 \$0	\$0 \$0	\$33,544 \$8,607 \$10,959
Total 9108.3 DOORS & WINDOWS - BOILER HOUSE	•	120		\$8,492	\$0	\$44,618	\$0	\$0	\$53,110
9108.4 DOORS & WINDOWS - STORAGE FACILITY GEN OVERHEAD DOORS	U.C. per EA 2.00	75 150	\$34.52	2589 \$5,178	0 \$0	16000 \$32,000	0 \$0	0 \$0	18589 \$37,178
GEN PERSONNEL DOORS	U.C. per EA 5.00	10 50	CN-SKWK \$34.52	345.2 \$1,726	0 \$0	1000 \$5,000	0 \$0	0 \$0	1345.2 \$6,726
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$6,904 \$0 \$2,004	\$0 \$0 \$0	\$37,000 \$1,850 \$11,278	\$0 \$0 \$0	\$0 \$0 \$0	\$43,904 \$1,850 \$13,282
Subtotal Estimate Escalation Contingency				\$2,286 \$2,910	\$0 \$0	\$12,863 \$16,378	\$0 \$0	\$0 \$0	\$59,036 \$15,149 \$19,288
Total 9108.4 DOORS & WINDOWS - STORAGE FACILITY		200		\$14,105	\$0	\$79,369	\$0	\$0	\$93,473
9109.1 FINISHES - GFF PAINT Painting Gypsum Board Wall	U.C. per Sf 23,500.00	0.012 282		0.365 \$8,570	0 \$0	0.12 \$2,820	0 \$0	0 \$0	0.485 \$11,390
PAINT Paint Structural Steel .	U.C. per Sf 13,700.00	0.08 1,098	CN-PAIN \$30.39	2.431 \$33,307	0 \$0	0.1 \$1,370	0 \$0	0 \$0	2.531 \$34,677
PAINT Floor Painting - Drum Storage	U.C. per Sf 52,000.00	0.011 572	CN-PAIN \$30.39	0.334 \$17,383	0 \$0	0.5 \$26,000	0 \$0	0 \$0	0.834 \$43,383
PAINT Floor Painting - Drum Processing	U.C. per Sf 14,800.00	0.011 163	CN-PAIN \$30.39	0.334 \$4,947	0 \$0	0.5 \$7,400	0 \$0	0 \$0	0.834 \$12 , 347
PAINT Pipe Painting / I.D.	U.C. per Lot 1.00	250 250	CN-PAIN \$30.39	7597.5 \$7,598	0 \$0	4000 \$4,000	0 \$0	0 \$0	11597.5 \$11,598
PAINT Paint Doors & Frames	U.C. per Ea 65.00	4 260	CN-PAIN \$30.39	121.56 \$7,901	o \$0	50 \$3,250	0 \$0	0 \$0	171.56 \$11,151

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

Client:

V. J. Balls

LEVEL Org/Subcontractor 9109.1 FINISHES - GFF	QTY	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Mati</u>	_S/C_	Other	TOTAL
PAINT	U.C. per Lot	80	CN-PAIN	2431.2	0	150	0	0	2581.2
Touch-Up Paint	1.00	80	\$30.39	\$2,431	\$0	\$150	\$0	\$0	\$2,581
GEN	U.C. per Sf	0.03	CN-LABR	0,903	0	1.5	0	0	2.403
Carpet Tile	10,550.00	317	\$30.09	\$9,523	\$0	\$15,825	\$0	\$0	\$25,348
TILE	U.C. per Sf	0.04	CN-TILF	1.386	0	2.5	0	0	3.886
Ceramic Tile	4,100.00	164	\$34.64	\$5,681	\$0	\$10,250	\$0	\$0	\$15,931
GEN	U.C. per Ea	1	CN-LABR	30.09	0	200	0	0	230.09
Entry Mat - Large	4.00	4	\$30.09	\$120	\$0	\$800	\$0	\$0	\$920
GEN	U.C. per Lf	0.06	CN-LABR	1.805	0	0.75	0	0	2.555
4" Vinyl Cove Base	2,000.00	120	\$30.09	\$3,611	\$0	\$1, 500	\$0	\$0	\$5,111
GEN Acoustical Suspended Ceiling	U.C. per Sf 10,550,00	0.04 422	CN-LABR \$30.09	1.204 \$12,698	. \$0	1 \$10,550	0 \$0	0 \$0	2.204 \$23,248
GEN	U.C. per Lot	6	CN-CARP	207.84	0	750	0	0	957.84
Building Lettering	1.00	6	\$34.64	\$208	\$0	\$750	\$0	\$0	\$958
GEN	U.C. per Sf	0.019	CN-CARP	0.658	. 0	0.24	0	0	0.898
3-1/2" Metal Stud Wall	12,000.00	228	\$34.64	\$7,898		\$2,880	\$0	\$0	\$10,778
GEN	U.C. per Sf	0.017	CN-CARP	0.589	0	0.33	0	0	0,919
5/8" Gypsum Board - Taped & Textured	23,500.00	400	\$34.64	\$13,839	\$0	\$7,755	\$0	\$0	\$21,594
GEN RCRA Floor - Grouting Facility	U.C. per Sf 14,800.00	0		0 \$0	0 \$0	0 \$0	7 \$103,600	0 \$0	7 \$103,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$135,716 \$0 \$49,885	\$0 \$0 \$0	\$95,300 \$4,765 \$34,932	\$103,600 \$0 \$30,075	\$0 \$0 \$0	\$334,616 \$4,765 \$114,891
Subtotal Estimate Escalation Conlingency				\$47,625 \$60,639	\$0 \$0	\$34,640 \$44,106	\$34,301 \$43,674	\$0 \$0	\$454,273 \$116,568 \$148,418
Total 9109.1 FINISHES - GFF		4,363		\$293,864	\$0	\$213,743	\$211,650	\$0	\$719,257
9109.2 FINISHES - TFD FACILITY PAINT Building Painting	U.C. per Sf	0.03	CN-PAIN	0.912	0	0.75	0	o	1.662
	100,000.00	3,000	\$30.39	\$91,170	\$0	\$75,000	\$0	\$0	\$166,170
PAINT	U.C. per SF	0.08	CN-PAIN	2.431	0	0.1	0	0	2.531
Paint Structural Steel	13,700.00	1,096	\$30.39	\$33,307	\$0	\$1,370	\$0	\$0	\$34,677
PAINT Decontaminable Coating - Hot Celi	U.C. per Sf	0.08	CN-PAIN	2.431	0	1.5	. 0	0	3.931
	26,000.00	2,080	\$30.39	\$63,211	\$0	\$39,000	\$0	\$0	\$102,211

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Project Name:

Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor 9109.2 FINISHES - TFD FACILITY	QTY ·	Hrs Crew/Rate	Labor	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
PAINT Floor Painting	U.C. per Sf	0.011 CN-PAIN	0.334	0	0.5	0	0	0.834
	30,000.00	330 \$30.39	\$10,029	\$0	\$15,000	\$0	\$0	\$25,029
PAINT Pipe Painting / I.D.	U.C. per Lot	250 CN-PAIN	7597.5	0	4000	0	0	11597.5
	1.00	250 \$30,39	\$7,598	\$0	\$4,000	\$0	\$0	\$11,598
PAINT Paint Doors & Frames	U.C. per.Ea	4 CN-PAIN	121.56	0	50	0	0	171.56
	20.00	80 \$30.39	\$2,431	\$0	\$1,000	\$0	\$0	\$3,431
PAINT	U.C. per Łot	80 CN-PAIN	2431.2	0	150	0	0	2581.2
Touch-Up Paint	1.00	80 \$30.39	\$2,431	\$0	\$150	\$0	\$0	\$2,581
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			\$210,177 \$0 \$88,134	\$0 \$0 \$0	\$135,520 \$6,776 \$59,669	\$0 \$0 \$0	\$0 \$0 \$0	\$345,697 \$6,776 \$147,803
Subtotal Estimate Escalation Contingency			\$76,547 \$97,463	\$0 \$0	\$51,824 \$65,985	\$0 \$0	\$0 \$0	\$500,276 \$128,371 \$163,448
Total 9109.2 FINISHES - TFD FACILITY		6,916	\$472,320	\$0	\$319,774	\$0	\$0	\$792,095
9109.3 FINISHES - BOILER HOUSE PAINT Paint Doors & Frames	U.C. per Ea	4 CN-PAIN	121.56	0	50	0	0	171.56
	4.00	16 \$30,39	\$486	\$0	\$200	\$0	\$0	\$686
PAINT	U.C. per Lot	16 CN-PAIN	486.24	0	150	0	0	636.24
Touch-Up Paint	1,00	16 \$30.39	\$486	\$0	\$150	\$0	\$0	\$636
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			\$972 \$0 \$408	\$0 \$0 \$0	\$350 \$18 \$154	\$0 \$0 \$0	\$0 \$0 \$0	\$1,322 \$18 \$562
Subtotal Estimate Escalation Contingency			\$354 \$451	\$0 \$0	\$134 \$170	\$0 \$0	\$0 \$0	\$1,902 \$488 \$621
Total 9109.3 FINISHES - BOILER HOUSE		32	\$2,185	\$0	\$826	\$0	\$0	\$3,011
9109.4 FINISHES - STORAGE FACILITY PAINT Paint Structural Steel	U.C. per SF	0.08 CN-PAIN	2.431	0	0.1	0	0	2.531
	13,700.00	1,096 \$30.39	\$33,307	\$0	\$1,370	\$0	\$0	\$34,677
PAINT	U.C. per Sf	0.03 CN-PAIN	0.912	0	0.75	0	0	1.662
Building Painting	2,500.00	75 \$30.39	\$2,279	\$0	\$1,875	\$0	\$0	\$4,154
PAINT Decontaminable Coating - Remote Handling Area	U.C. per Sf	0.08 CN-PAIN	2.431	0	1.5	0	0	3.931
	22,000.00	1,760 \$30.39	\$53,486	\$0	\$33,000	\$0	\$0	\$86,486

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

LEVEL Org/Subcontractor 9109.4 FINISHES - STORAGE FACILITY	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
PAINT Floor Painting - Decontaminable - Remote Handling Area	U.C. per Sf	0.08	CN-PAIN	2.431	0	1.5	0	0	3.931
	17,600.00	1,408	\$30.39	\$42,789	\$0	\$26,400	\$0	\$0	\$69,189
PAINT Pipe Painting / I.D.	U.C. per Lot	250	CN-PAIN	7597.5	0	4000	0	0	11597.5
	1.00	250	\$30,39	\$7,598	\$0	\$4,000	\$0	\$0	\$11,598
PAINT Paint Doors & Frames	U.C. per Ea	4	CN-PAIN	121.56	0	50	0	0	171.56
	7.00	28	\$30.39	\$851	\$0	\$350	\$0	\$0	\$1,201
PAINT	U.C. per Lot	40	CN-PAIN	1215.6	0	150	0	0	1365.6
Touch-Up Paint	1.00	40	\$30.39	\$1,216	\$0	\$150	\$0	\$0	\$1,366
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$141,526 \$0 \$59,346	\$0 \$0 \$0	\$67,145 \$3,357 \$29,564	\$0 \$0 \$0	\$0 \$0 \$0	\$208,671 \$3,357 \$88,910
Subtotal Estimate Escalation Contingency				\$51,544 \$65,628	\$0 \$0	\$25,677 \$32,693	\$0 \$0	\$0 \$0	\$300,938 \$77,221 \$98,321
Total 9109.4 FINISHES - STORAGE FACILITY		4,657		\$318,045	\$0	\$158,436	\$0	\$0	\$476,481
9110.1 SPECIALTIES - GFF GEN Storage Racks	U.C. per Lf	0.25	CN-LABR	7.523	0 ·	80	0	0	87.523
	6,250.00	1,563	\$30.09	\$47,016	\$0	\$500,000	\$0	\$0	\$547;016
GEN Truck Loading Platform	U.C. per Ea 2.00	0		0 \$0	0 \$0	o \$0	45000 \$90,000	0 \$0	45000 \$90,000
GEN	U.C. per Ea	5	CN-CARP	173.2	0	1800	0	0	1973.2
Modular Offices	20,00	100	\$34.64	\$3,464	\$0	\$36,000	\$0	\$0	\$39,464
GEN	U.C. per Plc	5	CN-CARP	173.2	0	2500	0	0	2673.2
Office Furnishings	20.00	100	\$34.64	\$3,464	\$0	\$50,000	\$0	\$0	\$53,464
GEN	U.C. per Ea	1	CN-CARP	34.64	0	155	0	0	189.64
Mirror With Shelf - 20" x 30"	7.00	7	\$34.64	\$242	\$0	\$1,085	\$0	\$0	\$1,327
GEN	U.C. per Ea	3	CN-CARP	103.92	0	170	0	0	273.92
Urinal Screen	3,00	9	\$34.64	\$312	\$0	\$510	\$0	\$0	\$822
GEN Toilet Partillon	U.C. per Ea	4	CN-CARP	138.56	0	380	0	0	518.56
	7.00	28	\$34.64	\$970	\$0	\$2,660	\$0	\$0	\$3,630
GEN	U.C. per Ea	0.4	CN-CARP	13.856	0	10	0	0	23.856
T.P. Dispenser	3.00	1	\$34.64	\$42	\$0	\$30	\$0	\$0	\$72
GEN	U.C. per Ea	0.5	CN-CARP	17.32	0	15	0	0	32.32
T.P. Dispenser With Purse Shelf	4.00	2	\$34.64	\$69	\$0	\$60	\$0	\$0	\$129

Project Name: Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Mati</u>	S/C	<u>Other</u>	TOTAL
9110.1 SPECIALTIES - GFF GEN San. Napkin Disposal	U.C. per Ea 4.0	0.5		17.32 \$69	0 \$0	20 \$80	0 \$0	0 \$0	37.32 \$149
GEN H.C. Grab Bar - 52"	U.C. per Ea	0.6		20.784 \$42	0 \$0	65 \$130	o \$0	0 \$0	85.784 \$172
GEN Concealed Grab Bar - 42"	U.C. per Ea 4.0	0.6		20.784 \$83	0 \$0	75 \$300	0 \$0	0 \$0	95.784 \$383
GEN Concealed Grab Bar - 36"	U.C. per Ea 2.0	0.6		20.784 \$42	0 \$0	65 \$130	0 \$0	0 \$0	85.784 \$172
GEN Towel Dispenser & Waste Receptacle	U.C. per Ea 4.0	1) 4	CN-CARP \$34.64	34.64 \$139	0 \$0	250 \$1,000	0 \$0	0 \$0	284.64 \$1,139
, GEN Folding Shower Seat	U.C. per Ea	0.75		25.98 \$52	0 \$0	75 \$150	0 \$0	0 \$0	100.98 \$202
GEN Shower Curtain - 40' x 78"	U.C. per Ea	0.5		17.32 \$35	o . \$0	45 \$90	0 \$0	0 \$0	62.32 \$125
GEN Tilling Mirror - 24" x 30"	U.C. per Ea 2.0	1	CN-CARP \$34.64	34.64 \$69	0 \$0	155 \$310	0 \$0	0 \$0	189.64 \$379
GEN Shower Curtain Rod - 36" Long	U.C. per Ea	0.5		17.32 \$35	0 \$0	25 \$50	0 \$0	0 \$0	42.32 \$85
GEN Double Prong Hooks - SST	U.C. per Ea 20.0	0.15		5.196 \$104	0 \$0	5 \$100	0 \$0	0 \$0	10.196 \$204
GEN Pedestal Bench - 36" Long	U.C. per Ea 6,0	3		103.92 \$624	0 \$0	250 \$1,500	0 \$0	0 \$0	353.92 \$2, 124
GEN Single Tier Locker - 12" x 15" x 72"	U.C. per Ea 60.0	1.25) 75		43.3 \$2,598	0 \$0	125 \$7,500	0 \$0	0 \$0	168.3 \$10 . 098
GEN Waste Receptacle	U.C. per Ea 4.0	0.3		10.392 \$42	0 \$0	55 \$220	0 \$0	0 \$0	65.392 \$262
GEN Freight Elevator	U.C. per Ea) 0		0 \$0	0 \$0	0 \$0	250000 \$250,000	0 \$0	250000 \$250,000

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

LEVEL Org/Subcontractor 9110.1 SPECIALTIES - GFF	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	_S/C_	Other	TOTAL
GEN	U.C. per Ea	4.00	400	CN-SKWK	13808	0	750000	0	0	763808
Auto Retrieval System With Three Fork Lifts		1.00	400	\$34.52	\$13,808	\$0	\$750,000	\$0	\$0	\$763,808
Subtolat Sales Tax					\$73,318	\$0	\$1,351,905	\$340,000	\$0	\$1,765,223
INEEL ORG Labor/Subcontractor Overheads					\$0 \$21,284	\$0 \$0	\$67,595 \$412,081	\$0 \$98,702	\$0 \$0	\$67,595 \$532,067
Subtotal Estimate						· · · · · · · · · · · · · · · · · · ·				\$2,364,886
Escalation Contingency					\$24,275 \$36,852	\$0 \$0	\$469,984 \$713,485	\$112,571 \$170,895	\$0 \$0	\$606,830
Total 9110.1 SPECIALTIES - GFF		· · · · · · · · · · · · · · · · · · ·	2,323		\$155,730	\$0			\$0	\$921,232
,			2,020		\$ 155,130	ΦU	\$3,015,050	\$722,168	\$0	\$3,892,947
9110.2 SPECIALTIES - TFD FACILITY GEN	U.C. per Ea		120	CN-IRON	4819.2	0	75000	0	0	79819,2
20 Ton O.H. Crane	·	1.00	120	\$40.16	\$4,819	\$0	\$75,000	\$0	\$0	\$79,819
GEN	U.C. per Ea		80	CN-IRON	3212.8	0	50000	0	0	53212.8
Hot Cell O.H. Crane		1,00	80	\$40.16	\$3,213	\$0	\$50,000	\$0	\$0	\$53,213
GEN	U.C. per Ea		100	CN-MILL	3292	0	170000	0	0	173292
Shielding Windows - 2' Thick		8.00	800	\$32,92	\$26,336	\$0	\$1,360,000	\$0	\$0	\$1,386,336
GEN Par Marinulatora Madel 4350 Mall Mariated	U.C. per Ea	4.00	200	CN-MILL	6584	0	1419000	0	0	1425584
PaR Manipulators - Model 4350 - Wall Mounted		4.00	800	\$32.92	\$26,336	\$0	\$5,676,000	\$0	\$0	\$5,702,336
GEN Robotic / Remote Handling Allowance	U.C. per Lot	1.00	0		0 \$0	0 \$0	0	6000000	0	6000000
Nobolie / Nomole : Ishaing Allowalles		1,00	U		Φυ	20	\$0	\$6,000,000	\$0	\$6,000,000
Subtotal					\$60,704	\$0	\$7,161,000	\$6,000,000	\$0	\$13,221,704
Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$47.633	\$0	\$358,050	\$0	\$0	\$358,050
					\$17,622	\$0	\$2,182,780	\$1,741,800	\$0 	\$3,942,203
Subtotal Estimate Escalation					\$20,099	\$0	\$2,489,490	\$1,986,546	¢o.	\$17,521,957 \$4,496,134
Contingency					\$30,512	\$0	\$3,779,309	\$3,015,787	\$0 \$0	\$6,825,608
Total 9110.2 SPECIALTIES - TFD FACILITY			1,800		\$128,937	\$0	\$15,970,629	\$12,744,133	\$0	\$28,843,699
9110.3 SPECIALTIES - BOILER HOUSE			•							
GEN 10 Ton O.H. Crane	U.C. per Ea	1.00	100 100	CN-IRON \$40,16	4016 \$4,016	. 0 \$0	40000	0	0	44016
10 Ton Only Orang	•	1.00	100	φ4 υ. 10	φ4,U10	φU	\$40,000	\$0	\$0	\$44,016

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF Project Location: INTEC

Estimate Number: 2570 - Option A

Client: V. J. Balls

LEVEL Org/Subcontractor 9110.3 SPECIALTIES - BOILER HOUSE	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	-,,-				\$4,016 \$0 \$1,166	\$0 \$0 \$0	\$40,000 \$2,000 \$12,193	\$0 \$0 \$0	\$0 \$0 \$0	\$44,016 \$2,000 \$13,358
Subtotal Estimate Escalation Contingency					\$1,330 \$2,019	\$0 \$0	\$13,906 \$21,111	\$0 \$0	\$0 \$0	\$59,374 \$15,235 \$23,129
Total 9110.3 SPECIALTIES - BOILER HOUSE			100		\$8,530	\$0	\$89,209	\$0	\$0	\$97,739
9110.4 SPECIALTIES - STORAGE FACILITY GEN VAULT TUBE ASSEMBLIES	U.C. per EA	1,584.00	50 79,200	CN-IRON \$40.16	2008 \$3,180,672	0 \$0	23100 \$36,590,400	0 \$0	0 \$0	25108 \$39,771,072
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$3,180,672 \$0 \$923,349	\$0 \$0 \$0	\$36,590,400 \$1,829,520 \$11,153,303	\$0 \$0 \$0	\$0 \$0 \$0	\$39,771,072 \$1,829,520 \$12,076,652
Subtotal Estimate Escalation Contingency					\$1,053,092 \$1,598,705	\$0 \$0	\$12,720,489 \$19,311,051	\$0 \$0	\$0 \$0	\$53,677,244 \$13,773,581 \$20,909,756
Total 9110.4 SPECIALTIES - STORAGE FACILITY			79,200		\$6,755,818	\$0	\$81,604,762	\$0	\$0	\$88,360,580
9111.1.1 EQUIPMENT - GFF PIPE Filter Feed Pump - P-201-2a & 2b (Skid Mounted)	U.C. per Ea	2.00	10 20	CN-PIPE \$37.58	375.8 \$752	0 \$0	7500 \$15,000	0 \$0	0 \$0	7875.8 \$15,752
PIPE SBW Slurry XFR Pump - P-201-6a, b - 30 hp	U.C. per Ea	2.00	6 12	CN-PIPE \$37.58	225.48 \$451	500 \$1,000	5500 \$11,000	0 \$0	0 \$0	6225.48 \$12,451
PIPE SBW Day Tank - T-201-2a, b - 1179 Gal SST	U.C. per Ea	2.00	8 16	CN-PIPE \$37.58	300.64 \$601	0 \$0	15000 \$30,000	0 \$0	0 \$0	15300.64 \$30,601
PIPE Cross Flow Filter - CF-201-1, 2 (36"x60"x65")	U.C. per Ea	2.00	40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	100000 \$200,000	0 \$0	0 \$0	101503.2 \$203,006
PIPE Extraction Feed Pump - P-201-5375 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	1200 \$1,200	0 \$0	0 \$0	1275.16 \$1,275
PIPE Solvent Feed Pump - P-202-525 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	500 \$500	0 \$0	0 \$0	575.16 \$575
PIPE UNEX Solvent Tank - T-202-5 - 500 Gal SST	U.C. per Ea	1.00	6 6	CN-PIPE \$37.58	225.48 \$225	0 \$0	8500 \$8,500	0 \$0	0 \$0	8725.48 \$8,725
PIPE Extraction Contactor - CON-202-1-14 (3'x13'x5')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	300000 \$300,000	0 \$0	0 \$0	301751.6 \$301,752

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC
Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor — 9111.1.1 EQUIPMENT - GFF	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
PIPE Scrubbing Contactor - SB-202-1-2 (3'x2'x5')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	300000 \$300,000	0 \$0	0 \$0	301751.6 \$301,752
PIPE Stripping Contactor - SP-202-1-8 (3'x7'x5')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	300000 \$300,000	0 \$0	0 \$0	301751.6 \$301,752
PIPE SBW Feed Tank - T-201-1 - 4718 Gal. SST	U.C. per Ea	1.00	12 12	CN-PIPE \$37,58	450.96 \$451	500 \$500	31000 \$31,000	0 \$0	0 \$0	31950.96 \$31,951
PIPE Extraction Feed Tank - T-201-5a, b, c - 2359 Gal. SST	U.C. per Ea	3.00	10 30	CN-PIPE \$37,58	375.8 \$1,127	500 \$1, 500	21000 \$63,000	0 \$0	0 \$0	21875;8 \$65,627
PIPE UNEX Raffinate Tank - T-202-6a, b - 1761 Gal. SST	U.C. per Ea	2.00	8 16	CN-PIPE \$37.58	300.64 \$601	250 \$500	18600 \$37,200	0 \$0	0 \$0	19150.64 \$38,301
PIPE UNEX Strip Effluent Tank - T-202-14 - 1124 Gal. SST	U.C. per Ea	1.00	6 6	CN-PIPE \$37.58	225,48 \$225	250 \$250	14900 \$14,900	0 \$0	0 \$0	15375,48 \$15,375
PIPE . SBW XFR Pump - P201-1 - 30 hp	U.C. per Ea	1.00	16 16	CN-PIPE \$37.58	601.28 \$601	0 \$0	4500 \$4,500	0 \$0	0 \$0	5101.28 \$5,101
PIPE Raffinate XFR Pump - P-202-8a25 hp	U,C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	600 \$600	0 \$0	, \$0	712.74 \$713
PIPE Raffinate Off Spec. XFR Pump - P-202-6b - 2 hp	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	0 \$0	2800 \$2,800	0 \$0	0 \$0	2950.32 \$2,950
PIPE Strip Effluent XFR Pump - P-202-1425 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	600 \$600	0 \$0	0 \$0	712.74 \$713
PIPE HF Pump - P-201-4125 hp	U.C. per Ea	1.00	2	CN-PIPE \$37.58	75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Dicarbolide Feed Pump - P-202-175 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE PEG Feed Pump - P-202-275 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE CMPO Feed Pump - P-202-375 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE FS-13 Feed Pump - P-202-475 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE Acid Feed Pump - P-202-775 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	, 0 \$0	0 \$0	912.74 \$913
PIPE Aluminum Nitrate Feed Pump - P-202-875 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

Project Name:

V. J. Balls Client:

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
9111.1.1 EQUIPMENT - GFF PIPE	U.C. per Ea		2	CN-PIPE	75.16	0	600	0	0	675.16
Scrub Makeup XFR Pump - P-202-925 hp		1.00	2	\$37.58	\$75	\$0	\$600	\$0	\$0	\$675
PIPE	U.C. per Ea	4.00	2	CN-PIPE	75.16	0	600	0	0	675.16
Scrub Solution Feed Pump - P-202-1025 hp		1.00	2	\$37.58	\$75	\$0	\$600	\$0	\$0	\$675
PIPE Strip Makeup XFR Pump - P-202-1225 hp	U.C. per Ea	1.00	2	CN-PIPE	75.16	0	600	0	0	675.16
•		1.00	2	\$37.58	\$75	\$0	\$600	\$0	\$0	\$675
PIPE Strip Solution Feed Pump - P-202-1325 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37,58	75.16 \$75	0	600	0	0	675.16
, ,		1.00		•		\$0	\$600	\$0	\$0	\$675
PIPE HF Storage Tank - T-201-3 - 4000 Gal C-276	U.C. per Ea	1.00	16 16	CN-PIPE \$37.58	601.28 \$601	500 \$500	20500 \$20,500	0 \$0	0	21601.28
•		1.00		• • • • • • • • • • • • • • • • • • • •		•			\$0	\$21,601
PIPE HF Makeup Tank - T-201-4 - 237 Gal C-276	U.C. per Ea	1.00	3 3	CN-PIPE \$37,58	112.74 \$113	0 \$0	4000 \$4,000	0 \$0	0 \$0	4112.74 \$4,113
·		1.00	-					•	•	
PIPE Dicarbolide Feed Tank - T-202-1 - 55 Gal, SST	U.C. per Ea	1.00	3	CN-PIPE \$37.58	112.74 \$113	0 \$0	2000 \$2,000	0 \$0	0 \$0	2112.74 \$2,113
PIPE	110 5-	.,				·		•	•	
PEG 400 Feed Tank - T-202-2 - 55 Gal. SST	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	2000 \$2,000	0 \$0	0 \$0	2112.74 \$2,113
PIPE	U.C. per Ea		3	CN-PIPE	112.74				·	
Ph2Bu2CMPO Feed Tank - T-202-3a, b - 55 Gal. SST	O.C. per Ea	2.00	6	\$37.58	\$225	0 \$0	2000 \$4,000	0 \$0	0 \$0	2112.74 \$4,225
PIPE	U.C. per Ea		3	CN-PIPE	112.74	0	2000	0	0	2112.74
FS-13 Tank - T-202-4 - 55 Gal. SST	0.0. por Lu	1.00	3	\$37.58	\$113	\$0	\$2,000	\$0	\$0	\$2,113
PIPE	U.C. per Ea		3	CN-PIPE	112.74	0	2000	0	0	2112.74
Recycle Acid Tank - T-202-7 - 55 Gal. SST		1.00	3	\$37.58	\$113	\$0	\$2,000	\$0	\$0	\$2,113
PIPE	U.C. per Ea		3	CN-PIPE	112.74	0	2000	0	0	2112 74
Aluminum Nitrate Tank - T-202-8 -55 Gal. SST	•	1.00	3	\$37.58	\$113	\$0	\$2,000	\$0	\$0	\$2,113
PIPE	U.C. per Ea		10	CN-PIPE	375.8	500	11900	0	0	12775.8
UNEX Scrub Makeup Tank - T-202-9 - 807 Gal. SST	•	1.00	10	\$37.58	\$376	\$500	\$11,900	\$0	\$0	\$12,776
PIPE	U.C. per Ea		10	CN-PIPE	375.8	500	12500	0	0	13375.8
UNEX Scrub Solution Tank - T-202-10 - 888 Gal. SST	·	1.00	10	\$37.58	\$376	\$500	\$12,500	\$0	\$0	\$13,376
PIPE	U.C. per Ea		3	CN-PIPE	112.74	0	2000	0	0	2112.74
DPTA Storage Tank - T-202-11 - 55 Gal. SST (UNEX Only)		1.00	3	\$37.58	\$113	\$0	\$2,000	\$0	\$0	\$2,113
PIPE	U.C. per Ea		12	CN-PIPE	450.96	500	15000	0	0	15950.96
UNEX Strip Makeup Tank - T-202-12 - 1132 Gal. SST		1.00	12	\$37.58	\$451	\$500	\$15,000	\$0	\$0	\$15,951

CONSTRUCTION DETAIL ITEM REPORT

V. J. Balls Client:

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

LEVEL Org/Subcontractor — 9111.1.1 EQUIPMENT - GFF	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
PIPE UNEX Strip Solution Feed Tank - T-202-13 - 1245 Gal. SST	U.C. per Ea	1.00	12 12	CN-PIPE \$37.58	450.96 \$451	500 \$500	16000 \$16,000	0 \$0	0 \$0	16950.96 \$16,951
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$15,145 \$0 \$7,285	\$9,250 \$0 \$4,450	\$1,424,500 \$71,225 \$719,504	\$0 \$0 \$0	\$0 \$0 \$0	\$1,448,895 \$71,225 \$731,238
Subtotal Estimate Escalation Contingency					\$5,756 \$15,220	\$3,515 \$9,296	\$568,428 \$1,503,174	\$0 \$0	\$0 \$0	\$2,251,358 \$577,698 \$1,527,691
Total 9111.1.1 EQUIPMENT - GFF			403		\$43,406	\$26,511	\$4,286,831	\$0	\$0	\$4,356,747
9111.1.2 EQUIPMENT - GROUT FACILITY PIPE LAW Evaporator Feed Pump - P-204-175 hp PIPE LAW Evaporator Recirc / XFR Pump - P-204-2 (Skid	U.C. per Ea	1.00	3 3 10 10	CN-PIPE \$37.58 CN-PIPE \$37.58	112.74 \$113 375.8 \$376	0 \$0 0 \$0	800 \$800 7500 \$7,500	0 \$0 0 \$0	0 \$0 0 \$0	912.74 \$913 7875.8 \$7,876
Mounted)		1,00		Ψ07,00	4510	ΨΟ	φ1,100	φυ	φυ	φ <i>τ</i> ,ο <i>τ</i> ο .
PIPE LET&D Supply Pump - P-204-325 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	800 \$800	0 \$0	0 \$0	875.16 \$875
PIPE NaOH Feed Pump - P-205-1 - ,125 hp	U.C. per Ea	1.00	2 2	CN-PIPE . \$37.58	75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Neutralization Tank Pump - P-205-2a, b, c75 hp	U.C. per Ea	3.00	3 9	CN-PIPE \$37.58	112.74 \$338	0 \$0	800 \$2,400	0 \$0	0 \$0	912.74 \$2,738
PIPE LAW Evaporator Feed Tank - T-204-1 - 7884 Gal SST	U.C. per Ea	1.00	24 24	CN-PIPE \$37.58	901.92 \$902	1000 \$1 ,000	45000 \$45,000	0 \$0	0 \$0	46901.92 \$46,902
PIPE LET&D Feed Tank - T-204-3 - 352 Gal SST	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	0 \$0	7500 \$7, 500	0 \$0	0 \$0	7650.32 \$7,650
PIPE NaOH Storage Tank - T-205-1 - 400 Gal SST	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	o \$0	8000 \$8,000	0 \$0	0 \$0	8150.32 \$8,150
PIPE Neutralization Tank - T-205-2a, b, c - 1200 Gal SST	U.C. per Ea	3.00	8 24	CN-PIPE \$37.58	300.64 \$902	500 \$1, 500	15400 \$46,200	0 \$0	0 \$0	16200.64 \$48,602
B-105 PIPE Slag Storage Bin - T-205-5 - 875 CF	U.C. per EA	1.00	80 80	CN-PIPE \$37.58	3006.4 \$3 , 006	1000 \$1,000	55000 \$55,000	0 \$0	0 \$0	59006.4 \$59,006
B-102 PIPE CaO Storage Bin - T-205-8 - 1071 CF	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	1000 \$1, 000	45000 \$45,000	. \$0	o \$0	48254.8 \$48,255
B-103 PIPE Portland Cement Bin - T-205-7 - 641 CF	U.C. per EA	1.00	60 60	CN-PIPE \$37,58	2254.8 \$2,255	1000 \$1,000	45000 \$45,000	0 \$0	0 \$0	48254.8 \$48,255

: KUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX in GFF Project Location: INTEC

Estimate Number: 2570 - Option A

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor 9111.1.2 EQUIPMENT - GROUT FACILITY	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
PIPE Slag Day Storage Tank - T-205-6a - 257 CF	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	250 \$250	9600 \$9,600	0 \$0	0 \$0	10000.32 \$10,000
PIPE CaOH Day Storage Tank - T-205-6b - 46 CF (UNEX Only)	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	3700 \$3,700	0 \$0	0 \$0	3812.74 \$3,813
PIPE Portland Cement Day Storage Tank - T-205-6c - 28CF	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	3100 \$3,100	0 \$0	0 \$0	3212.74 \$3,213
PIPE LAW Evaporator - EV-204-1 (8'x10'x8')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	170000 \$170,000	0 \$0	0 \$0	171751.6 \$171,752
PIPE Vertical Auger - VA-205-1-6 (20"x40"x140")	U.C. per Ea	1.00	40 40	CN-PIPE \$37.58	1503,2 \$1,503	2000 \$2,000	150000 \$150,000	0 \$0	0 \$0	153503.2 \$153,503
PIPE . Vertical Mixer - VM-205-1-6 (30"x60"x140")	U.C. per Ea	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	2000 \$2,000	150000 \$150,000	0 \$0	0 \$0	154254.8 \$154,255
B-104 PIPE FLYASH BIN - 34 M3	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	o \$0	45000 \$45,000	0 \$0	0 \$0	47254.8 \$47,255
ED-101,2,3,4 PIPE AIR EDUCTOR - 9 Kg-S/hr	U.C. per EA	4.00	10 40	CN-PIPE \$37.58	375.8 \$1,503	0 \$0	3500 \$14,000	0 \$0	0 \$0	3875.8 \$15,503
B-107 PIPE CaO WEIGHT BIN4 M3	U.C. per EA	1.00	30 30	CN-PIPE \$37.58	1127.4 \$1,127	0 \$0	4000 \$4,000	0 \$0	0 \$0	5127.4 \$5,127
T-104A&B PIPE GROUT FEED TANK - 7 M3	U.C. per EA	2.00	80 160	CN-PIPE \$37.58	3006.4 \$6,013	0 \$0	35000 \$70,000	0 \$0	0 \$0	38006.4 \$76,013
N-101A&B PIPE pH SAMPLER/NEUTRALIZER	U.C. per EA	2.00	10 20	CN-PIPE \$37.58	375.8 \$752	0 \$0	6000 \$12,000	0 \$0	0 \$0	6375.8 \$12,752
P-105A&B PIPE GROUT MIXER FEED PUMP - 2-16 L/MIN	U.C. per EA	2.00	15 30	CN-PIPE \$37.58	563.7 \$1,127	. 0 \$0	6000 \$12,000	0 \$0	0 \$0	6563.7 \$13,127
B-108A,B&C PIPE DRY INGREDIENT WEIGH BIN2 M3	U.C. per EA	3.00	15 45	CN-PIPE \$37.58	563.7 \$1,691	0 \$0	2000 \$6,000	0 \$0	0 \$0	2563.7 \$7,691
C-101A,B&C PIPE SOLIDS FEED CONVEYOR - 8 Kg/MIN	U.C. per EA	3.00	10 30	CN-PIPE \$37.58	375.8 \$1,127	0 \$0	2500 \$7,500	0 \$0	0 \$0	2875.8 \$8,627
M-101A,B&C PIPE GROUT MIXER3 M3	U.C. per EA	3.00	60 180	CN-PIPE * \$37.58	2254.8 \$6,764	0 \$0	20000 \$60,000	0 \$0	0 \$0	22254.8 \$66,764
B-108A PIPE DRY GROUT ADMIXTURES BIN4 M3	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	2500 \$2,500	0 \$0	0 \$0	3251.6 \$3,252
B-106B&C PIPE LIQUID GROUT ADMIXTURES TANK	U.C. per EA	2.00	15 30	CN-PIPE \$37.58	563.7 \$1,127	0 \$0	500 \$1,000	0 \$0	0 \$0	1063.7 \$2,127

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC
Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor	QTY		<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
P-106 PIPE DECON AGENT PUMP - 76 L/MIN	U.C. per EA	1.00	30 30	CN-PIPE \$37.58	1127.4 \$1,127	0 \$0	8000 \$8,000	0 \$0	0 \$0	9127.4 \$9,127
P-115 PIPE METERING PUMP/ADMIXTURES - 1 L/MIN	U.C. per EA	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	0 \$0	5000 \$5,000	0 \$0	0 \$0	5375.8 \$5,376
T-106 PIPE MIXER WASH TANK - 1 M3	U.C. per EA	1.00	50 50	CN-PIPE \$37.58	1879 \$1,879	0 \$0	10000 \$10,000	0 \$0	0 \$0	11879 \$11,879
P-116 PIPE DECON RETURN PUMP - 76 L/MIN	U.C. per EA	1.00	30 30	CN-PIPE \$37.58	1127.4 \$1,127	0 \$0	8000 \$8,000	0 \$0	0 \$0	9127.4 \$9,127
F-105 PIPE SPENT DECON SOLUTION FILTER -	U.C. per EA	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	0 \$0	5000 \$5,000	0 \$0	0 \$0	5375.8 \$5,376
PIPE STORAGE AREA CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE AIRLOCK	U.C. per EA	1.00	200 200	CN-PIPE \$37,58	7516 \$7,516	0 \$0	80000 \$80,000	0 \$0	0 \$0	87516 \$87,516
PIPE AIRLOCK CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503,2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE MAIN INLET CONVEYOR	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	35000 \$35,000	0 \$0	0 \$0	38758 \$38,758
PIPE TRANSVERSE SECTION LIFT	U.C. per EA	2.00	30 60	CN-PIPE \$37.58	1127.4 \$2,255	0 \$0	10000 \$20,000	0 \$0	0 \$0	11127.4 \$22,255
PIPE MIXER BOOTH INLET CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE MIXER BOOTH	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758
PIPE MIXER BOOTH CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37,58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE FILL ASSEMBLY	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	50000 \$50,000	0 \$0	0 \$0	57516 \$57,516
PIPE LID PLACEMENT BOOTH	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758
PIPE LID PLACEMENT INLET CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE LID PLACEMENT OUTLET CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor 9111.1.2 EQUIPMENT - GROUT FACILITY	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
PIPE LID PLACEMENT CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	15000 \$15,000	0 \$0	0 \$0	16503.2 \$16,503
PIPE ROTATING TABLE	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE DRUM RIM CLEANING MECHANISM	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE LID PLACEMENT ASSEMBLY	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	30000 \$30,000	0 \$0	0 \$0	33758 \$33,758
PIPE TRANSFER SECTION TUNNEL	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	70000 \$70,000	0 \$0	0 \$0	77516 \$77,516
PIPE TRANSFER SECTION INLET CONVEYOR	U.C. per EA	3.00	40 120	CN-PIPE \$37.58	1503.2 \$4,510	0 \$0	10000 \$30,000	0 \$0	0 \$0	11503.2 \$34,510
PIPE TRANSFER SECTION EXIT CONVEYOR	U.C. per EA	3.00	40 120	CN-PIPE \$37.58	1503.2 \$4,510	0 \$0	10000 \$30,000	0 \$0	0 \$0	11503.2 \$34,510
PIPE TRANSFER TABLE	U.C. per EA	3.00	30 90	CN-PIPE \$37.58	1127.4 \$3,382	0 \$0	10000 \$30,000	0 \$0	0 \$0	11127.4 \$33,382
PIPE TRANSVERSE CONVEYOR	U.C. per EA	2.00	40 80	CN-PIPE \$37 58	1503.2 \$3,006	0 \$0	10000 \$20,000	0 \$0	0 \$0	11503.2 \$23,006
PIPE INSPECTION BOOTH	U.C. per EA	1.00	100 100	CN-PIPE \$37,58	3758 \$3,758	0 \$0	80000 \$80,000	0 \$0	0 \$0	83758 \$83,758
PIPE INSPECT/DECON INLET CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE INSPECT/DECON EXIT CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37,58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE INSPECT/DECON CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE ROTATING TABLE	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE DECON EQUIPMENT	U.C. per LOT	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	30000 \$30,000	0 \$0	0 \$0	33758 \$33,758
PIPE INSPECTION EQUIPMENT	U.C. per LOT	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758
PIPE DISCHARGE SECTION TUNNEL	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	70000 \$70,000	0 \$0	0 \$0	77516 \$77,516

36

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A Estimate Type: Planning

LEVEL Org/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
9111.1.2 EQUIPMENT - GROUT FACILITY PIPE DISCHARGE SECTION INLET CONVEYOR	U.C. per EA	3.00	40 120	CN-PIPE \$37.58	1503.2 \$4,510	0 \$0	10000 \$30,000	0 \$0	0 \$0	11503.2 \$34,510
PIPE MAIN DISCHARGE CONVEYOR	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	35000 \$35,000	0 \$0	0 \$0	38758 \$38,758
PIPE TRANSFER SECTION LIFT	U.C. per EA	3.00	. 30 90	CN-PIPE \$37.58	1127.4 \$3,382	o \$0	10000 \$30,000	0 \$0	° \$0	11127.4 \$33,382
PIPE AIRLOCK	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	80000 \$80,000	0 \$0	0 \$0	87516 \$87,516
PIPE AIRLOCK CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	o \$0	0 \$0	11503.2 \$11,503
PIPE TILT & PAN CAMERA	U.C. per EA	14.00	10 140	CN-PIPE \$37.58	375.8 \$5,261	0 \$0	2000 \$28,000	0 \$0	0 \$0	2375.8 \$33,261
PIPE CAMERA CONTROL STATION	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0° \$0	15000 \$15,000	0 \$0	0 \$0	16503.2 \$16,503
PIPE INLET STAGING, DRUM LIFT, CURE LINE & DRUM LIFT ENCLOSURE	U.C. per LOT	1.00	500 500	CN-PIPE \$37.58	18790 \$18,790	0 \$0	250000 \$250,000	0 \$0	0 \$0	268790 \$268,790
PIPE INLET STAGING CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE · \$37.58	1503.2 \$1,503	o \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE DRUM LIFT	U.C. per EA	2.00	30 60	CN-PIPE \$37.58	1127.4 \$2,255	0 \$0	10000 \$20,000	0 \$0	0 \$0	11127.4 \$22,255
PIPE DRUM LIFT CONVEYOR	U.C. per EA	2.00	40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	10000 \$20,000	0 \$0	0 \$0	11503.2 \$23,006
PIPE CURE LINE CONVEYOR	U.C. per EA	2.00	40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	10000 \$20,000	0 \$0	0 \$0	11503.2 \$23,006
PIPE 180 DEGREE CONVEYOR	U.C. per EA	8.00	60 480	CN-PIPE \$37.58	2254.8 \$18,038	0 \$0	20000 \$160,000	0 \$0	0 \$0	22254.8 \$178,038
PIPE CURE LINE CONVEYOR 13'	U.C. per EA	8.00	60 480	CN-PIPE \$37.58	2254.8 \$18,038	0 \$0	20000 \$160,000	0 \$0	0 \$0	22254.8 \$178,038
PIPE STAGING CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE DRUM ELEVATOR & ENCLOSURE	U.C. per EA	1.00	400 400	CN-PIPE \$37.58	15032 (\$15,032	0 \$0	200000 \$200,000	0 \$0	0 \$0	215032 \$215,032
PIPE INLET INDEXING LIFT CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C_	Other	TOTAL
9111.1.2 EQUIPMENT - GROUT FACILITY PIPE INDEXING LIFT TABLE	U.C. per EA	1.00	30 30	CN-PIPE \$37.58	1127.4 \$1,127	0 \$0	10000 \$10,000	0 \$0	0 \$0	11127.4 \$11,127
PIPE INDEXING ARM	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE DEWATERING STATION 30' CONVEYOR	U.C. per EA	1.00	70 70	CN-PIPE \$37.58	2630.6 \$2,631	0 \$0	40000 \$40,000	0 \$0	0 \$0	42630.6 \$42,631
PIPE 90 DEG TRANSFER & LIFT	U.C. per EA	2.00	20 40	CN-PIPE \$37.58	751.6 \$1,503	0 \$0	5000 \$10,000	0 \$0	0 \$0	5751.6 \$11,503
PIPE DEWATERING STATION CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE AIR HEATERS	U.C. per EA	9,00	10 90	CN-PIPE \$37.58	375.8 \$3,382	0 \$0	2000 \$18,000	0 \$0	0 \$0	2375.8 \$21,382
PIPE DEWATERING STATION LINE LIFT	U.C. per EA	9.00	30 270	CN-PIPE \$37.58	1127.4 \$10,147	0 \$0	10000 \$90,000	0 \$0	0 \$0	11127.4 \$100,147
PIPE DRUM OFF LOAD CONVEYOR	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	0 \$0	20000 \$20,000	0 \$0	0 \$0	22254.8 \$22,255
PIPE HYDRAULIC DRUM LIFT	U.C. per EA	1.00	50 50	CN-PIPE \$37.58	1879 \$1,879	0 \$0	20000 \$20,000	0 \$0	0 \$0	21879 \$21,879
E-104 PIPE VAPOR CONDENSER - 2 Kg/hr	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	0 \$0	50000 \$50,000	0 \$0	0 \$0	52254.8 \$52,255
P-118 PIPE CONDENSATE PUMP - 4 L/MIN	U.C. per EA	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	0 \$0	6000 \$6,000	0 \$0	0 \$0	6375.8 \$6,376
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$282,113 \$0 \$135,708	\$10,750 \$0 \$5,171	\$3,267,200 \$163,360 \$1,650,237	\$0 \$0 \$0	\$0 \$0 \$0	\$3,560,063 \$163,360 \$1,791,115
Subtotal Estimate Escalation Contingency					\$107,213 \$283,518	\$4,085 \$10,804	\$1,303,732 \$3,447,646	\$0 \$0	\$0 \$0	\$5,514,538 \$1,415,031 \$3,741,967
Total 9111.1.2 EQUIPMENT - GROUT FACILITY			7,507		\$808,552	\$30,810	\$9,832,175	\$0	\$0	\$10,671,536
9111.2 EQUIPMENT - THIN FILM DRYER FACILITY PIPE Thin Film Dryer -TFD203-1 (12'x12'x25')	U.C. per Ea	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	3000 \$3,000	1000000 \$1,000,000	0 \$0	0 \$0	1006758 \$1,006,758
			_		77. 40	_		_	_	

CN-PIPE

\$37.58

U.C. per Ea

1.00

75.16

\$75

0

\$0

500

\$500

0

\$0

0

\$0

575 16

\$575

PIPE

TFD Feed Pump - P-203-2 - .25 hp

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

LEVEL Org/Subcontractor 9111.2 EQUIPMENT - THIN FILM DRYER FACILITY	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
PIPE Strip Cystallizer Condensate Pump - P-203-1 - Skid Mounted	U.C. per Ea	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	0_ \$0	7500 \$7,500	0 \$0	0 \$0	7875.8 \$7,876
PIPE TFD Vacuum Pump - VP-203-1	U.C. per Ea	1.00	6 6	CN-PIPE \$37.58	225.48 \$225	0 \$0	10000 \$10,000	0 \$0	0 \$0	10225.48 \$10,225
PIPE Chrystallizer Condensate Tank - T-203-1 - 10 Gal - SST	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	1500 \$1,500	0 \$0	0 \$0	1575.16 \$1,575
PIPE Strip Feed Tank - T-203-2 - 1124 Gal SST (NWCF Only)	U.C. per Ea	1.00	8 8	CN-PIPE \$37.58	300.64 \$301	500 \$500	15000 \$15,000	0 \$0	0 \$0	15800.64 \$15,801
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$4,810 \$0 \$2,314	\$3,500 \$0 \$1,684	\$1,034,500 \$51,725 \$522,518	\$0 \$0 \$0	\$0 \$0 \$0	\$1,042,810 \$51,725 \$526,515
Subtotal Estimate Escalation Contingency					\$1,828 \$4,834	\$1,330 \$3,517	\$412,803 \$1,091,635	\$0 \$0	\$0 \$0	\$1,621,050 \$415,962 \$1,099,986
Total 9111.2 EQUIPMENT - THIN FILM DRYER FACILITY			128		\$13,786	\$10,031	\$3,113,181	\$0	\$0	\$3,136,999
9111.3 EQUIPMENT - BOILER HOUSE GEN BOILERS	U.C. per EA	2.00	60 120	CN-BOILMK \$23.08	1384.8 \$2,770	0 \$0	200000 \$400,000	o \$0	0 \$0	201384.8 \$402,770
GEN FEED WATER HEATER	U.C. per EA	2.00	40 80	CN-BOILMK \$23.08	923.2 \$1,846	0 \$0	20000 \$40,000	0 \$0	0 \$0	20923.2 \$41,846
PIPE CHEMICAL FEED SYSTEM	U.C. per LOT	1.00	500 500	CN-PIPE \$37.58	18790 \$18,790	0 \$0	100000 \$100,000	0 \$0	0 \$0	118790 \$118,790
PIPE WATER TREATMENT SYSTEM	U.C. per LOT	1.00	1800 1,800	CN-PIPE \$37.58	67644 \$67,644	0 \$0	250000 \$250,000	0 \$0	0 \$0	317644 \$317,644
TANK OIL STORAGE TANK, ~750 BBL	U.C. per BBL	750.00	0		0 \$0	0 \$0	0 \$0	65 \$48,750	0 \$0	65 \$48,750
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$91,050 \$0 \$42,918	\$0 \$0 \$0	\$790,000 \$39,500 \$310,901	\$48,750 \$0 \$20,442	\$0 \$0 \$0	\$929,800 \$39,500 \$374,261
Subtotal Estimate Escalation Contingency					\$34,376 \$90,906	\$0 \$0	\$292,627 \$773,835	\$17,755 \$46,951	\$0 \$0	\$1,343,561 \$344,758 \$911,692
Total 9111.3 EQUIPMENT - BOILER HOUSE			2,500		\$259,251	\$0	\$2,206,863	\$133,899	\$0	\$2,600,012

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Project Name:

08/30/2000

Estimate Number: 2570 - Option A

Cllent: V. J. Balls

LEVEL Org/Subcontractor	_QTY		Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
— 9111.4 EQUIPMENT - GROUTING FACILITY PIPE LAW Evaporator Feed Pump - P-204-175 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE LAW Evaporator Recirc / XFR Pump - P-204-2 (Skid Mounted)	U.C. per Ea	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	0 \$0	7500 \$7,500	0 \$0	0 \$0	7875.8 \$7,876
PIPE LET&D Supply Pump - P-204-325 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	800 \$800	0 \$0	0 \$0	875.16 \$875
PIPE NaOH Feed Pump - P-205-1125 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Neutralization Tank Pump - P-205-2a, b, c75 hp	U.C. per Ea	3,00	3 9	CN-PIPE \$37.58	112.74 \$338	0 \$0	800 \$2,400	0 \$0	0 \$0	912.74 \$2,738
PIPE LAW Evaporator Feed Tank - T-204-1 - 7884 Gal SST	U.C. per Ea	1.00	24 24	CN-PIPE \$37.58	901.92 \$902	1000 \$1,000	45000 \$45,000	0 \$0	0 \$0	46901.92 \$46,902
PIPE LET&D Feed Tank - T-204-3 - 352 Gal SST	U.C. per Ea	1.00	4	CN-PIPE \$37.58	150.32 \$150	0 \$0	7500 \$7, 500	0 \$0	0 \$0	7650.32 \$7,650
PIPE NaOH Storage Tank - T-205-1 - 400 Gal SST	U.C. per Ea	1.00	4	CN-PIPE \$37.58	150.32 \$150	0 \$0	8000 \$8,000	0 \$0	0 \$0	8150.32 \$8,150
PIPE Neutralization Tank - T-205-2a, b, c - 1200 Gal SST	U.C. per Ea	3.00	8 24	CN-PIPE \$37.58	300.64 \$902	500 \$1,500	15400 \$46,200	0 \$0	0 \$0	16200.64 \$48,602
B-105 PIPE Slag Storage Bin - T-205-5 - 875 CF	U.C. per EA	1.00	80 80	CN-PIPE \$37.58	3006.4 \$3,006	1000 \$1,000	55000 \$55,000	0 \$0	0 \$0	59006.4 \$59,006
B-102 PIPE CaO Storage Bin - T-205-6 - 1071 CF	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	1000 \$1,000	45000 \$45,000	0 \$0	0 \$0	48254.8 \$48,255
B-103 PIPE Portland Cement Bin - T-205-7 - 641 CF	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	1000 \$1,000	45000 \$45,000	0 \$0	0 \$0	48254.8 \$48,255
PIPE Slag Day Storage Tank - T-205-6a - 257 CF	U.C. per Ea	1,00	4	CN-PIPE \$37.58	150.32 \$150	250 \$250	9600 \$9,600	0 \$0	0 \$0	10000.32 \$10,000
PIPE CaOH Day Storage Tank - T-205-6b - 46 CF (UNEX Only)	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	3700 \$3,700	0 \$0	0 \$0	3812.74 \$3,813
PIPE Portland Cement Day Storage Tank - T-205-6c - 28CF	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	3100 \$3,100	0 \$0	0 \$0	3212.74 \$3,213
PIPE LAW Evaporator - EV-204-1 (8'x10'x8')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	170000 \$170,000	0 \$0	0 \$0	171751.6 \$171,752
PIPE Verlical Auger - VA-205-1-6 (20"x40"x140")	U.C. per Ea	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	2000 \$2,000	150000 \$150,000	0 \$0	0 \$0	153503.2 \$153,503

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF Project Location: INTEC

Estimate Number: 2570 - Option A

LEVEL Org/Subcontractor 9111.4 EQUIPMENT - GROUTING FACILITY	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
PIPE Vertical Mixer - VM-205-1-6 (30"x60"x140")	U.C. per Ea 1	1.00 60		2254.8 \$2,255	2000 \$2, 000	150000 \$150,000	0 \$0	. 0 \$0	154254.8 \$154,255
B-104 PIPE FLYASH BIN - 34 M3	U.C. per EA	60 1.00 60		2254.8 \$2,255	0 \$0	45000 \$45,000	0 \$0	0 \$0	47254.8 \$47,255
ED-101,2,3,4 PIPE AIR EDUCTOR - 9 Kg-S/hr	U.C. per EA	10 1.00 40		375,8 \$1,503	0 \$0	3500 \$14,000	0 \$0	0 \$0	3875.8 \$15,503
B-107 PIPE CaO WEIGHT BIN - ,4 M3	U.C. per EA 1	30 1.00 30		1127.4 \$1,127	0 \$0	4000 \$4,000	0 \$0	0 \$0	5127.4 \$5,127
T-104A&B PIPE GROUT FEED TANK - 7 M3	U.C. per EA	80 2.00 160		3006,4 \$6,013	o · \$0	35000 \$70,000	0 \$0	0 \$0	38006.4 \$76,013
N-101A&B PIPE pH SAMPLER/NEUTRALIZER	U.C. per EA	2.00 20		375.8 \$752	0 \$0	6000 \$12,000	` 0 \$0	0 \$0	6375.8 \$12,752
P-105A&B PIPE GROUT MIXER FEED PUMP - 2-16 L/MIN	U.C. per EA	15 2.00 30		563.7 \$1,127	· 0 \$0	6000 \$12,000	0 \$0	0 \$0	6563.7 \$13,127
B-108A,B&C PIPE DRY INGREDIENT WEIGH BIN2 M3	U.C. per EA	15 3.00 45		563.7 \$1,691	. 0 \$0	2000 \$6,000	0 \$0	0 \$0	2563.7 \$7,691
C-101A,B&C PIPE SOLIDS FEED CONVEYOR - 8 Kg/MIN	U.C. per EA	3.00 10		375.8 \$1,127	0 \$0	2500 \$7,500	0 \$0	0 \$0	2875.8 \$8,627
M-101A,B&C PIPE GROUT MIXER3 M3	U.C. per EA	60 3.00 180		2254.8 \$6,764	0 \$0	20000 \$60,000	0 \$0	0 \$0	22254.8 \$66,764
B-106A PIPE DRY GROUT ADMIXTURES BIN4 M3	U.C. per EA	20 1.00 20		751.6 \$752	0 \$0	2500 \$2,500	0 \$0	0 \$0	3251.6 \$3,252
B-106B&C PIPE LIQUID GROUT ADMIXTURES TANK	U.C. per EA 2	15 2.00 30		563.7 \$1,127	0 \$0	500 \$1,000	0 \$0	` 0 \$0	1063.7 \$2,127
P-106 PIPE DECON AGENT PUMP - 76 L/MIN	U.C. per EA 1	30 1.00 30		1127.4 \$1,127	0 \$0	8000 \$8,000	0 \$0	0 \$0	9127.4 \$9,127
P-115 PIPE METERING PUMP/ADMIXTURES - 1 L/MIN	U.C. per EA	10 1.00 10		375.8 \$376	0 \$0	5000 \$5,000	0 \$0	0 \$0	5375.8 \$5,376
T-106 PIPE MIXER WASH TANK - 1 M3	U.C. per EA 1	50 1.00 50		1879 \$1, 879	0 \$0	10000 \$10,000	0 \$0	0 \$0	11879 \$11,879
P-116 PIPE DECON RETURN PUMP - 76 L/MIN	U.C. per EA 1	30 1.00 30		1127.4 \$1,127	0 \$0	8000 \$8,000	0 \$0	0 \$0	9127.4 \$9,127
F-105 PIPE SPENT DECON SOLUTION FILTER -	U.C. per EA	.00 10		375.8 \$376	0 \$0	5000 \$5,000	0 \$0	0 \$0	5375.8 \$5,376

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Estimate Number 2570 - Option A

Client:

V. J. Balls Prepared By: Rowley / Mitchell / Marler

ıg

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	<u>Other</u>	TOTAL
9111.4 EQUIPMENT - GROUTING FACILITY PIPE STORAGE AREA CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE AIRLOCK	U.C. per EA	1.00 .	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	80000 \$80,000	0 \$0	0 \$0	87516 \$87,516
PIPE AIRLOCK CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE MAIN INLET CONVEYOR	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	35000 \$35,000	o \$0	0 \$0	38758 \$38,758
PIPE TRANSVERSE SECTION LIFT	U.C. per EA	2.00	30 60	CN-PIPE \$37,58	1127.4 \$2,255	0 \$0	10000 \$20,000	0 \$0	0 \$0	11127.4 \$22,255
PIPE MIXER BOOTH INLET CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37,58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE MIXER BOOTH	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758
PIPE MIXER BOOTH CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE FILL ASSEMBLY	U.C. per EA	1.00	200 200	CN-PIPE \$37,58	7516 \$7,516	0 \$0	50000 \$50,000	0 \$0	0 \$0	57516 \$57,516
PIPE LID PLACEMENT BOOTH	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758
PIPE LID PLACEMENT INLET CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE LID PLACEMENT OUTLET CONVEYOR	U.C. per EA,	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE LID PLACEMENT CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	15000 \$15,000	· \$0	0 \$0	16503.2 \$16,503
PIPE ROTATING TABLE	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE DRUM RIM CLEANING MECHANISM	U.C. per EA	1.00	100 100	CN-PIPE \$37,58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE LID PLACEMENT ASSEMBLY	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	30000 \$30,000	0 \$0	0 \$0	33758 \$33,758
PIPE TRANSFER SECTION TUNNEL	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	70000 \$70,000	0 \$0	0 \$0	77516 \$77,516

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

Client:

V. J. Balls

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	_S/C_	Other	TOTAL
— 9111.4 EQUIPMENT - GROUTING FACILITY PIPE TRANSFER SECTION INLET CONVEYOR	U.C. per EA 3.	.00 40 .00 120	CN-PIPE \$37.58	1503.2 \$4,510	0 \$0	10000 \$30,000	0 \$0	0 \$0	11503,2 \$34,510
PIPE TRANSFER SECTION EXIT CONVEYOR	U.C. per EA	.00 40 .00 120	CN-PIPE \$37.58	1503.2 \$4,510	· \$0	10000 \$30,000	0 \$0	0 \$0	11503,2 \$34,510
PIPE TRANSFER TABLE	U.C. per EA 3.	.00 90 .00 00,	CN-PIPE \$37.58	1127.4 \$3,382	o \$0	10000 \$30,000	0 \$0	0 \$0	11127.4 \$33,382
PIPE TRANSVERSE CONVEYOR	U.C. per EA 2.	.00 80	CN-PIPE \$37.58	1503.2 \$3,008	0 \$0	10000 \$20,000	0 \$0	0 \$0	11503.2 \$23,006
PIPE INSPECTION BOOTH	U.C. per EA 1.	.00 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	80000 \$80,000	0 \$0	0 \$0	83758 \$83,758
PIPE INSPECT/DECON INLET CONVEYOR	U.C. per EA 1.	.00 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE INSPECT/DECON EXIT CONVEYOR		.00 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE INSPECT/DECON CONVEYOR		.00 40	• •	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE ROTATING TABLE .		.00 100		3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE DECON EQUIPMENT		.00 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	30000 \$30,000	0 \$0	0 \$0	33758 \$33,758
PIPE INSPECTION EQUIPMENT		.00 100	• • •	3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758
PIPE DISCHARGE SECTION TUNNEL		.00 200	•	7516 \$7,516	0 \$0	70000 \$70,000	0 \$0	0 \$0	77516 \$77,516
PIPE DISCHARGE SECTION INLET CONVEYOR		.00 40 .00 120	CN-PIPE \$37,58	1503.2 \$4,510	0 \$0	10000 \$30,000	0 \$0	0 \$0	11503.2 \$34,510
PIPE MAIN DISCHARGE CONVEYOR ·	U.C. per EA 1.	.00 100		3758 \$3,758	0 \$0	35000 \$35,000	0 \$0	0 \$0	. 38758 \$38,758
PIPE TRANSFER SECTION LIFT	U.C. per EA	.00 90.	• •	1127.4 \$3,382	0 \$0	10000 \$30,000	0 \$0	0 \$0	11127.4 \$33,382
PIPE AIRLOCK	U.C. per EA 1.	.00 200	• • • •	7516 \$7,516	0 \$0	00008 000,08	0 \$0	0 \$0	87516 \$87,518
AIRLOCK CONVEYOR	U.C. per EA 1.	.00 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor 9111.4 EQUIPMENT - GROUTING FACILITY	QTY		Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C	Other	TOTAL
PIPE TILT & PAN CAMERA	U.C. per EA	14.00	10 140	CN-PIPE \$37.58	375.8 \$5,261	0 \$0	2000 \$28,000	0 \$0	0 \$0	2375.8 \$33,261
PIPE CAMERA CONTROL STATION	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	15000 \$15,000	0 \$0	0 \$0	16503.2 \$16,503
PIPE INLET STAGING, DRUM LIFT, CURE LINE & DRUM LIFT ENCLOSURE	U.C. per LOT	1.00	500 500	CN-PIPE \$37.58	18790 \$18,790	0 \$0	250000 \$250,000	0 \$0	0 \$0	268790 \$268,790
PIPE INLET STAGING CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE DRUM LIFT	U.C. per EA	2.00	30 60	CN-PIPE \$37.58	1127.4 \$2,255	0 \$0	10000 \$20,000	0 \$0	0 \$0	11127.4 \$22,255
PIPE DRUM LIFT CONVEYOR	U.C. per EA	2.00	40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	10000 \$20,000	0 \$0	0 \$0	11503.2 \$23,006
PIPE CURE LINE CONVEYOR	U.C. per EA	2.00	40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	10000 \$20,000	0 \$0	0 \$0	11503.2 \$23,006
PIPE 180 DEGREE CONVEYOR	U.C. per EA	8.00	60 480	CN-PIPE \$37.58	2254.8 \$18,038	0 \$0	20000 \$160,000	0 \$0	0 \$0	22254.8 \$178,038
PIPE CURE LINE CONVEYOR 13'	U.C. per EA	8.00	60 480	CN-PIPE \$37.58	2254.8 \$18,038	0 \$0	20000 \$160,000	0 \$0	0 \$0	22254.8 \$178,038
PIPE STAGING CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE DRUM ELEVATOR & ENCLOSURE	U.C. per EA	1.00	400 400	CN-PIPE \$37.58	15032 \$15,032	0 \$0	200000 \$200,000	0 \$0	0 \$0	215032 \$215,032
PIPE ` INLET INDEXING LIFT CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE INDEXING LIFT TABLE	U.C. per EA	1.00	30 30	CN-PIPE \$37.58	1127.4 \$1,127	0 \$0	10000 \$10,000	0 \$0	0 \$0	11127.4 \$11,127
PIPE INDEXING ARM	U.C. per EA	1.00	100 100	CN-PIPE \$37,58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE DEWATERING STATION 30' CONVEYOR	U.C. per EA	1.00	70 70	CN-PIPE \$37.58	2630.6 \$2,631	0 \$0	40000 \$40,000	0 \$0	0 \$0	42630.6 \$42,631
PIPE 90 DEG TRANSFER & LIFT	U.C. per EA	2.00	20 40	CN-PIPE \$37.58	751.6 \$1,503	0 \$0	5000 \$10,000	0 \$0	0 \$0	5751.6 \$11,503
PIPE DEWATERING STATION CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE	1503.2 \$1.503	0	10000	0	0	11503.2

DEWATERING STATION CONVEYOR

\$37.58

\$1,503

40

1.00

\$0

\$10,000

\$0

\$0

\$11,503

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls Prepared By: Rowley / Mitchell / Marler

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF Project Location: INTEC

Estimate Number: 2570 - Option A

Estimate Type: Planning

LEVEL Org/Subcontractor 9111.4 EQUIPMENT - GROUTING FACILITY	QTY	_	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
PIPE AIR HEATERS	U.C. per EA	9.00	10 90	CN-PIPE \$37.58	375.8 \$3,382	0 \$0	2000 \$18,000	. 0 \$0	0 \$0	2375.8 \$21,382
PIPE DEWATERING STATION LINE LIFT	U.C. per EA	9.00	30 270	CN-PIPE \$37.58	1127.4 \$10,147	0 · \$0	10000 \$90,000	0 \$0	0 \$0	11127.4 \$100,147
PIPE DRUM OFF LOAD CONVEYOR	U.Ç. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	0 \$0	20000 \$20,000	0 \$0	0 \$0	22254.8 \$22,255
PIPE HYDRAULIC DRUM LIFT	U.C. per EA	1.00	50 50	CN-PIPE \$37.58	1879 \$1,879	0 \$0	20000 \$20,000	0 \$0	0 \$0	21879 \$21,879
E-104 PIPE VAPOR CONDENSER - 2 Kg/hr	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	0 \$0	50000 \$50,000	0 \$0	0 \$0	52254.8 \$52,255
P-118 PIPE CONDENSATE PUMP - 4 L/MIN	U.C. per EA	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	o \$0	6000 \$6,000	0 \$0	0 \$0	6375.8 \$6,376
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$282,113 \$0 \$135,708	\$10,750 .\$0 \$5,171	\$3,267,200 \$163,360 \$1,650,237	\$0 \$0 \$0	\$0 \$0 \$0	\$3,560,063 \$163,360 \$1,791,115
Subtotal Estimate Escalation Contingency					\$107,213 \$283,518	\$4,085 \$10,804	\$1,303,732 \$3,447,646	\$0 \$0	\$0 \$0	\$5,514,538 \$1,415,031 \$3,741,967
Total 9111.4 EQUIPMENT - GROUTING FACILITY			7,507		\$808,552	\$30,810	\$9,832,175	\$0	\$0	\$10,671,536
9111.5 EQUIPMENT - STORAGE FACILITY GEN Remote Handling Equipment	U.C. per Lot	1.00	750 750	CN-SKWK \$34.52	25890 \$ 25,890	` 0 \$0	750000 \$750,000	0 \$0	0 \$0	775890 \$775,890
GEN Smeared Canister Loadout Crane	U.C. per Ea	1.00	400 400	CN-SKWK \$34.52	13808 \$13,808	0 \$0	2500000 \$2,500,000	0 \$0	0 \$0	2513808 \$2,513,808
GEN Canister Storage Crane - Clean Environment	U.C. per Ea	1.00	400 400	CN-SKWK \$34.52	13808 \$13,808	0 \$0	250000 \$250,000	0 \$0	0 \$0	263808 \$263,808
GEN Canister Heater	U.C. per Ea	2.00	200 400	CN-SKWK \$34.52	6904 \$13,808	0 \$0	103000 \$206,000	0 \$0	0 \$0	109904 \$219,808
GEN CO2 System	U.C. per Ea	1.00	100 100	CN-SKWK \$34.52	3452 \$ 3,452	0 \$0	175000 \$175,000	0 \$0	0´ \$0	178452 \$178,452
GEN Canister Transportation Cart	U.C. per Ea	1,00	100 100	CN-SKWK \$34.52	3452 \$ 3,452	0 \$0	25000 \$25,000	0 \$0	0 \$0	28452 \$28,452
GEN Canister Lifting Mechanism	U.C. per Ea	2.00	120 240	CN-SKWK \$34.52	4142.4 \$8,285	0 \$0	257500 \$515,000	0 \$0	0 \$0	261642.4 \$523,285

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor 9111.5 EQUIPMENT - STORAGE FACILITY	QTY	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
GEN Canister Sealing Manipulator	U.C. per Ea 1.	80 00 80	CN-SKWK \$34.52	2761.6 \$2,762	0 \$0	120000 \$120,000	0 \$0	, \$0	122761.6 \$122,762
GEN Decon Solution Pumping Station	U.C. per Ea	120	CN-SKWK	4142.4	0	50000	0	0	54142.4
	1.	00 120	\$34.52	\$4.142	\$0	\$50,000	\$0	\$0	\$54,142
GEN Decon Cell Equipment	U.C. per Lot	240	CN-SKWK	8284.8	0	515000	0	0	523284.8
	1.	00 240	\$34.52	\$8,285	\$0	\$515,000	\$0	\$0	\$523,285
GEN Decon / Disassembly Equipment - Turntable, Manipulator Tools, W/ Rack & Etc.	U.C. per Lot	240	CN-SKWK	8284.8	0	500000	0	0	508284.8
	. 1.	00 240	\$34.52	\$8,285	\$0	\$500,000	\$0	\$0	\$508,285
GEN	U.C. per Ea	100	CN-SKWK	3452	0	515000	0	0	518452
Smear Monitor	1.	00 100	\$34.52	\$3,452	\$0	\$515,000	\$0	\$0	\$518,452
GEN Smear Station Module	U.C. per Ea 1.	00 o	CN-SKWK	0 \$0	0 \$0	0 \$0	42000 \$42,000	0 \$0	42000 \$42,000
GEN		80	CN-SKWK	2761.6	0	150000	0	0	152761.6
Shuttle Cart		80	\$34.52	\$2,762	\$0	\$150,000	\$0	\$0	\$152,762
GEN		40	CN-SKWK	1380.8	0	41200	0	0	42580.8
Glove Box		00 40	\$34.52	\$1,381	\$0	\$41,200	\$0	\$0	\$42,581
GEN	U.C. per Ea	24	CN-SKWK	828.48	0	3000	0	0	3828.48
Cameras	30.	00 720	\$34.52	\$24,854	\$0	\$90,000	\$0	\$0	\$114,854
GEN	U.C. per Ea	200	CN-SKWK	6904	0	103000	0	0	109904
Weld Station Module	1.	00 200	\$34.52	\$6,904	\$0	\$103,000	\$0	\$0	\$109,904
GEN	U.C. per Ea	400	CN-SKWK	13808	0	2575000	0	0	2588808
HLW Canister Transfer Cart	1.	400	\$34.52	\$13,808	\$0	\$2,575,000	\$0	\$0	\$2,588,808
GEN Emply Canister Receiving Crane	U.C. per Ea	200	CN-SKWK	6904	0	7000	0	0	13904
	2.	400	\$34.52	\$13,808	\$0	\$14,000	\$0	\$0	\$27,808
GEN	U.C. per Ea	200	CN-SKWK	6904	0	250000	0	0	256904
PaR Manipulator	1.	200	\$34.52	\$6,904	\$0	\$250,000	\$0	\$0	\$256,904
GEN Canister Fill Monitoring Instruments	U.C. per Ea 2.	00 0	CN-SKWK	0 \$0	0 \$0	0 \$0	2060000 \$4,120,000	0 \$0	2060000 \$4,120,000
GEN	U.C. per Ea	100	CN-SKWK	3452	0	1030000	0	0	1033452
Canister Welder Leak Check Module		00 100	\$34.52	\$3,452	\$0	\$1,030,000	\$0	\$0	\$1,033,452

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

Project Name:

Client:

V. J. Balls

LEVEL Org/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
— 9111.5 EQUIPMENT - STORAGE FACILITY GEN Misc. Equipment	U.C. per Lot	1.00	300 300	CN-SKWK \$34.52	10356 \$10, 356	0 \$0	1000000 \$1,000,000	0 \$0	0 \$0	1010356 \$1,010,356
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$193,657 \$0 \$56,219	\$0 \$0 \$0	\$11,374,200 \$568,710 \$3,467,027	\$4,162,000 \$0 \$1,208,229	\$0 \$0 \$0	\$15,729,857 \$568,710 \$4,731,474
Subtotal Estimate Escalation Contingency					\$64,118 \$169,557	\$0 \$0	\$3,954,190 \$10,456,628	\$1,378,001 \$3,644,044	\$0 \$0	\$21,030,041 \$5,396,309 \$14,270,229
Total 9111.5 EQUIPMENT - STORAGE FACILITY			5,610		\$483,551	\$0	\$29,820,755	\$10,392,273	\$0	\$40,696,579
9114.4 CONVEYING SYSTEMS - STORAGE FACILITY GEN GANTRY CRANE	U.C. per EA	2.00	1000 2,000	CN-SKWK \$34.52	34520 \$69,040	0 \$0	2500000 \$5,000,000	0 \$0	0 \$0	2534520 \$5,069,040
GEN TRANSFER CART IN TUNNEL	U.C. per EA	1.00	500 500	CN-SKWK \$34.52	17260 \$17,260	0 \$0	300000 \$300,000	0 \$0	0 \$0	317260 \$317,260
GEN 5 TON DECONTAMINATABLE BRIDGE CRANE	U.C. per EA	2.00	300 600	CN-SKWK \$34.52	1035 6 \$20,712	0 \$0	250000 \$500,000	0 \$0	0 \$0	260356 \$520,712
GEN CASK MANUVERING HYDRAULIC PLATFORM	U.C. per EA	1.00	1000 1,000	CN-SKWK \$34.52	34520 \$34,520	0 \$0	1000000 \$1,000,000	0 \$0	0 \$0	1034520 \$1,034,520
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	·········		· · · · · · · · · · · · · · · · · · ·		\$141,532 \$0 \$41,087	\$0 \$0 \$0	\$6,800,000 \$340,000 \$2,072,742	\$0 \$0 \$0	\$0 \$0 \$0	\$6,941,532 \$340,000 \$2,113,829
Subtotal Estimate Escalation Contingency					\$46,860 \$20,653	\$0 \$0	\$2,363,990 \$1,041,906	\$0 \$0	\$0 \$0	\$9,395,361 \$2,410,850 \$1,062,559
Total 9114.4 CONVEYING SYSTEMS - STORAGE FACILIT	Υ		4,100		\$250,132	\$0	\$12,618,637	\$0	\$0	\$12,868,769
9115.2.1 HVAC EQUIPMENT - NEW - GFF - UNEX HVAC Vent. Centrifugal Fans - 20 hp	U.C. per Ea	5.00	10 50	CN-SHEE \$35.48	354.8 \$1,774	500 \$2,500	5700 \$28,500	0 \$0	0 \$0	6554.8 \$32,774
HVAC Vent. Centrifugal Fans - 25 hp	U.C. per Ea	7.00	12 84	CN-SHEE \$35.48	425.76 \$2,980	500 \$3,500	9000 \$63,000	* 0 \$0	0 \$0	9925.76 \$69,480
HVAC Vent. Centrifugal Fans - 30 hp	U.C. per Ea	5.00	12 60	CN-SHEE \$35.48	425.76 \$2,129	500 \$2,500	9000 \$45,000	0 \$0	0 \$0	9925.76 \$49,629
HVAC Vent. Centrifugal Fans - 40 hp	U.C. per Ea	5.00	18 90	CN-SHEE \$35.48	638.64 \$3,193	500 \$2,500	13000 \$65,000	0 \$0	0 \$0	14138.64 \$70,693

08/30/2000

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option A

Client:

V. J. Balls

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C_	<u>Other</u>	TOTAL
9115.2.1 HVAC EQUIPMENT - NEW - GFF - UNEX HVAC Vent. Centrifugal Fans - 50 եթ	U.C. per Ea 14	4.00 196		496.72 \$6,954	500 \$7,000	15000 \$210,000	0 \$0	0 \$0	15996.72 \$223,954
HVAC Vent. Centrifugal Fans - 60 hp	U.C. per Ea	3.00 40 120		1419.2 \$4,258	500 \$1,500	27000 \$81,000	0 \$0	0 \$0	28919.2 \$86,758
HVAC *HEPA Filter Bank - Single Stage - 4X4 - 12 Filters Per Bank Memo: Each Filter is 24" x 24",	U.C. per Ea	2.00 30 60		1084.4 \$2,129	500 \$1, 000	72000 \$144,000	0 \$0	0 \$0	73564.4 \$147,129
HVAC *HEPA Filter Bank - Single Stage - 4X4 - 16 Filters Per Bank Memo: Each Filter is 24" x 24".	U.C. per Ea	40 23.00 920		1419.2 \$32,642	500 \$11,500	96000 \$2,208,000	0 \$0	0 \$0	97919.2 \$2,252,142
HVAC *HEPA Filter Bank - Dual Stage - 4X4 - 12 Filters Per Bank Memo: Each Filter is 24" x 24".	U.C. per Ea	2.00 40 80		1419.2 \$2,838	500 \$1,000	144000 \$288,000	0 \$0	0 \$0	145919.2 \$291,838
HVAC *HEPA Filter Bank - Dual Stage - 4X4 - 16 Filters Per Bank Memo: Each Filter is 24" x 24".	U.C. per Ea	4.00 50 4.00 200		1774 \$7,096	500 \$2,000	192000 \$768,000	0 \$0	0 \$0	194274 \$777,096
HVAC Chiller (Complete With Compressor & Fans) - 80 Ton	U.C. per Ea	1.00 60		2128.8 \$2,129	0 \$0	35000 \$35,000	0 \$0	0 \$0	37128.8 \$37,129
HVAC Chiller (Complete With Compressor & Fans) - 40 Ton	U.C. per Ea	1.00 48 48		1703.04 \$1,703	0 \$0	21000 \$21,000	0 \$0	0 \$0	22703.04 \$22,703
HVAC Actuated Air Dampers	U.C. per Ea	0.9 00.00		31.932 \$3,193	0 \$0	150 \$15,000	0 \$0	0 \$0	181.932 \$18,193
HVAC Pre-Filters	U.C. per Lot	1.00 100		3548 \$3, 548	0 \$0	2500 \$2,500	0 \$0	0 \$0	6048 \$6,048
HVAC Heating Coils	U.C. per Lot	1.00 100		3548 \$3,548	0 \$0	5000 \$5,000	0 \$0	0 \$0	8548 \$8,548
HVAC Cooling Coils	U.C. per Lot	1.00 100		3548 \$3,548	0 \$0	5000 \$5,000	0 \$0	0 \$0	8548 \$8,548

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF Project Location: INTEC
Estimate Number: 2570 - Option A

LEVEL Org/Subcontractor — 9115.2.1 HVAC EQUIPMENT - NEW - GFF - UNEX	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	_S/C_	Other	TOTAL
HVAC Heat Recovery Coil	U.C. per Lot	1.00	40 40	CN-SHEE \$35.48	1419.2 \$1,419	0 \$0	2000 \$2,000	0 \$0	. 0 \$0	3419.2 \$3,419
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$85,081 \$0 \$38,827	\$35,000 \$0 \$15,972	\$3,986,000 \$199,300 \$1,909,987	\$0 \$0 \$0	\$0 \$0 \$0	\$4,106,081 \$199,300 \$1,964,786
Subtotal Estimate Escalation Contingency					\$31,795 \$38,926	\$13,080 \$16,013	\$1,564,051 \$1,914,834	\$0 \$0	\$0 \$0	\$6,270,168 \$1,608,925 \$1,969,773
Total 9115.2.1 HVAC EQUIPMENT - NEW - GFF - UNEX			2,398		\$194,629	\$80,065	\$9,574,172	\$0	\$0	\$9,848,866
9115.2.1 HVAC - TFD FACILITY - HOT CELL HVAC (*)Sheet Metal Ductwork Memo: The hot cell is approximately 77' x 51' x 77' high.	U.C. per Lot	1.00	1100 1,100	CN-SHEE \$35,48	39028 \$39,028	o \$0	20000 \$20,000	0 \$0	0 \$0	59028 \$59,028
HVAC Equipment	U.C. per Lot	1.00	700 700	CN-SHEE \$35.48	24836 \$24,836	3000 \$3,000	125000 \$125,000	0 \$0	0 \$0	152836 \$152,836
HVAC HEPA Filters	U.C. per Lot	1.00	300 300	CN-SHEE \$35.48	10644 \$10,644	0 \$0	150000 \$150,000	0 \$0	0 \$0	160644 \$160,644
HVAC Diffusers, Grilles, Dampers, Registers	U.C. per Lot	1.00	100 100	CN-SHEE . \$35.48	3548 \$3,548	, 0 \$0	9000 \$9,000	0 \$0	0 \$0	12548 \$12,548
HVAC Misc. Sheet Metal	U.C. per Lot	1.00	200 200	CN-SHEE \$35.48	7096 \$7,096	0 \$0	2500 \$2,500	0 \$0	0 \$0	9596 \$9,596
HVAC Test & Balance	U.C. per Lot	1.00	200 200	CN-SHEE \$35.48	7096 \$7,096	0 \$0	. 0 \$0	0 \$0	0 \$0	7096 \$7,096
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$92,248 \$0 \$42,098	\$3,000 \$0 \$1,369	\$306,500 \$15,325 \$146,867	\$0 \$0 \$0	\$0 \$0 \$0	\$401,748 \$15,325 \$190,334
Subtotal Estimate Escalation Contingency					\$34,473 \$42,205	\$1,121 \$1,373	\$120,266 \$147,240	\$0 \$0	\$0 \$0	\$607,407 \$155,861 \$190,817
Total 9115.2.1 HVAC - TFD FACILITY - HOT CELL			2,600		\$211,024	\$6,863	\$736,198	\$0	\$0	\$954,084
9115.2.2 HVAC - TFD FACILITY - OPERATING CORRIDGE Memo: The operating corridors and equipment		atelv 72.5	00 sauare f	eet of total floor ar	ea. Includes the	floor area of all le	vels			
HVAC (*)Sheet Metal Ductwork Memo: Includes all corridors and equipment areas - approxim	U.C. per Lot	1.00	4000 4,000	CN-SHEE \$35.48	141920 \$141,920	0 . \$0	140000 \$140,000	0 \$0	0 \$0	281920 \$281,920

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option A

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL	Org/Subcontractor	<u>QT</u>	Υ	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
	- TFD FACILITY - OPERATING CORRIDG The operating corridors and equipment		ximately 72,5	00 square f	eet of total floor a	rea. Includes the	e floor area of all le	vels.			
HVAC Equipment	HVAC	U.C. per Lot	1,00	4000 4,000	CN-SHEE \$35.48	141920 \$141,920	15000 \$15,000	525000 \$525,000	0 \$0	0 \$0	681920 \$681,920
Diffusers, Grilles, Da	HVAC Impers, Registers	U.C. per Lot	1.00	200 200	CN-SHEE \$35.48	7096 \$7,096	0 \$0	13000 \$13,000	0 \$0	0 \$0	20096 \$20,096
Misc. Sheet Metal	HVAC	U.C. per Lot	1.00	350 350	CN-SHEE \$35.48	12418 \$12,418	0 \$0	5000 \$5,000	0 \$0	0 \$0	17418 \$17,418
Test & Balance	HVAC	U.C. per Lot	1.00	300 300	CN-SHEE \$35.48	10644 \$10,644	0 \$0	0 \$0	0 \$0	0 \$0	10644 \$10,644
Sublotal Sales Tax INEEL ORG Labo	r/Subcontractor Overheads	- 1, 1, 2, 2			,	\$313,998 \$0 \$143,295	\$15,000 \$0 \$6,845	\$683,000 \$34,150 \$327,276	\$0 \$0 \$0	\$0 \$0 \$0	\$1,011,998 \$34,150 \$477,416
Subtotal Estimat Escalation Contingency	е					\$117,341 \$143,659	\$5,606 \$6,863	\$268,000 \$328,106	\$0 \$0	\$0 \$0	\$1,523,564 \$390,947 \$478,628
Total 9115.2.2 H	AC - TFD FACILITY - OPERATING COR	RIDORS		8,850		\$718,293	\$34,314	\$1,640,532	\$0	\$0	\$2,393,138
9115.2.3 PLUMI Process Piping	BING / PIPING - TFD FACILITY PIPE	U.C. per Sf	13,700.00	0.1 1,370	CN-PIPE \$37.58	3.758 \$51,485	0 \$0	5 \$68,500	0 \$0	0 \$0	8.758 \$119,985
Building Plumbing	PIPE	U.C. per Sf	13,700.00	0.05 685	CN-PIPE \$37.58	1,879 \$25,742	0 \$0	3 \$41,100	0 \$0	0 \$0	4.879 \$66,842
Subtotal Sales Tax INEEL ORG Labo	r/Subcontractor Overheads					\$77,227 \$0 \$37,149	\$0 \$0 \$0	\$109,600 \$5,480 \$55,358	\$0 \$0 \$0	\$0 \$0 \$0	\$186,827 \$5,480 \$92,507
Subtotal Estimat Escalation Contingency	0					\$29,349 \$35,931	\$0 \$0	\$43,734 \$53,543	\$0 \$0	\$0 \$0	\$284,814 \$73,083 \$89,474
Total 9115.2.3 PL	.UMBING / PIPING - TFD FACILITY			2,055		\$179,656	\$0	\$267,716	\$0	\$0	\$447,372
HVAC	- NEW - BOILER HOUSE HVAC FC estimate #2547-A. This will be a two b	U.C. per LO oiler system vs. a	1.00	200 200 te 2547-A; a	CN-SHEE \$35.48 all quantities are hal	7096 \$7,096 ved.	240 \$240	36700 \$36,700	1000 \$1,000	0 \$0	45036 \$45,036

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

LEVEL Org/Subcontractor 9115.4.2 HVAC - NEW - BOILER HOUSE	QTY	-	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	_S/C_	<u>Other</u>	TOTAL
Sublotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$7,096 \$0 \$3,238	\$240 \$0 \$110	\$36,700 \$1,835 \$17,586	\$1,000 \$0 \$456	\$0 \$0 \$0	\$45,036 \$1,835 \$21,390
Subtotal Estimate Escalation Contingency					\$2,652 \$3,247	\$90 \$110	\$14,401 \$17,630	\$374 \$458	\$0 \$0	\$68,261 \$17,516 \$21,444
Total 9115.4.2 HVAC - NEW - BOILER HOUSE			200		\$16,233	\$549	\$88,152	\$2,288	\$0	\$107,221
9115.4.3 PLUMBING - BOILER HOUSE PIPE Building Drain	U.C. per Lot	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	o \$0	600 \$600	0 \$0	0 \$0	2103.2 \$2,103
PIPE Building Water	U.C. per Lot	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	300 \$300	0 \$0	0 \$0	1051.6 \$1,052
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$2,255 \$0 \$1,085	\$0 \$0 \$0	\$900 \$45 \$455	\$0 \$0 \$0	\$0 \$0 \$0	\$3,155 \$45 \$1,539
Subtotal Estimate . Escalation Contingency					\$857 \$1,049	\$0 \$0	· \$359 \$440	\$0 \$0	\$0 \$0	\$4,739 \$1,216 \$1,489
Total 9115.4.3 PLUMBING - BOILER HOUSE			60		\$5,245	\$0	\$2,198	\$0	\$0	\$7,444
9115.4.4 PIPING - NEW - BOILER HOUSE PIPE STEAM & SUPPORT PIPING	U.C. per LOT	1.00	2325 2,325	CN-PIPE \$37.58	87373.5 \$87,374	1820 \$1,820	89150 \$89,150	0 \$0	0 \$0	178343.5 \$178,344
INSUL PIPE INSULATION	U.C. per LOT	1.00	175 175	CN-ASBE \$36.92	6461 \$6,461	0 \$0	8920 \$8,920	0 \$0	0 \$0	15381 \$15,381
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			`		\$93,835 \$0 \$44,739	\$1,820 \$0 \$875	\$98,070 \$4,904 \$48,956	\$0 \$0 \$0	\$0 \$0 \$0	\$193,725 \$4,904 \$94,571
Subtotal Estimate Escalation Contingency					\$35,558 \$43,533	\$692 \$847	\$38,985 \$47,729	\$0 \$0	\$0° \$0	\$293,199 \$75,235 \$92,109
Total 9115.4.4 PIPING - NEW - BOILER HOUSE			2,500		\$217,665	\$4,234	\$238,644	\$0	\$0	\$460,543
9115.4.5 FIRE PROTECTION - NEW - BOILER HOUSE FP FIRE SPRINKLER SYSTEM - BOILER BUILDING	U.C. per SF 3,1	20.00	o		0 \$0	0 \$0	0 \$0	3.5 \$10,920	0 \$0	3.5 \$10,920

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Project Name:

Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL 9115.4.5 FIRE P	Org/Subcontractor ROTECTION - NEW - BOILER HOUSE	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	_S/C_	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor	/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$10,920 \$0 \$4,579	\$0 \$0 \$0	\$10,920 \$0 \$4,579
Subtotal Estimate Escalation Contingency						\$0 \$0	\$0 \$0	\$0 \$0	\$3,977 \$4,869	\$0 \$0	\$15,499 \$3,977 \$4,869
Total 9115.4.5 FIF	RE PROTECTION - NEW - BOILER HOUSE			0		\$0	\$0	\$0	\$24,345	\$0	\$24,345
9115.4 MECHAN MISC. PIPING - ALL	NICAL - NEW - STORAGE FACILITY PIPE OW	U.C. per LOT	1.00	0		0 \$0	0 \$0	0 \$0	40000 \$40,000	0 \$0	40000 \$40,000
FIRE PROTECTION	FP	U.C. per SF 2	20,440.00	0		0 \$0	0 \$0	0 \$0	3.5 \$71,540	0 \$0	3.5 \$71,540
HVAC	HVAC	U.C. per SF 2	20,440.00	0.18 3,679	CN-SHEE \$35.48	6.386 \$130,538	0 \$0	11.2 \$228,928	0 \$0	0 \$0	17.586 \$359,466
Subtotal Sales Tax INEEL ORG Labor	/Subcontractor Overheads	···				\$130,538 \$0 \$59,572	\$0 \$0 \$0	\$228,928 \$11,446 \$109,696	\$111,540 \$0 \$49,240	\$0 \$0 \$0	\$471,006 \$11,446 \$218,509
Subtotal Estimate Escalation Contingency	•					\$48,782 \$59,723	\$0 \$0	\$89,828 \$109,975	\$41,256 \$50,509	\$0 \$0	\$700,961 \$179,867 \$220,207
Total 9115.4 MEC	HANICAL - NEW - STORAGE FACILITY			3,679		\$298,615	\$0	\$549,874	\$252,546	\$0	\$1,101,034
	HGEAR AND TRANSFORMERS - GFF ELEC ouble ended 3R walk-in switchgear	U.C. per Ea	1.00	96 96	CN-ELEC \$34.12	3275.52 \$3,276	2500 \$2,500	200000 \$200,000	o \$0	0 \$0	205775,52 \$205,776
2500 kVA 13.8-480/2	ELEC 77 transformers	U.C. per Ea	2 00	24 48	CN-ELEC \$34.12	818.88 \$1,638	2500 \$5,000	75000 \$150,000	0 \$0	0 \$0	78318.88 \$156,638
4000 amp armor clad	ELEC busway	U.C. per Ls	1.00	32 32	CN-ELEC \$34.12	1091.84 \$1,092	0 \$0	10000 \$10,000	0 \$0	0 \$0	11091.84 \$11,092
800 amp 480 voll star	ELEC ndby power panels	U.C. per Ea	1.00	24 24	CN-ELEC \$34.12	818.88 \$819	0 \$0	12000 \$12,000	0 \$0	0 \$0	12818.88 \$12,819
1200 amp 480 volt no	ELEC ormal power panels	U.C. per Ea	2.00	16 32	CN-ELEC \$34.12	545.92 \$1,092	0 \$0	10000 \$20,000	0 \$0	0 \$0	10545,92 \$21,092
Vault and equipment	ELEC pads for main gear and transformers	U.C. per Ls	1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	35000 \$35,000	35000 \$35,000

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

LEVEL Org/Subcontractor 9116.2.1 SWITCHGEAR AND TRANSFORMERS - GFF	QTY	<u></u>	Hrs	Crew/Rate	Labor	Const Eqp	Matl	<u>s/c</u>	Other	TOTAL
ELEC 480 volt power panels	U.C. per Ea	6.00	12 72	CN-ELEC \$34.12	409.44 \$2, 457	0 \$0	5000 \$30,000	0 \$0	0 \$0	5409.44 \$32,457
ELEC 480-208/120 75 kVA transformers	U.C. per Ea	4.00	8 32	CN-ELEC \$34.12	272.96 \$1,092	0 \$0	1700 \$6,800	0 \$0	0 \$0	1972.96 \$7,892
ELEC 208/120 panels, lighting & misc. power loads	U.C. per Ea	4.00	8 32	CN-ELEC \$34.12	272.96 \$1,092	0 \$0	2500 \$10,000	0 \$0	0 \$0	2772.96 \$11,092
Subtotal . Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$12,556 \$0 \$5,265	\$7,500 \$0 \$3,145	\$438,800 \$21,940 \$193,202	\$0 \$0 \$0	\$35,000 \$0 \$0	\$493,856 \$21,940 \$201,612
Subtotal Estimate Escalation Contingency	·				\$4,573 \$6,942	\$2,732 \$4,147	\$167,802 \$254,741	\$0 \$0	\$8,981 \$13,634	\$717,408 \$184,087 \$279,464
Total 9116.2.1 SWITCHGEAR AND TRANSFORMERS - G	FF		368		\$29,337	\$17,523	\$1,076,484	\$0	\$57,615	\$1,180,959
9116.2.2 RACEWAYS, CONDUCTORS, AND GROUNDIN ELEC 15kV electrical duct bank, 2 runs of 200 lf.	U.C. per Lf	400.00	0		0 \$0	0 \$0	o \$0	0 \$0	125 \$50,000	125 \$50,000
ELEC 600 volt feeders	U.C. per Ls	1.00	0		0 \$0	o · \$0	0 \$0	0 \$0	25000 \$25,000	25000 \$25,000
ELEC Branch power and lighting circuits	U.C. per Ls	1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	100000 \$100,000	100000 \$100,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$175,000 \$0 \$0	\$175,000 \$0 \$0
Subtotal Estimate Escalation Contingency					\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$44,905 \$68,171	\$175,000 \$44,905 \$68,171
Total 9116.2.2 RACEWAYS, CONDUCTORS, AND GROUP	IDING - GFF		0		\$0	\$0	\$0	\$0	\$288,076	\$288,076
9116.2.3 MISC. COSTS - GFF ELEC Tesling of systems and equipment	U.C. per Ls	1.00	120 120	CN-ELEC \$34.12	4094.4 \$4,094	0 \$0	0 \$0	0 \$0	o · \$0	4094.4 \$4,094
ELEC . Material handling	U.C. per Ls	1.00	120 120	CN-ELEC \$34.12	4094.4 \$4,094	0 \$0	0 \$0	0 \$0	0 \$0	4094.4 \$4,094
ELEC Lightning Protection	U.C. per Sf 8	89,100.00	0		0 \$0	0 \$0	0 \$0	2 \$178,200	0 \$0	2 \$178,200

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

Client:

V. J. Balls

LEVEL Org/Subcontractor 9116.2.3 MISC. COSTS - GFF	<u>QT</u>	Ύ	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	<u>Other</u>	TOTAL
ELEC Grounding Grid	U.C. per Sf	89,100.00	0		0 \$0	0 \$0	0 \$0	1 \$89,100	0 \$0	1 \$89,100
ELEC Wiring Devices & Enclosures	U.C. per Sf	89,100.00	0		0 \$0	0 \$0	0 \$0	1 \$89,100	0 \$0	1 \$89,100
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$8,189 \$0 \$3,434	\$0 \$0 \$0	\$0 \$0 \$0	\$356,400 \$0 \$149,449	\$0 \$0 \$0	\$364,589 \$0 \$152,883
Subtotal Estimate Escalation Contingency		-			\$2,982 \$4,528	\$0 \$0	\$0 \$0	\$129,801 \$197,052	\$0 \$0	\$517,472 \$132,783 \$201,579
Total 9116.2.3 MISC. COSTS - GFF			240		\$19,133	\$0	\$0	\$832,702	\$0	\$851,834
9116.2.4 LIGHTING - GFF ELEC Lighting	U.C. per Sf	89,100.00	o		0 \$0	0 \$0	. 0 \$0	4 \$356,400	0 \$0	4 \$356,400
Subtotal Sales Tax INEEL, ORG Labor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$356,400 \$0 \$149,449	\$0 \$0 \$0	\$356,400 \$0 \$149,449
Subtotal Estimate Escalation Contingency					\$0 \$0	\$0 \$0	\$0 \$0	\$129,801 \$197,052	\$0 \$0	\$505,849 \$129,801 \$197,052
Total 9116.2.4 LIGHTING - GFF			0		\$0	\$0	\$0	\$832,702	\$0	\$832,702
9116.3.1 SWITCHGEAR AND TRANSFORMERS - TFD ELEC 480-208/120 75 kVA transformers	U.C. per Ea	2.00 、	8 16	CN-ELEC \$34.12	272.96 \$546	0 \$0	1700 \$3,400	0 \$0	0 \$0	1972.96 \$3,946
ELEC 208/120 panels, lighting & misc. power loads	U.C. per Ea	2.00	8 16	CN-ELEC \$34.12	272.96 \$546	0 \$0	2500 \$5,000	0 \$0	0 \$0	2772.96 \$5,546
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$1,092 \$0 \$458	\$0 \$0 \$0	\$8,400 \$420 \$3,698	\$0 \$0 \$0	\$0 \$0 \$0	\$9,492 \$420 \$4,156
Subtotal Estimate Escalation Contingency					\$398 \$604	\$0 \$0	\$3,212 \$4,877	\$0 \$0	\$0 \$0	\$14,068 \$3,610 \$5,480
Total 9116.3.1 SWITCHGEAR AND TRANSFORMERS - TFI	D		32		\$2,551	\$0	\$20,607	\$0	\$0	\$23,158

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

LEVEL Org/Subcontractor - 9116.3.2 RACEWAYS, CONDUCTORS, AND G	POUNDING TED QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
ELEC Branch power and lighting circuits	U.C. per Ls	0		0 \$0	0 \$0	0 \$0	0 \$0	35000 \$35,000	35000 \$35,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$35,000 \$0 \$0	\$35,000 \$0 \$0
Subtotal Estimate Escalation Contingency			•	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$8,981 \$13,634	\$35,000 \$8,981 \$13,634
-Total 9116.3.2 RACEWAYS, CONDUCTORS, AN	ND GROUNDING - TFD	0		\$0	\$0	\$0	\$0	\$57,615 °	\$57,615
9116.3.3 MISC. COSTS - TFD ELEC Testing of systems and equipment	U.C. per Ls	90 90	CN-ELEC \$34.12	3070.8 \$3,071	0 \$0	0 \$0	0 \$0	0 \$0	3070.8 \$3,071
ELEC Material handling	U.C. per Ls 1.00	90 90	CN-ELEC \$34.12	3070,8 \$3,071	0 \$0	0 \$0	0 \$0	0 \$0	3070,8 \$3,071
ELEC Lightning Protection	U.C. per Sf 13,700.00	0		0 \$0	0 \$0	0 \$0	2 \$27,400	0 \$0	2 \$27,400
ELEC Grounding Grid	U.C. per Sf 13,700.00	0		0 \$0	0 \$0	0 \$0	1 \$13,700	0 \$0	1 \$13,700
ELEC Wiring Devices & Enclosures	U.C. per Sf 13,700.00	0	·	0 \$0	0 \$0	0 \$0	1 \$13,700	0 \$0	1 \$13,700
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			N-10133	\$6,142 \$0 \$2,575	\$0 \$0 \$0	\$0 \$0 \$0	\$54,800 \$0 \$22,979	\$0 \$0 \$0	\$60,942 \$0 \$25,555
Subtotal Estimate Escalation Conlingency				\$2,237 \$3,396	\$0 \$0	\$0 \$0	\$19,958 \$30,299	\$0 \$0	\$86,496 \$22,195 \$33,694
Total 9116.3.3 MISC. COSTS - TFD		180		\$14,349	\$0	\$0	\$128,036	\$0	\$142,385
9116.3.4 LIGHTING - TFD ELEC Lighting	U.C. per Sf 13,700,00	0		0 \$0	· 0 \$0	0 \$0	o \$0	3.9 \$53,430	3.9 \$53,430

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org	/Subcontractor	QTY	<u>′</u>	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C_	Other	TOTAL
Subtotal Sales Tax						\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$53,430	\$53,430
INEEL ORG Labor/Subco	ntractor Overheads					\$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0
Subtotal Estimate						······································					\$53,430
Escalation						\$0	\$0	\$0	\$0	\$13,710	\$13,710
Conlingency						\$0	\$0	\$0	\$0	\$20,813	\$20,813
-Total 9116.3.4 LIGHTING	G - TFD ·			0		\$0	\$0	\$0	\$0	\$87,954	\$87,954
9116.4.2 RACEWAYS,	CONDUCTORS, AND GROUNI	DING - BOILER HOU	SE								
EL	EC	U.C. per Ls				0	0	0	0	12000	12000
Branch power and lighting c	rcuits		1.00	0		\$0	\$0	\$0	\$0	\$12,000	\$12,000
Subtotal			***************************************			\$0	\$0	\$0	\$0	\$12,000	\$12,000
Sales Tax						\$0	\$0	\$0	\$0	\$0	\$0
INEEL ORG Labor/Subco	ntractor Overheads					\$0	\$0	\$0	\$0	\$0	\$0
Subtotal Estimate											\$12,000
Escalation Contingency						\$0	\$0	\$0	\$0	\$3,079	\$3,079
		·*····			 	\$0	\$0	\$0	\$0	\$4,675	\$4,675
Total 9116.4.2 RACEWA HOUSE	YS, CONDUCTORS, AND GRO	OUNDING - BOILER		0		\$0	\$0	\$0	\$0	\$19,754	\$19,754
9116.4.3 MISC. COSTS	- BOILER HOUSE										
EL		U.C. per Ls		40	CN-ELEC	1364.8	0	0	0	0	1364.8
Testing of systems and equi	pment		1.00	40	\$34.12	\$1,365	\$0	\$0	\$0	\$0	\$1,365
EL	EC	U.C. per Ls		40	CN-ELEC	1364.8	0	0	0	0	1364.8
Material handling			1.00	40	\$34.12	\$1,365	\$0	\$0	\$0	\$0	\$1,365
EL	EC	U.C. per Sf				0	0	0	2	0	2
Lightning Protection			3,120.00	0		\$0	\$0	\$0	\$6,240	\$0	\$6,240
EL	EC	U.C. per Sf				0	0	0	1	0	1
Grounding Grid			3,120.00	0		\$0	\$0	\$0	\$3,120	\$0	\$3,120
EL.		U.C. per Sf				0	0	0	1	0	1
Wiring Devices & Enclosures	5		3,120.00	0		\$0	\$0	\$0	\$3,120	\$0	\$3,120

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

LEVEL Org/Subcontractor 9116.4.3 MISC. COSTS - BOILER HOUSE	QT	<u>Y</u>	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
ELEC Boiler Controls	U.C. per Lot	1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	3000 \$3,000	0 \$0	0 \$0	6412 \$6,412
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			•		\$6,142 \$0 \$2,575	\$0 \$0 \$0	\$3,000 \$150 \$1,321	\$12,480 \$0 \$5,233	\$0 \$0 \$0	\$21,622 \$150 \$9,129
Subtotal Estimate Escalation Contingency					\$2,237 \$3,396	\$0 \$0	\$1,147 \$1,742	\$4,545 \$6,900	\$0 \$0	\$30,901 \$7,929 \$12,037
Total 9116.4.3 MISC. COSTS - BOILER HOUSE			180		\$14,349	\$0	\$7,360	\$29,159	\$0	\$50,868
- 9116.4.4 LIGHTING - BOILER HOUSE ELEC Lighting	U.C. per Sf	3,120.00	0		0 \$0	· \$0	o \$0	3 \$9,360	0 \$0	3 \$9,360
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$9,360 \$0 \$3,925	\$0 \$0 \$0	\$9,360 \$0 \$3,925
Subtotal Estimate Escalation Contingency					\$0 \$0	\$0 \$0	\$0 \$0	\$3,409 \$5,175	\$0 \$0	\$13,285 \$3,409 \$5,175
Total 9116.4.4 LIGHTING - BOILER HOUSE	,		0		\$0	. \$0	\$0	\$21,869	\$0	\$21,869
9116.5.1 SWITCHGEAR AND TRANSFORMERS - INTERELEC SWITCHGEAR AND TRANSFORMERS	RIM STORAGE U.C. per LOT	1.00	480 480	CN-ELEC \$34.12	16377.6 \$16,378	0 \$0	100000 \$100,000	0 \$0	0 \$0	116377.6 \$116,378
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$16,378 \$0 \$6,868	\$0 \$0 \$0	\$100,000 \$5,000 \$44,030	\$0 \$0 \$0	\$0 \$0 \$0	\$116,378 \$5,000 \$50,897
Subtotal Estimate Escalation Contingency					\$5,965 \$9,055	\$0 \$0	\$38,241 \$58,054	\$0 \$0	\$0 \$0	\$172,275 \$44,208 \$67,109
Total 9116,5.1 SWITCHGEAR AND TRANSFORMERS - IN STORAGE	NTERIM		480		\$38,265	\$0	\$245,325	\$0	\$0	\$283,590
9116.5.2 RACEWAYS, CONDUCTORS, AND GROUNDING ELEC Branch power and lighting circuits	NG - INTERIM STO U.C. per Ls	1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	21000 \$21,000	21000 \$21,000

CONSTRUCTION DETAIL ITEM REPORT

Project Name: Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option A

Client:

\$0

\$0

\$71,540

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor 9116.5.2 RACEWAYS, CONDUCTORS, AND GROUND	QTY ING - INTERIM STORAGE	<u>Hrs</u>	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C	Other	TOTAL
Subtotal				\$0	\$0	\$0	\$0	\$21,000	\$21,000
Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0
Subtotal Estimate Escalation Contingency				\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$5,389	\$21,000 \$5,389
Total 9116.5.2 RACEWAYS, CONDUCTORS, AND GRO	UNDING -	0		\$0	\$0 \$0	\$0 \$0	\$0 \$0	\$8,180 \$34,569	\$8,180 \$34,569
INTERIM STORAGE									
9116.5.3 MISC. COSTS - INTERIM STORAGE ELEC	U.C. per Ls	100	CN-ELEC	3412	0	0	0	0	3412
Testing of systems and equipment	1.00	100	\$34.12	\$3,412	\$0	\$0	\$0	\$0	\$3,412
ELEC Material handling	U.C. per Ls 1.00	100 100	CN-ELEC \$34,12	3412 \$3,412	0 \$0	0 \$0	0 \$0	0 \$0	3412
·	•	100	φ34.12		•	•	·		\$3,412
ELEC Lightning Protection	U.C. per Sf 20,440.00	0		0 \$0	0 \$0	0 \$0	2 \$40,880	0 \$0	2 \$40,880
ELEC	U.C. per Sf			0	0	0	1	0	1
Grounding Grid	20,440.00	0		\$0	\$0	\$0	\$20,440	\$0	\$20,440
ELEC Wiring Devices & Enclosures	U.C. per Sf 20,440.00	0		0 \$0	0 \$0	0 \$0	1 \$20,440	0 \$0	1 \$20,440
			011 51 50	_					-
ELEC INSTRUMENTATION & CONTROLS	U.C. per LOT 1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	2500 \$2,500	4750 \$4,750	0 \$0	10662 \$10,662
Subtotal				\$10,236	\$0	\$2,500	\$86,510	\$0	\$99,246
Sales Tax				\$0	\$0	\$125	\$0	\$0	\$125
INEEL ORG Labor/Subcontractor Overheads	· · · · · · · · · · · · · · · · · · ·			\$4,292	\$0	\$1,101	\$36,276	\$0	\$41,669
Subtotal Estimate				4					\$141,040
Escalation Contingency				\$3,728 \$5,659	\$0 \$0	\$956 \$1,451	\$31,507 \$47,831	\$0 \$0	\$36,191 \$54,942
Total 9116.5.3 MISC. COSTS - INTERIM STORAGE		300		\$23,916	\$0	\$6,133	\$202,124	\$0	\$232,173
9116.5.4 LIGHTING - INTERIM STORAGE					_				
ELEC	U.C. per Sf	0		0	0	0	3.5	0	3.5

20,440.00

Lighting

\$0

\$71,540

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor 9116.5.4 LIGHTING - INTERIM STORAGE	QTY	<u>.</u>	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	Matl	S/C_	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$71,540 \$0 \$29,999	\$0 \$0 \$0	\$71,540 \$0 \$29,999
Subtotal Estimate Escalation Contingency				•	\$0 \$0	\$0 \$0	\$0 \$0	\$26,055 \$39,554	\$0 \$0	\$101,539 \$26,055 \$39,554
Total 9116.5.4 LIGHTING - INTERIM STORAGE			0		\$0	\$0	\$0	\$167,148	\$0	\$167,148
9116.6 ELECTRICAL - TRANSFER TUNNEL ELEC LIGHTING ELEC	U.C. per SF	1,500.00	0.03	CN-ELEC	0 \$0 1,024	0 \$0	0 \$0 2	2.75 \$4,125 0	0 \$0	2.75 \$4,125 3,024
VOICE PAGING / EVAC.	0.0. pc. 0.	1,500.00	45	\$34.12	\$1,535	\$0	\$3,000	\$ŏ	\$0	\$4,535
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$1,535 \$0 \$644	\$0 \$0 \$0	\$3,000 \$150 \$1,321	\$4,125 \$0 \$1,730	\$0 \$0 \$0	\$8,660 \$150 \$3,694
Subtotal Estimate Escalation Contingency					\$559 \$849	\$0 \$0	\$1,147 \$1,742	\$1,502 \$2,281	\$0 \$0	\$12,505 \$3,209 • \$4,871
Total 9116.6 ELECTRICAL - TRANSFER TUNNEL			45	•	\$3,587	\$0	\$7,360	\$9,638	\$0	\$20,585
- 9301.1 CONSTRUCTION SUPPORT BWI Construction Support1% Of TCC	U.C. per Lot	1.00	0		170200 \$170,200	0 \$0	0 \$0	0 \$0	0 \$0	170200 \$170,200
7620 Radiological Control Technicians - 1.5 FTE	U.C. per Wk	104.00	60 6,240	U60 \$24.66	1479.6 \$153,878	0 \$0	0 \$0	0 \$0	0 \$0	1479.6 \$153,878
7610 Radiation Control - Management Support - 10% OF RCT Total	U.C. per Hr	6,240.00	0.1 824	Z03 \$52,32	5.232 \$32,648	0 \$0	0 \$0	0 \$0	0 \$0	5.232 \$32,648
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$356,726 \$0 \$166,008	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$356,726 \$0 \$166,008
Subtotal Estimate Escalation Contingency					\$134,134 \$236,472	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$522,734 \$134,134 \$236,472
Total 9301.1 CONSTRUCTION SUPPORT			6,864		\$893,340	\$0	\$0	\$0	\$0	\$893,340

Page No.

08/30/2000

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC
Estimate Number: 2570 - Option A

V. J. Balls Client:

LEVEL Org/Subcontractor 9301.2 CONSTRUCTION QUALITY CONTROL	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
Construction Quality Control1% Of TCC	U.C. per Lot	1.00	0		170200 \$170,200	0 \$0	0 \$0	0 \$0	0 \$0	170200 \$170,200
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		•			\$170,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$170,200 \$0 \$0
Subtotal Estimate Escalation Contingency			-		\$43,673 \$76,994	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$170,200 \$43,673 \$76,994
Total 9301.2 CONSTRUCTION QUALITY CONTROL			0		\$290,868	\$0	\$0	\$0	\$0	\$290,868
9301.3 CONSTRUCTION DOCUMENTATION BWI PM Construction Document Control5% Of TCC	U.C. per Lot	1.00	0		850900 \$850,900	0 \$0	0 \$0	0 \$0	0 \$0	850900 \$850,900
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$850,900 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$850,900 \$0 \$0
Subtotal Estimate Escalation Contingency					\$218,341 \$384,927	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$850,900 \$218,341 \$384,927
Total 9301.3 CONSTRUCTION DOCUMENTATION			0		\$1,454,168	\$0	\$0	\$0	\$0	\$1,454,168
OPC3100 TESTING AND TURNOVER PLANNING BWI Testing & Turnover Planning2% Of TCC	U.C. per Lot	1.00	0		340400 \$340,400	0 \$0	0 \$0	0 \$0	0 \$0	340400 \$340,400
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$340,400 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$340,400 \$0 \$0
Subtotal Estimate Escalation Contingency					\$125,676 \$475,397	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$340,400 \$125,676 \$475,397
Total OPC3100 TESTING AND TURNOVER PLANNING			0		\$941,473	\$0	\$0	\$0	\$0	\$941,473
OPC3200 S. O. TESTING BWI SO Testing - 5% Of TCC	U.C. per Lot	1.00	0		8508800 \$8,508,800	0 \$0	0 \$0	0 \$0	0 \$0	8508800 \$8,508,800

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls Prepared By: Rowley / Mitchell / Marler

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option A Estimate Type: Planning

LEVEL Org/Subcontractor OPC3200 S. O. TESTING	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$8,508,800 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$8,508,800 \$0 \$0
Subtotal Estimate Escalation Contingency					\$3,141,449 \$11,883,254	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$8,508,800 \$3,141,449 \$11,883,254
Total OPC3200 S. O. TESTING			0		\$23,533,503	\$0	\$0	\$0	\$0	\$23,533,503
OPC3300 ORR SUPPORT BWI ORR Support22% Of TCC	U.C. per Lot	1.00	0		374400 \$374,400	0 \$0	0 \$0	0 \$0	0 \$0	374400 \$374,400
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$374,400 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$374,400 \$0 \$0
Subtotal Estimate Escalation Contingency					\$138,228 \$522,881	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$374,400 \$138,228 \$522,881
Total OPC3300 ORR SUPPORT			0		\$1,035,510	\$0	\$0	\$0	\$0	\$1,035,510
OPC3400 FACILITY ACCEPTANCE REVIEW BWI Facility Acceptance Review15% Of TCC	U.C. per Lot	1.00	0		255300 \$255,300	0 . \$0	0 \$0	0 \$0	0 \$0	255300 \$255,300
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$255,300 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$255,300 \$0 \$0
Subtotal Estimate Escalation Contingency					\$94,257 \$356,548	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$255,300 \$94,257 \$356,548
Total OPC3400 FACILITY ACCEPTANCE REVIEW			. 0		\$706,105	\$0	\$0	\$0	\$0	\$706,105
OPC3500 RADIOLOGICAL CONTROL SUPPORT BWI Radiological Control Support11% Of TCC	U.C. per Lot	1.00	0		187200 \$187,200	o \$0	0 \$0	0 \$0	0 \$0	187200 \$187,200

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option A

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor OPC3500 RADIOLOGICAL CONTROL SUPPORT	QTY		Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$187,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$187,200 \$0 \$0
Subtotal Estimate Escalation Contingency		'			\$69,114 \$261,441	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$187,200 \$69,114 \$261,441
Total OPC3500 RADIOLOGICAL CONTROL SUPPORT			0		\$517,755	\$0	\$0	\$0	\$0	\$517,755
OPC3600 OPERATOR TRAINING BWI Operator Training - 2% Of TCC	U.C. per Lat	1.00	0		3403500 \$3,403,500	0 \$0	0 \$0	0 \$0	0 \$0	3403500 \$3,403,500
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$3,403,500 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,403,500 \$0 \$0
Subtotal Estimate Escalation Contingency					\$1,256,572 \$4,753,274	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,403,500 \$1,256,572 \$4,753,274
Total OPC3600 OPERATOR TRAINING			0		\$9,413,346	\$0	\$0	\$0	\$0	\$9,413,346
OPC3700 OPERATING PROCEDURES BWI Operating Procedures44% Of TCC	U.C. per Lot	1.00	0		748800 \$748,800	0 \$0	0 \$0	0 \$0	0 \$0	748800 \$748,800
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$748,800 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$748,800 \$0 \$0
Subtotal Estimate Escalation Contingency					\$276,457 \$1,045,762	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$748,800 \$276,457 \$1,045,762
Total OPC3700 OPERATING PROCEDURES			0		\$2,071,019	\$0	\$0	\$0	\$0	\$2,071,019
OPC3800 START-UP COORDINATION BWI Startup Coordination13% Of TCC	U.C. per Lot	1.00	0		221200 \$221,200	o \$0	0 \$0	0 \$0	0 \$0	221200 \$221,200

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF Project Location: INTEC Estimate Number: 2570 - Option A

LEVEL Org/Subcontractor OPC3800 START-UP COORDINATION	QTY	Hrs Crew/Rate	Labor	Const Eqp	<u>Matl</u>	_S/C_	<u>Other</u>	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			\$221,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$221,200 \$0 \$0
Subtotal Estimate Escalation Contingency			\$81,667 \$308,924	\$0 \$0	\$0 \$0	\$0 . \$0	\$0 \$0	\$221,200 \$81,667 \$308,924
Total OPC3800 START-UP COORDINATION		0	\$611,791	\$0	\$0	\$0	\$0	\$611,791
OPC3800 SPARES BWI Spares	U.C. per Lot	0	1000000 \$1,000,000	0 \$0	0 \$0	0 \$0	0 \$0	1000000 \$1,000,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			\$1,000,000 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$1,000,000 \$0 \$0
Subtotal Estimate Escalation Contingency			\$369,200 \$1,396,584	\$0 \$0	\$0 \$0	· \$0 \$0	\$0 \$0	\$1,000,000 \$369,200 \$1,396,584
Total OPC3900 SPARES		0	\$2,765,784	\$0	\$0	\$0	\$0	\$2,765,784
GAPIF Non-Org G&A and PROCUREMENT PF NOGAPIF Procurement Fee %	U.C. per \$ 1,355,375.00	O	0 \$0	0 \$0	0 \$0	0 \$0	1 \$1,355,375	1 \$1,355,375
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$1,355,375 \$0 \$0	\$1,355,375 \$0 \$0
Subtotal Estimate Escalation Contingency			\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$962,316	\$1,355,375 \$0 \$962,316
Total GAPIF Non-Org G&A and PROCUREMENT		0	\$0	\$0	\$0	\$0	\$2,317,691	\$2,317,691

CONSTRUCTION DETAIL ITEM REPORT

Project Name: Universal Solvent Extraction (UNEX) Feasibility Study - Option A - UNEX In GFF

Project Location: INTEC
Estimale Number: 2570 - Option A

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler Eslimate Type: Planning

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
Subtotal UNEX IN GFF - OPTION A Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$**,***,*** \$0 \$4,463,475	\$430,270 \$0 \$141,596	\$94,708,882 \$4,735,444 \$32,332,884	\$14,252,019 \$0 \$4,306,433	\$1,686,805 \$0 \$0	\$**,***,*** \$4,735,444 \$41,244,388
Subtotal Estimate Escalation Contingency				\$31,356,451 \$82,171,715	\$146,741 \$420,920	\$33,814,032 \$57,867,366	\$4,762,099 \$8,573,802	\$85,045 \$1,091,423	\$**,***,*** \$70,164,368 \$**,***,***
Total UNEX IN GFF - OPTION A		368,953		\$254,796,415	\$1,139,527	\$223,458,609	\$31,894,353	\$2,863,273	514,152,178

UNEX PROCESS IN A GREEN FIELD FACILITY

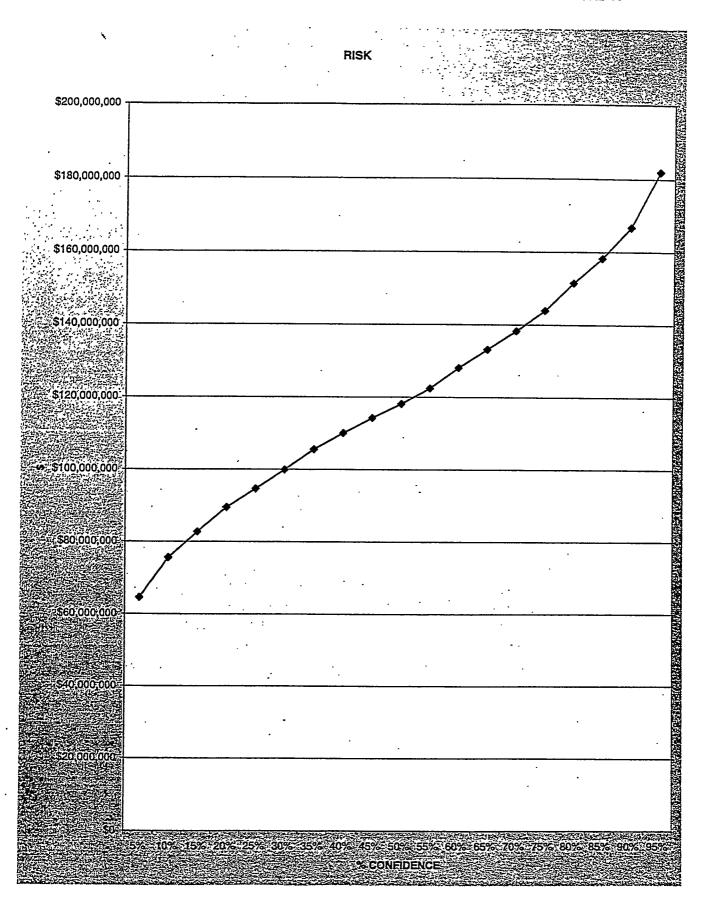
@RISK Sensitivity Report

OPTION A

Sensitivity Ranking Step-Wise Regression

Rank	Name	Cell	Regression	Weight	Amount	Level Markup
- PROJI	ECT DEVELOPMENT / Contingency at \$F\$3, for	Simulation				· · · · · · · · · · · · · · · · · · ·
1	SPECIALTIES	\$B\$20	0.5956	0.1949	\$29,517,049	i31%
2	EQUIPMENT	\$B\$21	0.5137	0.1681	\$25,457,390	<u> </u>
3	PROJECT ACCEPTANCE/CLOSEOUT	\$B\$27	0.4273	0.1398	\$21,175,352	102%
4	TECHNICAL DEVELOPMENT	\$B\$4	0.2365	0.0774	\$11,721,740	£101%
5	PROJECT MANAGEMENT	\$B\$10	0.2178	0.0713	\$10,791,143	∳38%
6	GENERAL CONDITIONS	\$B\$13	0.1844	0.0603	\$9,136,752	€ 41%
7	CONSTRUCTION MANAGEMENT	\$B\$6	0.1709	0.0559	\$8,467,325	°36%
8	TITLE II DESIGN	\$B\$8	0.1302	0.0426	\$6,454,059	<i>{</i> ,29%
9	PROJECT EXECUTION	\$B\$5	0.1098	0.0359	\$5,441,815	45%
10	TITLE I DESIGN	\$B\$7	0.0835	0.0273	\$4,138,322	~36%
11	QUALITY ASSURANCE	\$B\$9	0.0672	0.0220	\$3,328,808	;31%
12	CONCRETE	\$B\$15	0.0563	0.0184	\$2,789,096	[/] 26%
13	METALS	\$B\$16	0.0397	0.0130	\$1,968,939	·26%
14	PROJECT DEVELOPMENT	\$B\$3	0.0385	0.0126	\$1,906,757	434%
15	MECHANICAL	\$B\$24	0.0371	0.0121	\$1,839,609	¹ 25%
16	SITEWORK	\$B\$14	0.0231	0.0075	\$1,142,635	₍ 68%
17	ELECTRICAL	\$B\$25	0.0222	0.0073	\$1,099,417	'31%
18	CONVEYING SYSTEMS	\$B\$23	0.0207	0.0068	\$1,024,039	: 9%
19	Non-Org G&A and PROCUREMENT	\$B\$28	0.0195	0.0064	\$967,014	171%
20	CONSTRUCTION AE SUPPORT	\$B\$11	0.0182	0.0060	\$903,252	ç 28%
21	THERMAL & MOISTURE PROTECTION	\$B\$17	0.0178	0.0058	\$883,054	26%
22	CONSTRUCTION MISCELLANEOUS	\$B\$26	0.0144	0.0047	\$711,878	′36%
23	FINISHES	\$B\$19	0.0084	0.0028	\$417,861	126%
24	DOORS & WINDOWS	\$B\$18	0.0027	0.0009	\$135,434	126%
25	GOVERNMENT FURNISHED EQUIPMENT	\$B\$12	0.0000	0.0000		

3.0555


UNEX PROCESS IN A GREEN FIELD FACILITY

@RISK Output Details Report

Output Statistics

Outputs	Contingency
Simulation#	1
Statistics / Cell	\$F\$3
Minimum	20518454
Maximum	247844256
Mean	120292909.8
Standard Deviation	35362421.45
Variance	1.2505E+15
Skewness	0.227932905
Kurtosis	2.786055424
NumErrs	0
Mode	117812001.2
5%	\$64,558,753
10%	\$75,576,528
15%	\$82,712,657
20%	\$89,462,256
25%	\$94,654,152
30%	\$99,891,672
35%	\$105,520,791
40%	\$109,991,496
45%	\$114,193,032
50%	\$118,105,016
55%	\$122,446,864
60%	\$128,131,921
65%	\$133,154,382
70%	\$138,281,999
75%	\$143,848,128
80%	\$151,419,089
85%	\$158,267,091
90%	\$166,753,621
95%	181944541.6

UNEX PROCESS IN A GREEN FIELD FACILITY

TPC Summary Report 2

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX in GFF
Project Location: INTEC
Project Number: 2570 - Option B

Total Estimated Cost (TEC) \$253,767,080 \$\begin{array}{cccccccccccccccccccccccccccccccccccc	ESTIMATE ELEMENT	Estimate Subtotal	<u>Escalation</u>	Contingency	TOTAL
Other Project Cost (OPC) \$40,906,600 \$8,971,860 \$39,710,892 \$89,589,352	Total Estimated Cost (TEC)	\$253,767,080			\$424,702,785
AND AND AND AND AND AND AND AND AND AND	Other Project Cost (OPC)	\$40,906,600			\$89,589,352
	Total Project Cost (TDC)	\$294 673 680			\$514.292.137

		Remarks
Type of Estimate:	Planning	
Estimator:	Rowley / Mitchell / Marler	
Checked By:	LOA	
Approved By:	bl	

14:32:43

OPC1001.4

1000

Project Summary Report

\$560,000

\$18,328,600

Client:

V. J. Balls

TOTAL

\$7,545,441

\$4,819,302

\$240,951 \$554,173

\$795,124

\$1,135,891

\$23,078,088

\$17,476,020

\$17,476,020

\$9,276,705

\$8,199,315

\$31,553,455

\$26,294,660

\$584,291

\$2,045,192

\$30,623,529

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC Estimate Number: 2570 - Option B

--- TASK BASELINE AGREEMENT

CONSTRUCTION MANAGEMENT

Prepared By: Rowley / Mitchell / Marler

Contingency

\$33,376

\$4,703,119

\$13,337,003

\$1,914,515

\$1,222,808

\$61,137

\$140,611

\$201,748

\$288,211

\$11,422,488

\$5,423,592

\$8,521,736

Estimate Type: Planning

Contingency %

77.15%

34.00%

34.00%

34.00%

34.00%

34.00%

34.00%

98.00%

45.00%

45.00%

45.00%

45.00%

37.00%

37.00%

37.00%

37.00%

LEVEL		Estimate Subtotal	Escalation
OPC1000	PROJECT DEVELOPMENT	\$16,314,200	\$972,326
OPC1001	PROJECT DEVELOPMENT	\$5,314,200	\$316,726
OPC1001.1	CONCEPTUAL DESIGN	\$3,394,200	\$202,294
OPC1001.2	PROJECT EXECUTION PLAN	\$169,700	\$10,114
OPC1001.3	WORK PACKAGE DEVELOPMENT	\$390,300	\$23,262

OPC1001.5	PRELIMINARY SAFETY ANALYSIS REPORT (PSAR)	\$800,000	\$47,680	
OPC1600	TECHNICAL DEVELOPMENT	\$11,000,000	\$655,600	
OPC2000	PROJECT EXECUTION	\$9,591,300	\$2,461,128	

OPC2001	PROJECT EXECUTION	\$9,591,300	\$2,461,128	\$5,423,592
OPC2001.1	PROJECT SUPPORT	\$5,091,300	\$1,306,428	\$2,878,977
OPC2001.2	PERMITTING	\$4,500,000	\$1,154,700	\$2,544,615

1100	CONSTRUCTION SUPERVISION & ENGINEERING	\$15,273,900	\$3,919,283	\$7,101,478	;
1110	CM - CONDUCT OF OPERATIONS/CONDUCT OF MAINTENANCE	\$339,400	\$87,090	\$157,801	;
1200	CM PROJECT CONTROLS	\$1,188,000	\$304,841	\$552,351	;

1300	CM ENVIRONMENTAL SAFETY & HEALTH (ES&H)	\$848,500	\$217,725	\$394,503	37.00%	\$1,460,728
1400	CM TRAINING	\$339,400	\$87,090	\$157,801	37.00%	\$584,291
1500	CM - OTHER DIRECT COSTS	\$339,400	\$87,090	\$157,801	37.00%	\$584,291
1500	CM - OTHER DIRECT COSTS	\$339,400	\$87,090	\$157,801	37.00%	\$584

2000	TITLE I DESIGN	\$10,182,600	\$1,231,076	\$4,108,923	36.00%	\$15,522,600
2400 <i>INEEL</i>	DESIGN ACTIVITIES	\$10,182,600	\$1,231,076	\$4,108,923	36.00%	\$15,522,600

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option B

Project Summary Report

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL		Estimate Subtotal	Escalation	Contingency	Contingency %	TOTAL
3000	TITLE II DESIGN	\$19,177,200	\$2,941,782	\$6,193,315	28.00%	\$28,312,298
3400	DESIGN ACTIVITIES	\$19,177,200	\$2,941,782	\$6,193,315	28.00%	\$28,312,298
4000	QUALITY ASSURANCE	\$8,485,500	\$2,177,379	\$3,305,493	31.00%	\$13,968,372
4100	QUALITY ASSURANCE	\$8,485,500	\$2,177,379	\$3,305,493	31.00%	\$13,968,372
5000	PROJECT MANAGEMENT	\$22,433,100	\$5,756,333	\$10,711,985	38.00%	\$38,901,418
5100	PM ADMINISTRATION	\$13,576,800	\$3,483,807	\$6,483,031	38.00%	\$23,543,637
5110	PM - CONDUCT OF OPERATIONS/CONDUCT OF MAINTENANCE	\$67,900	\$17,423	\$32,423	38.00%	\$117,746
5200	PM PROJECT CONTROLS	\$3,394,200	\$870,952	\$1,620,758	38.00%	\$5,885,909
5300	PM RECORDS MANAGEMENT	\$3,394,200	\$870,952	\$1,620,758	38.00%	\$5,885,909
5400	SAFETY ANALYSIS	\$2,000,000	\$513,200	\$955,016	38.00%	\$3,468,216
6000	CONSTRUCTION AE SUPPORT	\$2,545,600	\$653,201	\$895,664	28.00%	\$4,094,465
9000	CONSTRUCTION	\$171,250,400	\$43,942,853	\$74,851,630	34.78%	\$290,044,882
9100	CONSTRUCTION SUBCONTRACTS	\$169,709,966	\$43,547,577	\$74,154,774	34.77%	\$287,412,317
9101	GENERAL CONDITIONS	\$15,621,615	\$4,008,506	\$8,244,651	42.00%	\$27,874,773
9101.1	GENERAL CONDITIONS	\$14,632,948	\$3,754,814	\$7,722,860	42.00%	\$26,110,622
9101.2	GC - CONDUCT OF OPERATIONS/CONDUCT OF MAINTENANCE	\$988,668	\$253,692	\$521,791	42.00%	\$1,764,151
9102	SITEWORK	\$1,342,619	\$344,516	\$1,147,252	68.00%	\$2,834,388
9102.1	SITEWORK - UTILITIES	\$68,438	\$17,561	\$58,479	68.00%	\$144,478
9102.2	SITEWORK - GFF	\$361,242	\$92,695	\$308,677	68.00%	\$762,614
9102.3	SITEWORK - TFD FACILITY	\$336,396	\$86,319	\$287,446	68.00%	\$710,162
9102.4	SITEWORK - BOILER HOUSE	\$71,579	\$18,367	\$61,163	68.00%	\$151,109
INEEL						
08/30/2000	14:32:43 Success Estin	Success Estimating and Cost Management System				No. 2

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

Project Summary Report

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL		Estimate Subtotal	Escalation	Contingency	Contingency %	TOTAL
9102.5	SITEWORK - STORAGE FACILITY	\$150,574	\$38,637	\$128,663	68.00%	\$317,874
9102.5	SITEWORK - TUNNEL	\$187,700	\$48,164	\$160,387	68.00%	\$396,251
9102.6	SITEWORK - PAVING	\$166,691	\$42,773	\$142,435	68.00%	\$351,899
9103	CONCRETE	\$8,539,012	\$2,191,111	\$2,789,832	26.00%	\$13,519,955
9103.1	CONCRETE - GFF	\$4,602,876	\$1,181,098	\$1,503,833	26.00%	\$7,287,807
9103.2	CONCRETE - TFD FACILITY	\$2,570,437	\$659,574	\$839,803	26.00%	\$4,069,813
9103.3	CONCRETÈ - BOILER HOUSE	\$46,061	\$11,819	\$15,049	26.00%	\$72,929
9103.4	CONCRETE - STORAGE FACILITY	\$1,230,990	\$315,872	\$402,184	26.00%	\$1,949,047
9103.5	CONCRETE - TUNNEL	\$88,649	\$22,747	\$28,963	26.00%	\$140,359
9105	METALS	\$6,099,156	\$1,565,043	\$1,992,692	26.00%	\$9,656,891
9105.2	METALS - GFF	\$1,300,866	\$333,802	\$425,014	26.00%	\$2,059,681
9105.3	METALS - TFD FACILITY	\$546,606	\$140,259	\$178,585	26.00%	\$865,451
9105.4	METALS - BOILER HOUSE	\$147,342	\$37,808	\$48,139	26.00%	\$233,290
9105.5	METALS - STORAGE FACILITY	\$4,104,341	\$1,053,174	\$1,340,954	26.00%	\$6,498,469
9107	THERMAL & MOISTURE PROTECTION	\$2,677,943	\$687,160	\$874,927	26.00%	\$4,240,030
9107.1	THERMAL & MOISTURE PROTECTION - GFF	\$1,439,697	\$369,426	\$470,372	26.00%	\$2,279,496
9107.2	THERMAL & MOISTURE PROTECTION - TFD FACILITY	\$692,200	\$177,618	\$226,153	26.00%	\$1,095,971
9107.3	THERMAL & MOISTURE PROTECTION - BOILER HOUSE	\$82,533	\$21,178	\$26,965	26.00%	\$130,676
9107.4	THERMAL & MOISTURE PROTECTION - STORAGE FACILITY	\$463,513	\$118,937	\$151,437	26.00%	\$733,887
9108	DOORS & WINDOWS	\$411,474	\$105,584	\$134,435	26.00%	\$651,493
9108.1	DOORS & WINDOWS - GFF	\$142,969	\$36,686	\$46,710	26.00%	\$226,364
9108.2	DOORS & WINDOWS - TFD FACILITY	\$175,925	\$45,142	\$57,478	26.00%	\$278,545

INEEL

08/30/2000 14:32:43 Success Estimating and Cost Management System

Page No.

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC

Estimate Number: 2570 - Option B

Project Summary Report

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL		Estimate Subtotal	Escalation	Contingency	Contingency %	_TOTAL_
9108.3	DOORS & WINDOWS - BOILER HOUSE	\$33,544	\$8,607	\$10,959	26.00%	\$53,110
9108.4	DOORS & WINDOWS - STORAGE FACILITY	\$59,036	\$15,149	\$19,288	26.00%	\$93,473
9109	FINISHES	\$1,257,389	\$322,646	\$395,009	25.00%	\$1,975,043
9109.1	FINISHES - GFF	\$454,273	\$116,566	\$142,710	25.00%	\$713,549
9109.2	FINISHES - TFD FACILITY	\$500,276	\$128,371	\$157,162	25.00%	\$785,808
9109.3	FINISHES - BOILER HOUSE	\$1,902	\$488	\$597	25.00%	\$2,987
9109.4	FINISHES - STORAGE FACILITY	\$300,938	\$77,221	\$94,540	25.00%	\$472,699
9110	SPECIALTIES	\$74,720,216	\$19,173,207	\$28,168,027	30.00%	\$122,061,450
9110.1	SPECIALTIES - GFF	\$3,461,641	\$888,257	\$1,304,969	30.00%	\$5,654,867
9110.2	SPECIALTIES - TFD FACILITY	\$17,521,957	\$4,496,134	\$6,605,427	30.00%	\$28,623,518
9110.3	SPECIALTIES - BOILER HOUSE	\$59,374	\$15,235	\$22,383	30.00%	\$96,993
9110.4	SPECIALTIES - STORAGE FACILITY	\$53,677,244	\$13,773,581	\$20,235,247	30.00%	\$87,686,072
9111	EQUIPMENT	\$37,267,301	\$9,562,790	\$25,288,249	54.00%	\$72,118,340
9111.1	EQUIPMENT - IN GFF	\$7,758,110	\$1,990,731	\$5,264,374	54.00%	\$15,013,215
9111.1.1	EQUIPMENT - GFF	\$2,249,492	\$577,220	\$1,526,424	54.00%	\$4,353,136
9111.1.2	EQUIPMENT - GROUT FACILITY	\$5,508,618	\$1,413,511	\$3,737,950	54.00%	\$10,660,079
9111.2	EQUIPMENT - THIN FILM DRYER FACILITY	\$1,621,050	\$415,962	\$1,099,986	54.00%	\$3,136,999
9111.3	EQUIPMENT - BOILER HOUSE	\$1,343,561	\$344,758	\$911,692	54.00%	\$2,600,012
9111.4	EQUIPMENT - GROUTING FACILITY	\$5,514,538	\$1,415,031	\$3,741,967	54.00%	\$10,671,536
9111.5	EQUIPMENT - STORAGE FACILITY	\$21,030,041	\$5,396,309	\$14,270,229	54.00%	\$40,696,579
9114	CONVEYING SYSTEMS	\$9,395,361	\$2,410,850	\$944,497	8.00%	\$12,750,707
9114.4	CONVEYING SYSTEMS - STORAGE FACILITY	\$9,395,361	\$2,410,850	\$944,497	8.00%	\$12,750,707

INEEL

08/30/2000 14:32:43 Success Estimating and Cost Management System

Page No.

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX in GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

the second of the first property of the second of the seco

Project Summary Report

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL		Estimate Subtotal	Escalation	Contingency	Contingency %	TOTAL
9115	MECHANICAL	\$9,768,612	\$2,506,626	\$3,191,562	26.00%	\$15,466,799
9115.2	MECHANICAL - NEW - GFF - UNEX	\$6,270,168	\$1,608,925	\$2,048,564	26.00%	\$9,927,657
9115.2.1	HVAC EQUIPMENT - NEW - GFF - UNEX	\$6,270,168	\$1,608,925	\$2,048,564	26.00%	\$9,927,657
9115.3	MECHANICAL - NEW - TFD FACILITY	\$2,415,785	\$619,890	\$789,276	26.00%	\$3,824,951
9115.2.1	HVAC - TFD FACILITY - HOT CELL	\$607,407	\$155,861	\$198,450	26.00%	\$961,717
9115.2.2	HVAC - TFD FACILITY - OPERATING CORRIDORS	\$1,523,564	\$390,947	\$497,773	26.00%	\$2,412,283
9115.2.3	PLUMBING / PIPING - TFD FACILITY	\$284,814	\$73,083	\$93,053	26.00%	\$450,951
9115.4	MECHANICAL - NEW - BOILER HOUSE	\$381,698	\$97,944	. \$124,707	26.00%	\$604,349
9115.4.2	HVAC - NEW - BOILER HOUSE	\$68,261	\$17,516	\$22,302	26.00%	\$108,079
9115.4.3	PLUMBING - BOILER HOUSE	\$4,739	\$1,216	\$1,548	26.00%	\$7,503
9115.4.4	PIPING - NEW - BOILER HOUSE	\$293,199	\$75,235	\$95,793	26.00%	\$464,227
9115.4.5	FIRE PROTECTION - NEW - BOILER HOUSE	\$15,499	\$3,977	\$5,064	26.00%	\$24,540
9115.4	MECHANICAL - NEW - STORAGE FACILITY	\$700,961	\$179,867	\$229,015	26.00%	\$1,109,843
9116	ELECTRICAL	\$2,609,269	\$669,538	\$983,642	30.00%	\$4,262,449
9116.2	ELECTRICAL - NEW - GFF	\$1,915,729	\$491,576	\$722,192	30.00%	\$3,129,497
9116.2.1	SWITCHGEAR AND TRANSFORMERS - GFF	\$717,408	\$184,087	\$270,449	30.00%	\$1,171,944
9116.2.2	RACEWAYS, CONDUCTORS, AND GROUNDING - GFF	\$175,000	\$44,905	\$65,972	30.00%	\$285,877
9116.2.3	MISC. COSTS - GFF	\$517,472	\$132,783	\$195,077	30.00%	\$845,332
9116.2.4	LIGHTING - GFF	\$505,849	\$129,801	\$190,695	30.00%	\$826,345
9116.3	ELECTRICAL - NEW - TFD FACILITY	\$188,994	\$48,496	\$71,247	30.00%	\$308,737
9116.3.1	SWITCHGEAR AND TRANSFORMERS - TFD	\$14,068	\$3,610	\$5,303	30.00%	\$22,981
9116.3.2	RACEWAYS, CONDUCTORS, AND GROUNDING - TFD	\$35,000	\$8,981	\$13,194	30.00%	\$57,175
INIECI						

INEEL

08/30/2000 14:32:43 Success Estimating and Cost Management System

Page No.

Project Summary Report

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marier Estimate Type: Planning

LEVEL		Estimate Subtotal	Escalation	Contingency	Contingency %	
9116.3.3	MISC. COSTS - TFD	\$86,496	\$22,195	\$32,607	30.00%	\$141,299
9116.3.4	LIGHTING - TFD	\$53,430	\$13,710	\$20,142	30.00%	\$87,282
9116.4	ELECTRICAL - BOILER HOUSE	\$56,186	\$14,417	\$21,181	30.00%	\$91,784
9116.4.2	RACEWAYS, CONDUCTORS, AND GROUNDING - BOILER HOUSE	\$12,000	\$3,079	\$4,524	30.00%	\$19,603
9116.4.3	·······MISC. COSTS - BOILER HOUSE	\$30,901	\$7,929	\$11,649	30.00%	\$50,479
9116.4.4	LIGHTING - BOILER HOUSE	\$13,285	\$3,409	\$5,008	30.00%	\$21,702
9116.5	ELECTRICAL - STORAGE FACILITY	\$435,854	\$111,840	\$164,308	30.00%	\$712,002
9116.5.1	SWITCHGEAR AND TRANSFORMERS - INTERIM STORAGE	\$172,275	\$44,206	\$64,944	30.00%	\$281,425
9116.5.2	RACEWAYS, CONDUCTORS, AND GROUNDING - INTERIM STORAGE	\$21,000	\$5,389	\$7,917	30.00%	\$34,305
9116.5.3	MISC. COSTS - INTERIM STORAGE	\$141,040	\$36,191	\$53,169	30.00%	\$230,401
9116.5.4	LIGHTING - INTERIM STORAGE	\$101,539	\$26,055	\$38,278	30.00%	\$165,872
9116.6	ELECTRICAL - TRANSFER TUNNEL	\$12,505	\$3,209	\$4,714	30.00%	\$20,428
9301	CONSTRUCTION MISCELLANEOUS	\$1,540,434	\$395,275	\$696,856	36.00%	\$2,632,565
9301.1	CONSTRUCTION SUPPORT	\$522,234	\$134,005	\$236,246	36.00%	\$892,486
9301.2	CONSTRUCTION QUALITY CONTROL	\$169,700	\$43,545	\$76,768	36.00%	\$290,013
9301.3	CONSTRUCTION DOCUMENTATION	\$848,500	\$217,725	\$383,841	36.00%	\$1,450,066
OPC3000	PROJECT ACCEPTANCE/CLOSEOUT	\$15,001,100	\$5,538,406	\$20,950,296	102.00%	\$41,489,802
OPC3100	TESTING AND TURNOVER PLANNING	\$339,400	\$125,306	\$474,001	102.00%	\$938,707
OPC3200	S. O. TESTING	\$8,485,500	\$3,132,847	\$11,850,714	102.00%	\$23,469,060
OPC3300	ORR SUPPORT	\$373,400	\$137,859	\$521,484	102.00%	\$1,032,744
OPC3400	FACILITY ACCEPTANCE REVIEW	\$254,600	\$93,998	\$355,570	102.00%	\$704,169
			2,000	,		4.5.,100

INEEL

08/30/2000 14:32:43 Success Estimating and Cost Management System

Page No.

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC Estimate Number: 2570 - Option B

Project Summary Report

Client:

V. J. Balls

LEVEL OPC3500	RADIOLOGICAL CONTROL SUPPORT	Estimate Subtotal \$186,700	Escalation \$68,930	Contingency \$260,742	Contingency % 102.00%	TOTAL \$516,372
OPC3600	OPERATOR TRAINING	\$3,394,200	\$1,253,139	\$4,740,285	102.00%	\$9,387,624
OPC3700	OPERATING PROCEDURES	\$746,700	\$275,682	\$1,042,829	102.00%	\$2,065,211
OPC3800	START-UP COORDINATION	\$220,600	\$81,446	\$308,086	102.00%	\$610,132
OPC3900	SPARES	\$1,000,000	\$369,200	\$1,396,584	102.00%	\$2,765,784
GAPIF	Non-Org G&A and PIF	\$1,364,080	\$0	\$941,215	69.00%	\$2,305,295
Total MOI	DIFIED UNEX IN GFF - OPTION B	\$294,673,680	\$70,377,604	\$149,240,852	40.88%	\$514,292,137

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC Eslimate Number: 2570 - Option B

LEVEL - OPC1001.1 CO	Org/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	_S/C_	Other	TOTAL
CONCEPTUAL DE	BWI	U.C. per LOT	1.00	0		3394200 \$3,394,200	0 \$0	0 \$0	0 \$0	0 \$0	3394200 \$3,394,200
Subtotal Sales Tax INEEL ORG Labo	or/Subcontractor Overheads	•				\$3,394,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,394,200 \$0 \$0
Subtotal Estima Escalation Contingency	te			•		\$202,294 \$1,222,808	· \$0 \$0	\$0 \$0	\$0 \$0	\$0 · \$0	\$3,394,200 \$202,294 \$1,222,808
-Total OPC1001.	1 CONCEPTUAL DESIGN			0		\$4,819,302	\$0	\$0	\$0	\$0	\$4,819,302
	OJECT EXECUTION PLAN BWI ,PEP,DC,/SOW REVIEWS @ .1% OF TCC	U.C. per LOT	1.00	0		169700 \$169,700	0 \$0	0 \$0	0 \$0	0 \$0	169700 \$169,700
Subtotal Sales Tax INEEL ORG Labo	or/Subcontractor Overheads					\$169,700 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$169,700 \$0 \$0
Subtotal Estima Escalation Conlingency	te					\$10,114 \$61,137	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$169,700 \$10,114 \$61,137
Total OPC1001.	2 PROJECT EXECUTION PLAN			0		\$240,951	\$0	\$0	\$0	\$0	\$240,951
	DRK PACKAGE DEVELOPMENT BWI elopment23% Of TCC	U.C. per Lot	1.00	0		390300 \$390,300	0 \$0	0 \$0	0 \$0	0 \$0	390300 \$390,300
Subtotal Sales Tax INEEL ORG Labo	or/Subcontractor Overheads				•	\$390,300 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$390,300 \$0 \$0
Subtotal Estima Escalation Contingency	te ·					\$23,262 \$140,611	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$390,300 \$23,262 \$140,611
Total OPC1001.	3 WORK PACKAGE DEVELOPMENT			0		\$554,173	. \$0	. \$0	\$0	\$0	\$554,173
	SK BASELINE AGREEMENT BWI ement33% Of TCC	U.C. per Lot	1.00	0		560000 \$560,000	o \$0	0 \$0	0 \$0	0 \$0	560000 \$560,000

CONSTRUCTION DETAIL ITEM REPORT

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC

Estimate Number: 2570 - Option B

Client:

V. J. Balls

LEVEL	Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
	TASK BASELINE AGREEMENT									
Subtotal					\$560,000	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$560,000 \$0
Sales Tax	abor/Subcontractor Overheads				\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0
MEEL ONG CO							······································			
Subtotal Estin	nate								•	\$560,000
Escalation					\$33,376	\$0	\$0 ***	\$0 \$0	\$0	\$33,376 \$201,748
Contingency					\$201,748	\$0	\$0	\$0	\$0	\$201,740
Total OPC100	11.4 TASK BASELINE AGREEMENT			0	\$795,124	\$0	\$0	\$0	\$0	\$795,124
OPC1001.5	PRELIMINARY SAFETY ANALYSIS REI									
	BWI	U.C. per Lot	1.00	^	800000	0	0	0	0	800000
Preliminary Safet	ly Analysis Report (PSAR)		1.00	0	\$800,000	\$0	\$0	\$0	\$0	\$800,000
Subtotal					\$800,000	\$0	\$0	\$0	\$0	\$800,000
Sales Tax					\$0	\$0	\$0	\$0	\$0	\$0
INEEL ORG L	abor/Subcontractor Overheads				\$0	\$0	\$0	\$0	\$0	\$0
Subtotal Estir	nate									\$800,000
Escalation					\$47,680	. \$0	\$0	\$0	\$0	\$47,680
Contingency					\$288,211	\$0	\$0	\$0	\$0	\$288,211
Total OPC100	01.5 PRELIMINARY SAFETY ANALYSIS	REPORT (PSAR)		0	\$1,135,891	\$0	\$0	\$0	\$0	\$1,135,891
OPC1600 TE	CHNICAL DEVELOPMENT									
<u> </u>	BWI	U.C. per Lot			11000000	0	0	0	0	11000000
(*)UNEX Process	s Development		1.00	0	\$11,000,000	\$0	\$0	\$0	\$0	\$11,000,000
Memo: Cost for	process development is per the HLW SB	W Process Development (Costs (Arlin L. Olso	n).		,			•	
Subtotal					\$11,000,000	\$0	\$0	\$0	\$0	\$11,000,000
Sales Tax					\$0	\$0	\$0	\$0	\$0	\$0
	abor/Subcontractor Overheads				\$0	\$0	\$0	\$0	\$0	\$0
Subtotal Estir	nate									\$11,000,000
Escalation					\$655,600	\$0	\$0	\$0	\$0	\$655,600
Contingency					\$11,422,488	\$0	\$0	\$0	\$0	\$11,422,488
Total OPC160	00 TECHNICAL DEVELOPMENT			0	\$23,078,088	\$0	\$0	\$0	\$0	\$23,078,088
OPC2001.1	PROJECT SUPPORT									
	BWI	U.C. per Lot		_	5091300	0	0	0	0	5091300
Project Support -	· 3% OF TCC		1.00	0	\$5,091,300	\$0	\$0	\$0	\$0	\$5,091,300

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL OPC2001.1 PRO	Org/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labora	/Subcontractor Overheads			· · · · · · · · · · · · · · · · · · ·		\$5,091,300 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$5,091,300 \$0 \$0
Subtotal Estimate Escalation Contingency						\$1,306,428 \$2,878,977	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$5,091,300 \$1,306,428 \$2,878,977
Total OPC2001.1	PROJECT SUPPORT			0		\$9,276,705	\$0	\$0	\$0	\$0	\$9,276,705
OPC2001.2 PER Permilling	MITTING BWI	U.C. per Lot	1.00	0		1500000 \$1,500,000	0 \$0	0 \$0	0 \$0	0 \$0	1500000 \$1,500,000
WIPP Certification	BWI	U.C. per Lot	1.00	0		2500000 \$2,500,000	· \$0	0 \$0	0 \$0	0 \$0	2500000 \$2,500,000
Hanford Certification	BWI	U.C. per Lot	1.00	0		500000 \$500,000	0 \$0	0 \$0	0 \$0	0 \$0	500000 \$500,000
Sublotal Sales Tax INEEL ORG Labor	/Subcontractor Overheads					\$4,500,000 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$4,500,000 \$0 \$0
Subtotal Estimate Escalation Conlingency	•					\$1,154,700 \$2,544,615	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$4,500,000 \$1,154,700 \$2,544,615
Total OPC2001.2	PERMITTING .			0		\$8,199,315	\$0	\$0	\$0	\$0	\$8,199,315
1100 CONSTRUCTION Manage	CTION SUPERVISION & ENGINEERING BWI ement - 9% Of TCC	U.C. per Lot	1.00	1 1	\$***.* *	15273900 \$15,273,900	, o \$0	0 \$0	o \$0	. \$0	15273900 \$15,273,900
Subtotal Sales Tax INEEL ORG Labor	/Subcontractor Overheads					\$15,273,900 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$15,273,900 \$0 \$0
Subtotal Estimate Escalation Conlingency						\$3,919,283 \$7,101,478	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$15,273,900 \$3,919,283 \$7,101,478
Total 1100 CONS	TRUCTION SUPERVISION & ENGINEERIN	NG .		1		\$26,294,660	\$0	\$0	\$0	\$0	\$26,294,660
00401400	DUCT OF OPERATIONS/CONDUCT OF MA BWI erations / Conduct Of Maintenance -	U.C. per Lot	1.00	1	\$***.* <u>*</u>	339400 \$339,400	0 \$0	\$0 0	0 \$0	0 \$0	339400 \$339,400

EX In GFF

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Client:

V. J. Balls

red By: Rowley / Mitchell / Marier ate Type: Planning

QTY	·····	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL		_S/C_	Other	TOTAL
	**			\$19,177,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$19,177,200 \$0 \$0	_	\$0 \$0 \$0	\$0 \$0 \$0	\$339,400 \$0 \$0
				\$2,941,782 \$6,193,315	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$19,177,200 \$2,941,782 \$6,193,315	-	\$0 \$0	\$0 \$0	\$339,400 \$87,090 \$157,801
		0		\$28,312,298	\$0	\$0	\$0	\$0	\$28,312,298	•	\$0	\$0	\$584,291
U.C. per Lot	1.00	0.1 0	\$***.**	8485500 \$8,485,500	0 \$0	0 \$0	0 \$0	0 \$0	8485500 \$8,485,500		o \$0	0 \$0	1188000 \$1,188,000
			···	\$8,485,500 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$8,485,500 \$0 \$0	-	\$0 \$0 \$0	\$0 \$0 \$0	\$1,188,000 \$0 \$0
		0	**************************************	\$2,177,379 \$3,305,493 \$13,968,372	\$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0	\$8,485,500 \$2,177,379 \$3,305,493 \$13,968,372	\$0 \$0	\$0 \$0	\$1,188,000 \$304,841 \$552,351	
		U		\$13,800,372	φu	φυ	φu	φo	\$13,500,312	•	\$0	\$0	\$2,045,192
U.C. per Lot	1.00	8	\$*** .* *	13576800 \$13,576,800	0 \$0	0 \$0	0 \$0	0 \$0	13576800 \$13,576,800		0 \$0	0 \$0	848500 \$848,500
				\$13,576,800 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$13,576,800 \$0 \$0		\$0 \$0	\$0 \$0	\$848,500 \$0
				\$3,483,807 \$6,483,031	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$13,576,800 \$3,483,807 \$6,483,031		\$0 \$0	\$0 \$0	\$0 \$848,500 \$217,725
		8		\$23,543,637	\$0	\$0	\$0	\$0	\$23,543,637		\$0	\$0	\$394,503
F MAINTENANCE U.C. per Lot		0.1		67900	0	0	0	O	67900		\$0	\$0	\$1,460,728
o.c. per Lot	1.00	0.1	\$***.**	\$67,900	\$0	0 \$0	\$0	\$0	\$67,900		0 \$0	0 \$0	339400 \$339,400

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor . 1400 CM TRAINING	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	_S/C_	Other	TOTAL
Subtotal					\$339,400	\$0	\$0	\$0	\$0	\$339,400
Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$ 0 \$ 0	\$0 \$0
Subtotal Estimate									***************************************	\$339,400
Escalation Contingency					\$87,090 \$157,801	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$87,090 \$157,801
Total 1400 CM TRAINING			0		\$584,291	\$0	\$0	\$0	\$0	\$584,291
1500 CM - OTHER DIRECT COSTS										
BWI CM - Other Direct Costs2% Of TCC	U.C. per Lot	1.00	0		339400 \$339,400	0 \$0	0 \$ 0	0 \$ 0	0 \$0	339400 \$339,400
5.11 5415. Satur 5555 1.2% 51 155		1.00	J		4000,400	Ψ0	φυ	40	ΨΟ	\$300,400
Subtotal					\$339,400	\$0	\$0	\$0	\$0	\$339,400
Sales Tax INEEL ORG Labor/Subcontractor Overheads				-	\$0 . \$ 0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0
Subtotal Estimate					· · · · · · · · · · · · · · · · · · ·	,			*-	\$339,400
Escalation					\$87,090	\$0	\$0	\$0	\$0	\$87,090
Contingency					\$157,801	\$0	\$0	\$0	\$0	\$157,801
Total 1500 CM - OTHER DIRECT COSTS			0		\$584,291	\$0	\$0	\$0	\$0	\$584,291
2400 DESIGN ACTIVITIES										
BWI Title t Decise 690 Of TCC	U.C. per Lot	1.00			10182600	6	0	0	0	10182600
Title I Design - 6% Of TCC		1.00	0		\$10,182,600	\$0	\$0	\$0	\$0	\$10,182,600
Subtotal					\$10,182,600	\$0	\$0	\$0	\$0	\$10,182,600
Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0	\$ 0	\$ 0	\$ 0	\$ 0	\$ 0
					4 0	\$0	\$0	\$0	\$0	\$0
Subtotal Estimate					£4 004 078	•0	•••	* 0	***	\$10,182,600
Escatation Contingency					\$1,231,076 \$4,108,923	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$ 0	\$1,231,076 \$4,108,923
Total 2400 DESIGN ACTIVITIES			0		\$15,522,600	\$0	\$0	\$0	\$0	\$15,522,600
3400 DESIGN ACTIVITIES										
BWI	U.C. per Lot		_		19177200	0	0	0	0	19177200
Title II Design - 11.3% Of TCC		1.00	0		\$19,177,200	\$0	\$0	\$0	\$0	\$19,177,200

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC

Estimate Number: 2570 - Option B

LEVEL Org/Subcontractor 3400 DESIGN ACTIVITIES	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Matl	_S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$19,177,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$19,177,200 \$0 \$0
Subtotal Estimate Escalation Contingency					\$2,941,782 \$6,193,315	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$19,177,200 \$2,941,782 \$6,193,315
Total 3400 DESIGN ACTIVITIES			0		\$28,312,298	\$0	\$0	\$0	\$0	\$28,312,298
4100 QUALITY ASSURANCE BWI Quality Assurance - 5% Of TCC	U.C. per Lot	1.00	0.1 0	\$*** .**	8485500 \$8,485,500	0 \$ 0	0 \$0	0 \$0	0 \$0	8485500 \$8,485,500
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$8,485,500 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$8,485,500 \$0 \$0
Subtotal Estimate Escalation Contingency					\$2,177,379 \$3,305,493	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$8,485,500 \$2,177,379 \$3,305,493
Total 4100 QUALITY ASSURANCE			0		\$13,968,372	\$0	\$0	\$0	\$0	\$13,968,372
5100 PM ADMINISTRATION BWI Project Management - 8% Of TCC	U.C. per Lot	1.00	8 8	\$*** <u>,</u> **	13576800 \$13,576,800	0 \$0	0 \$0	0 \$0	0 \$0	13576800 \$13,576,800
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	7711	****			\$13,576,800 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$13,576,800 \$0 \$0
Subtotal Estimate Escalation Contingency					\$3,483,807 \$6,483,031	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$13,576,800 \$3,483,807 \$6,483,031
Total 5100 PM ADMINISTRATION			8		\$23,543,637	\$0	\$0	\$0	\$0	\$23,543,637
5110 PM - CONDUCT OF OPERATIONS/CONDUCT OF BWI PM Conduct Of Operations / Conduct Of Maintenance04% Of TCC	MAINTENANCE U.C. per Lot	1.00	0.1 0	\$*** .**	67900 \$67,900	0 \$0	0 \$0	0 \$0	0 \$0	67900 \$67,900

Page No.

Client:

V. J. Balis

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

LEVEL Org/Subcontractor 5110 PM - CONDUCT OF OPERATIONS/CONDU	QTY ICT OF MAINTENANCE		Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Mati</u>	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		,	`(\$67,900 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$67,900 ` \$0 \$0
Subtotal Estimate Escalation Contingency					\$17,423 \$32,423	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$67,900 \$17,423 \$32,423
Total 5110 PM - CONDUCT OF OPERATIONS/CO	NDUCT OF		0		\$117,746	\$0	\$0	\$0	\$0	\$117,746
5200 PM PROJECT CONTROLS BWI PM Project Controls - 2% Of TCC	U.C. per Lot	1.00	0		3394200 \$3,394,200	. 0 \$0	0 \$0	0 \$0	0 \$0	3394200 \$3,394,200
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		. , ,			\$3,394,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,394,200 \$0 \$0
Subtotal Estimate Escalation Contingency					\$870,952 \$1,620,758	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,394,200 \$870,952 \$1,620,758
Total 5200 PM PROJECT CONTROLS			0		\$5,885,909	\$0	\$0	\$0	\$0	\$5,885,909
5300 PM RECORDS MANAGEMENT BWI PM Records Management - 2% Of TCC	U.C. per Lot	1.00	. 0		3394200 \$3,394,200	0 \$0	0 \$0	0 \$0	0 \$0	3394200 \$3,394,200
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	•				\$3,394,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,394,200 \$0 \$0
Subtotal Estimate Escalation Contingency					\$870,952 \$1,620,758	\$0 \$0	\$0 \$0	\$0 \$Q	\$0 \$0	\$3,394,200 \$870,952 \$1,620,758
Total 5300 PM RECORDS MANAGEMENT			0		\$5,885,909	\$0	\$0	\$0	\$0	\$5,885,909
5400 SAFETY ANALYSIS BWI Safety Analysis Report (SAR) - 2% Of TCC	U.C. per Lot	1.00	0		2000000 \$2,000,000	0 \$0	0 \$0	0 \$0	0 \$0	2000000 \$2,000,000

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC Estimate Number: 2570 - Option B

Client:

V. J. Balls

LEVEL Org/Subcontractor 5400 SAFETY ANALYSIS	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$2,000,000 \$0 \$0	\$0 \$0 . \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$2,000,000 \$0 \$0
Subtotal Estimate Escalation Contingency					\$513,200 \$955,016	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$2,000,000 \$513,200 \$955,016
Total 5400 SAFETY ANALYSIS			0		\$3,468,216	\$0	\$0	\$0	\$0	\$3,468,216
6000 CONSTRUCTION AE SUPPORT BWI Construction AE Support - 1.5% Of TCC	U.C. per Lot	1.00	0		2545600 \$2,545,600	0 \$0	o \$0	o \$0	0 \$0	2545600 \$2,545,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$2,545,600 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$2,545,600 \$0 \$0
Subtotal Estimate Escalation Contingency					\$653,201 \$895,664	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$2,545,600 \$653,201 \$895,664
Total 6000 CONSTRUCTION AE SUPPORT			0		\$4,094,465	\$0	\$0	\$0	\$0	\$4,094,465
9101.1 GENERAL CONDITIONS GEN Supervision - 15% Of Labor Hours	U.C. per Lot	1.00	41618 41,618	CN-SUPR \$40.00	1664720 \$1,664,720	0 \$0	0 \$0	0 \$0	o \$0	1664720 \$1,664,720
GEN Training - 7% Of Labor Hours	U.C. per Lot	1.00	19422 19,422	CN-LABR \$30.09	584407.98 \$584,408	0 \$0	0 \$0	0 \$0	0 \$0	584407.98 \$584,408
GEN Mobilization & Demobilization5% Of Labor Hours	U.C. per Lot	1.00	1387 1,387	CN-LABR \$30.09	41734.83 \$41,735	10000 \$10,000	0 \$0	0 \$0	0 \$0	51734.83 \$51,735
GEN (*)Material Adjustment - Additional 10% On Material & Subcontracts Memo: Adjustment for DOE/RW/0333P Quality Standards.	U.C. per Lot	1.00	0		0 \$0	0 \$0	8609400 \$8,609,400	0 \$0	0 \$0	8609400 \$8,609,400
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		•			\$2,290,863 \$0 \$665,037	\$10,000 \$0 \$2,903	\$8,609,400 \$430,470 \$2,624,274	\$0 \$0 \$0	\$0 \$0 \$0	\$10,910,263 \$430,470 \$3,292,215
Subtotal Estimate Escalation Conlingency					\$758,484 \$1,560,041	\$3,311 \$6,810	\$2,993,019 \$6,156,009	\$0 \$0	\$0 \$0	\$14,632,948 \$3,754,814 \$7,722,860
Total 9101.1 GENERAL CONDITIONS			62,427		\$5,274,426	\$23,024	\$20,813,172	\$0	\$0	\$26,110,622

Client:

V. J. Balls

Prepared By: Rowley/Mitchell/Marler Estimate Type: Planning

UNEX Feasibility Study	/ - Option B - Modified	UNEX In GFF
Project Location: INTEC	;	
C-11	0	

Project Name:

LEVEL Org/Subcontractor 9101.2 GC - CONDUCT OF OPERATIONS/CONDUCTOR	QTY	<u>Hrs</u>	Crew/Rate	<u>Labor</u>	Const Eqp	Mati	_S/C_	Other	TOTAL
GEN (*)Labor Adjustment Memo: Conduct of Operations / Conduct of Maintenant	U.C. per Hr 277,459.00	0.08 22,197 rs.	CN-SKWK \$34.52	2.762 \$766,231	0 \$0	0 \$0	0 \$0	0 \$0	2.762 \$766,231
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$766,231 \$0 \$222,437	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$766,231 \$0 \$222,437
Subtotal Estimate Escalation Contingency				\$253,692 \$521,791	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$988,668 \$253,692 \$521,791
Total 9101.2 GC - CONDUCT OF OPERATIONS/C MAINTENANCE	CONDUCT OF	22,197		\$1,764,151	\$0	\$0	\$0	\$0	\$1,764,151
9102.1 SITEWORK - UTILITIES GEN (*)Excavation & Backfill - Firewater Memo: Assume utilities to be 300 feet. Trench to be	U.C. per Cy 800.00 6' to bottom of trench.	0.7 560	CN-LABR \$30.09	21.083 \$16,850	5 \$4,000	0 \$0	0 \$0	0 \$0	26.063 \$20,850
GEN Piping - Firewater	U.C. per Lf 300.00	0.5 150	CN-LABR \$30.09	15.045 \$4,514	2 \$600	12 \$3,600	0 \$0	0 \$0	29.045 \$8,714
GEN (*)Excavation & Backfill - Sewer Memo: Assume utilities to be 300 feet. Trench to be	U.C. per Cy 800.00 6' to bottom of trench.	0.7 560	CN-LABR \$30,09	21.063 \$16,850	5 \$4,000	0 \$0	0 \$0	0 \$0	26.063 \$20,850
GEN Piping - Sewer	U.C. per Lf 300.00	0.03 9	CN-LABR \$30.09	0,903 \$271	2 \$60 <u>0</u>	5 \$1,500	0 \$0	0 \$0	7.903 \$2,371
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$38,485 \$0 \$11,172	\$9,200 \$0 \$2,671	\$5,100 \$255 \$1,555	\$0 \$0 \$0	\$0 \$0 \$0	\$52,785 \$255 \$15,398
Subtotal Estimate Escalation Contingency				\$12,742 \$42,432	\$3,046 \$10,143	\$1,773 \$5,904	\$0 \$0	\$0 \$0	\$68,438 \$17,561 \$58,479
Total 9102.1 SITEWORK - UTILITIES	· · · · · · · · · · · · · · · · · · ·	1,279		\$104,831	\$25,060	\$14,587	\$0	\$0	\$144,478
9102.2 SITEWORK - GFF GEN Site Grading	U.C. per Sf 100,000.00	0.03 3,000	CN-LABR \$30.09	0.903 \$90,270	0.5 \$50,000	° \$0 ·	0 \$0	0 \$0	1.403 \$140,270

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC

Client:

V. J. Balls

LEVEL Org/Subcontractor	QTY	<u>Hrs</u>	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	_S/C_	Other	TOTAL
9102.2 SITEWORK - GFF GEN Excavation & Backfill - Footings	U.C. per Cy 5,360.00	0.7 3,752	CN-LABR \$30.09	21.063 \$112,898	. \$26,800	0 \$0	0 \$0	0 \$0	26.063 \$139,698
Subtotal				\$203,168	\$76,800	\$0	\$0	\$0	\$279,968
Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$0 \$58,980	\$0 \$22,295	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$81,275
Subtotal Estimate Escalation				\$67,267	\$25,428	\$0	\$0	\$0	\$361,242 \$92,695
Contingency				\$224,002	\$25,426 \$84,676	\$0 \$0	\$0 \$0	\$0 \$0	\$308,677
Total 9102.2 SITEWORK - GFF		6,752		\$553,416	\$209,198	\$0	\$0	\$0	\$762,614
9102.3 SITEWORK - TFD FACILITY	11.0 64	0.02	CNLLARR	0.903	0.5	0	0	0	4.400
GEN Site Grading	U.C. per Sf 27,000.00	0.03 810	CN-LABR \$30.09	\$24,373	\$13,500	0 \$0	0 \$0	0 \$0	1.403 \$37,873
GEN Excavation & Backfill	U.C. per Cy 8,550.00	0.7 5,985	CN-LABR \$30.09	21.063 \$180,089	5 \$42,750	0 \$0	0 \$0	0 \$0	26.063 \$222,839
Subtotal				\$204,462	\$56,250	\$0	\$0	\$0	\$260,712
Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$0 \$59,355	\$0 \$16,329	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$75,685
Subtotal Estimate Escalation Contingency				\$67,695 \$225,428	\$18,624 \$62,018	\$0 \$0	\$0 \$0	\$0 \$0	\$336,396 \$86,319 \$287,446
Total 9102.3 SITEWORK - TFD FACILITY		6,795		\$556,940	\$153,221	\$0	\$0	\$0	\$710,162
9102.4 SITEWORK - BOILER HOUSE GEN Site Grading	U.C. per Sf 4,000.00	0.03 120	CN-LABR \$30.09	0.903 \$3,611	0.5 \$2,000	0 \$0	0 \$0	0 \$0	1.403 \$5,611
GEN Excavation & Backfill	U.C. per Cy 500.00	0.7 350	CN-LABR \$30.09	21.063 \$10,532	5 \$2,500	0 \$0	0 \$0	0 \$0	26.063 \$13,032
GEN (*)Excavation & Backfill - Steam & Condensate Memo: Assume utilities to be 300 feet. Trench to be 6* to	Ú.C. per Cy 800.00 bottom of trench.	0.7 560	CN-LABR \$30.09	21.063 \$16,850	5 \$4,000	0 \$0	0 \$0	0 \$0	26.063 \$20,850
GEN Piping - Steam & Condensate	U.C. per Lf 600.00	0.05 30	CN-LABR \$30.09	1,505 \$903	2 \$1,200	5 \$3,000	0 \$0	0 \$0	8.505 \$5,103

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC Estimate Number: 2570 - Option B

LEVEL Org/Subcontractor — 9102.4 SITEWORK - BOILER HOUSE	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Mati	_S/C	<u>Other</u>	TOTAL
GEN Gilsulate Insulation	U.C. per Cf	0.17 477.00 81	CN-LABR \$30.09	5.115 \$2,440	0 \$0	16.55 \$7,894	0 \$0	0 \$0	21.665 \$10,334
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$34,335 \$0 \$9,968	\$9,700 \$0 \$2,816	\$10,894 \$545 \$3,321	\$0 \$0 \$0	\$0 \$0 \$0	\$54,930 \$545 \$16,104
Subtotal Estimate Escalation Contingency				\$11,368 \$37,856	\$3,212 \$10,695	\$3,787 \$12,612	\$0 \$0	\$0 \$0	\$71,579 \$18,367 \$61,163
Total 9102.4 SITEWORK - BOILER HOUSE		1,141		\$93,527	\$26,422	\$31,159	\$0	\$0	\$151,109
9102.5 SITEWORK - STORAGE FACILITY GEN BUILDING EXCAVATION	U.C. per CY	0.012 ,160.00 206		0.391 \$6,705	2 \$34,320	0 \$0	0 \$0	0 \$0	2.391 \$41,025
GEN BUILDING BACKFILL	U.C. per CY 12,	0,08 ,240.00 734	CN-ENGR \$32.56	1.954 \$23,912	2 \$24,480	0 \$0	0 \$0	0 \$0	3.954 \$48,392
GEN BUILDING BERM FILL	U.C. per CY 6,9	0.06 ,900.00 414	CN-ENGR \$32.56	1.954 \$13,480	2 \$13,800	0 \$0	0 \$0	0 \$0	3.954 \$2 7, 280
Subtotal Sales Tax INEEL ORG Labor/Şubcontractor Overheads				\$44,097 \$0 \$12,801	\$72,600 \$0 \$21,076	\$0 \$0 . \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$116,697 \$0 \$33,877
Subtotal Estimate Escalation Contingency			,	\$14,600 \$48,619	\$24,037 \$80,045	\$0 \$0	\$0 \$0	\$0 \$0	\$150,574 \$38,637 \$128,663
Total 9102.5 SITEWORK - STORAGE FACILITY		1,354		\$120,117	\$197,758	\$0	\$0	\$0	\$317,874
9102.5 SITEWORK - TUNNEL GEN (*)Excavate & Backfill For Tunnel Memo: Tunnel bottom to be 23' below existing grade. To		0.6 ,500.00 2,700 ne bottom, 15' high an	\$30.09	18.054 \$81,243	12 \$54,000	0 \$0	0 \$0	0 \$0	30.054 \$135,243

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC

Estimate Number: 2570 - Option B

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor - 9102.5 SITEWORK - TUNNEL	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
Allowance For Hand Excavation	U.C. per Cy 100.00	3 300	CN-LABR \$30,09	90.27 \$9,027	12 \$1,200	0 \$0	0 \$0	0 \$0	102.27 \$10,227
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$90,270 \$0 \$26,205	\$55,200 \$0 \$16,025	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$145,470 \$0 \$42,230
Subtotal Estimate Escalation Contingency				\$29,888 \$99,527	\$18,276 \$60,861	\$0 \$0	\$0 \$0	\$0 \$0	\$187,700 \$48,164 \$160,387
Total 9102.5 SITEWORK - TUNNEL		3,000		\$245,890	\$150,361	\$0	\$0	\$0	\$396,251
9102.6 SITEWORK - PAVING GEN Pavement Removal GEN New Pavement	U.C. per Sf 7,050.00 U.C. per Sf 26,250.00	0.05 353 0.03 788	CN-SKWK \$34.52 CN-SKWK \$34.52	1.726 \$12,168 1.036 \$27,185	1.2 \$8,460 1 \$26,250	0 \$0 2 \$52,500	0 \$0 0 \$0	0 \$0 0 \$0	2.926 \$20,628 4.036 \$105,935
Sublotal Sales Tax INEEL ORG Labor/Subconfractor Overheads				\$39,353 \$0 \$11,424	\$34,710 \$0 \$10,076	\$52,500 \$2,625 \$16,003	\$0 \$0 \$0	\$0 \$0 \$0	\$126,563 \$2,625 \$37,503
Subtotal Estimate Escalation Conlingency				\$13,029 \$43,388	\$11,492 \$38,269	\$18,251 \$60,778	\$0 \$0	\$0 \$0	\$166,691 \$42,773 \$142,435
Total 9102.6 SITEWORK - PAVING		1,140		\$107,195	\$94,548	\$150,157	\$0	\$0	\$351,899
9103.1 CONCRETE - GFF GEN (*)Concrete Footings Memo: Includes formwork, concrete, and rebar.	U.C. per Cy 953.00	5 4,765	CN-SKWK \$34,52	172.6 \$164,488	0 \$0	180 \$171,540	0 \$0	0 \$0	352.6 \$336,028
GEN (*)Concrete Floors - 6" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy 1,690.00	5 8,450	CN-SKWK \$34.52	172.6 \$291,694	0 \$0	180 \$304,200	. 0	0 \$0	352.6 \$595,894
GEN (*)Concrete Walls - 12" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy 755.00	5 3,775	CN-SKWK \$34.52	172.6 \$130,313	0 \$0	180 \$135,900	0 \$0	0 \$0	352.6 \$266,213
GEN (*)Concrete Roof Topping - 4" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy 824.00	5 4,120	CN-SKWK \$34.52	172.6 \$142,222	0 \$0	180 \$148,320	0 \$0	0 \$0	352.6 \$290,542
GEN (*)Concrete Misc.	U.C. per Cy 250.00	5 1,250	CN-SKWK \$34.52	172.6 \$43,150	0 \$0	180 \$45,000	0 \$0	0 \$0	352.6 \$88,150

Memo: Includes formwork, concrete, and rebar.

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balis

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	. <u>Labor</u>	Const Eqp	Matl	S/C	Other	_TOTAL_
— 9103,1 CONCRETE - GFF GEN Misc. Concrete Pads	U.C. per Lot	120	CN-SKWK	4142.4	0	2500	0	0	6642.4
	1.00	120	\$34.52	\$4,142	\$0	\$2,500	\$0	\$0	\$6,642
GEN Precast Concrete Walls - 6* Thick	U.C. per Sf 56,560.00	0	CN-SKWK	0 \$0	0 \$0	0 \$0	12.25 \$692,860	0 \$0	12.25 \$692,860
GEN Pre-Stressed Concrete Double Tee Roof Panels	U.C. per Sf 66,800.00	0	CN-SKWK	0 \$0	0 \$0	9 \$601,200	0 \$0	0 \$0	9 \$601,200
GEN Pre-Cast Concrete Inverted Tees	U.C. per Lf 600.00	0		0 \$0	0 \$0	0 \$0	170 \$102,000	0 \$0	170 \$102,000
GEN Pre-Cast Concrete Columns - 24" x 24"	U.C. per Lf 672.00	0		0 \$0	0 \$0	0 \$0	150 \$100,800	0 \$0	150 \$100,800
GEN Installation Of Pre-Stressed Wall Panels - 56' Long	U.C. per Ea 118.00	8 944	CN-SKWK \$34.52	276.16 \$32,587	0 \$0	0 \$0	0 \$0	, \$0	276.16 \$32,587
GEN Installation Of Pre-Stressed Roof Panels	U.C. per Ea	8	CN-SKWK	276.16	0	0	0	0	276.16
	114.00	912	\$34.52	\$31,482	\$0	\$0	\$0	\$0	\$31,482
GEN Installation Of Pre-Cast Columns	U.C. per Ea	8	CN-SKWK	276.16	0	0	0	0	276.16
	12.00	96	\$34.52	\$3,314	\$0	\$0	\$0	\$0	\$3,314
GEN Installation Of Pre-Cast Inverted Tees	U.C. per Ea	8	CN-SKWK	276.16	0	, \$0	0	· 0	276.16
	10.00	80	\$34.52	\$2,762	\$0		\$0	\$0	\$2,762
GEN Craning For Panels & Columns	U.C. per Day	20	CN-SKWK	690.4	0	0	0	0	690.4
	36.00	720	\$34.52	\$24,854	\$0	\$0	\$0	\$0	\$24,854
GEN	U.C. per Ea	8	CN-SKWK	276.16	0	20	0	0	296.16
Welding & Patching Of Panels	254.00	2,032	\$34.52	\$70,145	\$0	\$5,080	\$0	\$0	\$75,225
GEN Stainwell - 56' High .	U.C. per Ea	250	CN-SKWK	8630	0	45000	0	0	53630
	2.00	500	\$34.52	\$17,260	\$0	\$90,000	\$0	\$0	\$107,260
GEN Concrete Sidewalks - 5' Wide	U.C. per Lf	0.2	CN-SKWK	6.904	0	5	0	0	11.904
	1,200.00	240	\$34.52	\$8,285	\$0	\$6,000	\$0	\$0	\$14,285
GEN	U.Ç. per Ea	150	CN-SKWK	5178	1000	3500	0	0	9678
Concrete Ramp	2.00	300	\$34.52	\$10,356	\$2,000	\$7,000	\$0	\$0	\$19,356

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC Estimate Number: 2570 - Option B

Gleat:

V. J. Balls

LEVEL Org/Subcontractor 9103.1 CONCRETE - GFF	QTY	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
Loading Dock	U.C. per Ea 2.00	0		0 \$0	0 \$0	0 \$0	50000 \$100,000	0 \$0	50000 \$100,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$977,054 \$0 \$283,639	\$2,000 \$0 \$581	\$1,516,740 \$75,837 \$462,325	\$995,660 \$0 \$289,040	\$0 \$0 \$0	\$3,491,454 \$75,837 \$1,035,585
Subtotal Estimate Escalation Contingency	,			\$323,494 \$411,889	\$662 \$843	\$527,288 \$671,369	\$329,654 \$419,732	\$0 \$0	\$4,602,876 \$1,181,098 \$1,503,833
Total 9103.1 CONCRETE - GFF		28,304		\$1,996,075	\$4,086	\$3,253,559	\$2,034,086	\$0	\$7,287,807
9103.2 CONCRETE - TFD FACILITY GEN (*)Concrete Footings Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	5	CN-SKWK	172.6	0	180	0	0	352.6
	430.00	2,150	\$34.52	\$74,218	\$0	\$77,400	\$0	\$0	\$151,618
GEN (*)Concrete Floors - 12" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	5	CN-SKWK	172.6	0	180	0	0	352.6
	725.00	3,625	\$34.52	\$125,135	\$0	\$130,500	\$0	\$0	\$255,635
GEN (*)Concrete Walls - 12" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	5	CN-SKWK	172.6	0	180	0	0	352.6
	200.00	1,000	\$34.52	\$34,520	\$0	\$36,000	\$0	\$0	\$70,520
GEN (*)Concrete Roof Topping Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	5	CN-SKWK	172.6	0	180	o	0	352.6
	170.00	850	\$34.52	\$29,342	\$0 .	\$30,600	\$0	\$0	\$59,942
GEN (*)Concrete Misc. Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	5	CN-SKWK	172.6	0	180	0	0	352.6
	250.00	1,250	\$34.52	\$43,150	\$0	\$45,000	\$0	\$0	\$88,150
GEN	U.C. per Lot	120	CN-SKWK	4142.4	0	2500	0	0	6642.4
Misc. Concrete Pads	1.00	120	\$34.52	\$4,142	\$0	\$2,500	\$0	\$0	\$6,642
GEN Precast Concrete Walls - 12" Thick	U.C. per Sf 36,345.00	0	CN-SKWK	0 \$0	0 \$0	0 \$0	12.25 \$445,226	0 \$0	12.25 \$445,226
GEN Pre-Stressed Concrete Double Tee Roof Panels	U.C. per Sf 13,700.00	0	CN-SKWK	0 \$0	0 \$0	9 \$123,300	0 \$0	Q \$0	9 \$123,300
GEN Installation Of Pre-Stressed / Precast Panels	U.C. per Ea	8	CN-SKWK	276.16	0	0	0	0	276.16
	170.00	1,360	\$34.52	\$46,947	\$0	\$0	\$0	\$0	\$46,947
GEN	U.C. per Day	20	CN-SKWK	690.4	0	0	0	0	690.4
Craning For Panels & Beams	24.00	480	\$34.52	\$16,570	\$0	\$0	\$0	\$0	\$16,570
GEN Welding & Patching Of Panels	U.C. per Ea	8	CN-SKWK	276.16	0	20	0	0	296.16
	170,00	4,360	\$34.52	\$46,947	\$0	\$3,400	\$0	\$0	\$50,347

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

LEVEL Org/Subcontractor — 9103.2 CONCRETE - TFD FACILITY	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
GEN Stairwell - 100' High	U.C. per Ea 1.0	400 400	CN-SKWK , \$34.52	13808 \$13,808	0 \$0	60000 \$60,000	0 \$0	0 \$0	73808 \$73,808
GEN (*)Concrete Floors - 24" Thick Memo: Includes formwork, concrete, and reber.	U.C. per Cy 585.0	5 0 2,925		172.6 \$100,971	0 \$0	180 \$105,300	0 \$0	0 \$0	352.6 \$206,271
GEN (*)Concrete Shielding Walls - 24" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy 1,005.0	5 0 5,025		172.6 \$173,463	0 \$0	180 \$180,900	· 0 \$0	0 \$0	352.6 \$354,363
GEN Concrete Sidewalks - 5' Wide	U.C. per Lf 250.0	0.2 0 50		6.904 \$1,72 6	0 \$0	5 \$1,250	0 \$0	0 \$0	11.904 \$2,976
Subtotal Seles Tax INEEL ORG Labor/Subcontractor Overheads				\$710,939 \$0 \$208,386	\$0 \$0 \$0	\$796,150 \$39,808 \$242,678	\$445,226 \$0 \$129,249	\$0 \$0 \$0	\$1,952,316 \$39,808 \$578,313
Subtotal Estimate Escalation Contingency				\$235,386 \$299,705	\$0 \$0	\$276,778 \$352,408	\$147,410 \$187,690	\$0 \$0	\$2,570,437 \$659,574 \$839,803
Total 9103.2 CONCRETE - TFD FACILITY		20,595		\$1,452,416	\$0	\$1,707,822	\$909,576	\$0	\$4,069,813
9103.3 CONCRETE - BOILER HOUSE GEN (*)Concrete Footings & Floors Memo: Includes formwork, concrete, and rebar.	U.C. per Cy 92.0	5 0 460	CN-SKWK \$34.52	172.6 \$15,879	0 \$0	180 \$16,560	0 \$0	0 \$0	352.6 \$32,439
GEN Concrete Sidewalks - 5' Wide	U.C. per Lf 100.0	0.2 0 20	CN-SKWK \$34.52	6.904 \$690	0 \$0	5 \$500	o \$0	0 \$0	11.904 \$1,190
GEN Misc. Concrete Pads	U.C. per Lot 1.0	20 0 20	CN-SKWK \$34.52	690.4 \$690	0 \$0	500 \$500	0 \$0	0 \$0	1190.4 \$1, 190
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$17,260 \$0 \$5,011	\$0 \$0 \$0	\$17,560 \$878 \$5,353	\$0 \$0 \$0	\$0 \$0 \$0	\$34,820 \$878 \$10,363
Subtotal Estimate Escalation Contingency				\$5,715 \$7,276	\$0 \$0	\$6,105 \$7,773	\$0 \$0	\$0 \$0	\$46,061 \$11,819 \$15,049
Total 9103.3 CONCRETE - BOILER HOUSE		500		\$35,261	\$0	\$37,668	\$0	\$0	\$72,929
9103.4 CONCRETE - STORAGE FACILITY GEN Hatch Plugs	U.C. per EA	0		0 \$0	0 \$0	0 \$0	75000 \$225,000	0 \$0	75000 \$225,000

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF

Project Location: INTEC

Estimate Number 2570 - Option B

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor	QTY	<u>Hrs</u>	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	_S/C_	<u>Other</u>	TOTAL
9103.4 CONCRETE - STORAGE FACILITY GEN	U.C. per Sf		CN-SKWK	0	0	0	8.5	0	8.5
Precast Concrete Walls - 6" Thick	17,160	.00 00.		\$0	\$0	\$0	\$145,860	\$0	\$145,860
GEN	U.C. per Sf		CN-SKWK	0	0	9	0	0	9
Pre-Stressed Concrete Double Tee Roof Panels	20,440	.00 0	l	\$0	\$0	\$183,960	\$0	\$0	\$183,960
GEN	U.C. per Ea	8		276.16	0	0	0	0	276,16
Installation Of Pre-Stressed / Precast Panels	126	.00 1,008	\$34.52	\$34,796	\$0	\$0	\$0	\$0	\$34,796
GEN	U.C. per Day	20		690.4	0	0	0	0	690.4
Craning For Panels & Beams	22	.00 440	\$34.52	\$15,189	\$0	\$0	\$0	\$0	\$15,189
GEN	U.C. per Ea	8		276.16	0	20	0	0	296.16
Welding & Patching Of Panels	126	.00 1,008	\$34.52	\$34,796	\$0	\$2,520	\$0	\$0	\$37,316
GEN	U.C. per Cy	5	CN-SKWK	172.6	0	180	0	0	352.6
(*)Concrete Foolings Memo: Includes formwork, concrete, and rebar.	260	.00 1,300	\$34.52	\$44,876	\$0	\$46,800	\$0	\$0	\$91,676
GEN	U.C. per Cy	5		172.6	0	180	0	0	352.6
(*)Concrete Floors - 6" Thick Memo: Includes formwork, concrete, and rebar.	380	.00 1,900	\$34.52	\$65,588	\$0	\$68,400	\$0	\$0	\$133,988
GEN	U.C. per Cy	5	CN-SKWK	172.6	0	180	0	0	352.6
(*)Concrete Parlillon Wall - 12" Thick Memo: Includes formwork, concrete, and rebar.	180	.00 900	\$34.52	\$31,068	\$0	\$32,400	\$0	\$0	\$63,468
GEN	U.C. per Lf	0.2	CN-SKWK	6.904	0	5	0	0	11.904
Concrete Sidewalks - 5' Wide	500	.00 100	\$34.52	\$3,452	\$0	\$2,500	\$0	\$0	\$5,952
Subtotal				\$229,765	\$0	\$336,580	\$370,860	\$0	\$937,205
Sales Tax				\$0	\$0	\$16,829	\$0	\$0	\$16,829
INEEL ORG Labor/Subcontractor Overheads				\$66,701	\$0	\$102,595	\$107,661	\$0	\$276,956
Subtotal Estimate	•			# 70.070	* -	6447 644	* 400 705	•-	\$1,230,990
Escalation				\$76,073 \$96,860	\$0 \$0	\$117,011 \$148,984	\$122,788 \$156,340	\$0 \$0	\$315,872 \$402,184
Contingency									
Total 9103.4 CONCRETE - STORAGE FACILITY		6,656	i	\$469,399	\$0	\$721,998	\$757,649	\$0	\$1,949,047
9103.5 CONCRETE - TUNNEL		_			_		_	_	
GEN	U.C. per Cy 190	.00 950		172.6 \$32.794	0 \$0	180 \$34,200	0 \$0	0 \$0	352.6
(*)Concrete For Tunnel - 12" Thick All Surfaces Memo: Includes formwork, concrete, and rebar. Tunnel b.						₱ 34,∠00	\$0	Φ0	\$66,994
months. Indicade territorial equational and report, remited a					,				

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF

Project Location: INTEC	
Estimate Number: 2570 - Option B	

LEVEL Org/Subcontractor - 9103.5 CONCRETE - TUNNEL	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$32,794 \$0 \$9,520	\$0 \$0 \$0	\$34,200 \$1,710 \$10,425	\$0 \$0 \$0	\$0 \$0 \$0	\$66,994 \$1,710 \$19,945
Subtotal Estimate Escalation Contingency		_		\$10,858 \$13,825	\$0 \$0	\$11,889 \$15,138	\$0 \$0	\$0 \$0	\$88,649 \$22,747 \$28,963
Total 9103.5 CONCRETE - TUNNEL		950		\$66,997	\$0	\$73,362	\$0	\$0	\$140,359
9105.2 METALS - GFF STEEL Structural Steel - Superstructure	U.C. per Sf 66,790.00	0.04 2,672	CN-IRON \$40.16	1.608 \$107,291	0 \$0	2.4 \$160,296	0 \$0	0 \$0	4,006 \$267,587
STEEL Grating & Misc. Metals	U.C. per Lot 1.00	1000 1,000	CN-IRON \$40.18	40160 \$40,160	0 \$0	150000 \$150,000	0 \$0	0 \$0	190160 \$190,160
GEN (*)Pre-Engineered Metal Building Memo: Office / restroom, Tru-Pak, and truck airlock areas.	U.C. per Sf 24,380.00	o		. \$0	0 \$0	o \$0	20 \$487,600	0 \$0	20 \$487,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	***************************************			\$147,451 \$0 \$61,831	\$0 \$0 \$0	\$310,296 \$15,515 \$136,622	\$487,600 \$0 \$141,550	\$0 \$0 \$0	\$945,347 \$15,515 \$340,003
Subtotal Estimate Escalation Contingency	,		,	\$53,702 \$68,376	\$0 \$0	\$118,660 \$151,084	\$161,440 \$205,553	\$0 \$0	\$1,300,866 \$333,802 \$425,014
Total 9105.2 METALS - GFF		3,672		\$331,360	\$0	\$732,178	\$996,144	\$0	\$2,059,681
9105.3 METALS - TFD FACILITY STEEL Liner Plate - 4' Up From Floor	U.C. per Sf 1,025.00	2 2,050	CN-IRON \$40.16	80.32 \$82,328	0 \$0	10 \$10,250	0 \$0	0 \$0	90.32 \$92,578
STEEL Misc. Embeds	U.C. per Lot 1.00	200 200	CN-IRON \$40.16	8032 \$8,032	· 0 \$0	25000 \$25,000	0 \$0	0 \$0	33032 \$33,032
STEEL. Grating & Misc. Metals	U.C. per Lot 1.00	1000 1,000	CN-IRON \$40.16	40160 \$40,160	0 \$0	150000 \$150,000	0 \$0	0 \$0	190160 \$190,160
STEEL Structural Steel - Superstructure	U.C. per Sf 13,700.00	0.04 548	CN-IRON \$40.16	1.606 \$22,008	0 \$0	2.4 \$32,880	0 \$0	. 0 \$0	4.006 \$54,888

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC

STEEL

GANTRY CRANE RAILS, EMBEDS, ETC.

08/30/2000

Estimate Number: 2570 - Option B

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	_S/C_	Other	TOTAL
9105.3 METALS - TFD FACILITY STEEL Stairway	U.C. per Ea 1.00	10 10	CN-IRON \$40.16	401.6 \$402	0 \$0	3000 \$3,000	0 \$0	0 \$0	3401.6 \$3,402
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$152,929 \$0 \$64,128	· \$0 \$0 \$0	\$221,130 \$11,057 \$97,363	\$0 \$0 \$0	\$0 \$0 \$0	\$374,059 \$11,057 \$161,491
Subtotal Estimate Escalation Contingency				\$55,697 \$70,916	\$0 \$0	\$84,562 \$107,669	\$0 \$0	\$0 \$0	\$546,606 \$140,259 \$178,585
Total 9105.3 METALS - TFD FACILITY	 	3,808		\$343,670	\$0	\$521,781	\$0	\$0	\$865,451
9105.4 METALS - BOILER HOUSE GEN Pre-Engineered Metal Building	U.C. per Sf 3,120.00	0		0 \$0	0 \$0	0 \$0	18 \$56,160	0 \$0	18 \$56,160
GEN Misc. Metals	U.C. per Lot	40 40	CN-IRON \$40.16	1606.4 \$1,606	0 \$0	1200 \$1,200	0 \$0	0 \$0	2806.4 \$2,806
STEEL BOILER STACK SUPPORTS	U.C. per EA 2.00	40 80	CN-IRON \$40.16	1606.4 \$3,213	0 \$0	275 \$550	0 \$0	0 \$0	1881.4 \$3,763
STEEL BOILER BUILDING PLATFORMS	U.C. per LBS 11,000.00	0.018 198	CN-IRON \$40.16	0.723 \$7,952	0 \$0	1.62 \$17,820	0 \$0	0 \$0	2.343 \$25,772
STEEL BOILER BUILDING ROOF FRAMING	U.C. per LBS 21,840.00	0.012 262	CN-IRON \$40.16	0.482 \$10,525	0 \$0	0.4 \$8,736	0 \$0	0 \$0	0.882 \$19,261
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	 			\$23,296 \$0 \$9,561	\$0 \$0 \$0	\$28,306 \$1,415 \$12,300	\$56,160 \$0 \$16,303	\$0 \$0 \$0	\$107,762 \$1,415 \$38,165
Subtotal Estimate Escalation Contingency				\$8,431 \$10,735	\$0 \$0	\$10,783 \$13,729	\$18,594 \$23,675	\$0 \$0	\$147,342 \$37,808 \$48,139
Total 9105.4 METALS - BOILER HOUSE		580		\$52,024	\$0	\$66,534	\$114,732	\$0	\$233,290
9105,5 METALS - STORAGE FACILITY STEEL CHARGE FACE SLAB FRAME	U.C. per TON 780.00	6 4,680	CN-IRON \$40.16	240.96 \$187,949	0 \$0	1100 \$858,000	0 \$0	0 \$0	1340.96 \$1,045,949
STEEL BUILDING STRUCTURAL STEEL	U.C. per TON 756.00	10 7,560	CN-IRON \$40.16	401.6 \$303,610	0 \$0	1200 \$907,200	0 \$0	0 \$0	1601.6 \$1,210,810

CN-IRON

\$40.16

3.85

1,540

400.00

154.616

\$61,846

0

\$0

161

\$64,400

U.C. per LF

0

\$0

0

\$0

315,616

\$126,246

CONSTRUCTION DETAIL ITEM REPORT Project Name:

V. J. Balls Client:

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor 9105.5 METALS - STORAGE FACILITY	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
STEEL RAILROAD TRACKS - WITHIN BUILDING	U.C. per LF	2	CN-IRON	80.32	0	92	0	0	172.32
	. 180.00	360	\$40.16	\$14,458	\$0	\$16,560	\$0	\$0	\$31,018
STEEL	U.C. per LF	2	CN-IRON	80.32	0	92	0	0	172.32
TRANSFER CART RAILS	210,00	420	\$40.16	\$16,867	\$0	\$19,320	\$0	\$0	\$36,187
STEEL	U.C. per SF	0,25	CN-IRON	10.04	0	40	0	0	50.04
BIRD SCREEN AND VENT LOUVERS	2,300.00	575	\$40.16	\$23,092	\$0	\$92,000	\$0	\$0	\$115,092
STEEL AIR OUTLET WALL (INSIDE)	U.C. per SF 12,600.00	0	CN-IRON	0 \$0	0 \$0	0 \$0	12 \$151,200	0 \$0	12 \$151,200
STEEL (*)Misc. Steel Memo: Handrails, stafrways, grating, and etc.	U.C. per Lot	750 750		30120 \$30,120	0 \$0	45000 \$45,000	0 \$0	0 \$0	75120 \$75,120
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$637,942 \$0 \$267,508	\$0 \$0 \$0	\$2,002,480 \$100,124 \$881,685	\$151,200 \$0 \$63,403	\$0 \$0 \$0	\$2,791,622 \$100,124 \$1,212,596
Subtotal Estimate Escalation Conlingency				\$232,338 \$295,825	\$0 \$0	\$765,769 \$975,015	\$55,067 \$70,114	\$0 \$0	\$4,104,341 \$1,053,174 \$1,340,954
Total 9105.5 METALS - STORAGE FACILITY		15,885		\$1,433,613	\$0	\$4,725,072	\$339,784	\$0	\$6,498,469
9107.1 THERMAL & MOISTURE PROTECTION - GFF GEN 2" Thick Foundation Insulation Board	U.C. per Sf	0,033	CN-CARP	1.143	0	0.6	0	0	1.743
	6,700.00	221	\$34.64	\$7,659	\$0	\$4,020	\$0	\$0	\$11,679
GEN 3" Thick Extruded Polystyrene Insulation Board	U.C. per Sf	0.06	CN-CARP	2.078	0	2.1	0	0	4.178
	46,000.00	2,760	\$34.64	\$95,606	\$0	\$96,600	\$0	\$0	\$192,206
GEN	U.C. per Sf	0,08	CN-LABR	2.407	0	4.5	0	0	6.907
Stucco Finish - 1/2" Thick	46,000.00	3,680	\$30.09	\$110,731	\$0	\$207,000	\$0	\$0	\$317,731
GEN 4" Rigid Roof Insulation - 2 Ea. 2" Layers Of Polyisocyanurate Insulation Board	U.C. per Sf 66,790.00	0.02 1,336		0.602 \$40,194	0 \$0	0.95 \$63,451	0 \$0	0 \$0	1.552 \$103,645
ROOF EPDM Single Ply Membrane Roofing	U.C. per Sf	0.014	CN-ROFC	0.419	0	2.2	0	0	2.619
	66,790.00	935	\$29.95	\$28,005	\$0	\$146,938	\$0	\$0	\$174,943
ROOF	U.C. per Lot	300	CN-ROFC	8985	0	7500	0	0	16485
Redwood, Flashing, & Etc.	1.00	300	\$29.95	\$8,985	\$0	\$7,500	\$0	\$0	\$16,485
GEN 3-1/2" Thick Batt Insulation - Metal Building Walls	U.C. per Sf	0.016	CN-CARP	0.554	0	0.35	0	0	0.904
	35,360.00	566	\$34.64	\$19,598	\$0	\$12,376	\$0	\$0	\$31,974
GEN	U.C. per Sf	0.018	CN-CARP	0.624	0	0.4	0	0	1.024
6" Vinyl Faced Batt Insulation - Metal Building Walls	35,360.00	636	\$34.64	\$22,048	\$0	\$14,144	\$0	\$0	\$36,192

Page No.

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC

Estimate Number: 2570 - Option B

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor 9107.1 THERMAL & MOISTURE PROTECTION - GFF	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	<u>Other</u>	TOTAL
GEN Insul-Basket - Metal Building Roof	U.C. per Sf 24,380.0	0.045 0 1,097	CN-CARP \$34.64	1.559 \$38,004	0 \$0	1.1 \$26,818	0 \$0	0 \$0	2.659 \$64,822
GEN 3" Unfaced Batt Insulation - Metal Building Roof	U.C. per SF 24,380.0	0.007 0 171	CN-CARP ⁻ \$34.64	0.242 \$5,912	0 \$0	0.2 \$4,876	, \$0	0 \$0	0.442 \$10,788
GEN 6" Vinyl Faced Batt Insulation - Metal Building Roof	U.C. per Sf 24,380.0	0.007 0 171	CN-CARP \$34.64	0.242 \$5,912	0 \$0	0.33 \$8 , 045	0 \$0	0 \$0	0.572 \$13,957
Subtotal Sales Tax	 			\$382,653 \$0	\$0 \$0	\$591,768 \$29,588	\$0 \$0	\$0 \$0	\$974,421 \$29,588
INEEL ORG Labor/Subcontractor Overheads		···		\$137,872	\$0	\$297,816	\$0	\$0	\$435,688
Subtotal Estimate Escalation Contingency				\$133,567 \$170,064	\$0 \$0	\$235,859 \$300,308	\$0 \$0	\$0 \$0	\$1,439,697 \$369,426 \$470,372
Total 9107.1 THERMAL & MOISTURE PROTECTION - GFF		11,873		\$824,156	\$0	\$1,455,339	\$0	\$0	\$2,279,496
9107.2 THERMAL & MOISTURE PROTECTION - TFD FAC	ILITY								
GEN 2" Thick Foundation Insulation Board	U.C. per Sf 2,000.0	0.033 0 66	CN-CARP \$34.64	1.143 \$2,286	0 \$0	0.6 \$1,200	0 \$0	0 \$0	1.743 \$3,486
GEN 3" Thick Extruded Polystyrene Insulation Board	U.C. per Sf 37,000.0	0.06 0 2,220	CN-CARP \$34.64	2.078 \$76,901	0 \$0	2.1 \$77,700	0 \$0	0 \$0	4.178 \$154,601
GEN Stucco Finish - 1/2" Thick	U.C. per Sf 37,000.0	0.08 0 2,960	CN-LABR \$30.09	2.407 \$89,066	0 \$0	4.5 \$166,500	0 \$0	0 \$0	6.907 \$255,566
GEN High Work Allowance - Add 25% To Labor	U.C. per Hr 1,290.0	0.25 0 323	CN-LABR \$30.09	7.523 \$9,704	0 \$0	0 \$0	0 \$0	0 \$0	7.523 \$9,704
GEN Manlift Allowance	U.C. per Lot 1.0	0 0		0 \$0	3000 \$3,000	0 \$0	0 \$0	0 \$0	3000 \$3,000
GEN 4" Rigid Roof Insulation - 2 Ea. 2" Layers Of Polyisocyanurate Insulation Board	U.C. per Sf 13,700.0	0.02 0 274	CN-LABR \$30.09	0.602 \$8,245	0 \$0	0,95 \$13,015	0 \$0	0 \$0	1.552 \$21,260
ROOF EPDM Single Ply Membrane Roofing	U.C. per Sf 13,700.0	0.014 0 192	CN-ROFC \$29.95	0.419 \$5,744	0 \$0	2.2 \$30,140	0 \$0	0 \$0	2.619 \$35,884

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC Estimate Number: 2570 - Option B

the first of the control of the cont

LEVEL Org/Subcontractor — 9107.2 THERMAL & MOISTURE PROTECTION -	QT QT	Υ	Hrs	Crew/Rate	Labor	Const Eqp	Mati	_S/C_	Other	TOTAL
ROOF Redwood, Flashing, & Elc.	U.C. per Lot	1.00	200 200	CN-ROFC \$29.95	5990 \$5,990	0 \$0	5000 \$5,000	0 \$0	0 \$0	10990 \$10,990
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$197,937 \$0 \$65,959	\$3,000 \$0 \$871	\$293,555 \$14,678 \$116,201	\$0 \$0 \$0	\$0 \$0 \$0	\$494,492 \$14,678 \$183,031
Subtotal Estimate Escalation Contingency	`		•		\$67,716 \$86,219	\$993 \$1,265	\$108,910 \$138,669	\$0 \$0	\$0 \$0	\$692,200 \$177,618 \$226,153
Total 9107.2 THERMAL & MOISTURE PROTECTION	ON - TFD FACILITY		6,234		\$417,830	\$6,129	\$672,012	\$0	\$0	\$1,095,971
9107.3 THERMAL & MOISTURE PROTECTION - INSUL EXTERIOR WALL INSULATION W/ Z-GIRTS	BOILER HOUSE U.C. per SF	6,720.00	0		0 \$0	0 \$0	o \$0	1.9 \$12,768	0 \$0	1.9 \$12,768
INSUL ROOF INSULATION	U.C. per SF	3,120.00	0		0 \$0	0 \$0	0 \$0	1 \$3,120	0 \$0	1 \$3,120
GEN EXTERIOR WALL METAL SIDING	U.C. per SF	6,720.00	0.023 155	CN-SHEE \$35.48	0.816 \$5,484	0 \$0	3 \$20,160	0 \$0	0 \$0	3.816 \$25,644
GEN STANDING SEAM METAL ROOF	U.C. per SF	3,120.00	0.016 50	CN-SHEE \$35.48	0.568 \$1,771	0 \$0	5 \$15,600	0 \$0	0 \$0	5.568 \$17,371
GEN 2" Thick Foundation Insulation Board	U.C. per Sf	950.00	0.033 31	CN-CARP \$34,64	1.143 \$1,086	0 \$0	0.6 \$570	0 \$0	0 \$0	1.743 \$1,656
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$8,341 . \$0 \$2,421	\$0 \$0 \$0	\$36,330 \$1,817 \$11,074	\$15,888 \$0 \$6,662	\$0 \$0 \$0	\$60,559 \$1,817 \$20,158
Subtotal Estimate Escalation Contingency					\$2,762 \$3,516	\$0 \$0	\$12,630 \$16,081	\$5,786 \$7,368	\$0 \$0	\$82,533 \$21,178 \$26,965
Total 9107.3 THERMAL & MOISTURE PROTECTION	ON - BOILER HOUSE		236		\$17,040	\$0	\$77,931	\$35,704	\$0	\$130,676
9107.4 THERMAL & MOISTURE PROTECTION - GEN 2" Thick Foundation Insulation Board	STORAGE FACILITY U.C. per Si	2,300.00	0.033 76	CN-CARP \$34.64	1.143 \$2,629	0 \$0	0.6 \$1,380	0 \$0	0 \$0	1.743 \$4,009
GEN 3" Thick Extruded Polystyrene Insulation Board	U.C. per Sf	17,200.00	0.08 1,032	CN-CARP \$34.64	2.078 \$35,748	0 \$0	2.1 \$36,120	0 \$0	0 \$0	4.178 \$71,868
GEN Stucco Finish - 1/2" Thick	U.C. per Sf	17,200.00	0.08 1,376	CN-LABR \$30.09	2.407 \$41,404	0 \$0	4.5 \$77,400	0 \$0	0 \$0	6.907 \$118,804

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC

Estimate Number: 2570 - Option B

Client.

V. J. Dalis

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C_	Other	TOTAL
9107.4 THERMAL & MOISTURE PROTECTION - STO GEN High Work Allowance - Add 25% To Labor	U.C. per Hr 2,408.0	0.25 602		7.523 \$18,114	0 \$0	0 \$0	0 \$0	0 \$0	7.523 \$18,114
GEN Manlift Allowance	U.C. per Lot) 0		0 \$0	3000 \$3,000	0 \$0	0 \$0	0 \$0	3000 \$3,000
GEN 4" Rigid Roof Insulation - 2 Ea. 2" Layers Of Polyisocyanurate Insulation Board	U.C. per Sf 20,500.0	0.02) 410		0.602 \$12,337	0 \$0	0.95 \$19,475	0 \$0	0 \$0	1,552 \$31,812
ROOF EPDM Single Ply Membrane Roofing	U.C. per Sf 20,500.0	0.014) 287		0.419 \$8,596	0 \$0	2.2 \$45,100	0 \$0	0 \$0	2.619 \$53,696
ROOF Redwood, Flashing, & Etc.	U.C. per Lot 1.0	200 200		5990 \$5,990	0 \$0	5000 \$5,000	0 \$0	0 \$0	10990 \$10,990
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$124,818 \$0 \$46,798	\$3,000 \$0 \$871	\$184,475 \$9,224 \$94,327	\$0 \$0 \$0	\$0 \$0 \$0	\$312,293 \$9,224 \$141,996
Subtotal Estimate Escalation Contingency				\$44,037 \$56,070	\$993 \$1,265	\$73,907 \$94,103	\$0 \$0	\$0 \$0	\$463,513 \$118,937 \$151,437
Total 9107.4 THERMAL & MOISTURE PROTECTION - FACILITY	STORAGE	3,983		\$271,722	\$6,129	\$456,036	\$0	\$0	\$733,887
9108.1 DOORS & WINDOWS - GFF GEN Single HM Doors & Hardware	U.C. per Ea 30.0	10 300		346.4 \$10,392	, 0 \$0	1000 \$30,000	0 \$0	0 \$0	1346.4 \$40,392
GEN Double HM Doors & Hardware	U.C. per Ea 2.0	15 0 30		519.6 \$1,039	0 \$0	1800 \$3,600	0 \$0	0 \$0	2319.6 \$4,639
GEN Exterior Doors - Single	U.C. per Ea 7.0	12 0 84		415.68 \$2,910	0 \$0	2000 \$14,000	0 \$0	0 \$0	2415.68 \$16,910
GEN Exterior Doors - Double	U.C. per Ea 2.0	20		692.8 \$1,386	0 \$0	3000 \$6,000	0 \$0	0 \$0	3692.8 \$7,386

22

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

LEVEL Org/Subcontractor - 9108,1 DOORS & WINDOWS - GFF	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
GEN 12'x12' Overhead Roll-Up Door	U.C. per Ea	2,00	75 150	CN-CARP \$34.64	2598 \$5,196	0 \$0	16000 \$32,000	0 \$0	0 \$0	18598 \$37,196
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$20,923 \$0 \$6,074	· \$0 \$0 \$0	\$85,600 . \$4,280 \$26,092	\$0 \$0 \$0	\$0 . \$0 \$0	\$106,523 \$4,280 \$32,166
Subtotal Estimate Escalation Contingency			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		\$6,927 \$8,820	\$0 \$0	\$29,758 \$37,890	\$0 \$0	\$0 \$0	\$142,969 \$36,686 \$46,710
Total 9108.1 DOORS & WINDOWS - GFF			604		\$42,744	\$0	\$183,621	\$0	\$0	\$226,364
9108.2 DOORS & WINDOWS - TFD FACILITY GEN Single HM Doors & Hardware	U.C. per Ea	12.00	10 120	CN-CARP \$34.64	346,4 \$4,157	0 \$0	1000 \$12,000	0 \$0	0 \$0	1346.4 \$16,157
GEN Double HM Doors & Hardware	U.C. per Ea	6.00	15 90	CN-CARP \$34.64	519.6 \$3,118	0 \$0	1800 \$10,800	0 \$0	0 \$0	2319.6 \$13,918
GEN Exterior Doors	U.C. per Ea	4.00	12 48	CN-CARP \$34.64	415,68 \$1,663	0 \$0	2000 \$8,000	0 \$0	0 \$0	2415.68 \$9,663
GEN 3' x 7' Shielding Doors	U.C. per Ea	2.00	40 80	CN-CARP \$34.64	1385.6 \$2,771	. 500 \$1,000	25000 \$50,000	0 \$0	0 \$0	26885.6 \$53,771
GEN 12'x12' Overhead Roll-Up Door	U.C. per Ea	2.00	75 150	CN-CARP \$34.64	2598 \$5,196	0 \$0	16000 \$32,000	0 \$0	0 \$0	18598 \$37,196
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$16,904 \$0 \$4,907	\$1,000 \$0 \$290	\$112,800 \$5,640 \$34,383	\$0 \$0 \$0	\$0 \$0 \$0	\$130,704 \$5,640 \$39,581
Subtotal Estimate Escalation Contingency					\$5,597 \$7,126	\$331 · \$422	\$39,214 \$49,930	\$0 \$0	\$0 \$0	\$175,925 \$45,142 \$57,478
Total 9108,2 DOORS & WINDOWS - TFD FACILITY			488		\$34,535	\$2,043	\$241,967	\$0	\$0	\$278,545
9108.3 DOORS & WINDOWS - BOILER HOUSE GEN Single HM Doors & Hardware	U.C. per Ea	3,00	10 30	CN-CARP \$34.64	346.4 \$1,039	0 \$0	. 1000 \$3,000	0 \$0	0 \$0	1346.4 \$4,039
GEN Double HM Doors & Hardware	U.C. per Ea	1.00	15 15	CN-CARP \$34.64	519.6 \$520	o \$0	1800 \$1,800	0 \$0	0 \$0	2319.6 \$2,320

Project Name:

08/30/2000

UNEX Feasibility Study - Option B - Modified UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option B

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	Labor	Const Eqp .	<u>Mati</u>	_S/C_	<u>Other</u>	TOTAL
9108.3 DOORS & WINDOWS - BOILER HOUSE GEN 12'x12' Overhead Roll-Up Door	U.C. per Ęa	1.00	75 75	CN-CARP \$34.64	2598 \$2, 598	0 \$0	16000 \$16,000	0 \$0	0 \$0	18598 \$18,598
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$4,157 \$0 \$1,207	\$0 \$0 \$0	\$20,800 \$1,040 \$6,340	\$0 \$0 \$0	\$0 \$0 \$0	\$24,957 \$1,040 \$7,547
Subtotal Estimate Escalation Contingency		***************************************		·(<u></u>	\$1,376 \$1,752	\$0 \$0	\$7,231 \$9,207	\$0 \$0	\$0 \$0	\$33,544 \$8,607 \$10,959
Total 9108.3 DOORS & WINDOWS - BOILER HOUSE			120		\$8,492	\$0	\$44,618	\$0	\$0	\$53,110
9108.4 DOORS & WINDOWS - STORAGE FACILITY GEN OVERHEAD DOORS	U.C. per EA	2.00	75 150	CN-SKWK \$34.52	2589 \$5,178	0 \$0	16000 \$32,000	0 \$0	0 \$0	18589 \$37,178
GEN PERSONNEL DOORS	U.C. per EA	5.00	10 50	CN-SKWK \$34.52	345.2 \$1,726	0 \$0	1000 \$5,000	0 \$0	0 \$0	1345.2 \$6,726
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$6,904 \$0 \$2,004	\$0 \$0 \$0	\$37,000 \$1,850 \$11,278	\$0 \$0 \$0	\$0 \$0 \$0	\$43,904 \$1,850 \$13,282
Subtotal Estimate Escalation Contingency					\$2,286 \$2,910	\$0 \$0	\$12,863 \$16,378	\$0 \$0	\$0 \$0	\$59,036 \$15,149 \$19,288
Total 9108.4 DOORS & WINDOWS - STORAGE FACILITY			200		\$14,105	\$0	\$79,369	\$0	\$0	\$93,473
9109.1 FINISHES - GFF PAINT Painting Gypsum Board Wall	U.C. per Sf	23,500.00	0.012 282	CN-PAIN \$30.39	0.365 \$8,570	0 \$0	0.12 \$2,820	0 \$0	0 \$0	0.485 \$11,390
PAINT Paint Structural Steel	U.C. per Sf	13,700.00	0.08 1,096	CN-PAIN \$30,39	2.431 \$33,307	0 \$0	0.1 \$1,370	0 \$0	0 \$0	2.531 \$34,677
PAINT Floor Painting - Drum Storage	U.C. per Sf	52,000.00	0.011 572	CN-PAIN \$30.39	0.334 \$17,383	0 \$0	0.5 \$26,000	0 \$0	0 \$0	0.834 \$43,383
PAINT Floor Painting - Drum Processing	U.C. per Sf	14,800.00	0.011 163	CN-PAIN \$30.39	0.334 \$4,947	0 \$0	0.5 \$7,400	0 \$0	0 \$0	0.834 \$12 , 347
PAINT Pipe Painting / I.D.	U.C. per Lat	1.00	250 250	CN-PAIN \$30.39	7597.5 \$7,598	0 \$0	4000 \$4,000	0 \$0	0 \$0	11597,5 \$11,598
PAINT Paint Doors & Frames	U.C. per Ea	65.00	4 260	CN-PAIN \$30.39	121.56 \$7,901	0 \$0	50 \$3,250	0 \$0	0 \$0	171.56 \$11,151

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

Client:

V. J. Balls

LEVEL 9109.1 FINISHE	Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
Touch-Up Paint	PAINT	U.C. per Lot	80 1.00 80	CN-PAIN \$30,39	2431.2 \$2,431	0 \$0	150 \$150	0 \$0	0 \$0	2581.2 \$2,581
Carpet Tile	GEN	U,C, per Sf 10,	0.03 550.00 317	CN-LABR \$30.09	0.903 \$ 9,523	o \$0	1.5 \$15,825	0 \$0	0 \$0	2.403 \$25,348
Ceramic Tile	TILE	U.C. per Sf 4,	0.04 ,100.00 164	CN-TILF \$34.64	1.386 \$5,681	· 0 \$0	2.5 \$10,250	0 \$0	0 \$0	3.886 \$15,931
Entry Mat - Large	GEN	U.C. per Ea	4.00 1	CN-LABR \$30.09	30,09 \$120	, 0 \$0	200 \$800	0 \$0	0 \$0	230.09 \$920
4" Vinyl Cove Base	GEN	U.C. per Lf 2,	,000,00 0.06 ,000,00 120	CN-LABR \$30.09	1,805 \$3,611	0 \$0	0.75 \$1,500	0 \$0	0 \$0	2.555 \$5,111
Acoustical Suspende	GEN ed Ceiling	U.C. per Sf 10,	,550.00 0.04 422	CN-LABR \$30,09	1,204 • \$12,698	0 \$0	1 \$10,550	0 \$0	0 \$0	2.204 \$23,248
Building Lettering	GEN .	U.C. per Lot	1.00 6	CN-CARP \$34.64	207.84 \$208	0 \$0	750 \$750	0 \$0	0 \$0	957.84 \$958
3-1/2" Metal Stud W	GEN all	U.C. per Sf 12,	0.019 ,000.00 228	CN-CARP \$34.64	0.658 \$7,898	0 \$0	0.24 \$2,880	0 \$0	0 \$0	0.898 \$10,778
5/8" Gypsum Board	GEN - Taped & Textured	U.C. per Sf 23,	0.017 500.00 400	CN-CARP \$34.64	0.589 \$13,839	0 \$0	0.33 \$7,755	0 \$0	0 \$0	0.919 \$21,594
RCRA Floor - Grouti	GEN ing Facility	U.C. per Sf 14,	0 00.008		0 \$0	0 \$0	0 \$0	7 \$103,600	0 \$0	7 \$103,600
Subtotal Sales Tax INEEL ORG Labo	r/Subcontractor Overheads				\$135,716 \$0 \$49,885	\$0 \$0 \$0	\$95,300 \$4,765 \$34,932	\$103,600 \$0 \$30,075	\$0 \$0 \$0	\$334,618 \$4,765 \$114,891
Subtotal Estimat Escalation Conlingency	е				\$47,625 \$58,306	\$0 \$0	\$34,640 \$42,409	\$34,301 \$41,994	\$0 \$0	\$454,273 \$116,566 \$142,710
Total 9109.1 FIN	ISHES - GFF		4,363		\$291,532	\$0	\$212,046	\$209,970	\$0	\$713,549
9109.2 FINISHE Building Painting	S - TFD FACILITY PAINT	U.C. per Sf 100,	0.03 ,000,00 3,000	CN-PAIN \$30.39	0.912 \$91,170	0 \$0	0.75 \$75,000	o \$0	0 \$0	1.662 \$166,170
Paint Structural Stee	PAINT al	U.C. per SF 13,	0.08 700.00 1,096	CN-PAIN \$30,39	2.431 \$33,307	0 \$0	0.1 \$1,370	0 \$0	0 \$0	2.531 \$34,677
Decontaminable Co	PAINT sting - Hot Cell	U.C. per Sf 26,	,000.00 0.08 ,000.00 2,080	CN-PAIN \$30,39	2.431 \$63,211	0 \$0	1.5 \$39,000	0 \$0	0 \$0	3.931 \$102,211

Project Name:

08/30/2000

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

Client:

V. J. Balls

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
9109.2 FINISHES - TFD FACILITY PAINT Floor Painting	U.C. per Sf	0.011	CN-PAIN	0.334	0	0.5	0	(0 834
	30,000.00	330	\$30.39	\$10,029	\$0	\$15,000	\$0	\$0	\$25,029
PAINT Pipe Painting / i.D.	U.C. per Lot	250	CN-PAIN	7597.5	0	4000	0	0	11597.5
	1.00	250	\$30.39	\$7,598	\$0	\$4,000	\$0	\$0	\$11,598
PAINT Paint Doors & Frames	U.C. per Ea	4	CN-PAIN	121.56	0	50	0	0	171.56
	20.00	80	\$30.39	\$2,431	\$0	\$1,000	\$0	\$0	\$3,431
PAINT	U.C. per Lot	80	CN-PAIN	2431.2	·0	150	0	0	2581.2
Touch-Up Paint	1.00	80	\$30.39	\$2,431	\$0	\$150	\$0	\$0	\$2,581
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$210,177 \$0 \$88,134	\$0 \$0 \$0	\$135,520 \$6,776 \$59,669	\$0 \$0 \$0	\$0 \$0 \$0	\$345,697 \$6,776 \$147,803
Subtotal Estimate Escalation Contingency				\$76,547 \$93,714	\$0 \$0	\$51,824 \$63,447	\$0 \$0	\$0 \$0	\$500,276 \$128,371 \$157,162
Total 9109.2 FINISHES - TFD FACILITY		6,916		\$468,572	\$0	\$317,236	\$0	\$0	\$785,808
9109,3 FINISHES - BOILER HOUSE PAINT Paint Doors & Frames	U.C. per Ea	4	CN-PAIN	121.56	0	50	o	0	171.56
	4.00	16	\$30.39	\$486	\$0	\$200	\$0	\$0	\$686
PAINT	U.C. per Lot	16	CN-PAIN	486.24	0	150	0	0	636.24
Touch-Up Paint	1.00	16	\$30.39	\$486	\$0 ·	\$150	\$0	\$0	\$636
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$972 \$0 \$408	\$0 \$0 \$0	\$350 \$18 \$154	\$0 \$0 \$0	\$0 \$0 \$0	\$1,322 \$18 \$562
Subtotal Estimate Escalation Contingency				\$354 \$434	\$0 \$0	\$134 \$164	\$0 \$0	\$0 \$0	\$1,902 \$488 \$597
Total 9109.3 FINISHES - BOILER HOUSE		32		\$2,168	\$0	\$819	\$0	\$0	\$2,987
9109.4 FINISHES - STORAGE FACILITY PAINT Paint Structural Steel	U.C. per SF	0.08	CN-PAIN	2.431	0	0.1	0	0	2.531
	13,700.00	1,096	\$30.39	\$33,307	\$0	\$1,370	\$0	\$0	\$34,677
PAINT	U.C. per Sf	0.03	CN-PAIN	0.912	0	0.75	0	0	1.662
Building Painting	2,500.00	75	\$30,39	\$2,279	\$0	\$1,875	\$0	\$0	\$4,154
PAINT Decontaminable Coaling - Remote Handling Area	U.C. per Sf	0.08	CN-PAIN	2.431	0	1.5	0	0	3.931
	22,000.00	1,760	\$30.39	\$53,486	\$0	\$33,000	\$0	\$0	\$86,486

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number:2570 - Option B

LEVEL Org/Subcontractor — 9109.4 FINISHES - STORAGE FACILITY	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
PAINT Floor Painting - Decontaminable - Remote Handling Area	U.C. per Sf 17,600.00	0.08 1,408	CN-PAIN \$30.39	2.431 \$42,789	0 \$0	1.5 \$26,400	0 \$0	0 \$0	3.931 \$69,189
PAINT Pipe Painting / I.D.	U.C. per Lot 1.00	250 250	CN-PAIN \$30.39	7597.5 \$7, 598	0 \$0	4000 \$4,000	0 \$0	0 \$0	11597.5 \$11,598
PAINT Paint Doors & Frames	U.C. per Ea 7.00	4 28	CN-PAIN \$30.39	121.56 \$851	0 \$0	50 \$350	0 \$0	0 \$0	171.56 \$1,201
PAINT Touch-Up Paint	U.C. per Lot	40 40		1215.6 \$1,216	0 \$0	150 \$150	0 \$0	0 \$0	1365.6 \$1,366
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		•		\$141,526 \$0 \$59,346	\$0 \$0 \$0	\$67,145 \$3,357 \$29,564	\$0 \$0 \$0	\$0 \$0 \$0	\$208,671 \$3,357 \$88,910
Subtotal Estimate Escalation Contingency			·	\$51,544 \$63,104	\$0 \$0	\$25,677 \$31,436	\$0 \$0	\$0 \$0	\$300,938 \$77,221 \$94,540
Total 9108.4 FINISHES - STORAGE FACILITY		4,657		\$315,520	\$0	\$157,179	\$0	\$0	\$472,699
9110.1 SPECIALTIES - GFF	1								•
GEN Storage Racks	U.C. per Lf 6,250.00	0,25 1,563	CN-LABR \$30.09	7.523 \$47,016	· 0 \$0	80 \$500,000	0 \$0	0 \$0	87.523 \$547,016
GEN Tru-Pack Assembly	U.C. per Ea 1.00	0	•	0 \$0	0 \$0	0 \$0	850000 \$850,000	0 \$0	850000 \$850,000
GEN Truck Loading Platform	U.C. per Ea 2.00	0		0 \$0	0 \$0	0 \$0	45000 \$90,000	0 \$0	45000 \$90,000
GEN Modular Offices	U.C. per Ea 20.00	5 100		173.2 \$3,464	° .	1800 \$36,000	0 \$0	0 \$0	1973.2 \$39,464
GEN Office Furnishings	U.C. per Plc 20.00	5 100		173.2 \$3,464	0 \$0	2500 \$50,000	0 \$0	0 \$0	2673.2 \$53,464
· GEN Mirror With Shelf - 20" x 30"	U.C. per Ea 7.00	1 7	CN-CARP \$34.64	34.64 \$242	0 \$0	155 \$1,085	0 \$0	· \$0	189.64 \$1,327
GEN Urinal Screen	U.C. per Ea 3,00	3 9		103.92 \$312	0 \$0	170 \$510	o \$0	0 \$0	273.92 \$822
GEN Toilet Partition	U.C. per Ea 7.00	4 28	CN-CARP \$34.64	138.56 \$970	0 \$0	380 \$2,660	0 \$0	0 \$0	518.56 \$3,630
GEN T.P. Dispenser	U.C. per Ea 3.00	0.4 1	CN-CARP \$34.64	13.856 \$42	0 \$0	10 \$30	0 \$0	0 \$0	23.856 \$72

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC

Estimate Number: 2570 - Option B

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	Other	TOTAL
9110.1 SPECIALTIES - GFF GEN T.P. Dispenser With Purse Shelf	U.C. per Ea 4.00	0.5		17.32 \$69	0 \$0	15 \$60	0 \$0	0 \$0	32.32 \$129
GEN San. Napkin Disposal	U.C. per Ea 4.00	0.5		17.32 \$69	0 \$0	20 \$80	· 0 \$0	0 \$0	37,32 \$149
GEN H.C. Grab Bar - 52"	U.C. per Ea 2,00	0.6		20.784 \$42	0 \$0	65 \$130	0 \$0	0 \$0	85.784 \$172
GEN	U.C. per Ea	0.6		20.784	0	75	0	0	95.784
Concealed Grab Bar - 42"	4.00	0 2		\$83	\$0	\$300	\$0	\$0	\$383
GEN	U.C. per Ea	0.6		20.784	o	65	0	0	85.784
Concealed Grab Bar - 36"	2.00	0 1		\$42	\$0	\$130	\$0	\$0	\$172
GEN Towel Dispenser & Waste Receptacle	U.C. per Ea) 1	CN-CARP	34.64	0	250	0	0	284.64
	4.00) 4	\$34.64	\$139	\$0	\$1,000	\$0	\$0	\$1,139
GEN	U.C. per Ea	0.75		25.98	0	75	0	0	100.98
Folding Shower Seat	2,00) 2		\$52	\$0	\$150	\$0	\$0	\$202
GEN Shower Curtain - 40' x 78"	U.C. per Ea 2,00	0.5		17.32 \$35	0 \$0	45 \$90	0 \$0	0 \$0	62,32 \$125
GEN	U.C. per Ea	1 2	CN-CARP	34.64	0	155	0	0	189.64
Tilling Mirror - 24" x 30"	2.00		\$34.64	\$69	\$0	\$310	\$0	\$0	\$379
GEN	U.C. per Ea	0.5	CN-CARP	17.32	0	25	0	0	42.32
Shower Curtain Rod - 36" Long	2.00) 1	\$34.64	\$35	\$0	\$50	\$0	\$0	\$85
GEN	U.C. per Ea	0.15		5.196	0	5	0	0	10.196
Double Prong Hooks - SST	20.00) 3		\$104	\$0	\$100	\$0	\$0	\$204
GEN	U.C. per Ea	3		103.92	0	250	0	0	353.92
Pedestal Bench - 36" Long	6.00) 18		\$624	\$0	\$1,500	\$0	\$0	\$2,124
GEN	U.C. per Ea	1.25		43.3	0	125	0	0	168.3
Single Tier Locker - 12" x 15" x 72"	60.00	75		\$2,598	\$0	\$7,500	\$0	\$0	\$10,098
GEN	U.C. per Ea	0.3		10.392	0	55	0	0	65.392
Waste Receptacle	4.00) 1		\$42	\$0	\$220	\$0	\$0	\$262
GEN Freight Elevator	U.C. per Ea 1.00) 0		0 \$0	0 \$0	0 \$0	250000 \$250,000	0 \$0	250000 \$250,000

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Project Location: INTEC

UNEX Feasibility Study - Option B - Modified UNEX In GFF

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Estimate Number: 2570 - Option B

-- Total 9110.2 SPECIALTIES - TFD FACILITY

GEN

-- 9110.3 SPECIALTIES - BOILER HOUSE

10 Ton O.H. Crane

08/30/2000

LEVEL Org/Subcontractor QTY S/C Crew/Rate Labor Const Eqp Matl Other TOTAL Hrs - 9110.1 SPECIALTIES - GFF GEN U.C. per Ea 400 CN-SKWK 13808 0 750000 0 0 763808 Auto Retrieval System With Three Fork Lifts 1.00 400 \$34.52 \$13,808 \$0 \$750,000 \$0 \$0 \$763,808 Subtotal \$73,318 \$0 \$1,351,905 \$1,190,000 \$0 \$2,615,223 Sales Tax \$0 \$67,595 \$0 \$0 \$67,595 INEEL ORG Labor/Subcontractor Overheads \$21,284 \$0 \$412,081 \$345,457 \$0 \$778,822 Subtotal Estimate \$3,461,641 Escalation \$24,275 \$0 \$469,984 \$393,998 \$0 \$888,257 Contingency \$35,663 \$0 \$690,469 \$578,837 \$0 \$1,304,969 -Total 9110.1 SPECIALTIES - GFF 2,323 \$0 \$154,541 \$2,992,034 \$2,508,292 \$0 \$5,654,867 -- 9110.2 SPECIALTIES - TFD FACILITY 120 **CN-IRON** GEN U.C. per Ea 4819.2 0 75000 0 0 79819.2 20 Ton O.H. Crane 1.00 120 \$40.16 \$4,819 \$0 \$75,000 \$0 \$0 \$79,819 GEN U.C. per Ea 80 CN-IRON 3212.8 0 50000 0 53212.8 0 Hot Cell O.H. Crane 1.00 80 \$40,16 \$3,213 \$0 \$50,000 \$0 \$0 \$53,213 **GEN** U.C. per Ea 100 **CN-MILL** 3292 0 170000 0 0 173292 Shielding Windows - 2' Thick 8.00 800 \$32.92 \$26,336 \$0 \$1,360,000 \$0 \$0 \$1,386,336 **GEN** U.C. per Ea 200 CN-MILL 6584 0 1419000 0 0 1425584 PaR Manipulators - Model 4350 - Wall Mounted 4.00 800 \$32.92 \$26,336 \$0 \$5,676,000 \$0 \$0 \$5,702,336 U.C. per Lot 0 0 6000000 0 6000000 Robotic / Remote Handling Allowance 1.00 0 \$0 \$0 \$0 \$6,000,000 \$0 \$6,000,000 \$60,704 \$0 \$6,000,000 Subtotal \$7,161,000 \$0 \$13,221,704 Sales Tax \$0 \$358,050 \$0 \$0 \$358,050 INEEL ORG Labor/Subcontractor Overheads \$17,622 \$0 \$2,182,780 \$1,741,800 \$0 \$3,942,203 **Subtotal Estimate** \$17,521,957 Escalation \$20,099 \$0 \$2,489,490 \$1,986,546 \$0 \$4,496,134 Contingency \$29,527 \$0 \$3,657,396 \$2,918,504 \$6,605,427 \$0

\$127,952

4016

\$4,016

\$0

0

\$0

\$15,848,716

40000

\$40,000

\$12,646,850

0

\$0

CN-IRON

\$40.16

1,800

100

100

1.00

U.C. per Ea

\$0

0

\$0

\$28,623,518

44016

\$44,016

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number:2570 - Option B

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor 9110.3 SPECIALTIES - BOILER HOUSE	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$4,016 \$0 \$1,166	\$0 \$0 \$0	\$40,000 \$2,000 \$12,193	\$0 \$0 \$0	\$0 \$0 \$0	\$44,016 \$2,000 \$13,358
Subtotal Estimate Escalation Contingency					\$1,330 \$1,953	\$0 \$0	\$13,906 \$20,430	\$0 \$0	\$0 \$0	\$59,374 \$15,235 \$22,383
Total 9110.3 SPECIALTIES - BOILER HOUSE			100		\$8,465	\$0	\$88,528	\$0	\$0	\$96,993
9110.4 SPECIALTIES - STORAGE FACILITY GEN VAULT TUBE ASSEMBLIES	U.C. per EA 1	,584.00	50 79,200	CN-IRON \$40.16	2008 \$3,180,672	0 \$0	23100 \$36,590,400	0 \$0	0 \$0	25108 \$39,771,072
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		***************************************			\$3,180,672 \$0 \$923,349	\$0 \$0 \$0	\$36,590,400 \$1,829,520 \$11,153,303	\$0 \$0 \$0	\$0 \$0 \$0	\$39,771,072 \$1,829,520 \$12,076,652
Subtotal Estimate Escalation Contingency					\$1,053,092 \$1,547,134	\$0 \$0	\$12,720,489 \$18,688,114	\$0 \$0	\$0 \$0	\$53,677,244 \$13,773,581 \$20,235,247
Total 9110.4 SPECIALTIES - STORAGE FACILITY			79,200		\$6,704,247	\$0	\$80,981,825	\$0	\$0	\$87,686,072
9111.1.1 EQUIPMENT - GFF PIPE Filler Feed Pump - P-201-2a & 2b (Skid Mounted)	U.C. per Ea	2.00	10 20	CN-PIPE \$37.58	375.8 \$752	0 \$0	7500 \$15,000	0 \$0	0 \$0	7875.8 \$15,752
PIPE SBW Slurry XFR Pump - P-201-6a, b - 30 hp	U.C. per Ea	2.00	6 12	CN-PIPE \$37.58	225.48 \$451	500 \$1,000	5500 \$11,000	0 \$0	0 \$0	6225.48 \$12,451
PIPE SBW Day Tank - T-201-2a, b - 1179 Gal SST	U.C. per Ea	2.00	8 16	CN-PIPE \$37.58	300.64 \$601	0 \$0	15000 \$30,000	0 \$0	0 \$0	15300.64 \$30,601
PIPE Cross Flow Filter - CF-201-1, 2 (36"x60"x65")	U.C. per Ea	2.00	40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	100000 \$200,000	0 \$0	0 \$0	101503.2 \$203,006
PIPE Extraction Feed Pump - P-201-5375 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	1200 \$1,200	0 \$0	0 \$0	1275,16 \$1,275
PIPE Solvent Feed Pump - P-202-525 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	500 \$500	0 \$0	0 \$0	575.16 \$575
PIPE UNEX Solvent Tank - T-202-5 - 500 Gal SST	U.C. per Ea	1.00	6 6	CN-PIPE \$37.58	225,48 \$225	0 \$0	8500 \$8,500	0 \$0	0 \$0	8725.48 \$8,725
PIPE Extraction Contactor - CON-202-1-14 (3'x13'x5')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	300000 \$300,000	0 \$0	0 \$0	301751.6 \$301,752

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC Estimate Number: 2570 - Option B

LEVEL Org/Subcontractor 9111.1.1 EQUIPMENT - GFF	QTY		<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
PIPE Scrubbing Contactor - SB-202-1-2 (3'x2'x5')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	300000 \$300,000	0 \$0	0 \$0	301751.6 \$301,752
PIPE Stripping Contactor - SP-202-1-8 (3'x7'x5')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	000000 \$300,000	0 \$0	0 \$0	301751.6 \$301,752
PIPE SBW Feed Tank - T-201-1 - 4718 Gal. SST	U.C. per Ea	1.00	12 12	CN-PIPE \$37.58	450.96 \$ 451	500 \$500	31000 \$31,000	0 \$0	0 \$0	31950.96 \$31,951
PIPE Extraction Feed Tank - T-201-5a, b, c - 2359 Gal. SST	U.C. per Ea	3,00	10 30	CN-PIPE \$37.58	375.8 \$1,127	500 \$1,500	21000 \$63,000	. \$0	0 \$0	21875.8 \$65,627
PIPE UNEX Raffinate Tank - T-202-6a, b - 1761 Gal. SST	U.C. per Ea	2.00	8 16	. CN-PIPE \$37.58	300.64 \$601	250 \$500	18600 \$37,200	0 \$0	0 \$0	19150.64 \$38,301
PIPE UNEX Strip Effluent Tank - T-202-14 - 1124 Gal. SST	U.C. per Ea	1.00	6 6	CN-PIPE \$37.58	225.48 \$225	250 \$250	14900 \$14 , 900	0 \$0	0 \$0	15375.48 \$15,375
PIPE SBW XFR Pump - P201-1 - 30 hp	U.C. per Ea	1.00	16 16	CN-PIPE \$37.58	601.28 \$601	. 0 \$0	4500 , \$4,500	0 \$0	0 \$0	5101.28 \$5,101
· PIPE Raffinate XFR Pump - P-202-6a25 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	600 \$600	0 \$0	0 \$0	712.74 \$713
PIPE Raffinate Off Spec. XFR Pump - P-202-6b - 2 hp	U.C. per Ea	1.00	4	CN-PIPE \$37.58	150.32 \$150	0 \$0	2800 \$2,800	0 \$0	0 \$0	2950.32 \$2,950
PIPE Strip Effluent XFR Pump - P-202-1425 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 . \$0	600 \$600	0 \$0	0 \$0	712.74 \$713
PIPE HF Pump - P-201-4125 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Dicarbolide Feed Pump - P-202-175 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE PEG Feed Pump - P-202-275 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	• 0 \$0	0 \$0	912.74 \$913
PIPE CMPO Feed Pump - P-202-375 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE FS-13 Feed Pump - P-202-475 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE Acid Feed Pump - P-202-775 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE Aluminum Nitrate Feed Pump - P-202-875 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option B

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
9111.1.1 EQUIPMENT - GFF PIPE Scrub Makeup XFR Pump - P-202-925 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Scrub Solution Feed Pump - P-202-1025 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	. 0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE DTPA Feed Pump - P-202-1175 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 .\$913
PIPE Strip Makeup XFR Pump - P-202-1225 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Strip Solution Feed Pump - P-202-1325 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE HF Storage Tank - T-201-3 - 4000 Gal C-276	U.C. per Ea	1.00	16 16	CN-PIPE \$37.58	601.28 \$601	500 \$500	20500 \$20,500	0 \$0	0 \$0	21601.28 \$21,601
PIPE HF Makeup Tank - T-201-4 - 237 Gal C-276	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	4000 \$4,000	0 \$0	0 \$0	4112.74 \$4,113
PIPE Dicarbolide Feed Tank - T-202-1 - 55 Gal. SST	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	2000 \$2,000	0 \$0	0 \$0	2112.74 \$2,113
PIPE PEG 400 Feed Tank - T-202-2 - 55 Gal. SST	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	2000 \$2,000	0 \$0	0 \$0	2112.74 \$2,113
PIPE Ph2Bu2CMPO Feed Tank - T-202-3a, b - 55 Gal. SST	U.C. per Ea	2.00	3 6	CN-PIPE \$37.58	112.74 \$225	0 \$0	2000 \$4,000	0 \$0	0 \$0	2112.74 \$4,225
PIPE FS-13 Tank - T-202-4 - 55 Gal. SST	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	2000 \$2,000	0 \$0	0 \$0	2112.74 \$2,113
PIPE - Recycle Acid Tank - T-202-7 - 55 Gal. SST	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	2000 \$2,000	0 \$0	0 \$0	2112.74 \$2,113
PIPE Aluminum Nitrate Tank - T-202-8 -55 Gal. SST	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	2000 \$2,000	0 \$0	0 \$0	2112.74 \$2,113
PIPE UNEX Scrub Makeup Tank - T-202-9 - 807 Gal. SST	U.C. per Ea	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	500 \$500	11900 \$11,900	0 \$0	0 \$0	12775.8 \$12,776
PIPE UNEX Scrub Solution Tank - T-202-10 - 888 Gal. SST	U.C. per Ea	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	500 \$500	12500 \$12,500	0 \$0	0 \$0	13375.8 \$13,376
PIPE UNEX Strip Makeup Tank - T-202-12 - 1132 Gal. SST	U.C. per Ea	1.00	12 12	CN-PIPE \$37.58	450.96 \$451	500 \$500	15000 \$15,000	0 \$0	0 \$0	15950.96 \$15,951

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC Estimate Number:2570 - Option B

LEVEL Org/Subcontractor 9111.1.1 EQUIPMENT - GFF	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	_S/C	Other	TOTAL
PIPE UNEX Strip Solution Feed Tank - T-202-13 - 1245 Gal. SST	U.C. per Ea	1.00	12 12	CN-PIPE \$37.58	450.96 \$451	500 \$500	16000 \$16,000	0 \$0	0 \$0	16950.96 \$16,951
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$15,145 \$0 \$7,285	\$9,250 \$0 \$4,450	\$1,423,300 \$71,165 \$718,897	\$0 \$0 \$0	\$0 \$0 \$0	\$1,447,695 \$71,165 \$730,632
Subtotal Estimate Escalation Contingency					\$5,756 \$15,220	\$3,515 \$9,296	\$567,949 \$1,501,908	\$0 \$0	\$0 \$0	\$2,249,492 \$577,220 \$1,526,424
Total 9111.1.1 EQUIPMENT - GFF			403		\$43,406	\$26,511	\$4,283,219	\$0	\$0	\$4,353,136
9111.1.2 EQUIPMENT - GROUT FACILITY 'PIPE LAW Evaporator Feed Pump - P-204-175 hp PIPE	U.C. per Ea	1.00	3 3 10	CN-PIPE \$37.58 CN-PIPE	112.74 \$113 375.8	0 \$0	. 800 \$800 7500	0 \$0	0 \$0	912.74 \$913
LAW Evaporator Recirc / XFR Pump - P-204-2 (Skid Mounted)	0.0. por La	1.00	10	\$37.58	\$376	\$0	\$7,500	\$0	,0 \$0	7875.8 \$7,876
PIPE LET&D Supply Pump - P-204-325 hp	U.C: per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	800 \$800	0 \$0	0 \$0	875.16 \$875
PIPE NaOH Feed Pump - P-205-1125 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Neutralization Tank Pump - P-205-2a, b, c75 hp	U.C. per Ea	3.00	3 9	CN-PIPE \$37.58	112.74 \$338	0 \$0	800 \$2,400	0 \$0	0 \$0	912.74 \$2,738
PIPE LAW Evaporator Feed Tank - T-204-1 - 7884 Gal SST	U.C. per Ea	1.00	24 24	CN-PIPE \$37.58	901.92 \$902	1000 \$1, 000	45000 \$45,000	0 \$0	0 \$0	46901.92 \$46,902
PIPE LET&D Feed Tank - T-204-3 - 352 Gal SST	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 ·\$150	0 \$0	7500 \$7, 500	0 \$0	0 \$0	7650,32 \$7,650
PIPE NaOH Storage Tank - T-205-1 - 400 Gal SST	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	0 \$0	8000 \$8,000	0 \$0	0 \$0	8150.32 \$8,150
PIPE Neutralization Tank - T-205-2a, b, c - 1200 Gal SST	U.C. per Ea	3.00	8 24	CN-PIPE \$37.58	300.64 \$902	500 \$1, 500	15400 \$46,200	0 \$0	0 \$0 _.	16200.64 \$48,602
B-105 PIPE Slag Storage Bin - T-205-5 - 875 CF	U.C. per EA	1.00	08 08	CN-PIPE \$37.58	3006.4 \$3,006	1000 \$1,000	55000 \$55,000	0 \$0	0 \$0	59006.4 \$59 , 006
B-102 PIPE CaO Storage Bin - T-205-6 - 1071 CF	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	1000 \$1,000	45000 \$45,000	0 \$0	0 \$0	48254.8 \$48,255
B-103 PIPE Portland Cement Bin - T-205-7 - 641 CF	U.C. per EA	1.00	60 60	CN-PIPE \$37,58	2254.8 \$2,255	1000 \$1,000	45000 \$45,000	0 \$0	0 \$0	48254.8 \$48,255

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC

Estimate Number: 2570 - Option B

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor	QTY	-	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	_S/C_	Other	TOTAL
9111.1.2 EQUIPMENT - GROUT FACILITY PIPE Slag Day Storage Tank - T-205-6a - 257 CF	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	250 \$250	9600 \$9,600	0 \$0	0 \$0	10000.32 \$10,000
PIPE Portland Cement Day Storage Tank - T-205-6c - 28CF	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	3100 \$3,100	0 \$0	0 \$0	3212.74 \$3,213
PIPE LAW Evaporator - EV-204-1 (8'x10'x8')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	170000 \$170,000	0 \$0	0 \$0	171751.6 \$171,752
PIPE Verticat Auger - VA-205-1-6 (20"x40"x140")	U.C. per Ea	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	2000 \$2,000	150000 \$150,000	0 \$0	0 \$0	153503.2 \$153,503
PIPE Verlical Mixer - VM-205-1-6 (30"x60"x140")	U.C. per Ea	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	2000 \$2,000	150000 \$150,000	0 \$0	0 \$0	154254.8 \$154,255
B-104 PIPE FLYASH BIN - 34 M3	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	0 \$0	45000 \$45,000	0 \$0	0 \$0	47254.8 \$47,255
ED-101,2,3,4 PIPE AIR EDUCTOR - 9 Kg-S/hr	U.C. per EA	4.00	10 40	CN-PIPE \$37.58	375.8 \$1,503	0 \$0	3500 \$14,000	0 \$0	0 \$0	3875.8 \$15,503
B-107 PIPE CaO WEIGHT BIN4 M3	U.C. per EA	1.00	30 30	CN-PIPE \$37.58	1127.4 \$1,127	0 \$0	4000 \$4,000	0 \$0	0 \$0	5127.4 \$5,127
T-104A&B PIPE GROUT FEED TANK - 7 M3	U.C. per EA	2.00	80 160	CN-PIPE \$37.58	3006.4 \$6,013	0 \$0	35000 \$70,000	0 \$0	0 \$0	38006.4 \$76,013
N-101A&B PIPE pH SAMPLER/NEUTRALIZER	U.C. per EA	2.00	10 20	CN-PIPE \$37.58	375.8 \$752	0 \$0	6000 \$12,000	0 \$0	0 \$0	6375.8 \$12,752
P-105A&B PIPE GROUT MIXER FEED PUMP - 2-16 L/MIN	U.C. per EA	2.00	15 30	CN-PIPE \$37.58	563.7 \$1,127	0 \$0	6000 \$12,000	0 \$0	0 \$0	6563.7 \$13,127
B-108A,B&C PIPE DRY INGREDIENT WEIGH BIN2 M3	U.C. per EA	3.00	15 45	CN-PIPE \$37.58	563.7 \$1,691	0 \$0	2000 \$6,000	0 \$0	0 \$0	2563.7 \$7,691
C-101A,B&C PIPE SOLIDS FEED CONVEYOR - 8 Kg/MIN	U.C. per EA	3.00	10 30	CN-PIPE \$37.58	375.8 \$1,127	0 \$0	2500 \$7,500	0 \$0	0 \$0	2875.8 \$8,627
M-101A,B&C PIPE GROUT MIXER3 M3	U.C. per EA	3.00	60 180	CN-PIPE \$37.58	2254.8 \$6,764	0 \$0	20000 \$60,000	0 \$0	0 \$0	22254.8 \$66,764
B-106A PIPE DRY GROUT ADMIXTURES BIN4 M3	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	2500 \$2,500	0 \$0	0 \$0	3251.6 \$3,252
B-106B&C PIPE LIQUID GROUT ADMIXTURES TANK	U.C. per EA	2.00	15 30	CN-PIPE \$37.58	563.7 \$1,127	0 \$0	500 \$1,000	0 \$0	0 \$0	1063.7 \$2,127
P-106 PIPE DECON AGENT PUMP - 76 L/MIN	U.C. per EA	1.00	30 30	CN-PIPE \$37.58	1127.4 \$1,127	0 \$0	8000 \$8,000	0 \$0	0 \$0	9127.4 \$9,127

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor	QTY	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	Mati	_S/C_	<u>Other</u>	TOTAL
P-115 PIPE METERING PUMP/ADMIXTURES - 1 L/MIN	U.C. per EA	.00 10		375.8 \$376	0 \$0	5000 \$5,000	0 \$0	0 \$0	5375.8 \$5,376
T-106 PIPE MIXER WASH TANK - 1 M3	U.C. per EA 1	.00 50		1879 \$1,879	0 \$0	10000 \$10,000	0 \$0	0 \$0	11879 \$11,879
P-116 PIPE DECON RETURN PUMP - 76 L/MIN	U.Ç. per EA 1	.00 30		1127.4 \$1,127	0 \$0	8000 \$8,000	0 \$0	0 \$0	9127,4 \$9,127
F-105 PIPE SPENT DECON SOLUTION FILTER -	U.C. per EA 1	.00 10		375.8 \$376	0 \$0	5000 \$5,000	0 \$0	0 \$0	5375.8 \$5,376
PIPE STORAGE AREA CONVEYOR	U.C. per EA 1	.00 40		1503.2 \$1,503	0 \$0	10000 \$10,000	o \$0	0 \$0	11503.2 \$11,503
PIPE	U.C. per EA 1	.00 200		7516 \$7,516	o \$0	80000 \$80,000	0 \$0	0 \$0	87516 \$87,516
PIPE AIRLOCK CONVEYOR	U.C. per EA 1	.00 , 40		1503,2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE MAIN INLET CONVEYOR	U.C. per EA 1	.00 100		3758 \$3,758	0 \$0	35000 \$35,000	0 \$0	0 \$0	38758 \$38,758
PIPE TRANSVERSE SECTION LIFT		.00 60		1127.4 \$2, 255	0 \$0	10000 \$20,000	, 0 \$0	0 \$0	11127.4 \$22,255
PIPE MIXER BOOTH INLET CONVEYOR	U.C. per EA 1	.00 40		1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE MIXER BOOTH	U.C. per EA 1	.00 100		3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758
PIPE MIXER BOOTH CONVEYOR	U.C. per EA 1	.00 40		1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE FILL ASSEMBLY	U.C. per EA 1	.00 200		7516 \$7,516	0 \$0	50000 \$50,000	0 \$0	0 \$0	57516 \$57,516
PIPE LID PLACEMENT BOOTH	U.C. per EA 1	.00 100		3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758
PIPE LID PLACEMENT INLET CONVEYOR	U.C. per EA 1	.00 20		751.8 \$752	0 \$0	5000 \$5,000	0 \$0	o \$0	5751.6 \$5,752
· PIPE LID PLACEMENT OUTLET CONVEYOR	U.C. per EA 1	.00 20		751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE LID PLACEMENT CONVEYOR	U.C. per EA	.00 40		1503.2 \$1,503	0 \$0	15000 \$15,000	0 \$0	0 \$0	16503.2 \$16,503

08/30/2000

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

Client:

V. J. Balls

LEVEL Org/Subcontractor 9111.1.2 EQUIPMENT - GROUT FACILITY	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
PIPE ROTATING TABLE	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE DRUM RIM CLEANING MECHANISM	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE LID PLACEMENT ASSEMBLY	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	30000 \$30,000	0 \$0	0 \$0	33758 \$33,758
PIPE TRANSFER SECTION TUNNEL	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	70000 \$70,000	0 \$0	0 \$0	77516 \$77,516
PIPE TRANSFER SECTION INLET CONVEYOR	U.C. per EA	3.00	40 120	CN-PIPE \$37.58	1503.2 \$4,510	0 \$0	10000 \$30,000	0 \$0	0 \$0	11503.2 \$34,510
PIPE TRANSFER SECTION EXIT CONVEYOR	U.C. per EA	3.00	40 120	CN-PIPE \$37.58	1503.2 \$4,510	0 \$0	10000 \$30,000	0 \$0	0 \$0	11503.2 \$34,510
PIPE TRANSFER TABLE	U.C. per EA	3.00	30 90	CN-PIPE \$37.58	1127.4 \$3,382	0 \$0	10000 \$30,000	0 \$0	0 \$0	11127.4 \$33,382
PIPE TRANSVERSE CONVEYOR	U.C. per EA	2.00	40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	10000 \$20,000	0 \$0	0 \$0	11503.2 \$23,006
PIPE INSPECTION BOOTH	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	80000 \$80,000	0 \$0	0 \$0	83758 \$83,758
PIPE INSPECT/DECON INLET CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE INSPECT/DECON EXIT CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE INSPECT/DECON CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE . \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE ROTATING TABLE	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	, o \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE DECON EQUIPMENT	U.C. per LOT	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	30000 \$30,000	0 \$0	0 \$0	33758 \$33,758
PIPE INSPECTION EQUIPMENT	U.C. per LOT	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758
PIPE DISCHARGE SECTION TUNNEL	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	70000 \$70,000	0 \$0	0 \$0	77516 \$77,516
PIPE DISCHARGE SECTION INLET CONVEYOR	U.C. per EA	3.00	40 120	CN-PIPE \$37.58	1503.2 \$4,510	0 \$0	10000 \$30,000	0 \$0	0 \$0	11503.2 \$34,510

CONSTRUCTION DETAIL ITEM REPORT

V. J. Balls Client:

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number:2570 - Option B

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor — 9111.1.2 EQUIPMENT - GROUT FACILITY	QTY	-	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
PIPE MAIN DISCHARGE CONVEYOR	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	35000 \$35,000	o \$0	0 \$0	38758 \$38,758
PIPE TRANSFER SECTION LIFT	U.C. per EA	3.00	30 90	CN-PIPE \$37.58	1127.4 \$3,382	0 \$0	10000 \$30,000	0 \$0	0 \$0	11127.4 \$33,382
PIPE	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	· 0 \$0	80000 \$80,000	0 \$0	0 \$0	87516 \$87,516
PIPE AIRLOCK CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE TILT & PAN CAMERA	U.C. per EA	14.00	10 140	CN-PIPE \$37.58	375.8 \$5,261	0 \$0	2000 \$28,000	0 \$0	0 \$0	2375.8 \$33,261
PIPE CAMERA CONTROL STATION	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	15000 \$15,000	0 \$0	0 \$0	16503.2 \$16,503
PIPE INLET STAGING, DRUM LIFT, CURE LINE & DRU ENCLOSURE	U.C. per LOT UM LIFT	1.00	500 500	CN-PIPE \$37,58	18790 \$18,790	0 \$0	250000 \$250,000	0 \$0	0 \$0	268790 \$268,790
PIPE INLET STAGING CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	. 1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE DRUM LIFT	U.C. per EA	2.00	30 60	CN-PIPE \$37.58	1127.4 \$2,255	0 \$0	10000 \$20,000	0 \$0	0 \$0	11127.4 \$22,255
PIPE DRUM LIFT CONVEYOR	U.C. per EA	2.00	40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	10000 \$20,000	0 \$0	0 \$0	11503.2 \$23,008
PIPE CURE LINE CONVEYOR	U.C. per EA	2.00	40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	10000 \$20,000	0 \$0	0 \$0	11503.2 \$23,006
PIPE 180 DEGREE CONVEYOR	U.C. per EA	8.00	60 480	CN-PIPE \$37.58	2254.8 \$18,038	, \$0	20000 \$160,000	0 \$0	0 \$0	22254.8 \$178,038
PIPE CURE LINE CONVEYOR 13'	U.C. per EA	8.00	60 480	CN-PIPE \$37.58	2254.8 \$18,038	0 \$0	20000 \$160,000	0 \$0	0 \$0	22254.8 \$178,038
PIPE STAGING CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0.	5751.6 \$5,752
PIPE DRUM ELEVATOR & ENCLOSURE	U.C. per EA	1.00	400 400	CN-PIPE \$37.58	15032 \$15,032	0 \$0	200000 \$200,000	0 \$0	0 \$0	215032 \$215,032
PIPE INLET INDEXING LIFT CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1, 503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE INDEXING LIFT TABLE	U.C. per EA	1.00	30 30	CN-PIPE \$37.58	1127.4 \$1,127	0 \$0	10000 \$10,000	0 \$0	0 \$0	11127.4 \$11,127

08/30/2000

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC Estimate Number: 2570 - Option B

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Client:

LEVEL Org/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	_S/C_	Other	TOTAL
PIPE INDEXING ARM	U.C. per EA	1.00	100 100	CN-PIPE \$37,58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE DEWATERING STATION 30' CONVEYOR	U.C. per EA	1.00	70 70	CN-PIPE \$37.58	2630.6 \$2,631	0 \$0	40000 \$40,000	0 \$0	0 \$0	42630,6 \$42,631
PIPE 90 DEG TRANSFER & LIFT	U.C. per EA	2.00	20 40	CN-PIPE \$37.58	751.6 \$1,503	0 \$0	5000 \$10,000	0 \$0	0 \$0	5751.6 \$11,503
PIPE DEWATERING STATION CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE AIR HEATERS	U.C. per EA	9,00	10 90	CN-PIPE \$37.58	375.8 \$3,382	0 \$0	2000 \$18,000	0 \$0	0 \$0	2375.8 \$21,382
PIPE DEWATERING STATION LINE LIFT	U.C. per EA	9.00	30 270	CN-PIPE \$37.58	1127.4 \$10,147	0 \$0	10000 \$90,000	0 \$0	0 \$0	11127.4 \$100,147
PIPE DRUM OFF LOAD CONVEYOR	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	0 \$0	20000 \$20,000	0 \$0	0 \$0	22254.8 \$22,255
PIPE HYDRAULIC DRUM LIFT	U.C. per EA	1.00	50 50	CN-PIPE \$37.58	1879 \$1,879	0 \$0	20000 \$20,000	0 \$0	0 \$0	21879 \$21,879
E-104 PIPE VAPOR CONDENSER - 2 Kg/hr	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	0 \$0	50000 \$50,000	0 \$0	0 \$0	52254.8 \$52,255
P-118 PIPE CONDENSATE PUMP - 4 L/MIN	U.C. per EA	1.00	10 10	CN-PIPE \$37,58	375.8 \$376	0 \$0	6000 \$6,000	0 \$0	0 \$0	6375.8 \$6,376
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$282,000 \$0 \$135,653	\$10,750 \$0 \$5,171	\$3,263,500 \$163,175 \$1,648,368	\$0 \$0 \$0	\$0 \$0 \$0	\$3,556,250 \$163,175 \$1,789,192
Subtotal Estimate Escalation Contingency					\$107,170 \$283,405	\$4,085 \$10,804	\$1,302,256 \$3,443,741	\$0 \$0	\$0 \$0	\$5,508,618 \$1,413,511 \$3,737,950
Total 9111.1.2 EQUIPMENT - GROUT FACILITY			7,504		\$808,228	\$30,810	\$9,821,040	\$0	\$0	\$10,660,079
9111.2 EQUIPMENT - THIN FILM DRYER FACILITY PIPE Thin Film Dryer -TFD203-1 (12'x12'x25')	U.C. per Ea	1,00	100 100	CN-PIPE \$37.58	3758 \$3,758	3000 \$3,000	1000000 \$1,000,000	0 \$0	0 \$0	1006758 \$1,006,758
PIPE TFD Feed Pump - P-203-225 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	500 \$500	0 \$0	0 \$0	575.16 \$575
PIPE Strip Cystallizer Condensate Pump - P-203-1 - Skid Mounted	U.C. per Ea	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	0 \$0	7500 \$7,500	0 \$0	0 \$0	7875.8 \$7,876

08/30/2000

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number:2570 - Option B

LEVEL Org/Subcontractor — 9111.2 EQUIPMENT - THIN FILM DRYER FACILITY	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
PIPE TFD Vacuum Pump - VP-203-1	U.C. per Ea	1.00	6 6	CN-PIPE \$37.58	225.48 \$225	0 \$0	10000 \$10,000	0 \$0	0 \$0	10225.48 \$10,225
PIPE Chrystallizer Condensate Tank - T-203-1 - 10 Gat - SST	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	1500 \$1,500	0 \$0	0 \$0	1575.16 \$1,575
PIPE Strip Feed Tank - T-203-2 - 1124 Gal SST (NWCF Only)	U.C. per Ea	1.00	8 8	CN-PIPE \$37.58	300.64 \$301	500 \$500	15000 \$15,000	0 \$0	0 \$0	15800.64 \$15,801
Subtotal . Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$4,810 \$0 \$2,314	\$3,500 \$0 \$1,684	\$1,034,500 \$51,725 \$522,518	\$0 \$0 \$0	\$0 \$0 \$0	\$1,042,810 \$51,725 \$526,515
Subtotal Estimate Escalation Contingency					\$1,828 \$4,834	\$1, 330 \$3, 517	\$412,803 \$1,091,635	\$0 \$0	\$0 \$0	\$1,621,050 \$415,962 \$1,099,986
Total 9111.2 EQUIPMENT - THIN FILM DRYER FACILITY			128		\$13,786	\$10,031	\$3,113,181	\$0	\$0	\$3,136,999
9111.3 EQUIPMENT - BOILER HOUSE GEN BOILERS	U.C. per EA	2.00	60 120	CN-BOILMK \$23.08	1384.8 \$2,770	0 \$0	200000 \$400,000	o \$0	. 0 \$0	201384.8 \$402,770
GEN FEED WATER HEATER	U.C. per EA	2.00	40 80	CN-BOILMK \$23.08	923.2 \$1,846	0 \$0	20000 \$40,000	0 \$0	0 \$0	20923.2 \$41,846
PIPE CHEMICAL FEED SYSTEM	U.C. per LOT	1.00	500 500	CN-PIPE \$37.58	18790 \$18,790	0 \$0	100000 \$100,000	0 \$0	0 \$0	118790 \$118,790
PIPE WATER TREATMENT SYSTEM	U.C. per LOT	1.00	1800 1,800	CN-PIPE \$37.58	67644 \$67,644	0 \$0	250000 \$250,000	0 \$0	0 \$0	317644 \$317,644
TANK OIL STORAGE TANK, ~750 BBL	U.C. per BBL	750.00	0		0 \$0	0 \$0	0 \$0	65 \$48,750	0 \$0	65 \$48,750
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$91,050 \$0 \$42,918	\$0 \$0 \$0	\$790,000 \$39,500 \$310,901	\$48,750 \$0 \$20,442	\$0 \$0 \$0	\$929,800 \$39,500 \$374,261
Subtotal Estimate Escalation Contingency					\$34,376 \$90,906	\$0 \$0	\$292,627 \$773,835	\$17,755 \$46,951	\$0 \$0	\$1,343,561 \$344,758 \$911,692
Total 9111.3 EQUIPMENT - BOILER HOUSE			2,500		\$259,251	\$0	\$2,206,863	\$133,899	\$0	\$2,600,012
9111.4 EQUIPMENT - GROUTING FACILITY PIPE LAW Evaporator Feed Pump - P-204-175 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913

UNEX Feasibility Study - Option B - Modiline SMEX or GFF Project Location: INTEC

Estimate Number: 2570 - Option B

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

LEVEL Org/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
9111.4 EQUIPMENT - GROUTING FACILITY PIPE LAW Evaporator Recirc / XFR Pump - P-204-2 (Skid Mounted)	U.C. per Ea	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	0 \$0	7500 \$7, 500	0 \$0	0 \$0	7875.8 \$7,876
PIPE LET&D Supply Pump - P-204-325 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	°0 \$0	800 \$800	0 \$0	0 \$0	875.16 \$875
PIPE NaOH Feed Pump - P-205-1125 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37,58	75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Neulralization Tank Pump - P-205-2a, b, c75 hp	U.C. per Ea	3.00	3 9	CN-PIPE \$37.58	112.74 \$338	0 \$0	800 \$2,400	0 \$0	0 \$0	912.74 \$2,73 8
PIPE LAW Evaporator Feed Tank - T-204-1 - 7884 Gal SST	U.C. per Ea	1.00	24 24	CN-PIPE \$37.58	901.92 \$902	1000 \$1,000	45000 \$45,000	0 \$0	0 \$0	46901.92 \$46,902
PIPE LET&D Feed Tank - T-204-3 - 352 Gal SST	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	0 \$0	7500 \$7,500	0 \$0	0 \$0	7650.32 \$7,650
PIPE NaOH Storage Tank - T-205-1 - 400 Gal SST	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	0 \$0	8000 \$8,000	0 \$0	0 \$0	8150.32 \$8,150
PIPE Neutralization Tank - T-205-2a, b, c - 1200 Gal SST	U.C. per Ea	3.00	8 24	CN-PIPE \$37.58	300.64 \$902	500 \$1,500	15400 \$46,200	0 \$0	0 \$0	16200.64 \$48,602
B-105 PIPE Slag Storage Bin - T-205-5 - 875 CF	U.C. per EA	1.00	80 80	CN-PIPE \$37.58	3006.4 \$3,006	1000 \$1,000	55000 \$55,000	0 \$0	0 \$0	59006.4 \$59,006
B-102 PIPE CaO Storage Bin - T-205-6 - 1071 CF	U.C. per EA	1.00	60 60	CN-PIPE \$37,58	2254.8 \$2,255	1000 \$1,000	45000 \$45,000	0 \$0	0 \$0	48254.8 \$48,255
B-103 PIPE Portland Cement Bin - T-205-7 - 641 CF	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	1000 \$1,000	45000 \$45,000	0 \$0	0 \$0	48254.8 \$48,255
PIPE Slag Day Storage Tank - T-205-6a - 257 CF	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	250 \$250	9600 \$9,600	0 \$0	0 \$0	10000.32 \$10,000
PIPE CaOH Day Storage Tank - T-205-6b - 46 CF (UNEX Only)	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	3700 \$3,700	0 \$0	0 \$0	3812.74 \$3,813
PIPE Portland Cement Day Storage Tank - T-205-6c - 28CF	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	3100 \$3,100	0 \$0	0 \$0	3212.74 \$3,213
PIPE LAW Evaporator - EV-204-1 (6'x10'x8')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$7 52	1000 \$1,000	170000 \$170,000	0 \$0	0 \$0	171751.6 \$171,752
PIPE Vertical Auger - VA-205-1-6 (20"x40"x140")	U.C. per Ea	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	2000 \$2,000	150000 \$150,000	0 \$0	0 \$0	153503.2 \$153,503
PIPE Vertical Mixer - VM-205-1-6 (30"x60"x140")	U.C. per Ea	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	2000 \$2,000	150000 \$150,000	0 \$0	0 \$0	154254.8 \$154,255

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Estimate Number: 2570 - Option B

LEVEL Org/Subcontractor		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
	U.C. per EA 1.0	60 00 60		2254.8 \$2,255	o \$0	45000 \$45,000	o \$0	0 \$0	47254.8 \$47,255
ED-101,2,3,4 PIPE AIR EDUCTOR - 9 Kg-S/hr	U.C. per EA 4.0	10 00 40		375.8 \$1,503	o \$0	3500 \$14,000	0 \$0	0 \$0	3875.8 \$15,503
B-107 PIPE CaO WEIGHT BIN4 M3	U.C. per EA . 1.0	30 00 30		1127.4 \$1,127	0 \$0	, 4000 \$4,000	0 \$0	0 \$0	5127.4 \$5,127
T-104A&B PIPE GROUT FEED TANK - 7 M3	U.C. per EA 2.0	80 00 160		3006.4 \$6,013	0 \$0	35000 \$70,000	0 \$0	0 \$0	38006.4 \$76,013
N-101A&B PIPE pH SAMPLER/NEUTRALIZER	U.C. per EA 2.0	10 00 20		375.8 \$752	0 \$0	6000 \$12,000	0 \$0	0 \$0	6375,8 \$12,752
P-105A&B PIPE GROUT MIXER FEED PUMP - 2-16 L/MIN	U.C. per EA 2.0	15 00 30		563.7 \$1,127	0 \$0	6000 \$12,000	0 \$0	0 \$0	6563.7 \$13,127
B-108A,B&C PIPE DRY INGREDIENT WEIGH BIN2 M3	U.C. per EA 3.0	15 00 45	\$37.58	563.7 \$1,691	0 \$0	2000 \$6,000	0 \$0	0 \$0	2563.7 \$7,691
C-101A,B&C PIPE SOLIDS FEED CONVEYOR - 8 Kg/MIN	U.C. per EA 3.0	10 00 30		375.8 \$1,127	0 \$0	2500 \$7,500	0 \$0	\$0 \$0	2875.8 \$8,627
M-101A,B&C PIPE GROUT MIXER3 M3	U.C. per EA . 3.0	60 00 . 180	\$37.58	2254.8 \$6,764	0 \$0	20000 \$60,000	0 \$0	0 \$0	22254.8 \$66,764
B-106A PIPE DRY GROUT ADMIXTURES BIN4 M3	U.C. per EA 1.0		\$37.58	751.6 \$752	0 \$0	2500 \$2,500	0 \$0	0 \$0	3251.6 \$3,252
B-106B&C PIPE LIQUID GROUT ADMIXTURES TANK	U.C. per EA 2.0		\$37.58	563.7 \$1,127	0 \$0	500 \$1,000	0 \$0	0 \$0	1063.7 \$2,127
P-106 PIPE DECON AGENT PUMP - 76 L/MIN	U.C. per EA		\$37.58	1127.4 \$1,127	0 \$0	8000 \$8,000	0 \$0	0 \$0	9127.4 \$9,127
P-115 PIPE METERING PUMP/ADMIXTURES - 1 L/MIN	U.C. per EA 1.0		\$37.58	375.8 \$376	0 \$0	5000 \$5,000	. \$0	0 \$0	5375.8 \$5,376
T-106 PIPE MIXER WASH TANK - 1 M3	U.C. per EA 1.0		\$37.58	1879 \$1,879	0 \$0	10000 \$10,000	0 \$0	0 \$0	11879 \$11,879
P-116 PIPE DECON RETURN PUMP - 76 L/MIN	U.C. per EA		\$37.58	1127.4 \$1,127	0 \$0	8000 \$8,000	0 \$0	0 \$0	9127.4 \$9,127
F-105 PIPE SPENT DECON SOLUTION FILTER -	U.C. per EA 1.0		\$37.58	375.8 \$376	0 \$0	5000 \$5,000	0 \$0	0 \$0	5375.8 \$5,376
PIPE STORAGE AREA CONVEYOR	U.C. per EA	40 00 40		1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

V. J. Balls Client:

LEVEL Org/Subcontractor 9111.4 EQUIPMENT - GROUTING FACILITY	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	_S/C	<u>Other</u>	TOTAL
PIPE AIRLOCK	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	80000 \$80,000	0 \$0	0 \$0	87516 \$87,516
PIPE AIRLOCK CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE MAIN INLET CONVEYOR	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	35000 \$35,000	0 \$0	0 \$0	38758 \$38,758
PIPE TRANSVERSE SECTION LIFT	U.C. per EA	2.00	30 60	CN-PIPE \$37.58	1127.4 \$2,255	0 \$0	10000 \$20,000	0 \$0	0 \$0	11127.4 \$22,255
PIPE MIXER BOOTH INLET CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE MIXER BOOTH	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 · \$53,758
PIPE MIXER BOOTH CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE . FILL ASSEMBLY	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	50000 \$50,000	0 \$0	0 \$0	57516 \$57 516
PIPE LID PLACEMENT BOOTH	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758
PIPE LID PLACEMENT INLET CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE LID PLACEMENT OUTLET CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751,6 \$5,752
PIPE LID PLACEMENT CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	°\$0	15000 \$15,000	0 \$0	0 \$0	16503.2 \$16,503
PIPE ROTATING TABLE	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE DRUM RIM CLEANING MECHANISM	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE LID PLACEMENT ASSEMBLY	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	30000 \$30,000	0 \$0	0 \$0	33758 \$33,758
PIPE TRANSFER SECTION TUNNEL	U.C. per EA	1.00	200 200	CN-PIPE . \$37,58	7516 \$7,516	0 \$0	70000 \$70,000	0 \$0	0 \$0	77516 \$77,516
PIPE TRANSFER SECTION INLET CONVEYOR	U.C. per EA	3.00	40 120	CN-PIPE \$37,58	1503.2 \$4,510	0 \$0	10000 \$30,000	0 \$0	0 \$0	11503.2 \$34,510

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number:2570 - Option B

Prepared By: Rowley / Mitchell / Marler Eslimate Type: Planning

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
PIPE TRANSFER SECTION EXIT CONVEYOR	U.C. per EA	3.00	40 120	CN-PIPE \$37.58	1503.2 \$4,510	0 \$0	10000 \$30,000	0 \$0	0 \$0	11503.2 \$34,510
PIPE TRANSFER TABLE	U.C. per EA	3.00	30 90	CN-PIPE \$37.58	1127.4 \$3,382	0 \$0	10000 \$30,000	0 \$0	0 \$0	11127.4 \$33,382
PIPE . TRANSVERSE CONVEYOR	U.C. per EA	2.00	40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	10000 \$20,000	·0 \$0	0 \$0	11503.2 \$23,006
PIPE INSPECTION BOOTH	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	80000 \$80,000	0 \$0	0 \$0	83758 \$83,758
PIPE INSPECT/DEGON INLET CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE INSPECT/DECON EXIT CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE INSPECT/DECON CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE ROTATING TABLE	U.C. per EA	1,00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE DECON EQUIPMENT	U.C. per LOT	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	30000 \$30,000	0 \$0	0 \$0	33758 \$33,758
PIPE INSPECTION EQUIPMENT	U.C. per LOT	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758
PIPE DISCHARGE SECTION TUNNEL	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	70000 \$70,000	0 \$0	0 \$0	77516 \$77,516
PIPE DISCHARGE SECTION INLET CONVEYOR	U.C. per EA	3.00	40 120	CN-PIPE \$37.58	1503.2 \$4,510	0 \$0	10000 \$30,000	0 \$0	0 \$0	11503.2 \$34,510
PIPE MAIN DISCHARGE CONVEYOR	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	o \$0	35000 \$35,000	0 \$0	0 \$0	38758 \$38,758
PIPE TRANSFER SECTION LIFT	U.C. per EA	3.00	30 90	CN-PIPE \$37.58	1127.4 \$3,382	0 \$0	10000 \$30,000	0 \$0	0 \$0	11127.4 \$33,382
PIPE AIRLOCK	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	80000 000,08	0 \$0	0 \$0	87516 \$87,516
PIPE AIRLOCK CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE TILT & PAN CAMERA	U.C. per EA	14.00	10 140	CN-PIPE \$37,58	375.8 \$5,261	0 \$0	2000 \$28,000	0 \$0	0 \$0	2375.8 \$33,261

Page No.

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF

Project Location: INTEC
Estimate Number:2570 - Option B

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor	QTY	-	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
9111.4 EQUIPMENT - GROUTING FACILITY PIPE CAMERA CONTROL STATION	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	15000 \$15,000	0 \$0	0 \$0	16503.2 \$16,503
PIPE INLET STAGING, DRUM LIFT, CURE LINE & DRUM LIFT ENCLOSURE	U.C. per LOT	1.00	500 500	CN-PIPE \$37.58	18790 \$18,790	. 0 \$0	250000 \$250,000	0 \$0	0 \$0	268790 \$268,790
PIPE INLET STAGING CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE DRUM LIFT	U.C. per EA	2.00	30 60	CN-PIPE \$37.58	1127.4 \$2,255	0 \$0	10000 \$20,000	0 \$0	0 \$0	11127.4 \$22,255
PIPE DRUM LIFT CONVEYOR	U.C. per EA	2.00	40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	10000 \$20,000	0 \$0	0 \$0	11503.2 \$23,006
PIPE CURE LINE CONVEYOR	U.C. per EA	2.00	40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	10000 \$20,000	0 \$0	0 \$0	11503.2 \$23,006
PIPE 180 DEGREE CONVEYOR	U.C. per EA	8.00	60 480	CN-PIPE \$37.58	2254.8 \$18,038	0 \$0	20000 \$160,000	0 \$0	0 \$0	22254.8 \$178,038
PIPE CURE LINE CONVEYOR 13'	U.C. per EA	8.00	60 480	CN-PIPE \$37.58	2254.8 \$18,038	0 \$0	20000 \$160,000	0 \$0	0 \$0	22254.8 \$178,038
PIPE STAGING CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE DRUM ELEVATOR & ENCLOSURE	U.C. per EA	1.00	400 400	CN-PIPE \$37.58	15032 \$15,032	0 \$0	200000 \$200,000	0 \$0	0 \$0	215032 \$215,032
PIPE INLET INDEXING LIFT CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	. 0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE INDEXING LIFT TABLE	U.C. per EA	1.00	30 30	CN-PIPE \$37.58	1127.4 \$1,127	0 \$0	10000 \$10,000	0 \$0	0 \$0	11127.4 \$11,127
PIPE INDEXING ARM	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	20000 \$20,000	· \$0	0 \$0	23758 \$23,758
PIPE DEWATERING STATION 30' CONVEYOR	U.C. per EA	1.00	70 70	CN-PIPE \$37,58	2630.6 \$2,631	0 \$0	40000 \$40,000	0 \$0	0 \$0	42630.6 \$42,631
PIPE 90 DEG TRANSFER & LIFT	U.C. per EA	2.00	20 40	CN-PIPE \$37.58	751.6 \$1,503	0 \$0	5000 \$10,000	0 \$0	0 \$0	5751.6 \$11,503
PIPE DEWATERING STATION CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE AIR HEATERS	U.C. per EA	9.00	10 90	CN-PIPE \$37.58	375.8 \$3,382	0 \$0	2000 \$18,000	0 \$0	0 \$0	2375.8 \$21,382

44

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

LEVEL Org/Subcontractor — 9111.4 EQUIPMENT - GROUTING FACILITY	QTY	_	<u>Hrs</u>	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
DEWATERING STATION LINE LIFT	U.C. per EA	9.00	30 270	CN-PIPE \$37.58	1127,4 \$10,147	0 \$0	10000 \$90,000	0 \$0	0 \$0	11127.4 \$100,147.
PIPE DRUM OFF LOAD CONVEYOR	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	0 \$0	20000 \$20,000	0 \$0	0 \$0	22254.8 \$22,255
PIPE HYDRAULIC DRUM LIFT	U.C. per EA	1.00	50 50	CN-PIPE \$37.58	1879 \$1,879	0 \$0	20000 \$20,000	0 \$0	0 \$0	21879 \$21,879
E-104 PIPE VAPOR CONDENSER - 2 Kg/hr	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	0 \$0	50000 \$50,000	0 \$0	0 \$0	52254.8 \$52,255
P-118 PIPE CONDENSATE PUMP - 4 L/MIN	U.C. per EA	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	0 \$0	6000 \$6,000	0 \$0	0 \$0	6375.8 \$6,376
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$282,113 \$0 \$135,708	\$10,750 \$0 \$5,171	\$3,267,200 \$163,360 \$1,650,237	\$0 \$0 \$0	\$0 \$0 \$0	\$3,560,063 \$163,360 \$1,791,115
Subtotal Estimate Escalation Conlingency					\$107,213 \$283,518	\$4,085 \$10,804	\$1,303,732 \$3,447,646	\$0 \$0	\$0 \$0	\$5,514,538 \$1,415,031 \$3,741,967
Total 9111.4 EQUIPMENT - GROUTING FACILITY			7,507		\$808,552	\$30,810	\$9,832,175	\$0	\$0	\$10,671,536
9111.5 EQUIPMENT - STORAGE FACILITY GEN Remote Handling Equipment	U.C. per Lot	1.00	750 750	CN-SKWK \$34.52	25890 \$25,890	0 \$0	750000 \$750,000	0 \$0	0 \$0	775890 \$775,890
GEN Smeared Canister Loadout Crane	U.C. per Ea	1.00	400 400	CN-SKWK \$34.52	13808 \$13,808	0 \$0	2500000 \$2,500,000	0 \$0	0 \$0	2513808 \$2,513,808
GEN Canlster Storage Crane - Clean Environment	U.C. per Ea	1.00	400 400	CN-SKWK \$34.52	13808 \$13,808	0 \$0	250000 \$250,000	0 \$0	0 \$0	263808 \$263,808
GEN Canister Heater	U.C. per Ea	2.00	200 400	CN-SKWK \$34.52	6904 \$13,808	0 \$0	103000 \$206,000	0 \$0	0 \$0	109904 \$219,808
GEN CO2 System	U.C. per Ea	1.00	100 100	CN-SKWK \$34.52	3452 \$3,452	0 \$0	175000 \$175,000	0 \$0	0 \$0	178452 \$178,452
GEN Canister Transportation Cart	U.C. per Ea	1.00	100 100	CN-SKWK \$34,52	3452 \$3,452	0 \$0	25000 \$25,000	0 \$0	0 \$0	28452 \$28,452
GEN Canister Lifting Mechanism	U.C. per Ea	2.00	120 240	CN-SKWK \$34.52	4142.4 \$8,285	0 \$0	257500 \$515,000	0 \$0	0 \$0	261642.4 \$523,285
GEN Canister Sealing Manipulator	U.C. per Ea	1.00	80 80	CN-SKWK \$34.52	2761.6 \$2,762	0 \$0	120000 \$120,000	0 \$0	0 \$0	122761.6 \$122,762

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option B

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
9111.5 EQUIPMENT - STORAGE FACILITY GEN Decon Solution Pumping Station	U.C. per Ea 1	.00 120		4142.4 \$4,142	0 \$0	50000 \$50,000	0 \$0	0 \$0	54142.4 \$54,142
GEN Decon Cell Equipment	U.C. per Lot 1	.00 240		8284.8 \$8,285	0 \$0	515000 \$515,000	0 \$0	0 \$0	523284.8 \$523,285
GEN Decon / Disassembly Equipment - Turntable, Manipulator Tools, W/ Rack & Etc.	U.C. per Lot 1	.00 240		8284.8 \$8,285	0 \$0	500000 \$500,000	0 \$0	0 \$0	508284.8 \$508,285
GEN Smear Monitor	U.C. per Ea 1	100 1.00 100		3452 \$3,452	0 \$0	515000 \$515,000	0 \$0	0 \$0	518452 \$518,452
GEN Smear Station Module	U.C. per Ea 1	i.00 0	CN-SKWK	0 \$0	0 \$0	0 \$0	42000 \$42,000.	0 \$0	42000 \$42,000
GEN 'Shuttle Cart	U.C. per Ea 1	80 i.00 80		2761.6 \$2,762	0 \$0	150000 \$150,000	0 \$0	0 \$0	152761.6 \$152,762
GEN Glove Box	U.C. per Ea 1	40 1.00 40		1380.8 \$1,381	0 \$0	41200 \$41,200	0 \$0	0 \$0	42580.8 \$42,581
GEN Cameras	U.C. per Ea 30),00 720		828.48 \$24,854	0 \$0	3000 \$90,000	0 \$0	0 \$0	3828.48 \$114,854
GEN Weld Station Module	U.C. per Ea 1	200 1.00 200		6904 \$6,904	0 \$0	103000 \$103,000	0 \$0	0 \$0	109904 \$109,904
GEN HLW Canister Transfer Cart	U.C. per Ea 1	400 400 400		13808 \$13,808	0 \$0	2575000 \$2,575,000	0 \$0	0 \$0	2588808 \$2,588,808
GEN Empty Canister Receiving Crane	U.C. per Ea	200 2.00 400	\$34.52	6904 \$13,808	0 \$0	7000 \$14,000	0 \$0	0 \$0	13904 \$27,808
GEN PaR Manipulator	U.C. per Ea 1	200 1.00 200	\$34.52	6904 \$6,904	0 . \$0	250000 \$250,000	0 \$0	0 \$0	256904 \$256,904
GEN Canister Fill Monitoring Instruments	U.C. per Ea 2	2.00	CN-SKWK	0 \$0	0 \$0	0 \$0	2060000 \$4,120,000	0 \$0	2060000 \$4,120,000
GEN Canister Welder Leak Check Module	U.C. per Ea 1	100 1,00 100		3452 \$3,452	0 \$0	1030000 \$1,030,000	0 \$0	0 \$0	1033452 \$1,033,452

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number:2570 - Option B

LEVEL Org/Subcontractor — 9111.5 EQUIPMENT - STORAGE FACILITY	QTY	_	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	<u>s/c</u>	Other	TOTAL
GEN Misc. Equipment	U.C. per Lot	1.00	300 300	CN-SKWK \$34.52	10356 \$10, 356	· 0 \$0	1000000 \$1,000,000	0 \$0	Q \$0	1010356 \$1,010,356
Sublotal	··· · · · · · · · · · · · · · · · · ·			······································	\$193,657	· \$0	\$11,374,200	\$4,162,000	\$0	\$15,729,857
Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$56,219	\$0 \$0	\$568,710 \$3,467,027	\$0 \$1,208,229	\$0 \$0	\$568,710 \$4,731,474
Subtotal Estimate Escalation Contingency					\$64,118 \$169,557	\$0 \$0	\$3,954,190 \$10,456,628	\$1,378,001 \$3,644,044	\$0 \$0	\$21,030,041 \$5,398,309 \$14,270,229
-Total 9111.5 EQUIPMENT - STORAGE FACILITY			5,610		\$483,551	\$0	\$29,820,755	\$10,392,273	\$0	\$40,696,579
- 9114.4 CONVEYING SYSTEMS - STORAGE FACILITY GEN GANTRY CRANE	U.C. per EA	2.00	1000 2,000	CN-SKWK \$34.52	34520 \$69,040	0 \$0	2500000 \$5,000,000	0 \$0	0 \$0	2534520 \$5,069,040
GEN TRANSFER CART IN TUNNEL	U.C. per EA	1.00	500 500	CN-SKWK \$34.52	17260 \$17,260	0 \$0	300000 \$300,000	0 \$0	0 \$0	317260 \$317,260
GEN 5 TON DECONTAMINATABLE BRIDGE CRANE	U.C. per EA	2.00	300 600	CN-SKWK \$34.52	10356 \$20,712	0 \$0	250000 \$500,000	0 \$0	0 \$0	260356 \$520,712
GEN CASK MANUVERING HYDRAULIC PLATFORM	U.C. per EA	1.00	1000 1,000	CN-SKWK \$34.52	34520 \$34,520	0 \$0	1000000 \$1,000,000	0 \$0	0 \$0	1034520 \$1,034,520
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$141,532 \$0 \$41,087	\$0 \$0 . \$0	\$6,800,000 \$340,000 \$2,072,742	\$0 \$0 \$0	\$0 \$0 \$0	\$6,941,532 \$340,000 \$2,113,829
Subtotal Estimate Escalation Contingency					\$46,860 \$18,358	\$0 \$0	\$2,363,990 \$926,139	\$0 \$0	\$0 \$0	\$9,395,361 \$2,410,850 \$944,497
Total 9114.4 CONVEYING SYSTEMS - STORAGE FACILIT	Υ		4,100		\$247,837	\$0	\$12,502,870	\$0	\$0	\$12,750,707
9115.2.1 HVAC EQUIPMENT - NEW - GFF - UNEX HVAC Vent. Centrifugal Fans - 20 hp	U.C. per Ea	5.00	10 50	CN-SHEE \$35.48	354.8 \$1,77 4	500 \$2,500	5700 \$28,500	o \$0	0 \$0	6554.8 \$32,774
HVAC Vent. Centrifugal Fans - 25 hp	U.C. per Ea	7.00	· 12 84	CN-SHEE \$35.48	425.76 \$2,980	500 \$3,500	9000 \$63,000	0 \$0	0 \$0	9925.76 \$69,480
HVAC Vent. Centrifugal Fans - 30 hp	U.C. per Ea	5.00	12 60	CN-SHEE \$35.48	425.76 \$2,129	500 \$2,500	9000 \$45,000	0 \$0	0 \$0	9925.76 \$49,629
HVAC Vent. Centrifugal Fans - 40 hp	U.C. per Ea	5.00	18 90	CN-SHEE \$35.48	638.64 \$3,193	500 \$2,500	13000 \$65,000	0 \$0	0 \$0	14138.64 \$70,693

Page No.

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC

Estimate Number: 2570 - Option B

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
9115.2.1 HVAC EQUIPMENT - NEW - GFF - UNEX HVAC Vent. Centrifugal Fans - 50 hp	U.C. per Ea	14.00	14 196	CN-SHEE \$35.48	496.72 \$6,954	500 \$7,000	15000 \$210,000	0 \$0	0 \$0	15996.72 \$223,954
HVAC Vent. Centrifugal Fans - 60 hp	U.C. per Ea	3.00	40 120	CN-SHEE \$35.48	1419.2 \$4,258	500 \$1,500	27000 \$81,000	0 \$0	0 \$0	28919.2 \$86,758
HVAC *HEPA Filter Bank - Single Stage - 4X4 - 12 Filters Per Bank	U.C. per Ea	2.00	30 60	CN-SHEE \$35.48	1064.4 \$2,129	500 \$1,000	72000 \$144,000	0 \$0	0 \$0	73564.4 \$147,129
Memo: Each Filter is 24" x 24".										
HVAC *HEPA Filler Bank - Single Stage - 4X4 - 16 Fillers Per Bank	U.C. per Ea	23.00	40 920	CN-SHEE \$35.48	1419.2 \$32,642	500 \$11,500	96000 \$2,208,000	0 \$0	0 \$0	97919.2 \$2,252,142
Memo: Each Filter is 24" x 24".										
HVAC ·	U.C. per Ea		40	CN-SHEE	1419.2	500	144000	0	0	145919.2
*HEPA Filter Bank - Dual Slage - 4X4 - 12 Filters Per	•	2.00	80	\$35.48	\$2,838	\$1,000	\$288,000	\$0	\$0	\$291,838
Bank Memo: Each Filter is 24" x 24".										
HVAC	U.C. per Ea		50	CN-SHEE	1774	500	192000	0	0	194274
*HEPA Filter Bank - Dual Stage - 4X4 - 16 Filters Per	O.C. per Ea	4.00	200	\$35.48	\$7,096	\$2,000	\$768,000	\$0	\$0	\$777,096
Bank Memo: Each Filter is 24" x 24".										
HVAC Chiller (Complete With Compressor & Fans) - 80 Ton	U.C. per Ea	1.00	60 60	CN-SHEE \$35.48	2128.8 \$2,129	0 \$0	35000 \$35,000	0 \$0	0 \$0	37128.8 \$37,129
HVAC Chiller (Complete With Compressor & Fans) - 40 Ton	U.C. per Ea	1.00	48 48	CN-SHEE \$35.48	1703.04 \$1,703	0 \$0	21000 \$21,000	0 \$0	0 \$0	22703.04 \$22,703
HVAC Actuated Air Dampers	U.C. per Ea	100.00	0.9 90	CN-SHEE \$35.48	31.932 \$3,193	0 \$0	150 \$15,000	0 \$0	0 \$0	181.932 \$18,193
HVAC Pre-Filters	U.C. per Lot	1.00	100 100	CN-SHEE \$35.48	3548 \$3,548	0 \$0	2500 \$2,500	0 \$0	0 \$0	6048 \$6,048
HVAC Heating Coils	U.C. per Lot	1.00	100 100	CN-SHEE \$35.48	3548 \$3,548	0 \$0	5000 \$5,000	0 \$0	0 \$0	8548 \$8,548
HVAC Cooling Coils	U.C. per Lot	1.00	100 100	CN-SHEE \$35,48	3548 \$3,548	0 \$0	5000 \$5,000	0 \$0	0 \$0	8548 \$8,548

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC

Estimate Number: 2570 - Option B

Client:

V. J. Balls

LEVEL Org/Subcontractor — 9115.2.1 HVAC EQUIPMENT - NEW - GFF -	QTY	-	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
HVAC Heat Recovery Coil	U.C. per Lot	1.00	40 40	CN-SHEE \$35.48	1419.2 \$1,419	0 \$0	2000 \$2,000	o \$0	o \$0	3419.2 \$3,419
Subtolal Sales Tax			. ,,,,,,,,,		\$85,081 \$0	\$35,000 \$0	\$3,986,000 \$199,300	\$0 \$0	\$0 \$0	\$4,106,081 \$199,300
INEEL ORG Labor/Subcontractor Overheads				·	\$38,827	\$15,972	\$1,909,987	\$D	\$0	\$1,964,786
Subtotal Estimate Escalation Conlingency					\$31,795 \$40,483	\$13,080 \$16,654	\$1,564,051 \$1,991,428	\$0 \$0	\$0 \$0	\$6,270,168 \$1,608,925 \$2,048,564
Total 9115.2.1 HVAC EQUIPMENT - NEW - G	FF - UNEX		2,398		\$196,186	\$80,706	\$9,650,765	\$0	\$0	\$9,927,657
9115.2.1 HVAC - TFD FACILITY - HOT CELL HVAC (*)Sheet Metal Ductwork Memo: The hot cell is approximately 77' x 51' x 7	U.C. per Lot	1.00	1100 1,100	CN-SHEE \$35.48	39028 \$39,028	o \$0	20000 \$20,000	0 \$0	0 \$0	59028 \$59,028
HVAC Equipment	U.C. per Lot	1.00	700 700	CN-SHEE \$35.48	24836 \$24,836	3000 \$3,000	125000 \$125,000	0 \$0	0 \$0	152836 \$152,836
HVAC HEPA Filters	U.C. per Lot	1.00	300	CN-SHEE \$35.48	10644 \$10,644	0 \$0 .	150000 \$150,000	0 \$0	0 \$0	160644 \$160,644
HVAC Diffusers, Grilles, Dampers, Registers	U.C. per Lot	1.00	100 100	CN-SHEE . \$35.48	3548 \$3,548	0 \$Ó	9000 \$9,000	0 \$0	0 \$0	12548 \$12,548
HVAC Misc. Sheet Metal	U.C. per Lot	1.00	200 200	CN-SHEE \$35.48	7096 \$7,096	0 \$0	2500 \$2,500	0 \$0	0 \$0	9596 \$9,596
HVAC- Test & Balance	U.C. per Lot	1.00	200 200	CN-SHEE \$35,48	7096 \$7,096	0 \$0	0 \$0	0 \$0	0 \$0	7098 \$7,096
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$92,248 \$0 \$42,098	\$3,000 \$0 \$1,369	\$306,500 \$15,325 \$146,867	\$0 \$0 \$0	\$0 \$0 \$0	\$401,748 \$15,325 \$190,334
Subtotal Estimate Escalation Contingency					\$34,473 \$43,893	\$1,121 \$1,427	\$120,266 \$153,129	\$0 \$0	\$0 \$Q	\$607,407 \$155,861 \$198,450
Total 9115.2.1 HVAC - TFD FACILITY - HOT	CELL	····	2,600	······································	\$212,712	\$6,918	\$742,087	\$0	\$0	\$961,717
9115.2.2 HVAC - TFD FACILITY - OPERATI Memo: The operating corridors an HVAC	NG CORRIDORS d equipment areas are approxim U.C. per Lot	ately 72,5	00 square fo 4000	eet of total floor ar CN-SHEE	ea. Includes the 141920	e floor area of all le	vels. 140000	0	0	281920
(*)Sheet Metal Ductwork Memo: Includes all corridors and equipment area	•	1.00 eet of floor	4,000	\$35.48	\$141,920	\$0	\$140,000	\$0	\$0	\$281,920

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option B

Client:

V. J. Balls

LEVEL	Org/Subcontractor	QTY	· 	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	_S/C_	Other	_TOTAL_
	- TFD FACILITY - OPERATING CORRID The operating corridors and equipmen			:00 aarrara f	and of total floor o	raa laaludaa th	a flagr area of all la	volo			
мето;	HVAC	U.C. per Lot	matery 72,5	4000 square 1	CN-SHEE	141920	9 11001 area 01 an 19 15000	525000	0	0	681920
HVAC Equipment			1.00	4,000	\$35.48	\$141,920	\$15,000	\$525,000	\$0	\$0	\$681,920
	HVAC	U.C. per Lot		200	CN-SHEE	7096	0	13000	0	0	20096
Diffusers, Grilles, Da	empers, Registers	2.2. p 3. 2.2.	1.00	200	\$35.48	\$7,096	\$0	\$13,000	\$0	\$0	\$20,098
	HVAC	U.C. per Lot		350	CN-SHEE	12418	0	5000	0	0	17418
Misc. Sheet Metal		•	1.00	350	\$35.48	\$12,418	\$0	\$5,000	\$0	\$0	\$17,418
	HVAC	U.C. per Lot		300	CN-SHEE	10644	0	0	0	0	10644
Test & Balance			1.00	300	\$35,48	\$10,644	\$0	\$0	\$0	\$0	\$10,644
Subtotal			<u></u>			\$313,998	- \$15,000	\$683,000	\$0	\$0	\$1,011,998
Sales Tax						\$0	\$0	\$34,150	\$0	\$0 ***	\$34,150
INEEL ORG Labo	or/Subcontractor Overheads				`	\$143,295	\$6,845	\$327,276	\$0	\$0 	\$477,416
Subtotal Estimat	e						***		••	**	\$1,523,564
Escalation Contingency						\$117,341 \$149,405	\$5,606 \$7,137	\$268,000 \$341,231	\$0 \$0	\$0 \$0	\$390,947 \$497,773
	VAC - TFD FACILITY - OPERATING CO	RRIDORS		8,850		\$724,039	\$34,588	\$1,653,656	\$0	\$0	\$2,412,283
0445 0 2 DI 18M	DINC / DIDING TED EACH ITY										
9115.2.3 PLUW	BING / PIPING - TFD FACILITY PIPE	U.C. per Sf		0.1	CN-PIPE	3.758	0	5	0	0	8.758
Process Piping		. 1	3,700.00	1,370	\$37.58	\$51,485	\$0	\$68,500	\$0	\$0	\$119,985
	PIPE	U.C. per Sf		0.05	CN-PIPE	1.879	0	3	0	0	4.879
Building Plumbing		1	3,700.00	685	\$37.58	\$25,742	\$0	\$41,100	\$0	\$0	\$66,842 ·
Subtotal						\$77,227	\$0	\$109,600	\$0	\$0	\$186,827
Sales Tax						\$0	\$0 \$0	\$5,480	\$0 ***	\$0 ***	\$5,480
INEEL ORG Labo	or/Subcontractor Overheads			·····		\$37,149	\$0	\$55,358 	\$0	\$0	\$92,507
Subtotal Estimat	te e						•	A 10 770 1	••	**	\$284,814
Escalation						\$29,349 \$37,369	\$0 \$0	\$43,734 \$55,685	\$0 \$0	\$0 \$0	\$73,083 \$93,053
Contingency				0.055				 	· · · · · · · · · · · · · · · · · · ·	•	
Total 9115.2.3 P	LUMBING / PIPING - TFD FACILITY			2,055		\$181,094	\$0	\$269,857	\$0	\$0	\$450,951
9115.4.2 HVAC	- NEW - BOILER HOUSE	U.C. per LOT		200	CN-SHEE	7098	240	36700	1000	0	45036
HVAC	HVAC	O.C. per LOT	1.00	200	\$35.48	\$7,096	\$240 \$240	\$36,700	\$1,000	\$0	\$45,036
Memo: Based on A	AFC estimate #2547-A. This will be a two	boiler system vs. a fo						* ** -		,,,	* := ; == *

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor 9115.4.2 HVAC - NEW - BOILER HOUSE	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$7,096 \$0 \$3,238	\$240 \$0 \$110	\$36,700 \$1,835 \$17,586	\$1,000 \$0 \$456	\$0 \$0 \$0	\$45,036 \$1,835 \$21,390
Subtotal Estimate Escalation Conlingency					\$2,652 \$3,376	\$90 \$114	\$14,401 \$18,336	\$374 \$476	\$0 \$0	\$68,261 \$17,516 \$22,302
Total 9115.4.2 HVAC - NEW - BOILER HOUSE			200		\$16,362	\$553	\$88,857	\$2,306	\$0	\$108,079
9115,4.3 PLUMBING - BOILER HOUSE PIPE Building Drain	U.C. per Lot	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	o \$0	600 \$600	0 \$0	0 \$0	2103.2 \$2,103
PIPE Building Water	U.C. per Lot	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	. 300 \$300	0 \$0	0 \$0	1051.6 \$1,052
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	· · · · · · · · · · · · · · · · · · ·				\$2,255 \$0 \$1,085	\$0 \$0 \$0	\$900 \$45 \$455	\$0 \$0 \$0	\$0 \$0 \$0	\$3,155 \$45 \$1,539
Subtotal Estimate Escalation Contingency					\$857 \$1,091	\$0 \$0	\$359 \$457	\$0 \$0	\$0 \$0 _.	\$4,739 \$1,216 \$1,548
Total 9115.4.3 PLUMBING - BOILER HOUSE			60		\$5,287	\$0	\$2,216	\$0	\$0	\$7,503
9115.4.4 PIPING - NEW - BOILER HOUSE PIPE STEAM & SUPPORT PIPING	U.C. per LOT	1.00	2325 2,325	CN-PIPE \$37.58	87373.5 \$87,374	1820 \$1,820	89150 \$89,150	0 \$0	0 \$0	178343.5 \$178,344
INSUL PIPE INSULATION	U.C. per LOT	1.00	175 175	CN-ASBE \$36.92	6461 \$6,461	0 \$0	8920 \$8,920	0 \$0	• 0 \$0	15381 \$15,381
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				**************************************	\$93,835 \$0 \$44,739	\$1,820 \$0 \$875	\$98,070 \$4,904 \$48,956	\$0 \$0 \$0	\$0 \$0 \$0	\$193,725 \$4,904 \$94,571
Subtotal Estimate Escalation Contingency					\$35,558 \$45,274	\$692 \$881	\$38,985 \$49,638	\$0 \$0	\$0 \$0	\$293,199 \$75,235 \$95,793
Total 9115.4.4 PIPING - NEW - BOILER HOUSE			2,500		\$219,406	\$4,268	\$240,553	\$0	\$0	\$464,227
9115.4.5 FIRE PROTECTION - NEW - BOILER HOUSE FP FIRE SPRINKLER SYSTEM - BOILER BUILDING	U.C. per SF 3,	120.00	0		0 \$0	0 \$0	0 \$0	3.5 \$10,920	0 \$0	3.5 \$10,920

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option B

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor 9115.4.5 FIRE PROTECTION - NEW - BOILER HOUSE	QTY	-	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$10,920 \$0 \$4,579	\$0 \$0 \$0	\$10,920 \$0 \$4,579
Subtotal Estimate Escalation Contingency		/			\$0 \$0	\$0 \$0	\$0 \$0	\$3,977 \$5,064	\$0 \$0	\$15,499 \$3,977 \$5,064
Total 9115.4.5 FIRE PROTECTION - NEW - BOILER HOUSE			0		\$0	\$0	\$0	\$24,540	\$0	\$24,540
9115.4 MECHANICAL - NEW - STORAGE FACILITY PIPE MISC. PIPING - ALLOW	U.C. per LOT	1.00	0		0 \$0	0 \$0	0 \$0	40000 \$40,000	0 \$0	40000 \$40,000
FP FIRE PROTECTION	U.C. per SF 20,	440.00	o		0 \$0	0 \$0	0 \$0	3.5 \$71,540	0 \$0	3.5 \$71,540
HVAC HVAC	U.C. per SF 20,	440.00	0.18 3,679	CN-SHEE \$35.48	6.386 \$130,538	0 \$0	11.2 \$228,928	0 \$0	0 \$0	17.586 \$359,466
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\$130,538 \$0 \$59,572	\$0 \$0 \$0	\$228,928 \$11,446 \$109,696	\$111,540 \$0 \$49,240	\$0 \$0 \$0	\$471,006 \$11,446 \$218,509
Subtotal Estimate Escalation Contingency					\$48,782 \$62,112	\$0 \$0 ·	\$89,828 \$114,374	\$41,256 \$52,530	\$0 \$0	\$700,961 \$179,867 \$229,015
Total 9115.4 MECHANICAL - NEW - STORAGE FACILITY	, , , , , , , , , , , , , , , , , , ,		3,679		\$301,004	\$0	\$554,273	\$254,566	\$0	\$1,109,843
9116.2.1 SWITCHGEAR AND TRANSFORMERS - GFF ELEC 4000 amp, 480/277 double ended 3R walk-in switchgear	U.C. per Ea	1.00	96 96	CN-ELEC \$34.12	3275.52 \$3,276	2500 \$2,500	200000 \$200,000	0 \$0	0 \$0	205775.52 \$205,776
ELEC 2500 kVA 13.8-480/277 transformers	U.C. per Ea	2.00	24 48	CN-ELEC \$34.12	818.88 \$1,638	2500 \$5,000	75000 \$150,000	0 \$0	0 \$0	78318.88 \$156,638
ELEC 4000 amp armor clad busway .	U.C. per Ls	1.00	32 32	CN-ELEC \$34.12	1091.84 \$1,092	0 \$0	10000 \$10,000	0 \$0	0 \$0	11091.84 \$11,092
ELEC 800 amp 480 volt standby power panels	U.C. per Ea	1.00	24 24	CN-ELEC \$34.12	818.88 \$819	0 \$0	12000 \$12,000	0 \$0	0 \$0	12818.88 \$12,819
ELEC 1200 amp 480 volt normal power panels	U.C. per Ea	2.00	16 32	CN-ELEC \$34.12	545.92 \$1,092	0 \$0	10000 \$20,000	0 \$0	0 \$0	10545.92 \$21,092
ELEC Vault and equipment pads for main gear and transformers	U.C. per Ls	1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	35000 \$35,000	35000 \$35,000

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF

Project Location: INTEC

Estimate Number:2570 - Option B

Client:

V. J. Balls

LEVEL Org/Subcontractor — 9116.2.1 SWITCHGEAR AND TRANSFORMERS - GFF	QTY	<u>, </u>	Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	Other	TOTAL
ELEC 480 volt power panels	U.C. per Ea	6.00	12 72	CN-ELEC \$34.12	409.44 \$2, 45 7	0 \$0	5000 \$30,000	0 \$0	0 \$0	5409.44 \$32,457
ELEC 480-208/120 75 kVA transformers	U.C. per Ea	4.00	8 32	CN-ELEC \$34.12	272.96 \$1, 092	0 \$0	1700 \$6,800	0 \$0	0 \$0	1972.96 \$7,892
ELEC 208/120 panels, lighting & misc. power loads	U.C. per Ea	4.00	8 32	CN-ELEC \$34.12	272.98 \$1,092	0 \$0	2500 \$10,000	0 \$0	0 \$0	2772.96 \$11,092
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$12,556 . \$0 \$5,265	\$7,500 \$0 \$3,145	\$438,800 \$21,940 \$193,202	\$0 \$0 \$0	\$35,000 \$0 \$0	\$493,856 \$21,940 \$201,612
Subtotal Estimate Escalation Contingency					\$4,573 \$6,718	\$2,732 \$4,013	\$167,802 \$246,523	\$0 \$0	\$8,981 \$13,194	\$717,408 \$184,087 \$270,449
Total 9116.2.1 SWITCHGEAR AND TRANSFORMERS - G	FF		368		\$29,113	\$17,389	\$1,068,267	\$0	\$57,175	\$1,171,944
9116.2.2 RACEWAYS, CONDUCTORS, AND GROUNDIN ELEC 15kV electrical duct bank, 2 runs of 200 lf.	U.C. per Lf	400.00	0		0 \$0	0 \$0	0 \$0	0 \$0	125 \$50,000	125 \$50,000
ELEC	U.C. per Ls	400,00	Ū		0	0	0	0	25000	25000
600 volt feeders	0.0. pc; E3	1.00	0		\$0	\$0	\$0	\$0	\$25,000	\$25,000
ELEC Branch power and lighting circuits	U.C. per Ls	1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	100000 \$100,000	100000 \$100,000
Subtotal · Sales Tax INEEL ORG Labor/Subcontractor Overheads			<u> </u>	•	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$175,000 \$0 \$0	\$175,000 \$0 \$0
Subtotal Estimate Escalation Contingency					\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$44,905 \$65,972	\$175,000 \$44,905 \$65,972
Total 9116.2.2 RACEWAYS, CONDUCTORS, AND GROU	NDING - GFF		0		\$0	\$0	\$0	\$0	\$285,877	\$285,877
9116.2.3 MISC. COSTS - GFF ELEC Testing of systems and equipment	U.C. per Ls	1.00	120 120	CN-ELEC \$34.12	4094.4 \$4,094	0 \$0	0 \$0	0 \$0	o [*] \$0	4094.4 \$4,094
ELEC . Material handling	U.C. per Ls	1.00	120 120	CN-ELEC \$34.12	4094.4 \$4,094	0 \$0	0 \$0	0 \$0	0 \$0	4094.4 \$4,094
ELEC Lightning Protection	U.C. per Sf	39,100.00	0		0 \$0	0 \$0	0 \$0	2 \$178,200	0 \$0	2 \$178,200

CONSTRUCTO

' REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

UNEX Feasibility Study - Option B - Modified UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option B

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	Other	TOTAL
9116.2.3 MISC, COSTS - GFF ELEC Grounding Grid	U.C. per Sf 89,100,00	. 0		0 \$0	0 \$0	0 \$0	1 \$89,100	0 \$0	1 \$89,100
ELEC	U.C. per Sf			0	0	0	1	0	1
Wiring Devices & Enclosures	89,100.00	0		\$0	\$0	\$0	\$89,100	\$0	\$89,100
Subtotal Sales Tax				\$8,189	\$0 \$0	\$0	\$356,400	\$0	\$364,589
INEEL ORG Labor/Subcontractor Overheads				\$0 \$3,434	\$0 \$0	\$0 \$0	\$0 \$149,449	\$0 \$0	\$0 \$152,883
Subtotal Estimate									\$517,472
Escalation Contingency				\$2,982 \$4,381	\$0 \$0	\$0 \$0	\$129,801 \$190,695	\$0 \$0	\$132,783 \$195,077
Total 9116.2.3 MISC. COSTS - GFF		240		\$18,986	\$0	\$0	\$826,345	\$0	\$845,332
9116.2.4 LIGHTING - GFF									
ELEC	U.C. per Sf 89,100.00	0		0 \$0	0 \$0	0 \$0	4 \$356,400	0 \$0	4 \$356,400
Subtotal				\$0	\$0	\$0	\$356,400	\$0	\$356,400
Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$0 \$0	\$0 \$0	\$0 \$0	. \$0 \$149,449	\$0 \$0	\$0 \$149,449
Subtotal Estimate							**************************************	······································	\$505,849
Escalation Contingency				\$0 \$0	\$0 \$0	\$0 \$0	\$129,801 \$190,695	\$0 \$0	\$129,801 \$190,695
Total 9116.2.4 LIGHTING - GFF		0		\$0	\$0	\$0	\$826,345	\$0	\$826,345
9116.3.1 SWITCHGEAR AND TRANSFORMERS - TFD									
ELEC 480-208/120 75 kVA transformers	U.C. per Ea 2.00	8 16	CN-ELEC \$34.12	272.96 \$546	0 \$0	1700 \$3,400	0 \$0	0 \$0	1972.96 \$3,946
. ELEC	U.C. per Ea	8	CN-ELEC	272.96	0	2500	0	0	2772,96
208/120 panels, lighting & misc. power loads	2.00	16	\$34.12	\$546	\$0	\$5,000	\$0	\$0	\$5,546
Subtotal				\$1,092	\$0	\$8,400	\$0	′ 1	\$9,492
Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$0 \$458	\$0 \$0	\$420 \$3,698	\$0 \$0	\$0 \$0	\$420 \$4,156
Subtotal Estimate			······································			******	······	•	\$14,068
Escalation Contingency				\$398 \$584	\$0 \$0	\$3,212 \$4,719	\$0 \$0	\$0 \$0	\$3,610 \$5,303
Total 9116.3.1 SWITCHGEAR AND TRANSFORMERS - TR	FD	32	· · · · · · · · · · · · · · · · · · ·	\$2,532	\$0	\$20,450	\$0	\$0	\$22,981

CONSTRUCTION DETAIL ITEM REPORT Project Name:

Client:

V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

LEVEL Org/Subcontractor 9118.3.2 RACEWAYS, CONDUCTORS, AND GRO	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
Branch power and lighting circuits	U.C. per Ls 1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	35000 \$35,000	35000 \$35,000
Sublotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	W. 1			\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$35,000 \$0 \$0	\$35,000 \$0 \$0
Subtotal Estimate Escalation Contingency				\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$8,981 \$13,194	\$35,000 \$8,981 \$13,194
Total 9116.3.2 RACEWAYS, CONDUCTORS, AND	GROUNDINĠ - TFD	0		\$0	\$0	\$0	\$0	\$57,175	\$57,175
9116.3.3 MISC. COSTS - TFD ELEC Testing of systems and equipment	U.C. per Ls 1.00	90 90	CN-ELEC \$34.12	3070.8 \$3,071	0 \$0	0 \$0	o \$0	0 \$0	3070.8 \$3,071
ELEC Material handling	U.C. per Ls 1.00	90 90	CN-ELEC \$34.12	3070.8 \$3,071	0 \$0	0 \$0	0 \$0	0 \$0	3070.8 \$3,071
ELEC Lightning Protection	U.C. per Sf 13,700.00	0		0 \$0	0 \$0	0 \$0	2 \$27,400	0 \$0	2 \$27,400
ELEC Grounding Grid	U.C. per Sf 13,700.00	0		0 \$0	0 \$0	0 \$0	. 1 \$13,700	0 \$0	1 \$13,700
ELEC Wiring Devices & Enclosures	U.C. per Sf 13,700.00	. 0		0 \$0	0 \$0	0 \$0	1 \$13,700	0 \$0	1 \$13,700
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$6,142 \$0 \$2,575	\$0 \$0 \$0	\$0 \$0 \$0	\$54,800 \$0 \$22,979	\$0 \$0 \$0	\$60,942 \$0 \$25,555
Subtotal Estimate Escalation Conlingency				\$2,237 \$3,286	\$0 \$0	\$0 \$0	\$19,958 \$29,321	\$0 \$0	\$86,496 \$22,195 \$32,607
Total 9116.3.3 MISC. COSTS - TFD		180		\$14,240	\$0	\$0	\$127,059	\$0	\$141,299
9116.3.4 LIGHTING - TFD ELEC Lighting	U.C. per Sf 13,700,00	0	ı	. 0 \$0	0 \$0	0 \$0	0 \$0	3.9 \$53,430	3.9 \$53,430

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

UNEX Feasibility Study - Option B - Modified UNEX In GFF

Project Location: INTEC

Estimate Number: 2570 - Option B

LEVEL Org/Subcontractor 9116.3.4 LIGHTING - TFD	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$53,430 \$0 \$0	\$53,430 \$0 \$0
Subtotal Estimate Escalation Contingency					\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$13,710 \$20,142	\$53,430 \$13,710 \$20,142
Total 9116.3.4 LIGHTING - TFD			0		\$0	\$0	\$0	\$0	\$87,282	\$87,282
9116.4.2 RACEWAYS, CONDUCTORS, AND GR ELEC Branch power and lighting circuits	ROUNDING - BOILER HOUS U.C. per Ls	1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	12000 \$12,000	12000 \$12,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$12,000 \$0 \$0	\$12,000 \$0 \$0
Subtotal Estimate Escalation Contingency			·		. \$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,079 \$4,524	\$12,000 \$3,079 \$4,524
Total 9116.4.2 RACEWAYS, CONDUCTORS, ANI HOUSE	GROUNDING - BOILER		0		\$0	\$0	\$0	\$0	\$19,603	\$19,603
9116.4.3 MISC. COSTS - BOILER HOUSE ELEC Testing of systems and equipment	U.C. per Ls	1.00	40 40	CN-ELEC \$34.12	1364.8 \$1,365	0 \$0	0 \$0	0 \$0	0 \$0	1364.8 \$1,365
ELEC Material handling	U.C. per Ls	1.00	40 40	CN-ELEC \$34.12	1364.8 \$1,365	0 \$0	0 \$0	0 \$0	0 \$0	1364.8 \$1,365
ELEC Lightning Protection	U.C. per Sf	3,120.00	0		0 \$0	0 \$0	0 \$0	2 \$6,240	0 \$0	2 \$6,240
ELEC Grounding Grid	U.C. per Sf	3,120.00	0		0 \$0	0 \$0	0 \$0	1 \$3,120	0 \$0	1 \$3,120
ELEC Wiring Devices & Enclosures	U.C. per Sf	3,120.00	0		0 \$0	0 \$0	0 \$0	.1 \$3,120	0 \$0	1 \$3,120

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC

Prepared By: Rowley / Mitchell / Marler Eslimate Type: Planning

Estimate Number: 2570 - Option B

LEVEL Org/Subcontractor - 9118.4.3 MISC. COSTS - BOILER HOUSE	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	_S/C_	<u>Other</u>	TOTAL
ELEC Boiler Controls	U.C. per Lot	1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	3000 \$3,000	0 \$0	. \$0	6412 \$6,412
Subtotal Sales Tax					\$6,142 \$0	\$0	\$3,000	\$12,480	\$0	\$21,622
INEEL ORG Labor/Subcontractor Overheads					\$2,575	\$0 \$0	\$150 \$1,321	\$0 \$5,233	\$0 \$0	\$150 \$9,129
Subtotal Estimate						· · · · · · · · · · · · · · · · · · ·				\$30,901
Escalation Contingency					\$2,237 \$3,286	\$0 \$0	\$1,147 \$1,685	\$4,545 \$6,678	\$0 \$0	\$7,929 \$11,649
Total 9116.4.3 MISC. COSTS - BOILER HOUSE	······································		180		\$14,240	\$0	\$7,304	\$28,936	\$0	\$50,479
9116.4.4 LIGHTING - BOILER HOUSE										
ELEC Lighting	U.C. per Sf	00.00	•		0	0	0	3	0	3
Lighting	3,1,	20.00	0		\$0	\$0	\$0	\$9,360	\$0	\$9,360
Subtotal					\$0	\$0	\$0	\$9,360	\$0	\$9,360
Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$3,925	\$0 \$0	\$0 \$3,925
Subtotal Estimate		2.7.7	··· ·············							\$13,285
Escalation Contingency					\$0	\$0	\$0	\$3,409	\$0	\$3,409
					\$0	\$0	\$0	\$5,008	\$0	\$5,008
Total 9116.4.4 LIGHTING - BOILER HOUSE			0		\$0	\$0	\$0	\$21,702	\$0	\$21,702
9116.5.1 SWITCHGEAR AND TRANSFORMERS - INT	TERIM STORAGE U.C. per LOT		480	CN-ELEC	16377,6	0	100000	•	•	440077.0
SWITCHGEAR AND TRANSFORMERS	0.0. pui 201	1.00	480	\$34.12	\$16,378	\$0	\$100,000	0 \$0	0 \$0	116377.6 \$116,378
Subtotal	· · · · · · · · · · · · · · · · · · ·				\$16,378	\$0	\$100,000	\$0	\$0	\$116,378
Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0	\$0	\$5,000	\$0	\$0	\$5,000
					\$6,868	\$0	\$44,030	\$0	\$0	\$50,897
Subtotal Estimate Escalation					\$5,965	\$ 0	\$38,241	\$0	\$0	\$172,275 \$44,206
Contingency					\$8,763	\$0	\$56,181	\$0	\$0	\$64,944
Total 9116.5.1 SWITCHGEAR AND TRANSFORMERS STORAGE	- INTERIM		480		\$37,973	\$0	\$243,452	\$0	\$0.	\$281,425
9116.5.2 RACEWAYS, CONDUCTORS, AND GROUN		<u>SE</u>								
ELEC Branch power and lighting circuits	U.C. per Ls	1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	21000 \$21,000	21000
			J		ΨΟ	Φ	ΦU	⊅ 0	⊅∠1,000	\$21,000

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC Estimate Number: 2570 - Option B

Client:

V. J. Balls

LEVEL Org/Subcontractor 9116.5.2 RACEWAYS, CONDUCTORS, AND GROU	QTY INDING - INTERIM STORAGE	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$21,000 \$0 \$0	\$21,000 \$0 \$0
Subtotal Estimate Escalation Contingency				\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$5,389 \$7,917	\$21,000 \$5,389 \$7,917
Total 9116.5.2 RACEWAYS, CONDUCTORS, AND G INTERIM STORAGE	ROUNDING -	0		\$0	\$0	\$0	\$0	\$34,305	\$34,305
— 9116.5.3 MISC. COSTS - INTERIM STORAGE ELEC Testing of systems and equipment	U.C. per Ls 1,00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	0 \$0	0 \$0	0 \$0	3412 \$3,412
ELEC Material handling	U.C. per Ls 1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	0 \$0	0 \$0	0 \$0	3412 \$3,412
ELEC Lightning Protection	U.C. per Sf 20,440.00	0		0 \$0	0 \$0	0 \$0	2 \$40,880	0 \$0	2 \$40,880
ELEC Grounding Grid	U.C. per Sf 20,440.00	0		0 \$0	0 \$0	0 \$0	1 \$20,440	0 \$0	1 \$20,440
ELEC Wiring Devices & Enclosures	U.C. per Sf 20,440.00	0		0 \$0	0 \$0	0 \$0	1 \$20,440	0 \$0	1 \$20,440
ELEC INSTRUMENTATION & CONTROLS .	U.C. per LOT 1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	2500 \$2,500	4750 \$4,750	0 \$0	10662 \$10,662
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$10,236 \$0 \$4,292	\$0 \$0 \$0	\$2,500 \$125 \$1,101	\$86,510 \$0 \$36,276	\$0 \$0 \$0	\$99,246 \$125 \$41,669
Subtotal Estimate Escalation Contingency				\$3,728 \$5,477	\$0 \$0	\$956 \$1,405	\$31,507 \$46,288	\$0 \$0	\$141,040 \$36,191 \$53,169
Total 9116.5.3 MISC. COSTS - INTERIM STORAGE		300		\$23,733	\$0	\$6,086	\$200,581	\$0	\$230,401
9116.5.4 LIGHTING - INTERIM STORAGE ELEC Lighling	U.C. per Sf 20,440.00	0		0 \$0	0 \$0	0 \$0	3.5 \$71,540	0 \$0	3.5 \$71,540

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

LEVEL Org/Subcontractor - 9116.5.4 LIGHTING - INTERIM STORAGE	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	_S/C_	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$71,540 \$0 \$29,999	\$0 \$0 \$0	\$71,540 \$0 \$29,999
Subtotal Estimate Escalation Contingency					\$0 \$0	\$0 \$0	\$0 \$0	\$26,055 \$38,278	\$0 \$0	\$101,539 \$26,055 \$38,278
Total 9116.5.4 LIGHTING - INTERIM STORAGE			0		\$0	\$0	\$0	\$165,872	\$0	\$165,872
9116.6 ELECTRICAL - TRANSFER TUNNEL ELEC LIGHTING ELEC VOICE PAGING / EVAC.	U.C. per SF	1,500.00 1,500.00	0 0.03 45	CN-ELEC CN-ELEC \$34.12	0 \$0 1.024 \$1,535	0 \$0 0 \$0	0 \$0 2 \$3,000	2.75 \$4,125 0 \$0	0 \$0 0 \$0	2.75 \$4,125 3.024 \$4,535
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$1,535 \$0 \$644	\$0 \$0 \$0	\$3,000 \$150 \$1,321	\$4,125 \$0 \$1,730	\$0 \$0 \$0	\$8,660 \$150 \$3,694
Subtotal Estimate Escalation Contingency					\$559 \$822	\$0 \$0	\$1,147 \$1,685	\$1,502 \$2,207	\$0 \$0	\$12,505 \$3,209 \$4,714
Total 9116.6 ELECTRICAL - TRANSFER TUNNEL			45	•	\$3,560	\$0	\$7,304	\$9,564	\$0	\$20,428
9301.1 CONSTRUCTION SUPPORT BWI Construction Support1% Of TCC	U.C. per Lot	1.00	0		169700 \$169,700	0 \$0	0 \$0	0 \$0	0 \$0	169700 \$169,700
7620 Radiological Control Technicians - 1.5 FTE	U.C. per Wk	104.00	60 6,240	U60 \$24.66	1479.6 \$153,878	0 \$0	. 0 \$0	0 \$0	0 \$0	1479,6 \$153,878
7610 Radiation Control - Management Support - 10% OF RCT Total	U.C. per Hr	6,240.00	0.1 624	Z03 \$52.32	5.232 \$32,648	0 \$0	0 \$0	o \$0	0 \$0	5.232 \$32,648
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$356,226 \$0 \$166,008	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0, \$0 \$0	\$356,226 \$0 \$166,008
Subtotal Estimate Escalation Contingency			•		\$134,005 \$236,246	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$522,234 \$134,005 \$236,246
Total 9301.1 CONSTRUCTION SUPPORT			6,864		\$892,486	\$0	\$0	\$0	\$0	\$892,486

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number: 2570 - Option B

Client:

\$0

\$8,485,500

\$0

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
— 9301.2 CONSTRUCTION QUALITY CONTROL BWI Construction Quality Control1% Of TCC	U.C. per Lot	1.00	0		169700 \$169,700	0 \$0	0 \$0	0 \$0	0 \$0	169700 \$169,700
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	\$1,000				\$169,700 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$169,700 \$0 \$0
Subtotal Estimate Escalation Contingency					\$43,545 \$76,768	\$0 \$0	\$0 \$0	\$0 . \$0	\$0 \$0	\$169,700 \$43,545 \$76,768
Total 9301.2 CONSTRUCTION QUALITY CONTROL			0		\$290,013	\$0	\$0	\$0	\$0	\$290,013
9301.3 CONSTRUCTION DOCUMENTATION BWI PM Construction Document Control5% Of TCC	U.C. per Lot	1.00	o		848500 \$848,500	o \$0	o \$0	o \$0	0 \$0	848500 \$848,500
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		 	·		\$848,500 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$848,500 \$0 \$0
Subtotal Estimate Escalation Contingency					\$217,725 \$383,841	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$848,500 \$217,725 \$383,841
Total 9301.3 CONSTRUCTION DOCUMENTATION			0	,	\$1,450,066	\$0	\$0	\$0	\$0	\$1,450,066
OPC3100 TESTING AND TURNOVER PLANNING BWI Testing & Turnover Planning2% Of TCC	U.C. per Lot	1.00	0		339400 \$339,400	0 \$0	o \$0	o \$0	0 \$0	339400 \$339,400
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$339,400 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$339,400 \$0 \$0
Subtotal Estimate Escalation Contingency					\$125,306 \$474,001	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$339,400 \$125,306 \$474,001
Total OPC3100 TESTING AND TURNOVER PLANNING			0		\$938,707	\$0	\$0	\$0	\$0	\$938,707
OPC3200 S. O. TESTING BWI	U.C. per Lot				8485500	0	0	0	0	8485500

\$0

\$0

\$8,485,500

0

1.00

SO Testing - 5% Of TCC

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC
Estimate Number:2570 - Option B

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

LEVEL Org/Subcontractor OPC3200 S. O. TESTING	QTY	-	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$8,485,500 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$8,485,500 \$0 \$0
Subtotal Estimate Escalation Contingency					\$3,132,847 \$11,850,714	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$8,485,500 \$3,132,847 \$11,850,714
Total OPC3200 S. O. TESTING			0		\$23,469,060	\$0	\$0	\$0	\$0	\$23,469,060
OPC3300 ORR SUPPORT BWI ORR Support22% Of TCC	U.C. per Lot	1.00	0		373400 \$373,400	o \$0	0 \$0	0 \$0	0 \$0	373400 \$373,400
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$373,400 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$373,400 \$0 \$0
Subtotal Estimate Escalation Contingency					\$137,859 \$521,484	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$373,400 \$137,859 \$521,484
Total OPC3300 ORR SUPPORT	•		0		\$1,032,744	\$0 ·	\$0	. \$0	\$0	\$1,032,744
OPC3400 FACILITY ACCEPTANCE REVIEW BWI Facility Acceptance Review15% Of TCC	U.C. per Lot	1.00	0	·	254600 \$254,600	0 \$0	0 \$0	0 \$0	0 \$0	254600 \$254,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		•			\$254,600 \$0 \$0	. \$0 . \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$254,600 \$0 \$0
Subtotal Estimate Escalation Contingency					\$93,998 \$355,570	\$0 . \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$254,600 \$93,998 \$355,570
Total OPC3400 FACILITY ACCEPTANCE REVIEW			0		\$704,169	\$0	\$0	\$0	\$0	\$704,169
OPC3500 RADIOLOGICAL CONTROL SUPPORT BWI Radiological Control Support11% Of TCC	U.C. per Lot	1.00	0		186700 \$186,700	0 \$0	0 \$0	0 \$0	0 \$0	186700 \$186,700

Project Name:

UNEX Feasibility Study - Option B - Modified UNEX In GFF
Project Location: INTEC

Estimate Number: 2570 - Option B

Client:

V. J. Balls

LEVEL Org/Subcontractor OPC3500 RADIOLOGICAL CONTROL SUPPORT	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$186,700 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$186,700 \$0 \$0
Subtotal Estimate Escalation Contingency					\$68,930 \$260,742	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$186,700 \$68,930 \$260,742
Total OPC3500 RADIOLOGICAL CONTROL SUPPORT			0		\$516,372	\$0	\$0	\$0	\$0	\$516,372
OPC3600 OPERATOR TRAINING BWI Operator Training - 2% Of TCC	U.C. per Lot	1.00	0		3394200 \$3,394,200	0 \$0	0 \$0	0 \$0	0 \$0	3394200 \$3,394,200
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			.,		\$3,394,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,394,200 \$0 \$0
Subtotal Estimate Escalation Contingency					\$1,253,139 \$4,740,285	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,394,200 \$1,253,139 \$4,740,285
Total OPC3600 OPERATOR TRAINING			0		\$9,387,624	\$0	\$0	\$0	\$0	\$9,387,624
OPC3700 OPERATING PROCEDURES BWI Operating Procedures44% Of TCC	U.C. per Lot	1.00	0		746700 \$746,700	0 \$0	0 \$0	0 \$0	0 \$0	746700 \$746,700
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$746,700 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$746,700 \$0 \$0
Subtotal Estimate Escalation Contingency					\$275,682 \$1,042,829	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$746,700 \$275,682 \$1,042,829
Total OPC3700 OPERATING PROCEDURES			0		\$2,065,211	\$0	\$0	\$0	\$0	\$2,065,211
OPC3800 START-UP COORDINATION BWI Startup Coordination13% Of TCC	U.C. per Lot	1.00	0		220600 \$220,600	0 \$0	0 \$0	0 \$0	0 \$0	220600 \$220,600

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC

Prepared By: Rowley / Mitchell / Marler

Estimate Number: 2570 - Option B

Estimate Type: Planning

LEVEL Org/Subcontractor OPC3800 START-UP COORDINATION	QTY	Hrs Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	•		\$220,600 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$220,600 \$0 \$0
Subtotal Estimate Escalation Contingency	·		\$81,446 \$308,086	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$220,600 \$81,446 \$308,086
Total OPC3800 START-UP COORDINATION		0	\$610,132	\$0	\$0	\$0	\$0	\$610,132
OPC3900 SPARES BWI Spares	U.C. per Lot	o	1000000 \$1,000,000	0 \$0	0 \$0	0 \$0	0 \$0	1000000 \$1,000,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			\$1,000,000 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$1,000,000 \$0 \$0
Subtotal Estimate Escalation Contingency			\$369,200 \$1,396,584	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$1,000,000 \$369,200 \$1,396,584
Total OPC3900 SPARES		0	\$2,765,784	\$0	\$0	\$0	\$0	\$2,765,784
PF NOGAPIF Procurement Fee %	U.C. per \$ 1,364,080.00	· · ·	o \$0	0 \$0	0 \$0	0 \$0	1 \$1,364,080	1 \$1,364,080
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$1,364,080 \$0 \$0	\$1,364,080 \$0 \$0
Subtotal Estimate Escalation Contingency			\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$941,215	\$1,364,080 \$0 \$941,215
Total GAPIF Non-Org G&A and PIF		0	\$0	\$0	\$0	\$0	\$2,305,295	\$2,305,295

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option B - Modified UNEX In GFF Project Location: INTEC

Estimate Number: 2570 - Option B

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor	QTY	Hrs (Crew/Rate	Labor	Const Eqp	<u>Matl</u>	_S/C_	Other	TOTAL
Subtotal MODIFIED UNEX IN GFF - OPTION B				\$**,***,***	\$430,270	\$94,703,382	\$15,102,019	\$1,695,510	\$**,***,***
Sales Tax				\$0	\$0	\$4,735,169	\$0	\$0	\$4,735,169
INEEL ORG Labor/Subcontractor Overheads			•	\$4,463,407	\$141,596	\$32,330,226	\$4,553,188	\$0	\$41,488,417
Subtotal Estimate			· ·, .,						\$**.***.**
Escalation				\$31,290,424	\$146,741	\$33,811,868	\$5,043,526	\$85,045	\$70,377,604
Contingency				\$81,671,787	\$421,957	\$57,212,909	\$8,868,042	\$1,066,158	\$**,***,***
Total MODIFIED UNEX IN GFF - OPTION B		368,957		\$253,944,530	\$1,140,564	\$222,793,555	\$33,566,775	\$2,846,713	514,292,137

64

MODIFIED UNEX PROCESS IN A GREEN FIELD FACILITY

@RISK Sensitivity Report

OPTION B

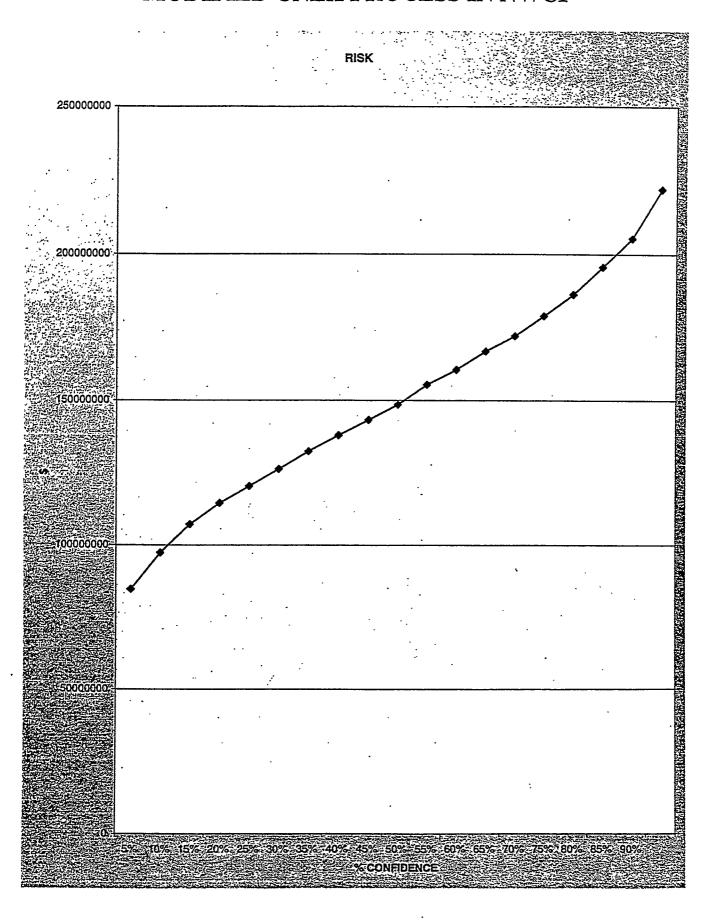
Sensitivity Ranking Step-Wise Regression

Rank	Name	Cell	Regression	Weight	Amount	Level Markup				
- PROJ	PROJECT DEVELOPMENT / Contingency at \$F\$3, for Simulation 1									
1	SPECIALTIES	\$B\$20	0,5982	0.1958	\$29,626,395	30%				
2	EQUIPMENT	\$B\$21	0.5141	0.1683	\$25,463,132	'54%				
3	PROJECT ACCEPTANCE/CLOSEOUT	\$B\$26	0,4271	0.1398	\$21,152,768	402%				
4	TECHNICAL DEVELOPMENT	\$B\$4	0.2314	0.0757	\$11,458,234	^{է,} 98%				
5	PROJECT MANAGEMENT	\$B\$10	0.2176	0.0712	\$10,775,264	438%				
6	GENERAL CONDITIONS	\$B\$13	. 0.1800	0.0589	\$8,913,993	42%				
7	CONSTRUCTION MANAGEMENT	\$B\$6	0.1764	0.0578	\$8,737,719	₹37%				
8	TITLE II DESIGN	\$B\$8	0.1288	0.0422	\$6,380,361	128%				
9	PROJECT EXECUTION	\$B\$5	0.1103	0.0361	\$5,460,670	<i>∉</i> 45%				
10	TITLE I DESIGN	\$B\$7	0.0849	0.0278	\$4,202,496	'36%				
13	QUALITY ASSURANCE	\$B\$9	0.0667	0.0218	\$3,302,560	131%				
12	CONCRETE	\$B\$15	0.0563	0.0184	\$2,787,452	26%				
13	METALS	\$B\$16	0.0404	0.0132	\$2,002,704	26%				
14	PROJECT DEVELOPMENT	\$B\$3	0.0387	0.0127	\$1,915,094	6 34%				
15	MECHANICAL	\$B\$23	0.0384	0,0126	\$1,903,797	26%				
16	SITEWORK	\$B\$14	0.0230	0.0075	\$1,140,918	68%				
17	ELECTRICAL	\$B\$24	0.0219	0.0072	\$1,086,604	₩30%				
18	CONVEYING SYSTEMS	\$B\$22	0.0202	0.0066	\$1,002,749	18%				
19	Non-Org G&A and PIF	\$B\$27	0.0191	0.0062	\$944,689	69%				
20	CONSTRUCTION AE SUPPORT	\$B\$11	0,0186	0.0061	\$920,577	[,] 28%				
21	THERMAL & MOISTURE PROTECTION	\$B\$17	0.0175	0.0057	\$864,580	26%				
22	CONSTRUCTION MISCELLANEOUS	\$B\$25	0.0143	0.0047	\$706,334	:36%				
23	FINISHES	\$B\$19	0.0080	0.0026						
24	DOORS & WINDOWS	\$B\$18	0.0027	0.0009						

3.0546

MODIFIED UNEX PROCESS IN NWCF

@RISK Output Details Report


Output Statistics

Outputs - PROJECT DEVELOPMENT / Contingency

Simulation# 1

Statistics / Cell	\$F\$3	
Minimum	30304452	
Maximum	303403552	
Mean	150794511.3	
Standard Deviation	42379377.74	
Variance	1.79601E+15	
Skewness	0.246673946	
Kurtosis	2.992241848	
NumErrs	0	
Mode	160080732.8	
5%	84663352.54	
10%	97345008.06	
15%	107218848.2	
20%	114527584.2	
25%	120403432	
30%	126284140.7	
35%	132415159.4	
40%	137991648.2	
45%	143257467.1	
50%	148516368	
55%	155394592.1	
60%	160426048.4	
65%	166772639.2	
70%	171966221.6	
75%	178819536	
80%	186178864.2	
85%	195579794.7	
90%	205467870.1	
95%	222348651.7	

MODIFIED UNEX PROCESS IN NWCF

TPC Summary Report 2

Project Name:

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX in NWCF

Project Location: INTEC

Project Number: 2570 - Option C

ESTIMATE ELEMENT	Estimate Subtotal	Escalation	Contingency	TOTAL
		24.17%	41.54%	
Total Estimated Cost (TEC)	\$260,647,313	\$62,998,496 14.03%	\$134,452,995 <i>52.88%</i>	\$458,098,804
Other Project Cost (OPC)	\$83,900,600	\$11,768,246	\$50,590,186	\$146,259,031
		21.70%	44.13%	
Total Project Cost (TPC)	\$344,547,913	\$74,766,742	\$185,043,181	\$604,357,835
Rounded TPC (Rounded to the nearest \$ 1000000)				\$604,000,000

		Remarks
Type of Estimate:	Planning	
Estimator:	Rowley / Mitchell / Marler	
Checked By:	ROA	
Approved By:	<u>fol</u>	

INEEL

Project Summary Report

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Project Name:

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

LEVEL OPC1000	PROJECT DEVELOPMENT	Estimate Subtotal \$16,418,300	<u>Escalation</u> \$978,531	Contingency \$13,666,762	Contingency % 78.56%	<u>TOTAL</u> \$31,063,593
OPC1001	PROJECT DEVELOPMENT	\$5,418,300	\$322,931	\$1,894,606	33.00%	\$7,635,837
OPC1001.1	CONCEPTUAL DESIGN	\$3,472,400	\$206,955	\$1,214,187	33.00%	\$4,893,542
OPC1001.2	PROJECT EXECUTION PLAN	\$173,600	\$10,347	\$60,702	33.00%	\$244,649
OPC1001.3	WORK PACKAGE DEVELOPMENT	\$399,300	\$23,798	\$139,622	33.00%	\$562,721
OPC1001.4	TASK BASELINE AGREEMENT	\$573,000	\$34,151	\$200,360	33.00%	\$807,511
OPC1001.5	PRELIMINARY SAFETY ANALYSIS REPORT (PSAR)	\$800,000	\$47,680	\$279,734	33.00%	\$1,127,414
OPC1600	TECHNICAL DEVELOPMENT	\$11,000,000	\$655,600	\$11,772,156	101.00%	\$23,427,756
OPC2000	PROJECT EXECUTION	\$52,158,600	\$5,132,205	\$15,312,777	26.73%	\$72,603,582
OPC2001	PROJECT EXECUTION	\$9,708,600	\$0	\$4,368,870	45.00%	\$14,077,470
OPC2001.1	PROJECT SUPPORT	\$5,208,600	\$0	\$2,343,870	45.00%	\$7,552,470
OPC2001.2	PERMITTING	\$4,500,000	\$0	\$2,025,000	45.00%	\$6,525,000
OPC2300	DECON SOLUTION PROCESSING	\$42,450,000	\$5,132,205	\$10,943,907	23.00%	\$58,526,112
1000	CONSTRUCTION MANAGEMENT	\$18,751,000	\$4,811,507	\$13,666,254	58.00%	\$37,228,760
1100	CONSTRUCTION SUPERVISION & ENGINEERING	\$15,626,000	\$4,009,632	\$11,388,666	58.00%	\$31,024,298
1110	CM - CONDUCT OF OPERATIONS/CONDUCT OF MAINTENANCE	\$347,200	\$89,092	\$253,049	58.00%	\$689,341
1200	CM PROJECT CONTROLS	\$1,215,300	\$311,846	\$885,745	58.00%	\$2,412,891
1300	CM ENVIRONMENTAL SAFETY & HEALTH (ES&H)	\$868,100	\$222,754	\$632,696	58.00%	\$1,723,550
1400	CM TRAINING	\$347,200	\$89,092	\$253,049	58.00%	\$689,341
1500	CM - OTHER DIRECT COSTS	\$347,200	\$89,092	\$253,049	58.00%	\$689,341
2000 <i>INEEL</i>	TITLE I DESIGN	\$10,417,300	\$1,259,452	\$4,904,236	42.00%	\$16,580,987

08/30/2000 14:45:31 Success Estimating and Cost Management System

Project Summary Report

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

<u>LEVEL</u> 2400	DESIGN ACTIVITIES	Estimate Subtotal \$10,417,300	<u>Escalation</u> \$1,259,452	Contingency \$4,904,236	Contingency % 42.00%	TOTAL \$16,580,987
3000	TITLE II DESIGN	\$19,619,200	\$3,009,585	\$7,467,499	33.00%	\$30,096,284
3400	DESIGN ACTIVITIES	\$19,619,200	\$3,009,585	\$7,467,499	33.00%	\$30,096,284
4000	QUALITY ASSURANCE	\$8,681,100	\$2,227,570	\$3,490,774	32.00%	\$14,399,445
4100	QUALITY ASSURANCE	\$8,681,100	\$2,227,570	\$3,490,774	32.00%	\$14,399,445
5000	PROJECT MANAGEMENT	\$22,903,900	\$5,877,141	\$12,375,848	43.00%	\$41,156,888
5100	PM ADMINISTRATION	\$13,889,700	\$3,564,097	\$7,505,133	43.00%	\$24,958,930
5110	PM - CONDUCT OF OPERATIONS/CONDUCT OF MAINTENANCE	\$69,400	\$17,808	\$37,499	43.00%	\$124,707
5200	PM PROJECT CONTROLS	\$3,472,400	\$891,018	\$1,876,270	43.00%	\$6,239,688
5300	PM RECORDS MANAGEMENT	\$3,472,400	\$891,018	\$1,876,270	43.00%	\$6,239,688
5400	SAFETY ANALYSIS	\$2,000,000	\$513,200	\$1,080,676	43.00%	\$3,593,876
6000	CONSTRUCTION AE SUPPORT	\$2,604,300	\$668,263	\$916,318	28.00%	\$4,188,881
8000	GOVERNMENT FURNISHED EQUIPMENT	\$158,420	\$40,651	\$266,754	134.00%	\$465,825
8300	GFE LABOR	\$158,420	\$40,651	\$266,754	134.00%	\$465,825
9000	CONSTRUCTION	\$175,776,804	\$45,104,328	\$90,150,610	40.81%	\$311,031,742
9100	CONSTRUCTION SUBCONTRACTS	\$173,621,412	\$44,551,254	\$87,902,585	40.29%	\$306,075,251
9101	GENERAL CONDITIONS	\$17,288,999	\$4,436,357	\$9,776,410	45.00%	\$31,501,766
9101.1	GENERAL CONDITIONS	\$15,880,864	\$4,075,030	\$8,980,152	45.00%	\$28,936,046
9101.2	GC - CONDUCT OF OPERATIONS/CONDUCT OF MAINTENANCE	\$1,408,135	\$361,327	\$796,258	45.00%	\$2,565,720
9102	SITEWORK	\$920,348	\$236,161	\$740,166	64.00%	\$1,896,674

INEEL,

08/30/2000 14:45:31 Success Estimating and Cost Management System

Page No.

2

Project Summary Report

Client: V. J. Balls

Project Name:

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX in NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

<u>LEVEL</u> 9102.1	SITEWORK - UTILITIES	Estimate Subtotal	Escalation	Contingency	Contingency %	TOTAL
		\$71,860	\$18,439	\$57,791	64.00%	\$148,090
9102.2	SITEWORK - TFD FACILITY	\$353,216	\$90,635	\$284,065	64.00%	\$727,916
9102.3	SITEWORK - BOILER HOUSE	\$75,158	\$19,285	\$60,444	64.00%	\$154,887
9102.4	SITEWORK - STORAGE FACILITY	\$158,102	\$40,569	\$127,150	64.00%	\$325,821
9102.5	SITEWORK - TUNNEL	\$197,085	\$50,572	\$158,500	64.00%	\$406,157
9102.6	SITEWORK - PAVING	\$64,927	\$16,660	\$52,216	64.00%	\$133,803
9103	CONCRETE	\$4,104,590	\$1,053,238	\$1,341,035	26.00%	\$6,498,863
9103.2	CONCRETE - TFD FACILITY	\$2,670,605	\$685,277	\$872,529	26.00%	\$4,228,411
9103.3	CONCRETE - BOILER HOUSE	\$48,364	\$12,410	\$15,801	26.00%	\$76,576
9103.4	CONCRETE - STORAGE FACILITY	\$1,292,540	\$331,666	\$422,293	26.00%	\$2,046,499
9103.5	CONCRETE - TUNNEL	\$93,081	\$23,885	\$30,411	26.00%	\$147,377
9105	METALS	\$4,812,980	\$1,235,011	\$1,572,478	26.00%	\$7,620,468
9105.1	METALS - DEMOLITION	\$10,882	\$2,792	\$3,555	26.00%	\$17,229
9105.1.1	METALS DEMOLITION - CALCINER CELL	\$10,882	\$2,792	\$3,555	26.00%	\$17,229
9105.3	METALS - TFD FACILITY	\$546,606	\$140,259	\$178,585	26.00%	\$865,451
9105.4	METALS - BOILER HOUSE	\$151,151	\$38,785	\$49,383	26.00%	\$239,319
9105.5	METALS - STORAGE FACILITY	\$4,104,341	\$1,053,174	\$1,340,954	26.00%	\$6,498,469
9107	THERMAL & MOISTURE PROTECTION	\$1,287,364	\$330,338	\$420,602	26.00%	\$2,038,304
9107.1	THERMAL & MOISTURE PROTECTION - TFD FACILITY	\$721,911	\$185,242	\$235,860	26.00%	\$1,143,014
9107.2	THERMAL & MOISTURE PROTECTION - BOILER HOUSE	\$85,532	\$21,948	\$27,945	26.00%	\$135,424
9107.3	THERMAL & MOISTURE PROTECTION - STORAGE FACILITY	\$479,921	\$123,148	\$156,798	26.00%	\$759,866
9108	DOORS & WINDOWS	\$281,930	\$72,343	\$92,111	26.00%	• •
		4201,000	Ψ12,040	432,111	20.00%	\$446,385

INEEL

08/30/2000 14:45:31 Success Estimating and Cost Management System

Page No.

3

Project Name:

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX in NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C **Project Summary Report**

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL 9108.2	DOORS & WINDOWS - TFD FACILITY	Estimate Subtotal \$184,721	Escalation \$47,399	Contingency \$60,351	Contingency %	TOTAL \$292,472
9108.3	DOORS & WINDOWS - BOILER HOUSE	\$35,221	\$9,038	\$11,507	26.00%	\$55,766
9108.4	DOORS & WINDOWS - STORAGE FACILITY	\$61,988	\$15,906	\$20,253	26.00%	\$98,147
9109	FINISHES	\$955,827	\$245,265	\$312,284	26.00%	\$1,513,377
9109.1	FINISHES - NWCF	\$152,711	\$39,186	\$49,893	26.00%	\$241,790
9109.2	FINISHES - TFD FACILITY	\$500,276	\$128,371	\$163,448	26.00%	\$792,095
9109.3	FINISHES - BOILER HOUSE	\$1,902	\$488	\$621	26.00%	\$3,011
9109.4	FINISHES - STORAGE FACILITY	\$300,938	\$77,221	\$98,321	26.00%	\$476,481
9110	SPECIALTIES	\$76,586,759	\$19,652,162	\$28,871,677	30.00%	\$125,110,599
9110.1	SPECIALTIES - NWCF	\$1,765,256	\$452,965	\$665,466	30.00%	\$2,883,687
9110.2	SPECIALTIES - TFD FACILITY	\$18,398,054	\$4,720,941	\$6,935,699	30.00%	\$30,054,694
9110.3	SPECIALTIES - BOILER HOUSE	\$62,343	\$15,997	\$23,502	30.00%	\$101,843
9110.4	SPECIALTIES - STORAGE FACILITY	\$56,361,106	\$14,462,260	\$21,247,010	30.00%	\$92,070,376
9111	EQUIPMENT	\$38,884,077	\$9,977,654	\$33,714,594	69.00%	\$82,576,325
9111.1	EQUIPMENT - IN NWCF	\$8,867,890	\$2,275,500	\$7,688,939	69.00%	\$18,832,329
9111.1.1	EQUIPMENT - CALCINER CELL	\$406,709	\$104,361	\$352,638	69.00%	\$863,709
9111.1.2	EQUIPMENT - OFF GAS CELL	\$1,423,784	\$365,343	\$1,234,498	69.00%	\$3,023,624
9111.1.3	EQUIPMENT - BLEND & HOLD CELL	\$234,834	\$60,258	\$203,614	69.00%	\$498,706
9111.1.4	EQUIPMENT - VALVE CUBICLE	\$14,665	\$3,763	\$12,716	69.00%	\$31,144
9111.1.5	EQUIPMENT - STORAGE AREA	\$1,273,359	\$326,744	\$1,104,071	69.00%	\$2,704,174
9111.6	EQUIPMENT - GROUT FACILITY	\$5,514,538	\$1,415,031	\$4,781,403	69.00%	\$11,710,972
9111.2	EQUIPMENT - THIN FILM DRYER FACILITY	\$1,621,050	\$415,962	\$1,405,538	69.00%	\$3,442,550

INEEL

08/30/2000 14:45:31 Success Estimating and Cost Management System

Project Summary Report Project Name:

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL 9111.3	EQUIPMENT - BOILER HOUSE	Estimate Subtotal \$1,373,665	Escalation \$352,482	Contingency \$1,191,042	Contingency % 69.00%	TOTAL \$2,917,189
9111.6	EQUIPMENT - STORAGE FACILITY	\$22,081,543	\$5,666,124	\$19,145,890	69.00%	\$46,893,558
9111.7	EQUIPMENT DEMOLITION	\$4,939,928	\$1,267,586	\$4,283,185	69.00%	\$10,490,699
9111.7.1	EQUIPMENT DEMOLITION - CALCINER CELL	\$1,280,172	\$328,492	\$1,109,978	69.00%	\$2,718,642
9111.7.2	EQUIPMENT DEMOLITION - OFF GAS CELL	\$1,298,236	\$333,127	\$1,125,641 ·	69.00%	\$2,757,005
9111.7.3	EQUIPMENT DEMOLITION - BLEND & HOLD CELL	\$1,553,883	\$398,726	\$1,347,301	69.00%	\$3,299,910
9111.7.4	EQUIPMENT DEMOLITION - VALVE CUBICLE	\$807,637	\$207,240	\$700,265	69.00%	\$1,715,142
9114	CONVEYING SYSTEMS	\$9,865,129	\$2,531,392	\$1,115,687	9.00%	\$13,512,208
9114.4	CONVEYING SYSTEMS - STORAGE FACILITY	\$9,865,129	\$2,531,392	\$1,115,687	9.00%	\$13,512,208
9115	MECHANICAL	\$16,133,906	\$4,139,960	\$8,312,285	41.00%	\$28,586,151
9115.1	MECHANICAL DEMOLITION	\$5,129,215	\$1,316,157	\$2,642,603	41.00%	\$9,087,975
9115.1.1	MECHANICAL DEMO - CALCINER CELL	\$1,984,201	\$509,146	\$1,022,272	41.00%	\$3,515,618
9115.1.3	MECHANICAL DEMO - OFF GAS CELL	\$1,094,474	\$280,842	\$563,880	41.00%	\$1,939,196
9115.1.4	MECHANICAL DEMO - BLEND & HOLD CELL	\$1,094,474	\$280,842	\$563,880	41.00%	\$1,939,196
9115.1.5	MECHANICAL DEMO - VALVE CUBICLE	\$956,066	\$245,327	\$492,571	41.00%	\$1,693,963
9115.2	MECHANICAL - NEW - NWCF	\$7,073,412	\$1,815,037	.\$3,644,264	41.00%	\$12,532,714
9115.2.1	HVAC - NEW - NWCF	\$6,561,337	\$1,683,639	\$3,380,440	41.00%	\$11,625,416
9115.2.2	PIPING - NEW - NWCF	\$428,065	\$109,841	\$220,542	41.00%	\$758,448
9115.2.3	FIRE PROTECTION - NEW - NWCF	\$84,010	\$21,557	\$43,283	41.00%	\$148,850
9115.2	MECHANICAL - NEW - TFD FACILITY	\$2,766,709	\$709,937	\$1,425,425	41.00%	\$4,902,071
9115.2.1	HVAC - TFD FACILITY - HOT CELL	\$877,596	\$225,191	\$452,143	41.00%	\$1,554,929
9115.2.2	HVAC - TFD FACILITY - OPERATING CORRIDORS	\$1,523,564	\$390,947	\$784,949	41.00%	\$2,699,460

INEEL

08/30/2000 14:45:31 Success Estimating and Cost Management System

Project Summary Report

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

<u>LEVEL</u> 9115.2.3	PLUMBING / PIPING - TFD FACILITY	Estimate Subtotal \$365,549	Escalation \$93,800	Contingency \$188,333	Contingency %	TOTAL \$647,682
9115.3	MECHANICAL - NEW - BOILER HOUSE	\$400,820	\$102,850	\$206,505	41.00%	\$710,175
9115.3.1	HVAC - BOILER HOUSE	\$68,261	\$17,516	\$35,168	41.00%	\$120,945
9115.3.2	PLUMBING - BOILER HOUSE	\$4,739	\$1,216	\$2,442	41.00%	\$8,397
9115.3.3	PIPING - BOILER HOUSE	\$310,107	\$79,573	\$159,769	41.00%	\$549,449
9115.3.4	FIRE PROTECTION - BOILER HOUSE	\$17,713	\$4,545	\$9,126	41.00%	\$31,384
		, ,				•
9115.4	MECHANICAL - NEW - STORAGE FACILITY	\$763,750	\$195,978	\$393,489	41.00%	\$1,353,217
9115.4.1	HVAC - STORAGE FACILITY	\$558,843	\$143,399	\$287,919	41.00%	\$990,162
9115.4.2	PIPING / PLUMBING - STORAGE FACILITY	\$88,862	\$22,802	\$45,782	41.00%	\$157,447
9115.4.3	FIRE PROTECTION - STORAGE FACILITY	\$116,044	\$29,777	\$59,787	41.00%	\$205,608
9116	ELECTRICAL	\$2,499,503	\$641,372	\$1,633,255	52.00%	\$4,774,131
9116.1	ELECTRICAL - DEMOLITION	\$889,519	\$228,251	\$581,240	52.00%	\$1,699,010
9116.1.1	ELECTRICAL DEMO - CALCINER CELL	\$222,380	\$57,063	\$145,310	52.00%	\$424,753
9116.1.3	ELECTRICAL DEMO - OFF GAS CELL	\$222,380	\$57,063	* \$145,310	52.00%	\$424,753
9116.1.4	ELECTRICAL DEMO - BLEND & HOLD CELL	\$222,380	\$57,063	\$145,310	52.00%	\$424,753
9116.1.5	ELECTRICAL DEMO - VALVE CUBICLE	\$222,380	\$57,063	\$145,310	52.00%	\$424,753
9116.2	ELECTRICAL - NEW - NWCF	\$733,960	\$188,334	\$479,593	52.00%	\$1,401,887
9116.2.1	SWITCHGEAR AND TRANSFORMERS - NWCF	\$483,791	\$124,141	\$316,124	52.00%	\$924,056
9116.2.2	RACEWAYS, CONDUCTORS, AND GROUNDING - NWCF	\$125,000	\$32,075	\$81,679	52.00%	\$238,754
9116.2.3	MISC. COSTS - NWCF	\$125,169	\$32,118	\$81,789	52.00%	\$239,077
9116.3	ELECTRICAL - NEW - TFD FACILITY	\$266,774	\$68,454	\$174,318	52.00%	\$509,546
9116.3.1	SWITCHGEAR AND TRANSFORMERS - TFD	\$14,068	\$3,610	\$9,193	52.00%	\$26,871

INEEL

14:45:31 08/30/2000

Success Estimating and Cost Management System

Page No.

6

Project Summary Report

Client: V. J. Balls

Project Name:

**Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

LEVEL 9116.3.2	RACEWAYS, CONDUCTORS, AND GROUNDING - TFD	Estimate Subtotal \$35,000	Escalation \$8,981	Contingency \$22,870	Contingency % 52,00%	TOTAL \$66,851
9116.3.3	MISC. COSTS - TFD	\$164,276	\$42,153	\$107,343	52.00%	\$313,772
9116.3.4	LIGHTING - TFD	\$53,430	\$13,710	\$34,913	52.00%	\$102,053
9116.4	ELECTRICAL - BOILER HOUSE	\$60,157	\$15,436	\$39,309	52.00%	\$114,902
9116.4.2	RACEWAYS, CONDUCTORS, AND GROUNDING - BOILER HOUSE	\$12,000	\$3,079	\$7,841	52.00%	\$22,920
9116.4.3	MISC. COSTS - BOILER HOUSE	\$34,872	\$8,948	\$22,787	52.00%	\$66,607
9116.4.4	LIGHTING - BOILER HOUSE	\$13,285	\$3,409	\$8,681	52.00%	\$25,375
9116.5	ELECTRICAL - STORAGE FACILITY	\$536,588	\$137,689	\$350,624	52.00%	\$1,024,900
	SWITCHGEAR AND TRANSFORMERS - INTERIM STORAGE	\$172,275	\$44,206	\$112,570	52.00%	\$329,051
	RACEWAYS, CONDUCTORS, AND GROUNDING - INTERIM STORAGE	\$21,000	\$5,389	\$13,722	52.00%	\$40,111
	MISC. COSTS - INTERIM STORAGE	\$241,774	\$62,039	\$157,983	52.00%	\$461,797
9116.5	LIGHTING - INTERIM STORAGE	\$101,539	\$26,055	\$66,349	52.00%	\$193,942
9116.6	ELECTRICAL - TRANSFER TUNNEL	\$12,505	\$3,209	\$8,171	52.00%	\$23,885
9301	CONSTRUCTION MISCELLANEOUS	\$2,155,391	\$553,073	\$2,248,026	83.00%	\$4,956,491
9301.1	CONSTRUCTION SUPPORT	\$1,113,691	\$285,773	\$1,161,556	83.00%	\$2,561,020
9301.2	CONSTRUCTION QUALITY CONTROL	\$173,600	\$44,546	\$181,061	83.00%	\$399,207
9301.3	CONSTRUCTION DOCUMENTATION	\$868,100	\$222,754	\$905,409	83.00%	\$1,996,264
OPC3000	PROJECT ACCEPTANCE/CLOSEOUT	\$15,323,700	\$5,657,510	\$21,610,646	103.00%	\$42,591,856
OPC3100	TESTING AND TURNOVER PLANNING	\$347,200	\$128,186	\$489,648	103.00%	\$965,034
OPC3200	S. O. TESTING	\$8,681,100	\$3,205,062	\$12,242,747	103.00%	\$24,128,909
OPC3300	ORR SUPPORT	\$382,000	\$141,034	\$538,725	103.00%	\$1,061,760
OPC3400 INEEL	FACILITY ACCEPTANCE REVIEW	\$260,400	\$96,140	\$367,236	103.00%	\$723,776
08/30/2000	14:45:31 Success Estin	nating and Cost Managemi	ent System		Page N	lo 7

Project Summary Report

Project Name:

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX in NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

DPC3500	RADIOLOGICAL CONTROL SUPPORT	Estimate Subtotal \$191,000	Escalation \$70,517	Contingency \$269,363	Contingency % 103.00%	TOTAL \$530,880
OPC3600	OPERATOR TRAINING	\$3,472,400	\$1,282,010	\$4,897,042	103.00%	\$9,651,452
OPC3700	OPERATING PROCEDURES	\$763,900	\$282,032	\$1,077,310	103.00%	\$2,123,242
OPC3800	START-UP COORDINATION	\$225,700	\$83,328	\$318,299	103.00%	\$627,328
OPC3900	SPARES	\$1,000,000	\$369,200	\$1,410,276	103.00%	\$2,779,476
GAPIF	Non-Org G&A and PIF	\$1,735,289	\$0	\$1,214,702	70.00%	\$2,949,991
Total LINE	ZV IN NIMOT COTTON O		4-4-4-4			
Total UNE	EX IN NWCF - OPTION C	\$344,547,913	\$74,766,742	\$185,043,181	44.13%	\$604,357,835

INEEL

08/30/2000 14:45:31 Success Estimating and Cost Management System

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Project Location: INTEC

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Estimate Number: 2570 - Option C

LEVEL	Org/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
CONCEPTUAL DESI	CEPTUAL DESIGN BWI GN (2% OF TCC)	U.C. per LOT	1.00	0		3472400 \$3,472,400	0 \$0	0 \$0	0 \$0	0 \$0	3472400 \$3,472,400
Subtotal Sales Tax INEEL ORG Labor	/Subcontractor Overheads					\$3,472,400 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,472,400 \$0 \$0
Subtotal Estimate Escalation Conlingency			•			\$206,955 \$1,214,187	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,472,400 \$206,955 \$1,214,187
Total OPC1001.1	CONCEPTUAL DESIGN			0		\$4,893,542	\$0	\$0	\$0	\$0	\$4,893,542
-	DIECT EXECUTION PLAN 7810-1 PEP,DC,/SOW REVIEWS @ .1% OF TCC	U.C. per LOT	1.00	0		173600 \$173,600	0 \$0	0 \$0	0 \$0	0 \$0	173600 \$173,600
Subtotal Sales Tax INEEL ORG Labor	/Subcontractor Overheads			·		\$173,600 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$173,600 \$0 \$0
Subtotal Estimate Escalation Conlingency						\$10,347 \$60,702	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$173,600 \$10,347 \$60,702
Total OPC1001.2	PROJECT EXECUTION PLAN			0		\$244,649	\$0	\$0	\$0	\$0	\$244,649
	RK PACKAGE DEVELOPMENT BWI opment - ,23% Of TCC	U.C. per Lot	1.00	Ō		399300 \$399,300	. 0	0 \$0	0 \$0	0 \$0	399300 \$399,300
Subtotal Sales Tax INEEL ORG Labor	/Subcontractor Overheads					\$399,300 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$399,300 \$0 \$0
Subtotal Estimate Escalation Contingency	1		·			\$23,798 \$139,622	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$399,300 \$23,798 \$139,622
Total OPC1001.3	WORK PACKAGE DEVELOPMENT			. 0		\$562,721	\$0	\$0	\$0	\$0	\$562,721
OPC1001.4 TAS Task Baseline Agree	K BASELINE AGREEMENT BWI ment33% Of TCC	U.C. per Lot	1.00	0		573000 \$573,000	0 \$0	. 0 \$0	0 \$0	0 \$0	573000 \$573,000

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC
Estimate Number: 2570 - Option C

Client:

V. J. Balls

LEVEL Org/Subcontractor OPC1001.4 TASK BASELINE AGREEMENT	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Mati	_S/C_	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$573,000 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$573,000 \$0 \$0
Subtotal Estimate Escalation Contingency			•	······································	\$34,151 \$200,360	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$573,000 \$34,151 \$200,360
Total OPC1001.4 TASK BASELINE AGREEMENT			0	·······	\$807,511	\$0	\$0	\$0	\$0	\$807,511
OPC1001.5 PRELIMINARY SAFETY ANALYSIS REP BWI Preliminary Safety Analysis Report (PSAR)	ORT (PSAR) U.C. per Lot	1.00	0		800000 \$800,000	0 \$0	0 \$0	0 \$0	0 \$0	800000 \$800,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			· · · · · · · · · · · · · · · · · · ·		\$800,000 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$800,000 \$0 \$0
Subtotal Estimate Escalation Contingency				***************************************	\$47,680 \$279,734	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$800,000 \$47,680 \$279,734
Total OPC1001.5 PRELIMINARY SAFETY ANALYSIS	REPORT (PSAR)		0		\$1,127,414	\$0	\$0	\$0	\$0	\$1,127,414
OPC1600 TECHNICAL DEVELOPMENT BWI (*)Modified UNEX Process Development Memo: Cost for process development is per the HLW SBV	U.C. per Lot V Process Development	1.00 Cosis (Arlin L.	0 . Olson).		11000000 \$11,000,000	0 \$0	0 \$0	0 \$0	0 \$0	11000000 \$11,000,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$11,000,000 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$11,000,000 \$0 \$0
Subtotal Estimate Escalation Contingency					\$655,600 \$11,772,156	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$11,000,000 \$655,600 \$11,772,156
Total OPC1600 TECHNICAL DEVELOPMENT			0		\$23,427,756	\$0	\$0	\$0	\$0	\$23,427,756
OPC2001.1 PROJECT SUPPORT BWI Project Support - 3% OF TCC	U.C. per Lot	1.00	0		5208600 \$5,208,600	0 \$0	0 \$0	0 \$0	0 \$0	5208600 \$5,208,600

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

LEVEL - OPC2001.1 PRO	Org/Subcontractor JECT SUPPORT	QTY	_	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
Subiotal Sales Tax INEEL ORG Labora	Subcontractor Overheads					\$5,208,600 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$5,208,600 \$0 \$0
Subtotal Estimate Escalation Contingency						\$0 \$2,343,870	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$5,208,600 \$0 \$2,343,870
Total OPC2001.1	PROJECT SUPPORT			0		\$7,552,470	\$0	\$0	\$0	\$0	\$7,552,470
OPC2001.2 PER Permilling	MITTING BWI	U.C. per Lot	1.00	0		1500000 \$1,500,000	0 \$0	0 \$0	0 \$0	o \$0	1500000 \$1,500,000
WIPP Certification	BWI	U.C. per Lot	1.00	0		2500000 \$2,500,000	0 \$0	0 \$0	0 \$0	0 \$0	2500000 \$2,500,000
Hanford Certification	BWI	U.C. per Lot	1.00	0		500000 \$500,000	0 \$0	0 \$0	0 \$0	0 \$0	500000 \$500,000
Subtotal Sales Tax INEEL ORG Labor	/Subcontractor Overheads					\$4,500,000 . \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$4,500,000 \$0 \$0
Subtotal Estimate Escalation Conlingency						\$0 \$2,025,000	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$4,500,000 \$0 \$2,025,000
Total OPC2001.2	PERMITTING			0		\$6,525,000	\$0	\$0	\$0	\$0	\$6,525,000
(*)Process Decon So	N SOLUTION PROCESSING BWI lulion Through Evaporator ons - approximately 1,000,000 gallons	U.C. per Gal 1,000 s of decon solution will be	,000.00 used to d	0 econ the NV	VCF areas. This s	0 \$0 olution will be sent	0 \$0 I to the evaporator for	0 \$0 volume reduction	1.15 \$1,150,000	0 \$0	1.15 \$1,150,000
(*)Ailowance For Liqu Memo: Per Anna Po	BWI ald Sent To The Tank Farm ploski - The liquid sent to the evaporal		,000.00 of its orig	0 inal volume.	The costs to sen	0 \$0 d liquid to the evap	0 \$0 porator and to send / m	0 \$0 naintain liquid in tl	413 \$41,300,000 ne tank farm are pe	0 \$0 r Anna Poloski.	413 \$41,300,000
Sublotal Sales Tax INEEL ORG Labor	/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$42,450,000 \$0 \$0	\$0 \$0 \$0	\$42,450,000 \$0 \$0
Subtotal Estimate Escalation Contingency	<u> </u>					\$0 \$0	\$0 \$0	\$0 \$0	\$5,132,205 \$10,943,907	\$0 \$0	\$42,450,000 \$5,132,205 \$10,943,907
Total OPC2300 D	ECON SOLUTION PROCESSING			0		· \$0	\$0	\$0	\$58,526,112	\$0	\$58,526,112

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option C

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	<u>Other</u>	TOTAL
- 1100 CONSTRUCTION SUPERVISION & ENGINEERING 00401400 BWI Construction Management - 9% Of TCC	U.C. per Lot	1.00	1	\$***.* *	15626000 \$15,626,000	0 \$0	0 \$0	0 \$0	0 \$0	15626000 \$15,626,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$15,626,000 \$0 \$0	* \$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$15,626,000 \$0 \$0
Subtotal Estimate Escalation Contingency				***************************************	\$4,009,632 \$11,388,666	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$15,626,000 \$4,009,632 \$11,388,666
Total 1100 CONSTRUCTION SUPERVISION & ENGINEE	RING		1		\$31,024,298	\$0	\$0	\$0	\$0	\$31,024,298
1110 CM - CONDUCT OF OPERATIONS/CONDUCT OF 00401400 BWI CM - Conduct Of Operations / Conduct Of Maintenance2% Of TCC	MAINTENANCE U.C. per Lot	1.00	1	\$***.**	347200 \$347,200	0 \$0	0 \$0	0 \$0	0 \$0	347200 \$347,200
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$347,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$347,200 \$0 \$0
Subtotal Estimate Escalation Contingency					\$89,092 \$253,049	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$347,200 \$89,092 \$253,049
Total 1110 CM - CONDUCT OF OPERATIONS/CONDUCT MAINTENANCE	OF		1		\$689,341	\$0	\$0	\$0	\$0	\$689,341
1200 CM PROJECT CONTROLS BWI CM Project Controls7% Of TCC	U.C. per Lot	1.00	0		1215300 \$1,215,300	0 \$0	0 \$0	0 \$0	0 \$0	1215300 \$1,215,300
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$1,215,300 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$1,215,300 \$0 \$0
Subtotal Estimate Escalation Contingency					\$311,846 \$885,745	\$0 \$0	· \$0 \$0	\$0 \$0	\$0 \$0	\$1,215,300 \$311,846 \$885,745
Total 1200 CM PROJECT CONTROLS			0		\$2,412,891	\$0	\$0	\$0	\$0	\$2,412,891
1300 CM ENVIRONMENTAL SAFETY & HEALTH (ES&F BWI CM - ES&H5% Of TCC	U.C. per Lot	1.00	0		868100 \$868,100	0 \$0	0 \$0	0 \$0	0 \$0	· 868100 \$868,100

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option C

Client:

V. J. Balls

LEVEL Org/Subcontractor 1300 CM ENVIRONMENTAL SAFETY & HEALTH (E	QTY	-	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$868,100 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$868,100 \$0 \$0
Subtotal Estimate Escalation Contingency					\$222,754 \$632,696	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$868,100 \$222,754 \$632,696
Total 1300 CM ENVIRONMENTAL SAFETY & HEALT	TH (ES&H)		0		\$1,723,550	\$0	\$0	\$0	\$0	\$1,723,550
1400 CM TRAINING BWI CM - Training2% Of TCC	U.C. per Lot	1.00	0		347200 \$347,200	0 \$0	0 \$0	0 \$0	0 \$0	347200 \$347,200
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$347,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$347,200 \$0 \$0
Subtotal Estimate Escalation Conlingency					\$89,092 \$253,049	\$0 \$0	\$0 . \$0	\$0 \$0	\$0 \$0	\$347,200 \$89,092 \$253,049
Total 1400 CM TRAINING			0		\$689,341	\$0	\$0	\$0	\$0	\$689,341
1500 CM - OTHER DIRECT COSTS BWI CM - Other Direct Costs2% Of TCC	U.C. per Lot	1.00	0		347200 \$347,200	0 \$0	0 \$0	0 \$0	0 \$0	347200 \$347,200
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$347,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$347,200 \$0 \$0
Subtotal Estimate Escalation Contingency					\$89,092 \$253,049	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$347,200 \$89,092 \$253,049
Total 1500 CM - OTHER DIRECT COSTS		•	0		\$689,341	\$0	\$0	\$0	\$0	\$689,341
2400 DESIGN ACTIVITIES BWI Tille I Design - 6% Of TCC	U.C. per Lot	1.00	0		10417300 \$10,417,300	, \$0	0 \$0	0 \$0	0 \$0	10417300 \$10,417,300

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC
Estimate Number: 2570 - Option C

Client: V. J. Balls

LEVEL Org/Subcontractor 2400 DESIGN ACTIVITIES	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$10,417,300 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$10,417,300 \$0 \$0
Subtotal Estimate Escalation Contingency					\$1,259,452 \$4,904,236	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$10,417,300 \$1,259,452 \$4,904,236
Total 2400 DESIGN ACTIVITIES			0		\$16,580,987	\$0	\$0	\$0	\$0	\$16,580,987
3400 DESIGN ACTIVITIES BWI Title II Design - 11.3% Of TCC	U.C. per Lot	1.00	0		19619200 · \$19,619,200	o \$0	o \$0	o \$0	0 \$0	19619200 \$19,619,200
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		······································			\$19,619,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$19,619,200 \$0 \$0
· Subtotal Estimate Escalation Contingency					\$3,009,585 \$7,467,499	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$19,619,200 \$3,009,585 \$7,467,499
Total 3400 DESIGN ACTIVITIES			0		\$30,096,284	\$0	\$0	\$0	\$0	\$30,096,284
4100 QUALITY ASSURANCE BWI Quality Assurance - 5% Of TCC	U.C. per Lot	1.00	0.1 0	\$***.**	8681100 \$8,681,100	o \$0	0 \$0	0 \$0	0 \$0	8681100 \$8,681,100
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$8,681,100 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$8,681,100 \$0 \$0
Subtotal Estimate Escalation Contingency					\$2,227,570 \$3,490,774	\$0 · \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$8,681,100 \$2,227,570 \$3,490,774
Total 4100 QUALITY ASSURANCE			0		\$14,399,445	\$0	\$0	\$0	\$0	\$14,399,445
5100 PM ADMINISTRATION BWI Project Management - 8% Of TCC	U.C. per Lot	1.00	8	\$***.**	13889700 \$13,889,700	0 \$0	0 \$0	0 \$0	0 \$0	13889700 \$13,889,700

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor 5100 PM ADMINISTRATION	QTY	_	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	Matl	_S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$13,889,700 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$13,889,700 \$0 \$0
Subtotal Estimate Escalation Contingency	,				\$3,564,097 \$7,505,133	\$0 • \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$13,889,700 \$3,564,097 \$7,505,133
Total 5100 PM ADMINISTRATION			8		\$24,958,930	\$0	\$0	\$0	\$0	\$24,958,930
5110 PM - CONDUCT OF OPERATIONS/CONDUCT OF BWI PM Conduct Of Operations / Conduct Of Maintenance04% Of TCC	MAINTENANCE U.C. per Lot	1.00	0.1 0	\$***. **	69400 \$69,400	0 \$0	o \$0	0 \$0	0 \$0	69400 \$69,400
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$69,400 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$69,400 \$0 \$0
Subtotal Estimate Escalation Contingency				-	\$17,808 \$37,499	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$69,400 \$17,808 \$37,499
Total 5110 PM - CONDUCT OF OPERATIONS/CONDUCT MAINTENANCE	OF		0		\$124,707	\$0	\$0	\$0	\$0	\$124,707
5200 PM PROJECT CONTROLS BWI PM Project Controls - 2% Of TCC	U.C. per Lot	1.00	0		3472400 \$3,472,400	o \$0	0 \$0	0 \$0	0 \$0	3472400 \$3,472,400
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				,	\$3,472,400 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,472,400 \$0 \$0
Subtotal Estimate Escalation Contingency					\$891,018 \$1,876,270	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,472,400 \$891,018 \$1,876,270
Total 5200 PM PROJECT CONTROLS			0		\$6,239,688	\$0	\$0	\$0	\$0	\$6,239,688
5300 PM RECORDS MANAGEMENT BWI PM Records Management - 2% Of TCC	U.C. per Lot	1.00	o		3472400 \$3,472,400	0 \$0	0 \$0	0 \$0	0	3472400 \$3,472,400

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

Client:

V. J. Balls

LEVEL Org/Subcontractor 5300 PM RECORDS MANAGEMENT	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$3,472,400 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,472,400 \$0 \$0
Subtotal Estimate Escalation Conlingency					\$891,018 \$1,876,270	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,472,400 \$891,018 \$1,876,270
Total 5300 PM RECORDS MANAGEMENT			0		\$6,239,688	\$0	\$0	\$0	\$0	\$6,239,688
<u>5400 SAFETY ANALYSIS</u> BWI Safely Analysis Report (SAR)	U.C. per Lot	1.00	0		2000000 \$2,000,000	0 \$0	0 \$0	0 \$0	0 \$0	2000000 \$2,000,000
Subtotal Sales Tax					\$2,000,000 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$2,000,000 \$0
INEEL ORG Labor/Subcontractor Overheads					\$0	\$0	\$0	\$0	\$0	\$0
Subtotal Estimate Escalation Contingency	·				\$513,200 \$1,080,676	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$2,000,000 \$513,200 \$1,080,676
Total 5400 SAFETY ANALYSIS			0		\$3,593,876	\$0	\$0	\$0	\$0	\$3,593,876
6000 CONSTRUCTION AE SUPPORT BWI Construction AE Support - 1.5% Of TCC	U.C. per Loí	1.00	0		2604300 \$2,604,300	0 \$0	· \$0	0 \$0	0 \$0	2604300 \$2,604,300
Subtotal					\$2,604,300	\$0	\$0	\$0	\$0	\$2,604,300
Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0
Subtotal Estimate Escalation Contingency					\$668,263 \$916,318	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$2,604,300 \$668,263 \$916,318
Total 6000 CONSTRUCTION AE SUPPORT			0		\$4,188,881	\$0	\$0	\$0	\$0	\$4,188,881
8300 GFE LABOR 2440 Allowance To Deconlaminate The Calciner Cell	U.C. per Lot	1.00	1200 1,200	U21 \$17.45	20940 \$20,940	0 \$0	0 \$0	0 \$0	0 \$0	20940 \$20,940
2440 Clothing Allowance - Calcinier Cell	U.C. per Chng	240.00			0 \$0	0 \$0	45 \$10,800	0 \$0	0 \$0	45 \$10,800
2440 Allowance To Decontaminate The Off-Gas Cell	U.C. per Lot	1.00	800 800	U21 \$17.45	13960 \$13,960	0 \$0	0 \$0	0 \$0	0 \$0	13960 \$13,960

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC
Estimate Number:2570 - Option C

Client:

V. J. Balls

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	_S/C_	Other	TOTAL
8300 GFE LABOR 2440 Clothing Allowance - Off-Gas Cell	U.C. per Chng 200.0	0 0		0 \$0	0 \$0	45 \$9,000	0 \$0	0 \$0	45 \$9,000
2440 Allowance To Decontaminate The Blend & Hold Cell	U.C. per Lot 1.0	800 800	U21 \$17.45	13960 \$13,960	0 \$0	0 \$0	0 \$0	0 \$0	13960 \$13,960
· 2440 Clothing Allowance - Blend & Hold Cell	U.C. per Chng 200.0	0 0		0 \$0	0 \$0	45 \$9,000	0 \$0	0 \$0	45 \$9,000
2440 Allowance To Decontaminate The Valve Cubicle	U.C. per Lot	008 008 00	U21 \$17.45	13960 \$13,960	· \$0	0 \$0	0 \$0	0 \$0	13960 \$13,960
2440 Clothing Allowance - Valve Cubicle	U.C. per Chng 200.0	0 0		0 \$0	, \$0 ,	45 \$9,000	0 \$0	0 \$0	45 \$9,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$62,820 \$0 \$55,910	\$0 \$0 \$0	\$37,800 \$1,890 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$100,620 \$1,890 \$55,910
Subtotal Estimate Escalation Contingency				\$30,466 \$199,922	\$0 \$0	\$10,184 \$66,832	\$0 \$0	\$0 \$0	\$158,420 \$40,651 \$266,754
Total 8300 GFE LABOR		3,600		\$349,118	\$0 .	\$116,706	\$0	\$0	\$465,825
9101.1 GENERAL CONDITIONS GEN Supervision - 15% Of Labor Hours	U.C. per Lot	56339 00 56,339	CN-SUPR \$40.00	2253560 \$2,253,560	0 \$0	0 \$0	0 \$0	0 \$0	2253560 \$2,253,560
GEN Training - 7% Of Labor Hours	U.C. per Lot	26291 00 26,291	CN-LABR \$30.09	791096.19 \$791,096	0 \$0	0 \$0	0 \$0	0 \$0	791096.19 \$791,096
GEN Mobilization & Demobilization5% Of Labor Hours	U.C. per Lot	. 1878 00 1,878	CN-LABR \$30.09	56509.02 \$56,509	10000 \$10,000	0 \$0	0 \$0	0 \$0	66509.02 \$66,509
GEN (*)Material Adjustment - Additional 10% On Material & Subcontracts Memo: Adjustment for DOE/RW/0333P Quality Standards.	U.C. per Lot 1.0	00 0		0 \$0	0 \$0	8200600 \$8,200,600	0 \$0	0 \$0	8200600 \$8,200,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$3,101,165 \$0 \$1,100,340	\$10,000 \$0 \$3,548	\$8,200,600 \$410,030 \$3,055,181	\$0 \$0 \$0	\$0 \$0 \$0	\$11,311,765 \$410,030 \$4,159,069
Subtotal Estimate Escalation Contingency				\$1,078,106 \$2,375,825	\$3,476 \$7,661	\$2,993,447 \$6,596,666	\$0 \$0	\$0 \$0	\$15,880,864 \$4,075,030 \$8,980,152
Total 9101.1 GENERAL CONDITIONS		84,508		\$7,655,436	\$24,686	\$21,255,924	\$0	\$0	\$28,936,046

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL	Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
(*)Labor Adjustmen	ONDUCT OF OPERATIONS/CONDI GEN t f Operations / Conduct of Maintenan	U.C. per Hr 376,360.00		CN-SKWK \$34.52	2.762 \$1,039,356	\$0 \$0	0 \$0	· 0 \$0	0 \$0	2.762 \$1,039,356
Subtotal Sales Tax INEEL ORG Lab	or/Subcontractor Overheads				\$1,039,356 \$0 \$368,779	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$1,039,356 \$0 \$368 779
Subtotal Estima Escalation Contingency	te				\$361,327 \$796,258	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$1,408,135 \$361,327 \$796,258
Total 9101.2 GC MAINTEN	: - CONDUCT OF OPERATIONS/CO ANCE	DNDUCT OF	30,109		\$2,565,720	\$0	\$0	\$0	\$0	\$2,565,720
(*)Excavation & Bar	ORK - UTILITIES GEN ckfill - Firewater illities to be 300 feet. Trench to be 6'	U.C. per Cy 800.00 to bottom of trench.	0.7 560	CN-LABR \$30.09	21.063 \$16,850	5 \$4,000	, \$0 ,	0 \$0	0 \$0	26.063 \$20,850
Piping - Firewater	GEN	U.C. per Lf 300.00	0.5 150	CN-LABR \$30.09	15.045 \$4,514	2 \$600	12 \$3,600	0 \$0	0 \$0	29.045 \$8,714
(*)Excavation & Bac Memo: Assume ut	GEN ckfill - Sewer ilities to be 300 feet. Trench to be 6'	U.C. per Cy 800.00 to bottom of trench.	0.7 560	CN-LABR \$30,09	21,063 \$16,850	5 \$4,000	0 \$0	0 \$0	0 \$0	26.063 \$20,850
Piping - Sewer	GEN	U.C. per Lf . 300.00	0.03 9		0.903 \$271	2 \$600	5 \$1,500	0 \$0	0 \$0	7.903 \$2,371
Subtotal Sales Tax INEEL ORG Labo	or/Subcontractor Overheads				\$38,485 \$0 \$13,655	\$9,200 \$0 \$3,264	\$5,100 \$255 \$1,900	\$0 \$0 \$0	\$0 \$0 \$0	\$52,785 \$255 \$18,819
Subtotal Estima Escalation Contingency	te				\$13,379 \$41,932	\$3,198 \$10,024	\$1,862 \$5,835	\$0 \$0	\$0 \$0	\$71,860 \$18,439 \$57,791
Total 9102.1 SIT	TEWORK - UTILITIES		1,279		\$107,452	\$25,687	\$14,951	\$0	\$0	\$148,090
9102.2 SITEWO	ORK - TFD FACILITY GEN	U.C. per Sf 27,000.00	0.03 810	CN-LABR \$30.09	0.903 \$24,373	0.5 \$13,500	0 \$0	0 \$0	0 \$0	1.403 \$37,873

10

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Project Location: INTEC
Estimate Number:2570 - Option C

LEVEL Org/Subcontractor 9102.2 SITEWORK - TFD FACILITY	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
GEN Excavation & Backfill	U.C. per Cy 8,550.00	0.7 5,985	CN-LABR . \$30.09	21.063 \$180,089	5 \$42,750	0 \$0	0 \$0	0 \$0	26.063 \$222,839
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$204,462 \$0 \$72,546	\$56,250 \$0 \$19,958	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$260,712 \$0 \$92,504
Subtotal Estimate Escalation Contingency				\$71,080 \$222,776	\$19,555 \$61,289	\$0 \$0	\$0 \$0	\$0 \$0	\$353,216 \$90,635 \$284,065
Total 9102.2 SITEWORK - TFD FACILITY		6,795		\$570,864	\$157,052	\$0	\$0	\$0	\$727,916
9102.3 SITEWORK - BOILER HOUSE GEN Site Grading	U.C. per Sf 4,000.00	0.03 120	CN-LABR \$30.09	0.903 \$3,611	0.5 \$2,000	0 \$0	0 \$0	0 \$0	1.403 \$5,611
GEN Excavation & Backfill	U.C. per Cy 500.00	0.7 350	CN-LABR \$30,09	21.063 \$10,532	5 \$2,500	0 \$0	0 \$0	0 \$0	26.063 \$13,032
GEN (*)Excavation & Backfill - Steam & Condensate Memo: Assume utilities to be 300 feet. Trench to be 6'	U.C. per Cy 800.00 to bottom of trench.	0.7 560	CN-LABR \$30.09	21.063 \$16,850	5 \$4,000	0 \$0	o \$0	0 \$0	26.063 \$20,850
GEN Plping - Steam & Condensate	U.C. per Lf 600.00	0.05 30	CN-LABR · \$30.09	1.505 \$903	2 \$1,200	5 \$3,000	0 \$0	0 \$0	8.505 \$5,103
GEN Gilsulate Insulation	U.C. per Cf 477,00	0.17 81	CN-LABR \$30.09	5.115 \$2,440	0 \$0	16.55 \$7, 894	0 \$0	0 \$0	21.665 \$10,334
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$34,335 \$0 \$12,183	\$9,700 \$0 \$3,442	\$10,894 \$545 \$4,059	\$0 \$0 \$0	\$0 \$0 \$0	\$54,930 \$545 \$19,683
Subtotal Estimate Escalation Contingency				\$11,937 \$37,411	\$3,372 \$10,569	\$3,977 \$12,464	\$0 \$0	\$0 \$0	\$75,158 \$19,285 \$60,444
Total 9102.3 SITEWORK - BOILER HOUSE		1,141		\$95,866	\$27,083	\$31,938	\$0	\$0	\$154,887
9102.4 SITEWORK - STORAGE FACILITY GEN BUILDING EXCAVATION	U.C. per CY 17,160.00	0.012 206	CN-ENGR \$32.56	0.391 \$6,705	2 \$34,320	0 \$0	0 \$0	0 \$0 .	2.391 \$41,025
GEN BUILDING BACKFILL	U.C. per CY 12,240.00	0.06 734	CN-ENGR \$32.56	1.954 \$23,912	2 \$24,480	0 \$0	0 \$0	0 \$0	3.954 \$48,392

08/30/2000

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor	_QT	Υ	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
9102.4 SITEWORK - STORAGE FACILITY GEN BUILDING BERM FILL	U.C. per CY	6,900.00	0.06 414	CN-ENGR \$32.56	1.954 \$13,480	\$13,800	0 \$0	0 \$0	0 \$0	3,954 \$27,280
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$44,097 \$0 \$15,646	\$72,600 \$0 \$25,760	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$116,697 \$0 \$41,406
Subtotal Estimate Escalation Contingency					\$15,330 \$48,047	\$25,239 \$79,103	\$0 \$0	\$0 \$0	\$0 \$0	\$158,102 \$40,569 \$127,150
Total 9102.4 SITEWORK - STORAGE FACILITY			1,354		\$123,119	\$202,702	\$0	\$0	\$0	\$325,821
9102.5 SITEWORK - TUNNEL GEN (*)Excavate & Backfill For Tunnel Memo: Tunnel bottom to be 23' below existing grade. Tun	U.C. per Cy	4,500.00 at the bottom,	0.6 2,700 15' high and	CN-LABR \$30.09 I 100' long.	18.054 \$81,243	12 \$54,000	0 \$0	0 \$0	0 \$0	30.054 \$135,243
GEN Allowance For Hand Excavation	U.C. per Cy	100.00	3 300	CN-LABR \$30.09	90.27 · \$9,027	12 \$1,200	0 \$0	0 \$0	0 \$0	102,27 \$10,227
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		,			\$90,270 \$0 \$32,029	\$55,200 \$0 \$19,586	\$0 \$0 \$0	\$0 \$0 . \$0	\$0 \$0 \$0	\$145,470 \$0 \$51,615
Subtotal Estimate Escalation Contingency					\$31,382 \$98,356	\$19,190 \$60,145	\$0 \$0	\$0 \$0	\$0 \$0	\$197,085 \$50,572 \$158,500
Total 9102.5 SITEWORK - TUNNEL			3,000		\$252,037	\$154,120	\$0	\$0	\$0	\$406,157
9102.6 SITEWORK - PAVING GEN Pavement Removal	U.C. per Sf	7,050.00	0.05 353	CN-SKWK \$34.52	1.726 \$12,168	1.2 \$8,460	0 \$0	0 \$0	0 \$0	2.926 \$20,628
GEN New Pavement	U.C. per Sf	6,600.00	0.03 198	CN-SKWK \$34.52	1.036 \$6,835	1 \$6,600	2 \$13,200	0 \$0	0 \$0	4.036 \$26,635
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		\$19,003 \$0 \$6,743	\$15,060 \$0 \$5,344	\$13,200 \$660 \$4,918	\$0 \$0 \$0	\$0 \$0 \$0	\$47,263 \$660 \$17,004
Subtotal Estimate Escalation Contingency					\$6,606 \$20,705	\$5,236 \$16,409	\$4,818 \$15,102	\$0 \$0	\$0 \$0	\$64,927 \$16,660 \$52,216
Total 9102.6 SITEWORK - PAVING			551		\$53,058	\$42,048	\$38,698	\$0	\$0	\$133,803

13

CONSTRUCTION DETAIL ITEM REPORT Project Name:
Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF
Project Location: INTEC
Estimate Number:2570 - Option C

Client: V. J. Balls
Prepared By: Rowley / Mitchell / Marler
Estimate Type: Planning

LEVEL Org/Subcontractor 9403.2 CONCRETE - TFD FACILITY	QTY	ı	Hrs (Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
GEN (*)Concrete Footings Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	430.00	5 2,150	CN-SKWK \$34.52	172.6 \$74,218	O 05	180 \$77,400	0 0\$, 0 0\$	352.6 \$151,618
GEN (*)Concrete Floors - 12" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	725.00	3,625	CN-SKWK \$34.52	172.6 \$125,135	0 0\$	180 \$130,500	0 0\$	0 0\$	352.6 \$255,635
GEN (*)Concrete Floors - 24" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	585.00	5 2,925	CN-SKWK \$34.52	172.6 \$100,971	0 05	180 \$105,300	0 0	0 0	352.6 \$206,271
GEN (*)Concrete Shielding Walls - 24" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	1,005.00	5,025	CN-SKWK \$34.52	172.6 \$173,463	0 05	180 \$180,900	0 0\$	0 0\$	352.6 \$354,363
GEN (*)Concrete Walls - 12" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	200.00	1,000	CN-SKWK \$34.52	172.6 \$34,520	0 0\$	180 \$36,000	0 \$	0 0\$	352.6 \$70,520
GEN (*)Concrete Roof Topping Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	170.00	850	CN-SKWK \$34.52	172.6 \$29,342	0 0\$	180 \$30,600	0 0\$	0 00	352.6 \$59,942
GEN (*)Concrete Misc. Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	250.00	1,250	CN-SKWK \$34,52	172.6 \$43,150	0 0	180 \$45,000	0 0	0 \$	352.6 \$88,150
GEN . Misc. Concrete Pads	U.C. per Lot	1.00	120 120 120	CN-SKWK \$34.52	4142,4 \$4,142	0 0\$	2500 \$2,500	0 0\$	0 0\$	6642.4 \$6,642
GEN Precast Concrete Walls - 12" Thick	U.C. per Sf	36,345.00	0	CN-SKWK	200	0 0\$	0 0\$	12.25 \$445,226	0 05	12.25 \$445,226
GEN Pre-Stressed Concrete Double Tee Roof Panels	U.C. per Sf	13,700.00	0	CN-SKWK	20	0 0\$	9 \$123,300	° 0\$	0 0\$	9 \$123,300
GEN Installation Of Pre-Stressed / Precast Panels	U.C. per Ea	170.00	8 1,360	CN-SKWK \$34.52	276.16 \$46,947	0 0\$	0 0\$	0 0\$	0 0\$	276.16 \$46,947
GEN Craning For Panels & Beams	U.C. per Day	24.00	20 480	CN-SKWK \$34.52	690.4 \$16, 570	0 \$0	0 0\$	° 0\$	0 0	690.4 · \$16,570
GEN GEN Welding & Patching Of Panels	U.C. per Ea	170.00	8 1,360	CN-SKWK \$34.52	276.16 \$46,947	0 0\$	20 \$3,400	0 80	0 0\$	296.16 \$50,347
GEN	U.C. per Ea	1.00	250 250	CN-SKWK \$34.52	8630 \$8,630	0 0\$	45000 \$45,000	0 0\$	0 0\$	53630 \$53,630

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

Client:

V. J. Balls

LEVEL Org/Subcontractor 9103.2 CONCRETE - TFD FACILITY	QTY	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C	Other	TOTAL
GEN Concrete Sidewalks - 5' Wide	U.C. per Lf 250.00	0.2 50	CN-SKWK \$34.52	6.904 \$1,72 6	0 \$0	5 \$1,250	0 \$0	0 \$0	11.904 \$2,976
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$705,761 \$0 \$250,415	\$0 \$0 \$0	\$781,150 \$39,058 \$291,022	\$445,226 \$0 \$157,973	\$0 \$0 \$0	\$1,932,138 \$39,058 \$699,410
Subtotal Estimate Escalation Contingency				\$245,355 \$312,398	\$0 \$0	\$285,141 \$363,056	\$154,781 \$197,075	\$0 \$0	\$2,670,605 \$685,277 \$872,529
Total 9103.2 CONCRETE - TFD FACILITY		20,445		\$1,513,929	\$0	\$1,759,427	\$955,055	\$0	\$4,228,411
9103.3 CONCRETE - BOILER HOUSE GEN (*)Concrete Footings & Floors Memo: Includes formwork, concrete, and rebar.	U.C. per Cy 92.00	5 460	CN-SKWK \$34.52	172.6 \$15,879	0 \$0	180 \$16,560	0 \$0	0 \$0	352.6 \$32,439
GEN Misc. Concrete Pads	U.C. per Lot 1.00	20 20	CN-SKWK \$34.52	690.4 \$690	0 \$0	500 \$500	0 \$0	0 \$0	1190.4 \$1,190
GEN Concrete Sidewalks - 5' Wide	U.C. per Lf 100.00	0,2 20	CN-SKWK \$34.52	6.904 \$690	0 \$0	5 \$500	0 \$0	0 \$0	11.904 \$1,190
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$17,260 \$0 \$6,124	\$0 \$0 \$0	\$17,560 \$878 \$6,542	\$0 \$0 \$0	\$0 \$0 \$0	\$34,820 \$878 \$12,666
Subtotal Estimate Escalation Contingency				\$6,000 \$7,640	\$0 \$0	\$6,410 \$8,161	\$0 \$0	\$0 \$0	\$48,364 \$12,410 \$15,801
Total 9103.3 CONCRETE - BOILER HOUSE		500		\$37,024	\$0	\$39,551	\$0	\$0	\$76,576
9103.4 CONCRETE - STORAGE FACILITY GEN Halch Plugs	U.C. per EA ,3.00	0		0 \$0	0 \$0	0 \$0	75000 \$225,000	0 \$0	75000 \$225,000
GEN Precast Concrete Walls - 6" Thick	U.C. per Sf 17,160.00	0	CN-SKWK	0 \$0	0 \$0	0 \$0	8.5 \$145,860	0 \$0	8.5 \$145,860
GEN Pre-Stressed Concrete Double Tee Roof Panels	U.C. per Sf 20,440.00	0	CN-SKWK	0 \$0	0 \$0	9 \$183,960	0 \$0	0 \$0	9 \$183,960
GEN Installation Of Pre-Stressed / Precast Panels	U.C. per Ea 126.00	8 1,008	CN-SKWK \$34.52	276.16 \$34,796	0 \$0	0 \$0	0 \$0	0 \$0	276.16 \$34,796
GEN Craning For Panels & Beams	U.C. per Day 22.00	20 440	CN-SKWK \$34.52	690.4 \$15,189	0 \$0	0 \$0	0 \$0	0 \$0	690.4 \$15,189

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

Client:

V. J. Balls

LEVEL Org/Subcontractor	QTY	<u>H</u>	rs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C_	<u>Other</u>	TOTAL
— 9103.4 CONCRETE - STORAGE FACILITY GEN Welding & Patching Of Panels	U.C. per Ea	126,00	8 1,008	CN-SKWK \$34,52	276.16 \$34,796	0 \$0	20 \$2,520	0 \$0	0 \$0	296.16 \$37,316
GEN (*)Concrete Footings Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	260,00	5 1,300	CN-SKWK \$34.52	172.6 \$44,876	0 \$0	180 \$46,800	0 \$0	0 \$0	352.6 \$91,676
GEN (*)Concrete Floors - 6* Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	380,00	5 1,900	CN-SKWK \$34.52 ·	172.6 \$65,588	0 \$0	180 \$68,400	0 \$0	0 \$0	352.6 \$133, 9 88
GEN (*)Concrete Partition Wall - 12" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	180.00	5 900	CN-SKWK \$34.52	172.6 \$31,068	0 \$0	180 \$32,400	0 \$0	0 \$0	352.6 \$63,468
GEN Concrete Sidewalks - 5' Wide	U.C. per Lf	500.00	0.2 100	CN-SKWK \$34.52	6.904 \$3,452	0 \$0	5 \$2,500	0 \$0	0 \$0	11.904 \$5,952
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$229,765 \$0 \$81,524	\$0 \$0 \$0	\$336,580 \$16,829 \$125,395	\$370,860 \$0 \$131,587	\$0 \$0 \$0	\$937,205 \$16,829 \$338,506
Subtotal Estimate Escalation Contingency					\$79,877 \$101,703	\$0 \$0	\$122,861 \$156,433	\$128,928 \$164,157	\$0 \$0	\$1,292,540 \$331,666 \$422,293
Total 9103.4 CONCRETE - STORAGE FACILITY		(6,656		\$492,869	\$0	\$758,098	\$795,532	\$0	\$2,046,499
9103.5 CONCRETE - TUNNEL GEN (*)Concrete For Tunnel - 12" Thick All Surfaces Memo: Includes formwork, concrete, and rebar. Tunnel bottom		190.00 sting grade. Tur	5 950 nnel sha	CN-SKWK \$34.52 all be 10' wide at th	172.6 \$32,794 e bollom, 15' higł	0 \$0 n and 100' long.	180 \$34,200	0 \$0	0 \$0	352.6 \$66,994
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$32,794 \$0 \$11,636	· \$0 - \$0 \$0	\$34,200 \$1,710 \$12,741	\$0 \$0 \$0	\$0 \$0 \$0	\$66,994 \$1,710 \$24,377
Subtotal Estimate Escalation Conlingency					\$11,401 \$14,516	\$0 · \$0	\$12,484 \$15,895	\$0 \$0	\$0 \$0 _.	\$93,081 \$23,885 \$30,411
Total 9103.5 CONCRETE - TUNNEL			950		\$70,346	. \$0	\$77,031	\$0	\$ 0	\$147,377
9105.1.1 METALS DEMOLITION - CALCINER CELL GEN Remove Support Steel For Installation Of New Wall	U.C. per Lot	1.00	60 60	CN-IRON \$40,16	2409.6 \$2,410	0 \$0	0 \$0	0 \$0	0 \$0	2409.6 \$2,410
GEN Allowance To "Hot Box" Material	U.C. per Box	2.00	10 20	CN-IRON \$40.16	401.6 \$803	0 \$0	0 \$0	0 \$0	0 \$0	401.6 \$803

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor 9105.1.1 METALS DEMOLITION - CALCINER CELL	QT	Υ	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
GEN	U.C. per Lot		120	CN-IRON	4819.2	0	0	0	0	4819.2
Labor Adjustment For Working In "Hot" Area - 200%	•	1.00	120	\$40.16	\$4,819	\$0	\$0	\$0	\$0	\$4,819
Sublotal	T-1111		···········	· · · · · · · · · · · · · · · · · · ·	\$8,032	\$0	\$0	. \$0	\$0	\$8,032
Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$2,850	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$2,850
Subtotal Estimate									··	\$10,882
Escalation Contingency					\$2,792 \$3,555	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$2,792 \$3,555
Total 9105.1.1 METALS DEMOLITION - CALCINER CELL			200		\$17,229	\$0	\$0	\$0	\$0	\$17,229
9105.3 METALS - TFD FACILITY										
STEEL Liner Plate - 4' Up From Floor	U.C. per Sf	1,025.00	2,050	CN-IRON \$40.16	80.32 \$82,328	0 \$0	10 \$10,250	0 \$0	0 \$0	90.32 \$92,578
STEEL	U.C. per Lot	•	200	CN-IRON	8032	0	25000	0	0	33032
Misc. Embeds	2.0. po	1.00	200	\$40.16	\$8,032	\$0	\$25,000	\$0	\$0	\$33,032
STEEL Grating & Misc. Metals	U.C. per Lot	1.00	1000	CN-IRON	40160	0	150000	0	0	190160
STEEL	11006	1.00	1,000	\$40.16	\$40,160	\$0	\$150,000	\$0	\$0	\$190,160
Structural Steel - Superstructure	U.C. per Sf	13,700.00	0.04 548	CN-IRON \$40.16	1.606 \$22,008	0 \$0	2.4 \$32,880	0 \$0	0 \$0	4.006 \$54,888
STEEL	U.C. per Ea		10	CN-IRON	401.6	0	3000	0	0	3401.6
Stairway		1.00	10	\$40.16	\$402	\$0	\$3,000	\$0	\$0	\$3,402
Subtotal					\$152,929	\$0	\$221,130	\$0	\$0	\$374,059
Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$64,128	. \$0 \$0	\$11,057 \$97,363	\$0 \$0	\$0 \$0	\$11,057 \$161,491
Subtotal Estimate									-	\$546,606
Escalation Contingency					\$55,697 \$70,916	\$0 \$0	\$84,562 \$107,669	\$0 \$0	\$0 \$0	\$140,259 \$178,585
Total 9105.3 METALS - TFD FACILITY	". 1 		3,808		\$343,670	\$0	\$521,781	\$0	\$0	\$865,451
9105.4 METALS - BOILER HOUSE										
GEN Pre-Engineered Metal Building	U.C. per Sf	3,120.00	0		0 \$0	0 \$0	0 \$0	18 \$56,160	0 \$0	18 \$56,160
GEN	U.C. per Lot	•	40	CN-IRON	1606.4	0	1200	0	0	2806,4
Misc. Metals	F	1.00	40	\$40.16	\$1,606	\$0	\$1,200	\$0	\$0	\$2,806
STEEL BOILER STACK SUPPORTS	U.C. per EA	2.00	40 80	CN-IRON \$40.16	1606.4 \$3.213	0 \$0	275 \$550	0	0	1881.4
DOILLING I ACK DOLL OKLD		2.00	OU	34U.TD	33.713	361	3555D	ÇΠ	የበ	\$2.762

\$40.16

\$3,213

\$0

\$550

80

2.00

\$0

\$0

\$3,763

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

LEVEL Org/Subcontractor	QTY ·	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	<u>Other</u>	TOTAL
9105.4 METALS - BOILER HOUSE STEEL BOILER BUILDING PLATFORMS	U.C. per LBS 11,000.00	0.018 198	CN-IRON \$40.16	0.723 \$7,952	0 \$0	1.62 \$17,820	0 \$0	· 0 \$0	2.343 \$25,772
· STEEL	U.C. per LBS	0.012	CN-IRON	0.482	0	0.4	0	0	0.882
BOILER BUILDING ROOF FRAMING	21,840.00	262	\$40.16	\$10,525	\$0	\$8,736	\$0	\$0	\$19,261
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$23,296 \$0 \$9,665	\$0 \$0 \$0	\$28,306 \$1,415 \$12,382	\$56,160 \$0 \$19,926	\$0 \$0 \$0	\$107,762 \$1,415 \$41,973
Subtotal Estimate Escalation Contingency				\$8,458 \$10,769	\$0 \$0	\$10,804 \$13,756	\$19,524 \$24,859	\$0 \$0	\$151,151 \$38,785 \$49,383
Total 9105.4 METALS - BOILER HOUSE		580		\$52,188	\$0	\$66,662	\$120,469	\$0	\$239,319
9105.5 METALS - STORAGE FACILITY STEEL CHARGE FACE SLAB FRAME	U.C. per TON	6	CN-IRON	240.96	0	1100	0	0	1340.96
	780.00	4,680	\$40.16	\$187,949	\$0	\$858,000	\$0	\$0	\$1,045,949
STEEL	U.C. per TON	10	CN-IRON	401.6	0	1200	o	0	1601.6
BUILDING STRUCTURAL STEEL	756.00	7,560	\$40.16	\$303,610	\$0	\$907,200	\$0	\$0	\$1,210,810
STEEL	U.C. per LF	3.85	CN-IRON	154.616	0	161	0	0	315.616
GANTRY CRANE RAILS, EMBEDS, ETC.	400.00	1,540	\$40.16	\$61,846	\$0	\$64,400	\$0	\$0	\$126,246
STEEL	U.C. per LF	2	CN-IRON	80.32	0	92	0	0	172.32
RAILROAD TRACKS - WITHIN BUILDING	180.00	360	\$40.16	\$14,458	\$0	\$16,560	\$0	\$0	\$31,018
STEEL	U.C. per LF	2	CN-IRON	80.32	0	92	0	0	172.32
TRANSFER CART RAILS	210.00	420	\$40.18	\$16,867	\$0	\$19,320	\$0	\$0	\$36,187
STEEL	U.C. per SF	0.25	CN-IRON	10.04	0	40	0	0	50.04
BIRD SCREEN AND VENT LOUVERS	2,300.00	575	\$40.16	\$23,092	\$0	\$92,000	\$0	\$0	\$115,092
STEEL AIR OUTLET WALL (INSIDE)	U.C. per SF 12,600.00	0	CN-IRON	0 \$0	0 \$0	0 \$0	12 \$151,200	0 \$0	12 \$151,200

CONSTRUCTION DETAIL ITEM REPORT

Project Name: Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

V. J. Balls Client:

LEVEL Org/Subcontractor	QTY	<u>Hrs</u>	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	_S/C_	<u>Other</u>	TOTAL
9105.5 METALS - STORAGE FACILITY STEEL (*)Misc. Steel Memo: Handralls, stairways, grating, and etc.	U.C. per Lot	750 750		30120 \$30,120	0 \$0	45000 \$45,000	0 \$0	0 \$0	75120 \$75,120
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$637,942 \$0 \$267,508	\$0 \$0 \$0	\$2,002,480 \$100,124 \$881,685	\$151,200 \$0 \$63,403	\$0 \$0 \$0	\$2,791,622 \$100,124 \$1,212,596
Subtotal Estimate Escalation Contingency				\$232,338 \$295,825	\$0 \$0	\$765,769 \$975,015	\$55,067 \$70,114	\$0 \$0	\$4,104,341 \$1,053,174 \$1,340,954
Total 9105.5 METALS - STORAGE FACILITY		15,885		\$1,433,613	\$0	\$4,725,072	\$339,784	\$0	\$6,498,469
9107.1 THERMAL & MOISTURE PROTECTION - TFI GEN 2" Thick Foundation Insulation Board	U.C. per Sf 2,000.0	0,033) 66		1.143 \$2,286	0 \$0	0.6 \$1,200	0 \$0	0 \$0	1.743 \$3,486
GEN 3" Thick Extruded Polystyrene Insulation Board	U.C. per Sf 37,000.0	0.06 2,220		2.078 \$76,901	0 \$0	2.1 \$77,700	0 \$0	0 \$0	4.178 \$154,601
GEN Stucco Finish - 1/2" Thick	U.C. per Sf 37,000.0	0.08 2,960		2.407 \$89,066	0 \$0	4.5 \$166,500	0 \$0	0 \$0	6.907 \$255,566
GEN High Work Allowance - Add 25% To Labor	U.C. per Hr 1,290.0	0.25 323		7.523 \$9,704	0 \$0	0 \$0	0 \$0	0 \$0	7.523 \$9,704
GEN Manlift Allowance	U.C. per Lot 1.0) 0		0 \$0	3000 \$3,000	0 \$0	0 \$0	0 \$0	3000 \$3,000
GEN 4" Rigid Roof Insulation - 2 Ea. 2" Layers Of Polyisocyanurate Insulation Board	U.C. per Sf 13,700.0	0.02 0 274		0.602 \$8,245	0 \$0	0.95 \$13,015	0 \$0	0 \$0	1.552 \$21,260
ROOF EPDM Single Ply Membrane Roofing	U.C. per Sf 13,700.0	0.014 0 192		0.419 \$5,744	0 \$0	2.2 \$30,140	0 \$0	0 \$0	2.619 \$35,884
ROOF Redwood, Flashing, & Etc.	U.C. per Lot 1.0	200 200		5990 \$5,990	0 \$0	5000 \$5,000	0 \$0	0 \$0	10990 \$10,990
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$197,937 \$0 \$77,972	\$3,000 \$0 \$1,064	\$293,555 \$14,678 \$133,706	\$0 \$0 \$0	\$0 \$0 \$0	\$494,492 \$14,678 \$212,742
Subtotal Estimate Escalation Contingency	The state of the s			\$70,798 \$90,144	\$1,043 \$1,328	\$113,401 \$144,388	\$0 \$0	\$0 \$0	\$721,911 \$185,242 \$235,860
Total 9107.1 THERMAL & MOISTURE PROTECTION	- TFD FACILITY	6,234		\$436,850	\$6,435	\$699,729	\$0	\$0	\$1,143,014

Client:

V. J. Balls

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

LEVEL Org/Subcontractor 9107.2 THERMAL & MOISTURE PROTECTION - BOIL	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	<u>Other</u>	TOTAL
INSUL	U.C. per SF			0	0	0	1.9	0	1.9
EXTERIOR WALL INSULATION W/ Z-GIRTS	6,720.00	0		\$0	\$0	\$0	\$12,768	\$0	\$12,768
INSUL ROOF INSULATION	U.C. per SF 3,120.00	0		0 \$0	0 \$0	0 \$0	1 \$3,120	0 \$0	1 \$3,120
GEN EXTERIOR WALL METAL SIDING	U.C. per SF 6,720.00	0.023 155	CN-SHEE \$35.48	0.816 \$5,484	o \$0	3 \$20,160	0 \$0	0 \$0	3.816 \$25,644
GEN STANDING SEAM METAL ROOF	U.C. per SF 3,120.00	0.016 50	CN-SHEE \$35.48	0.568 \$1,771	0 \$0	5 \$15,600	0 \$0	0 \$0	5.568 \$17,371
GEN 2" Thick Foundation Insulation Board	U.C. per Sf 950.00	0.033 31	CN-CARP \$34.64	1.143 \$1,086	0 \$0	0.6 \$570	o \$0	0 \$0	1.743 \$1,656
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$8,341 \$0 \$2,959	\$0 \$0 \$0	\$36,330 \$1,817 \$13,535	\$15,888 \$0 \$6,662	\$0 \$0 \$0	\$60,559 \$1,817 \$23,157
Subtotal Estimate Escalation Contingency				\$2,900 \$3,692	\$0 \$0	\$13,261 \$16,885	\$5,786 \$7,368	\$0 \$0	\$85,532 \$21,948 \$27,945
Total 9107.2 THERMAL & MOISTURE PROTECTION -	BOILER HOUSE	236		\$17,892	\$0	\$81,828	\$35,704	\$0	\$135,424
9107.3 THERMAL & MOISTURE PROTECTION - STO GEN 2" Thick Foundation Insulation Board	RAGE FACILITY U.C. per Sf 2,300.00	0.033 76	CN-CARP \$34.64	1.143 \$2,629	0 \$0	0.6 \$1,380	o \$0	0 \$0	1.743 \$4,009
GEN 3" Thick Extruded Polystyrene Insulation Board	U.C. per Sf . 17,200.00	0.06 1,032	CN-CARP \$34.64	2.078 \$35,748	0 \$0	2.1 \$36,120	0 \$0	0 \$0	4.178 \$71,868
GEN Stucco Finish - 1/2" Thick	U.C. per Sf 17,200.00	0.08 1,376	CN-LABR \$30.09	2.407 \$41,404	0 \$0	4.5 \$77,400	0 \$0	0 \$0	6.907 \$118,804
GEN High Work Allowance - Add 25% To Labor	U.C. per Hr 2,408.00	0,25 . 602	CN-LABR \$30.09	7.523 \$18,114	0 \$0	0 \$0	0 \$0	0 \$0	7.523 \$18,114
GEN Manlift Allowance	U.C. per Lot 1.00	0		0 \$0	3000 \$3,000	0 \$0	0 \$0	0 \$0	3000 \$3, 000
GEN 4" Rigid Roof Insulation - 2 Ea. 2" Layers Of Polyisocyanurate Insulation Board	U.C. per Sf 20,500,00	0.02 410	CN-LABR \$30.09	0.602 \$12,337	0 \$0	0,95 \$19,475	0 \$0	Ó \$0	1.552 \$31,812
ROOF EPDM Single Ply Membrane Roofing	U.C. per Sf 20,500.00	0.014 287	CN-ROFC \$29,95	0.419 \$8,596	0 \$0	2.2 \$45,100	0 \$0	0 \$0	2.619 \$53,696

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor 9107.3 THERMAL & MOISTURE PROTECTION - STOR	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	Other	TOTAL
ROOF Redwood, Flashing, & Etc.	U.C. per Lot	1.00	200 200	CN-ROFC \$29.95	5990 \$5,990	0 \$0	5000 \$5,000	0 \$0	0 \$0	10990 \$10,990
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				······································	\$124,818 \$0 \$53,909	\$3,000 \$0 \$1,064	\$184,475 \$9,224 \$103,430	\$0 \$0 \$0	\$0 \$0 \$0	\$312,293 \$9,224 \$158,404
Subtotal Estimate Escalation Contingency					\$45,861 \$58,393	\$1,043 \$1,328	\$76,243 \$97,077	\$0 \$0	\$0 \$0	\$479,921 \$123,148 \$156,798
Total 9107.3 THERMAL & MOISTURE PROTECTION - S FACILITY	STORAGE		3,983		\$282,982	\$6,435	\$470,448	\$0	\$0	\$759,866
9108.2 DOORS & WINDOWS - TFD FACILITY GEN Single HM Doors & Hardware	U.C. per Ea	12.00	10 120	CN-CARP \$34.64	346.4 \$4,157	0 \$0	1000 \$12,000	0 \$0	0 \$0	1346.4 \$16,157
GEN Double HM Doors & Hardware	U.C. per Ea	6.00	15 90	CN-CARP \$34.64	519.6 \$3,118	0 \$0	1800 \$10,800	0 \$0	0 \$0	2319.6 \$13,918
GEN Exterior Doors	U.C. per Ea	4.00	12 48	CN-CARP \$34.64	415.68 \$1,663	0 \$0	2000 \$8,000	°\$0	0 \$0	2415.68 \$9,663
GEN 3' x 7' Shielding Doors	U.C. per Ea	2.00	40 80	CN-CARP \$34.64	1385.6 \$2,771	500 \$1,000	25000 \$50,000	0 \$0	0 \$0	26885.6 \$53,771
GEN 12'x12' Overhead Roll-Up Door	U.C. per Ea	2.00	75 150	CN-CARP \$34.64	2598 \$5,196	0 \$0	16000 \$32,000	0 \$0	0 \$0	18598 \$37,196
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$16,904 \$0 \$5,998	\$1,000 \$0 \$355	\$112,800 \$5,640 \$42,024	\$0 \$0 \$0	\$0 \$0 \$0	\$130,704 \$5,640 \$48,377
Subtotal Estimate Escalation Contingency					\$5,877 \$7,483	\$348 \$443	\$41,175 \$52,426	\$0 \$0	\$0 \$0	\$184,721 \$47,399 \$60,351
Total 9108.2 DOORS & WINDOWS - TFD FACILITY			488		\$36,261	\$2,145	\$254,066	\$0	\$0	\$292,472
9108.3 DOORS & WINDOWS - BOILER HOUSE GEN Single HM Doors & Hardware	U.C. per Ea	3.00	10 30	CN-CARP \$34.64	346.4 \$1,039	0 \$0	1000 \$3,000	0 \$0	0 \$0	1346.4 \$4,039
GEN Double HM Doors & Hardware	U.C. per Ea	1.00	15 15	CN-CARP \$34.64	519.6 \$520	0 \$0	1800 \$1,800	0 \$0	0 \$0	2319.6 \$2,320

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

LEVEL Org/Subcontractor 9108.3 DOORS & WINDOWS - BOILER HOUSE	QTY	– ,	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C	Other	TOTAL
GEN 12'x12' Overhead Roll-Up Door	U.C. per Ea	1.00	75 75	CN-CARP \$34.64	2598 \$2,598	0 \$0	16000 \$16,000	0 \$0	· \$0	18598 \$18,598
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$4,157 \$0 \$1,475	\$0 \$0 \$0	\$20,800 \$1,040 \$7,749	\$0 \$0 \$0	. \$0 \$0 \$0	\$24,957 \$1,040 \$9,224
Subtotal Estimate Escalation Contingency					\$1,445 \$1,840	\$0 \$0	\$7,593 \$9,667	\$0 \$0	\$0 \$0	\$35,221 \$9,038 \$11,507
Total 9108.3 DOORS & WINDOWS - BOILER HOUSE			120		\$8,917	\$0	\$46,849	\$0	\$0	\$55,766
9108.4 DOORS & WINDOWS - STORAGE FACILITY GEN OVERHEAD DOORS	U.C. per EA	2.00	75 150	CN-SKWK \$34.52	2589 \$5,178	0 \$0	16000 \$32,000	0 \$0	0 \$0	18589 \$37,178
GEN PERSONNEL DOORS	U.C. per EA	5.00	10 50	CN-SKWK \$34.52	345.2 \$1 , 726	0 \$0	1000 \$5,000	0 \$0	0 \$0	1345.2 \$6,726
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$6,904 \$0 \$2,450	\$0 \$0 . \$0	\$37,000 \$1,850 \$13,785	\$0 \$0 \$0	\$0 \$0 \$0	\$43,904 \$1,850 \$16,234
Subtotal Estimate Escalation Contingency					\$2,400 \$3,056	\$0 \$0	\$13,506 \$17,197	\$0 \$0	\$0 \$0	\$61,988 \$15,906 \$20,253
Total 9108.4 DOORS & WINDOWS - STORAGE FACILITY			200		\$14,810	\$0	\$83,337	\$0	\$0	\$98,147
9109.1 FINISHES - NWCF PAINT Misc. Painting	U.C. per Lot	1,00	200 200	CN-PAIN \$30.39	6078 \$6,078	, \$0	2500 \$2,500	0 \$0	0 \$0	8578 \$8,578
GEN RCRA Floor - Grouting Facility	U.C. per Sf	4,800.00	0		0 \$0	0 \$0	0 \$0	7 \$103,600	0 \$0	7 \$103,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$6,078 \$0 \$2,549	\$0 \$0 \$0	\$2,500 \$125 \$1,101	\$103,600 \$0 \$36,759	\$0 \$0 \$0	\$112,178 \$125 \$40,408
Subtotal Estimate Escalalion Contingency	•				\$2,214 \$2,818	\$0 \$0	\$956 \$1,217	\$36,016 \$45,857	\$0 \$0	\$152,711 \$39,186 \$49,893
Total 9109.1 FINISHES - NWCF			200		\$13,659	\$0	\$5,899	\$222,232	\$0	\$241,790

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX in NWCF

Project Location: INTEC
Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marier

LEVEL Org/Subcontractor 9109.2 FINISHES - TFD FACILITY	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
PAINT Building Painting	U.C. per Sf	0.03	CN-PAIN	0.912	0	0.75	0	0	1.662
	100,000.00	3,000	\$30,39	\$91,170	\$0	\$75,000	\$0	\$0	\$166,170
PAINT Paint Structural Steel	U.C. per SF	0.08	CN-PAIN	2.431	0	0.1	0	0	2.531
	13,700.00	1,096	\$30.39	\$33,307	\$0	\$1,370	\$0	\$0	\$34,677
PAINT Decontaminable Coating - Hot Cell	U.C. per Sf	0.08	CN-PAIN	2.431	0	1.5	0	0	3.931
	26,000.00	2,080	\$30,39	\$63,211	\$0	\$39,000	\$0	\$0	\$102,211
PAINT	U.C. per Sf	0.011	CN-PAIN	0.334	0	0.5	0	0	0.834
Floor Painting	30,000.00	330	\$30,39	\$10,029	\$0	\$15,000	\$0	\$0	\$25,029
PAINT	U.C. per Lot	250	CN-PAIN	7597.5	0	4000	0	0	11597.5
Pipe Painting / I.D.	1.00	250	\$30.39	\$7,598	\$0	\$4,000	\$0	\$0	\$11,598
PAINT Paint Doors & Frames	U.C. per Ea	4	CN-PAIN	121.56	0	50	0	0	171.56
	20.00	80	\$30,39	\$2,431	\$0	\$1,000	\$0	\$0	\$3,431
PAINT	U.C. per Lot	80	CN-PAIN	2431.2	0	150	0	0	2581.2
Touch-Up Paint	1.00	80	\$30.39	\$2,431	\$0	\$150	\$0	\$0	\$2,581
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$210,177 \$0 \$88,134	\$0 \$0 \$0	\$135,520 \$6,776 \$59,669	\$0 \$0 \$0	\$0 \$0 \$0	\$345,697 \$6,776 \$147,803
Subtotal Estimate Escalation Contingency				\$76,547 \$97,463	\$0 \$0	\$51,824 \$65,985	\$0 \$0	\$0 \$0	\$500,276 \$128,371 \$163,448
Total 9109.2 FINISHES - TFD FACILITY		6,916		\$472,320	\$0	\$319,774	\$0	\$0	\$792,095
9109.3 FINISHES - BOILER HOUSE PAINT Paint Doors & Frames	U.C. per Ea	4	CN-PAIN	121.56	0	50	0	0	171.56
	4.00	16	\$30.39	\$486	\$0	\$200	\$0	\$0	\$686
PAINT	U.C. per Lot	16	CN-PAIN	486.24	0	150	. \$0	0	636.24
Touch-Up Paint	1.00	16	\$30.39	\$486	\$0	\$150		\$0	\$636
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$972 \$0 \$408	\$0 \$0 \$0	\$350 \$18 \$154	\$0 \$0 \$0	\$0 \$0 \$0	\$1,322 \$18 \$562
Subtotal Estimate Escalation Contingency				\$354 \$451	\$0 \$0	\$134 \$170	\$0 \$0	\$0 \$0	\$1,902 \$488 \$621
Total 9109.3 FINISHES - BOILER HOUSE		32		\$2,185	\$0	\$826	\$0	\$0	\$3,011

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

LEVEL Org/Subcontractor — 9109.4 FINISHES - STORAGE FACILITY	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	s/c	<u>Other</u>	TOTAL
PAINT Paint Structural Steel	U.C. per SF	0.08	CN-PAIN	2.431	0	0.1	0	0	2.531
	13,700.00	1,098	\$30.39	\$33,307	\$0	\$1,370	\$0	\$0	\$34,677
PAINT	U.C. per Sf	0.03	CN-PAIN	0.912	0	0.75	0	0	1.662
Building Painting	2,500.00	75	\$30.39	\$2,279	\$0	\$1,875	\$0	\$0	\$4,154
PAINT Decontaminable Coating - Remote Handling Area	U.C. per Sf	0.08	CN-PAIN	2.431	0	1.5	0	0	3.931
	22,000.00	1,760	\$30.39	\$53,486	\$0	\$33,000	\$0	\$0	\$86,486
PAINT Floor Painting - Decontaminable - Remote Handling Area	U.C. per Sf	0.08	CN-PAIN	2.431	0	1.5	0	0	3.93 1
	17,600.00	1 , 408	\$30.39	\$42,789	\$0	\$26,400	\$0	\$0	\$69,189
PAINT Pipe Painting / I.D.	U.C. per Lot	250	CN-PAIN	7597.5	0	4000	0	0	11597.5
	1.00	250	\$30,39	\$7,598	\$0	\$4,000	\$0	\$0	\$11,598
PAINT Paint Doors & Frames	U.C. per Ea	4	CN-PAIN	121.56	0	50	0	0	171.56
	7,00	28	\$30.39	\$851	\$0	\$350	\$0	\$0	\$1,201
PAINT	U.C. per Lot	40	CN-PAIN	1215.6	0	150	0	0	1365.6
Touch-Up Paint		40	\$30.39	\$1,216	\$0	\$150	\$0	\$0	\$1,368
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$141,526 \$0 \$59,346	\$0 \$0 \$0	\$67,145 \$3,357 \$29,564	\$0 \$0 \$0	\$0 \$0 \$0	\$208,671 \$3,357 \$88,910
Subtotal Estimate Escalation Contingency				\$51,544 \$65,628	\$0 \$0	\$25,677 \$32,693	\$0 \$0	\$0 \$0	\$300,938 \$77,221 \$98,321
Total 9109.4 FINISHES - STORAGE FACILITY		4,657		\$318,045	\$0	\$158,436	\$0	\$0	\$476,481
9110.1 SPECIALTIES - NWCF GEN Storage Racks GEN	U.C. per Lf 4,700.00 U.C. per Ea	0.25 1,175 400	CN-LABR \$30.09 CN-SKWK	7.523 \$35,356 13808	0 \$0 0	80 \$376,000 750000	0 \$0 0	0 \$0	87.523 \$411,356 763808
Auto Retrieval System With Three Fork Lifts	1.00	400	\$34.52	\$13,808	. \$0	\$750,000	\$0	\$0	\$763,808

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC
Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor	QTY		<u>Hrs</u>	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
9110.1 SPECIALTIES - NWCF GEN Truck Loading Station	U.C. per Ea	1.00	550 550	CN-SKWK \$34.52	18986 \$18,986	0 \$0	50000 \$50,000	0 \$0	0 \$0	68986 \$68,986
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$68,150 \$0 \$24,181	\$0 \$0 \$0	\$1,176,000 \$58,800 \$438,126	\$0 \$0 \$0	\$0 \$0 \$0	\$1,244,150 \$58,800 \$462,306
Subtotal Estimate Escalation Contingency					\$23,692 \$34,807	\$0 \$0	\$429,273 \$630,659	\$0 \$0	\$0 \$0	\$1,765,256 \$452,965 \$665,466
Total 9110.1 SPECIALTIES - NWCF			2,125		\$150,829	\$0	\$2,732,858	\$0	\$0	\$2,883,687
9110.2 SPECIALTIES - TFD FACILITY GEN 20 Ton O.H. Crane	U.C. per Ea	1.00	120 120	CN-IRON \$40.16	4819.2 \$4,819	0 \$0	75000 \$75,000	0 \$0	0 \$0	79819,2 \$79,819
GEN Hot Cell O.H. Crane	U.C. per Ea	1.00	80 80	CN-IRON \$40.16	3212.8 \$3,213	0 \$0	50000 \$50,000	0 \$0	0 \$0	53212.8 \$53,213
GEN Shielding Windows - 2' Thick	U.C. per Ea	8.00	100 800	CN-MILL \$32.92	3292 \$26,336	0 \$0	170000 \$1,360,000	0 \$0	0 \$0	173292 \$1,386,336
GEN PaR Manipulators - Model 4350 - Wall Mounted	U.C. per Ea	4.00	200 800	CN-MILL \$32.92	6584 \$26,336	0 \$0	1419000 \$5,676,000	0 \$0	0 \$0	1425584 \$5,702,336
GEN Robotic / Remote Handling Allowance	U.C. per Lot	1.00	0		0 \$0	0 \$0 ,	0 \$0	6000000 \$6,000,000	0 \$0	6000000 \$6,000,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$60,704 \$0 \$21,539	\$0 \$0 \$0	\$7,161,000 \$358,050 \$2,667,872	\$6,000,000 \$0 \$2,128,890	\$0 \$0 \$0	\$13,221,704 \$358,050 \$4,818,300
Subtotal Estimate Escalation Conlingency					\$21,103 \$31,004	\$0 \$0	\$2,613,964 \$3,840,266	\$2,085,873 \$3,064,429	\$0 \$0	\$18,398,054 \$4,720,941 \$6,935,699
Total 9110.2 SPECIALTIES - TFD FACILITY			1,800		\$134,350	\$0	\$16,641,152	\$13,279,192	\$0	\$30,054,694
9110.3 SPECIALTIES - BOILER HOUSE GEN 10 Ton O.H. Crane	U.C. per Ea	1.00	100 100	CN-IRON \$40.16	4016 \$4,016	0 \$0	40000 \$40,000	0 \$0	0 \$0	44016 \$44,016

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

Client:

V. J. Balls

LEVEL Org/Subcontractor 9110.3 SPECIALTIES - BOILER HOUSE	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$4,016 \$0 \$1,425	\$0 \$0 \$0	\$40,000 \$2,000 \$14,902	· \$0 \$0 \$0	\$0 \$0 \$0	\$44,016 \$2,000 \$16,327
Subtotal Estimate Escalation Conlingency				\$1,396 \$2,051	\$0 \$0	\$14,601 \$21,451	\$0 \$0	\$0 \$0	\$62,343 \$15,997 \$23,502
Total 9110.3 SPECIALTIES - BOILER HOUSE		100		\$8,888	\$0	\$92,954	\$0	\$0	\$101,843
9110.4 SPECIALTIES - STORAGE FACILITY GEN VAULT TUBE ASSEMBLIES	U.C. per EA 1,58	50 34.00 79,200	CN-IRON \$40.16	2008 \$3,180,672	0 \$0	23100 \$36,590,400	0 \$0	0 \$0	25108 \$39,771,072
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$3,180,672 \$0 \$1,128,550	\$0 \$0 \$0	\$36,590,400 \$1,829,520 \$13,631,964	\$0 \$0 \$0	\$0 \$0 \$0	\$39,771,072 \$1,829,520 \$14,760,514
Subtotal Estimate Escalation Contingency				\$1,105,746 \$1,624,491	\$0 \$0	\$13,356,513 \$19,622,519	\$0 \$0	\$0 \$0	\$56,361,106 \$14,462,260 \$21,247,010
Total 9110.4 SPECIALTIES - STORAGE FACILITY		79,200		\$7,039,459	\$0	\$85,030,917	\$0	\$0	\$92,070,376
9111.1.1 EQUIPMENT - CALCINER CELL PIPE Filter Feed Pump - P-201-2a & 2b (Skid Mounted)	U.C. per Ea	2.00 20	CN-PIPE \$37.58	375.8 \$752	0 \$0	7500 \$15,000	0 \$0	0 \$0	7875,8 \$15,752
PIPE SBW Slurry XFR Pump - P-201-6a, b - 30 hp	U.C. per Ea	2.00 6 12	CN-PIPE \$37.58	225.48 \$451	500 \$1,000	5500 \$11,000	0 \$0	0 \$0	6225.48 \$12,451
PIPE SBW Day Tank - T-201-2a, b - 1179 Gal SST	U.C. per Ea	2.00 8 16	CN-PIPE \$37.58	300.64 \$601	· \$0	15000 \$30,000	0 \$0	0 \$0	15300.64 \$30,601
PIPE Cross Flow Filler - CF-201-1, 2 (36"x60"x65")	U.C. per Ea	2.00 40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	100000 \$200,000	0 \$0	0 \$0	101503.2 \$203,006
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$4,810 \$0 \$2,314	\$1,000 \$0 \$481	\$256,000 \$12,800 \$129,304	\$0 \$0 \$0	\$0 \$0 \$0	\$261,810 \$12,800 \$132,099
Subtotal Estimate Escalation Contingency				\$1,828 \$6,177	\$380 \$1,284	\$102,153 \$345,177	\$0 \$0	\$0 \$0	\$406,709 \$104,381 \$352,638
Total 9111.1.1 EQUIPMENT - CALCINER CELL		128		\$15,129	\$3,145	\$845,434	\$0	\$0	\$863,709

... ISTRUCTION DETAIL ITEM REPORT Project Name:

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX in NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Client:

LEVEL Org/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	_TOTAL_
9111.1.2 EQUIPMENT - OFF GAS CELL PIPE Extraction Feed Pump - P-201-5375 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	1200 \$1,200	0 \$0	0 \$0	1275.16 \$1,275
PIPE Solvent Feed Pump - P-202-525 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	500 \$500	0 \$0	0 \$0	575.16 \$575
PIPE UNEX Solvent Tank - T-202-5 - 500 Gal SST	U.C. per Ea	1.00	6 6	CN-PIPE \$37.58	225.48 \$225	0 \$0	8500 \$8,500	0 \$0	0 \$0	8725.48 \$8,725
PIPE Extraction Contactor - CON-202-1-14 (3'x13'x5')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	300000 \$300,000	0 \$0	0 \$0	301751.6 \$301,752
PIPE Scrubbing Contactor - SB-202-1-2 (3'x2'x5')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	300000 \$300,000	0 \$0	0 \$0	301751.6 \$301,752
PIPE Stripping Contactor - SP-202-1-8 (3'x7'x5')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	300000 \$300,000	0 \$0	0 \$0	301751.6 \$301,752
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$2,631 \$0 \$1,265	\$3,000 \$0 \$1,443	\$910,200 \$45,510 \$459,735	\$0 \$0 \$0	\$0 \$0 \$0	\$915,831 \$45,510 \$462,443
Subtotal Estimate Escalation Contingency					\$1,000 \$3,378	\$1,140 \$3,852	\$363,203 \$1,227,267	\$0 \$0	\$0 \$0	\$1,423,784 \$365,343 \$1,234,498
Total 9111.1.2 EQUIPMENT - OFF GAS CELL			70		\$8,274	\$9,436	\$3,005,915	\$0	\$0	\$3,023,624
9111.1.3 EQUIPMENT - BLEND & HOLD CELL. PIPE SBW Feed Tank - T-201-1 - 4718 Gal. SST	U.C. per Ea	1.00	12 12	CN-PIPE \$37.58	450.96 \$451	500 \$500	31000 \$31,000	0 \$0	0 \$0	31950.96 \$31,951
PIPE Extraction Feed Tank - T-201-5a, b, c - 2359 Gal. SST	U.C. per Ea	3.00	10 30	CN-PIPE \$37.58	375.8 \$1,127	500 \$1,500	21000 \$63,000	0 \$0	· 0 \$0	21875.8 \$65,627
PIPE UNEX Raffinate Tank - T-202-6a, b - 1761 Gal. SST	U.C. per Ea	2.00	8 16	CN-PIPE \$37.58	300.64 \$601	250 \$500	18600 \$37,200	0 \$0	0 \$0	19150.64 \$38,301

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor 9111.1.3 EQUIPMENT - BLEND & HOLD CELL	QTY	_	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	_S/C_	Other	TOTAL
PIPE UNEX Strip Effluent Tank - T-202-14 - 1124 Gal. SST	U.C. per Ea	1.00	6 6	CN-PIPE \$37.58	225.48 \$225	250 \$250	14900 \$14,900	0 \$0	0 \$0	15375.48 \$15,375
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$2,405 \$0 \$1,157	\$2,750 \$0 \$1,323	\$146,100 \$7,305 \$73,794	\$0 \$0 \$0	\$0 \$0 \$0	\$151,255 \$7,305 \$76,274
Subtotal Estimate Escalation Contingency				, , , , , , , , , , , , , , , , , , , ,	\$914 \$3,089	\$1,045 \$3,531	\$58,299 \$196,994	\$0 \$0	\$0 \$0	\$234,834 \$60,258 \$203,614
Total 9111.1.3 EQUIPMENT - BLEND & HOLD CELL			64		\$7,565	\$8,649	\$482,492	\$0	\$0	\$498,706
9111.1.4 EQUIPMENT - VALVE CUBICLE PIPE SBW XFR Pump - P201-1 - 30 hp	U.C. per Ea	1.00	16 16	CN-PIPE \$37.58	601.28 \$601	0 \$0	4500 \$4,500	0 \$0	o \$0	5101.28 \$5,101
PIPE Raffinate XFR Pump - P-202-6a25 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	600 \$600	0 \$0	0 \$0	712.74 \$713
PIPE Raffinate Off Spec. XFR Pump - P-202-6b - 2 hp	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	0 \$0	2800 \$2, 800	0 \$0	0 \$0	2950.32 \$2,950
PIPE Strip Effluent XFR Pump - P-202-1425 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	600 \$600	0 \$0	0 \$0	712.74 \$713
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$977 \$0 \$470	\$0 \$0 \$0	\$8,500 \$425 \$4,293	\$0 \$0 \$0	\$0 \$0 \$0	\$9,477 \$425 \$4,763
Subtotal Estimate Escalation Contingency					\$371 \$1,255	\$0 \$0	\$3,392 \$11,461	\$0 \$0	\$0 \$0	\$14,665 \$3,763 \$12,716
Total 9111.1.4 EQUIPMENT - VALVE CUBICLE			26		\$3,073	\$0	\$28,071	\$0	\$0	\$31,144
<u>9111.1.5 EQUIPMENT - STORAGE AREA</u> PIPE HF Pump - P-201-4125 hp	U.C. per Ea	1.00	· 2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Dicarbolide Feed Pump - P-202-175 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 ·	912.74 \$913
PIPE PEG Feed Pump - P-202-2 - ,75 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE CMPO Feed Pump - P-202-375 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC
Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor 9111.1.5 EQUIPMENT - STORAGE AREA	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Mati	_S/C_	Other	TOTAL
FS-13 Feed Pump - P-202-475 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE Acid Feed Pump - P-202-775 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	· 0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE Aluminum Nitrate Feed Pump - P-202-875 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE Scrub Makeup XFR Pump - P-202-925 hp	U.C. per Ea	1.00	2 · 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Scrub Solution Feed Pump - P-202-1025 hp	U.C. per Ea	1.00	2 2	CN-PIPE . \$37.58	75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Strip Makeup XFR Pump - P-202-1225 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Strip Solution Feed Pump - P-202-1325 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	600 \$600	o \$0	0 \$0	675.16 \$675
PIPE HF Storage Tank - T-201-3 - 4000 Gal C-276	U.C. per Ea	1.00	16 16	CN-PIPE \$37.58	601.28 \$601	500 \$500	20500 \$20,500	0 \$0	0 \$0	21601.28 \$21,601
PIPE HF Makeup Tank - T-201-4 - 237 Gal C-276	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	4000 \$4,000	0 \$0	0 \$0	4112.74 \$4,113
PIPE Dicarbolide Feed Tank - T-202-1 - 55 Gal. SST	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	2000 \$2,000	0 \$0	0 \$0	2112.74 \$2,113
PIPE PEG 400 Feed Tank - T-202-2 - 55 Gal. SST	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	2000 \$2,000	0 \$0	0 \$0	2112.74 \$2,113
PIPE Ph2Bu2CMPO Feed Tank - T-202-3a, b - 55 Gal. SST	U.C. per Ea	2.00	3 6	CN-PIPE \$37.58	112.74 \$225	0 \$0	2000 \$4,000	0 \$0	0 \$0	2112.74 \$4,225
PIPE FS-13 Tank - T-202-4 - 55 Gal, SST	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	2000 \$2,000	0 \$0	0 \$0	2112.74 \$2,113
PIPE Recycle Acid Tank - T-202-7 - 55 Gal. SST	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	2000 \$2, 000	0 \$0	0 \$0	2112.74 \$2,113
PIPE Aluminum Nitrate Tank - T-202-8 -55 Gal, SST	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	2000 \$2,000	0 \$0	0 \$0	2112.74 \$2,113
PIPE UNEX Scrub Makeup Tank - T-202-9 - 807 Gal. SST	U.C. per Ea	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	500 \$500	11900 \$11,900	0 \$0	0 \$0	12775.8 \$12,776
PIPE UNEX Scrub Solution Tank - T-202-10 - 888 Gal. SST	U.C. per Ea	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	500 \$500	12500 \$12,500	0 \$0	0 \$0	13375.8 \$13,376

08/30/2000

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC
Estimate Number: 2570 - Option C

LEVEL Org/Subcontractor — 9111,1.5 EQUIPMENT - STORAGE AREA	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	_S/C_	Other	TOTAL
PIPE DPTA Storage Tank - T-202-11 - 55 Gal. SST (UNEX Only)	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	2000 \$2,000	0 \$0	0 \$0	2112.74 \$2,113
PIPE UNEX Strip Makeup Tank - T-202-12 - 1132 Gal. SST	U.C. per Ea	1.00	12 12	CN-PIPE \$37.58	450.96 \$451	500 \$500	15000 \$15,000	0 \$0	0 \$0	15950.96 \$15,951
PIPE UNEX Strip Solution Feed Tank - T-202-13 - 1245 Gal. SST	U.C. per Ea	1.00	12 12	CN-PIPE \$37.58	450.96 \$ 451	500 \$500	16000 \$16,000	0 \$0	0 \$0	16950.96 \$16,951
GEN Remote Handling Equipment	U.C. per Lot	1.00	750 750	CN-SKWK \$34.52	25890 \$25,890	0 \$0	750000 \$750,000	0 \$0	0 \$0	775890 \$775,890
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$30,212 \$0	\$2,500 \$0	\$853,700 \$42,685	\$0 \$0	\$0 \$0	\$886,412 \$42,685
Subtotal Estimate					\$11,265	\$1,203	\$331,795	\$0	\$0	\$344,263 \$1,273,359
Escalation Contingency					\$10,643 \$35,963	\$950 \$3,210	\$315,151 \$1,064,898	\$0 \$0	\$0 \$0	\$326,744 \$1,104,071
Total 9111.1.5 EQUIPMENT - STORAGE AREA			865		\$88,082	\$7,863	\$2,608,229	\$0	\$0	\$2,704,174
9111.6 EQUIPMENT - GROUT FACILITY PIPE LAW Evaporator Feed Pump - P-204-175 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	o \$0	0 \$0	912.74 \$913
PIPE LAW Evaporator Recirc / XFR Pump - P-204-2 (Skid Mounted)	U.C. per Ea	1.00	. 10 . 10	CN-PIPE \$37.58	375.8 \$376	0 \$0	7500 \$7,500	0 \$0	0 \$0	7875.8 \$7,876
PIPE LET&D Supply Pump - P-204-325 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	800 \$800	0 \$0	0 \$0	875.16 \$875
PIPE NaOH Feed Pump - P-205-1125 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Neutralization Tank Pump - P-205-2a, b, c75 hp	U.C. per Ea	3.00	3 9	CN-PIPE \$37,58	112.74 \$338	0 \$0	800 \$2, 400	0 \$0	0 \$0	912.74 \$2,738
PIPE LAW Evaporator Feed Tank - T-204-1 - 7884 Gal SST	U.C. per Ea	1.00	24 24	CN-PIPE \$37.58	901.92 \$902	1000 \$1,000	45000 \$45,000	0 \$0	0 \$0 ·	46901.92 \$46,902
PIPE LET&D Feed Tank - T-204-3 - 352 Gal SST	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	0 \$0	7500 \$7,500	0 \$0	0 \$0	7650.32 \$7,650
PIPE NaOH Storage Tank - T-205-1 - 400 Gal SST	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	0 \$0	8000 \$8,000	, \$0	0 \$0	8150.32 \$8,150
PIPE Neutralization Tank - T-205-2a, b, c - 1200 Gal SST	U.C. per Ea	3.00	8 24	CN-PIPE \$37.58	300.64 \$902	500 \$1,500	15400 \$46,200	0 \$0	0 \$0	16200.64 \$48,602

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: 1937

Estimate Numbra 27-27-1-201 C

Client:

V. J. Balls

LEVEL Org/Subcontractor 9111.6 EQUIPMENT - GROUT FACILITY	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C_	Other	TOTAL
B-105 PIPE Slag Storage Bin - T-205-5 - 875 CF	U.C. per EA	1.00	80 80	CN-PIPE \$37.58	3006.4 \$3,006	1000 \$1,000	55000 \$55 , 000	0 \$0	0 \$0	59006.4 \$59,008
B-102 PIPE CaO Storage Bin - T-205-6 - 1071 CF	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	1000 \$1,000	45000 \$45,000	0 \$0	0 \$0	48254.8 \$48,255
B-103 PIPE Portland Cement Bin - T-205-7 - 641 CF	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	1000 \$1,000	45000 \$45,000	0 \$0	0 \$0	48254.8 \$48,255
P!PE Slag Day Storage Tank - T-205-6a - 257 CF	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	250 \$250	9600 \$9,600	0 \$0	0 \$0	10000.32 \$10,000
PiPE CaOH Day Storage Tank - T-205-6b - 46 CF (UNEX Only)	U.C. per Ea	1.00	. 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	3700 \$3,700	0 \$0	0 \$0	3812.74 \$3,813
PIPE Portland Cement Day Storage Tank - T-205-6c - 28CF	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	3100 \$3,100	0 \$0	0 \$0	3212.74 \$3,213
PIPE LAW Evaporator - EV-204-1 (8'x10'x8')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	170000 \$170,000	0 \$0	0 \$0	171751.6 \$171,752
PIPE Vertical Auger - VA-205-1-6 (20"x40"x140")	U.C. per Ea	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	2000 \$2,000	150000 \$150,000	0 \$0	0 \$0	153503.2 \$153,503
PIPE Vertical Mixer - VM-205-1-6 (30"x60"x140")	U.C. per Ea	1.00	60 60	CN-PIPE \$37.58	. 2254.8 \$2,255	2000 \$2,000	150000 \$150,000	0 \$0	0 \$0	154254.8 \$154,255
B-104 PIPE FLYASH BIN - 34 M3	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	0 \$0	45000 \$45,000	0 \$0	0 \$0	47254.8 \$47,255
ED-101,2,3,4 PIPE AIR EDUCTOR - 9 Kg-S/hr	U.C. per EA	4.00	10 40	CN-PIPE \$37.58	375.8 \$1,503	0 \$0	3500 \$14,000	0 \$0	0 \$0	3875.8 \$15,503
B-107 PIPE CaO WEIGHT BIN4 M3	U.C. per EA	1.00	30 30	CN-PIPE \$37.58	1127.4 \$1,127	0 \$0	4000 \$4,000	0 \$0	0 \$0	5127.4 \$5,127
T-104A&B PIPE GROUT FEED TANK - 7 M3	U.C. per EA	2.00	80 160	CN-PIPE \$37.58	3006.4 \$6,013	0 \$0	35000 \$70,000	0 \$0	0 \$0	38006.4 \$76,013
N-101A&B PIPE pH SAMPLER/NEUTRALIZER	U.C. per EA	2.00	10 20	CN-PIPE \$37.58	375.8 \$752	0 \$0	6000 \$12,000	0 \$0	0 \$0	6375.8 \$12,752
P-105A&B PIPE GROUT MIXER FEED PUMP - 2-16 L/MIN	U.C. per EA	2.00	15 30	CN-PIPE \$37.58	563.7 \$1,127	° 0 \$0	6000 \$12,000	0 \$0	0 \$0	6563.7 \$13,127
B-108A,B&C PIPE DRY INGREDIENT WEIGH BIN2 M3	U.C. per EA	3.00	15 45	CN-PIPE \$37.58	563.7 \$1,691	0 \$0	2000 \$6,000	0 \$0	0 \$0	2563.7 \$7,691
C-101A,B&C PIPE SOLIDS FEED CONVEYOR - 8 Kg/MIN	U.C. per EA	3.00	10 30	CN-PIPE \$37.58	375.8 \$1,127	o \$0	2500 \$7,500	0 \$0.	0 \$0	2875.8 \$8,627

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	·S/C	<u>Other</u>	TOTAL
M-101A,B&C PIPE GROUT MIXER3 M3	U.C. per EA	3.00 180		2254.8 \$6,764	0 \$0	20000 \$60,000	0 \$0	0 \$0	22254.8 \$66,764
B-106A PIPE DRY GROUT ADMIXTURES BIN4 M3	U.C. per EA	1.00 20		751.6 \$752	0 \$0	2500 \$2,500	o \$0	0 \$0	3251.6 \$3,252
B-106B&C PIPE LIQUID GROUT ADMIXTURES TANK	U.C. per EA	2.00 19		563,7 \$1,127	0 \$0	500 \$1,000	0 \$0	0 \$0	1063.7 \$2,127
P-106 PIPE DECON AGENT PUMP - 76 L/MIN	U.C. per EA	1.00 3		1127.4 \$1,127	0 \$0	8000 \$8,000	0 \$0	0 \$0	9127.4 \$9,127
P-115 PIPE METERING PUMP/ADMIXTURES - 1 L/MIN	· U.C. per EA	1.00		375.8 \$376	0 \$0	5000 \$5,000	0 \$0	0 \$0	5375.8 \$5,376
T-106 PIPE MIXER WASH TANK - 1 M3	U.C. per EA	1.00 5		1879 \$1,879	. \$0	10000 \$10,000	0 \$0	0 \$0	11879 \$11,879
P-116. PIPE DECON RETURN PUMP - 76 L/MIN	U.C. per EA	1.00 3		1127.4 \$1,127	0 \$0	8000 \$8,000	0 \$0	0 \$0	9127.4 \$9,127
F-105 • PIPE SPENT DECON SOLUTION FILTER -	U.C. per EA	1.00 10		375.8 \$376	0 \$0	5000 \$5,000	0 \$0	0 \$0	5375.8 \$5,376
PIPE STORAGE AREA CONVEYOR	U.C. per EA	1.00 4	\$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE AIRLOCK	U.C. per EA	1.00 20		7516 \$7,516	0 \$0	80000 \$80,000	0 \$0	0 \$0	87516 \$87,516
PIPE AIRLOCK CONVEYOR	U.C. per EA	1.00		1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE MAIN INLET CONVEYOR	U.C. per EA	1.00 10	\$37.58	3758 \$3,758	0 \$0	35000 \$35,000	0 \$0	0 \$0	38758 \$38,758
PIPE TRANSVERSE SECTION LIFT	U.C. per EA	2.00 6	\$37.58	1127.4 \$2,255	0 \$0	10000 \$20,000	0 \$0	0 \$0	11127.4 \$22,255
PIPE MIXER BOOTH INLET CONVEYOR		1.00 4	\$37.58	1503.2 \$1, 503	, 0 \$0	10000 \$10,000	0 \$0	0 \$0	11503,2 \$11,503
PIPE MIXER BOOTH	U.C. per EA	1.00 10	\$37.58	3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758
PIPE MIXER BOOTH CONVEYOR	U.C. per EA	1.00	\$37.58	1503.2 \$1 ,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE FILL ASSEMBLY	U.C. per EA	1.00 20		7516 \$7,516	0 \$0	50000 \$50,000	0 \$0	0 \$0	57516 \$57,516

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

₹T

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

Client:

LEVEL Org/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
9111.6 EQUIPMENT - GROUT FACILITY PIPE LID PLACEMENT BOOTH	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758
PIPE LID PLACEMENT INLET CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE LID PLACEMENT OUTLET CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE LID PLACEMENT CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	15000 \$15,000	0 \$0	0 \$0	16503.2 \$16,503
PIPE ROTATING TABLE	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE DRUM RIM CLEANING MECHANISM	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE LID PLACEMENT ASSEMBLY	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	30000 \$30,000	0 \$0	0 \$0	33758 \$33,758
PIPE TRANSFER SECTION TUNNEL	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	70000 \$70,000	0 \$0	0 \$0	77516 \$77,516
PIPE TRANSFER SECTION INLET CONVEYOR	U.C. per EA	3.00	40 120	CN-PIPE \$37.58	1503.2 \$4,510	0 \$0	10000 \$30,000	0 \$0	0 \$0	11503.2 \$34,510
PIPE TRANSFER SECTION EXIT CONVEYOR	U.C. per EA	3.00	40 120	CN-PIPE \$37.58	1503.2 \$4,510	0 \$0	10000 \$30,000	0 \$0	0 \$0	11503.2 \$34,510
PIPE TRANSFER TABLE	U.C. per EA	3.00	30 90	CN-PIPE \$37.58	1127.4 \$3,382	0 \$0	10000 \$30,000	0 \$0	0 \$0	11127.4 \$33,382
PIPE TRANSVERSE CONVEYOR	U.C. per EA	2.00	40 80	CN-PIPE \$37.58 CN-PIPE	1503.2 \$3,006 3758	0 \$0	10000 \$20,000	0 \$0	0 \$0	11503.2 \$23,006
INSPECTION BOOTH	U.C. per EA	1.00	100 100	\$37.58 CN-PIPE	\$3,758 \$3,758	0 \$0	80000 \$80,000 5000	0 \$0	0 \$0	83758 \$83,758
PIPE INSPECT/DECON INLET CONVEYOR	U.C. per EA	1.00	20 20	\$37.58 CN-PIPE	751.6 \$752 751.6	0 \$0	\$5,000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE INSPECT/DECON EXIT CONVEYOR	U.C. per EA	1.00	20 20 40	\$37.58 CN-PIPE	\$752 \$752	0 \$0	\$5,000 \$5,000	0 \$0 0	0 \$0	5751.6 \$5,752 11503.2
PIPE INSPECT/DECON CONVEYOR	U.C. per EA	1.00	40	\$37.58 CN-PIPE	\$1,503 \$1,503	\$0	\$10,000	\$0	\$0	\$11,503
PIPE ROTATING TABLE	U.C. per EA	1.00	100 100	\$37.58	\$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option C

LEVEL Org/Subcontractor	_QTY	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
— 9111.6 EQUIPMENT - GROUT FACILITY PIPE DECON EQUIPMENT	U.C. per LOT 1.	.00 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	30000 \$30,000	0 \$0	0 \$0	33758 \$33,758
PIPE INSPECTION EQUIPMENT	U.C. per LOT 1.	.00 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	50000 \$50,000	. 0 \$0	0 \$0	53758 \$53,758
PIPE DISCHARGE SECTION TUNNEL	U.C. per EA 1.	.00 200	CN-PIPE \$37.58	7518 \$7,516	o \$0	70000 \$70,000	0 \$0	0 \$0	77516 \$77,516
PIPE DISCHARGE SECTION INLET CONVEYOR .	U.C. per EA	40 1.00 120	CN-PIPE \$37.58	1503.2 \$4,510	0 \$0	10000 \$30,000	0 \$0	0 \$0	11503.2 \$34,510
PIPE MAIN DISCHARGE CONVEYOR	U.C. per EA 1	.00 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	35000 \$35,000	0 \$0	0 \$0	38758 \$38,758
PIPE TRANSFER SECTION LIFT		30 30 90	CN-PIPE \$37.58	1127.4 \$3,382	0 \$0	10000 \$30,000	0 \$0	0 \$0	11127.4 \$33,382
PIPE AIRLOCK		.00 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	80000 \$80,000	0 \$0	0 \$0	87516 \$87,516
PIPE AIRLOCK CONVEYOR		.00 40	CN-PIPE \$37.58	1503.2 \$1,503	\$0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE TILT & PAN CAMERA		.00 140	CN-PIPE \$37.58	375.8 \$5,261	0 · \$0	2000 \$28,000	0 \$0	0 \$0	2375.8 \$33,261
PIPE CAMERA CONTROL STATION		.00 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	15000 \$15,000	0 \$0	0 \$0	16503.2 \$16,503
PIPE INLET STAGING, DRUM LIFT, CURE LINE & DRUM LIFT ENCLOSURE	U.C. per LOT 1	.00 500	CN-PIPE \$37.58	18790 \$18,790	0 \$0	250000 \$250,000	0 \$0	0 \$0	268790 \$268,790
PIPE INLET STAGING CONVEYOR	U.C. per EA	.00 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	、 0 \$0	0 \$0	11503.2 \$11,503
PIPE DRUM LIFT	U.C. per EA 2	30 2.00 60	CN-PIPE \$37.58	1127.4 \$2,255	0 \$0	10000 \$20,000	0 \$0	0 \$0	11127.4 \$22,255
PIPE DRUM LIFT CONVEYOR		2.00 40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	10000 \$20,000	0 \$0	0 \$0·	11503.2 \$23,006
PIPE CURE LINE CONVEYOR		2.00 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	10000 \$20,000	0 \$0	0 \$0	11503.2 \$23,008
PIPE 180 DEGREE CONVEYOR		60 3.00 480	CN-PIPE \$37.58	2254.8 \$18,038	0 \$0	20000 \$160,000	0 \$0	0 \$0	22254.8 \$178,038
PIPE CURE LINE CONVEYOR 13'	U.C. per EA 8	60 3.00 480	CN-PIPE \$37.58	2254.8 \$18,038	0 \$0	20000 \$160,000	0 \$0	0 \$0	22254.8 \$178,038

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor 9111.6 EQUIPMENT - GROUT FACILITY	_QTY_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
PIPE STAGING CONVEYOR	U.C. per EA	20	CN-PIPE	751.6	0	5000	0	0	5751,6
	1.0	00 20	\$37.58	\$752	\$0	\$5,000	\$0	\$0	\$5,752
. PIPE	U.C. per EA	400	CN-PIPE	15032	0	200000	0	0	215032
DRUM ELEVATOR & ENCLOSURE	1.0	00 400	\$37.58	\$15,032	\$0	\$200,000	\$0	\$0	\$215,032
PIPE	U.C. per EA	40	CN-PIPE	1503.2	0	10000	0	0	11503.2
INLET INDEXING LIFT CONVEYOR	1.0	00 40	\$37.58	\$1,503	\$0	\$10,000	\$0	\$0	\$11,503
PIPE . INDEXING LIFT TABLE	U.C. per EA	30 30	CN-PIPE \$37.58	1127.4 \$1,127	0 \$0	10000 \$10,000	0 \$0	0 \$0	11127.4 \$11,127
PIPE	U.C. per EA	100	CN-PIPE	3758	0	20000	0	0	23758
INDEXING ARM	1.0	00 100	\$37.58	\$3,758	\$0	\$20,000	\$0	\$0	\$23,758
PIPE DEWATERING STATION 30' CONVEYOR	U.C. per EA 1.0	70 70 70	CN-PIPE \$37.58	2630.6 \$2,631	0 \$0	40000 \$40,000	0 \$0	0 \$0	42630.6 \$42,631
PIPE	U.C. per EA	20	CN-PIPE	751.6	0	5000	0	0	5751.6
90 DEG TRANSFER & LIFT	2.0	00 40	\$37.58	\$1,503	\$0	\$10,000	\$0	\$0	\$11,503
PIPE	U.C. per EA		CN-PIPE	1503.2	0	10000	0	0	11503.2
DEWATERING STATION CONVEYOR	1.0		\$37.58	\$1,503	\$0	\$10,000	\$0	\$0	\$11,503
PIPE AIR HEATERS	U.C. per EA 9.0		CN-PIPE \$37.58	375.8 \$3,382	0 \$0	2000 \$18,000	0 \$0	0 \$0	2375.8 \$21,382
PIPE DEWATERING STATION LINE LIFT	U.C. per EA 9.0		CN-PIPE \$37.58	1127.4 \$10,147	0 \$0	10000 \$90,000	0 \$0	0 \$0	11127.4 \$100,147
PIPE DRUM OFF LOAD CONVEYOR	U.C. per EA 1.0		CN-PIPE \$37.58	2254.8 \$2,255	0 \$0	20000 \$20,000	0 \$0	0 \$0	22254.8 \$22,255
PIPE . HYDRAULIC DRUM LIFT E-104 PIPE	U.C. per EA		CN-PIPE \$37.58	1879 \$1,879	0 \$0	20000 \$20,000	0 \$0	0 \$0	21879 \$21,879
VAPOR CONDENSER - 2 Kg/hr	U.C. per EA .	60	CN-PIPE	2254.8	0	50000	0	0	52254.8
	1.0	60	\$37.58	\$2,255	\$0	\$50,000	\$0	\$0	\$52,255

CONSTRUCTION DETAIL ITEM REPORT

the state of the first of the f

Client:

V. J. Balls

Project Location: INTEC

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

Estimate Number: 2570 - Option C

LEVEL Org/Subcontractor — 9111.6 EQUIPMENT - GROUT FACILITY	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
P-118 PIPE CONDENSATE PUMP - 4 L/MIN	U.C. per EA	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	0 \$0	6000 \$6,000	0 \$0	0 \$0	6375.8 \$6,376
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$282,113 \$0 \$135,708	\$10,750 \$0 \$5,171	\$3,267,200 \$163,360 \$1,650,237	\$0 \$0 \$0	\$0 \$0 \$0	\$3,560,063 \$163,360 \$1,791,115
Subtotal Estimate Escalation Contingency					\$107,213 \$362,273	\$4,085 \$13,805	\$1,303,732 \$4,405,325	\$0 \$0	\$0 \$0	\$5,514,538 \$1,415,031 \$4,781,403
Total 9111.6 EQUIPMENT - GROUT FACILITY	•		7,507		\$887,307	\$33,811	\$10,789,854	\$0	\$0	\$11,710,972
9111.2 EQUIPMENT - THIN FILM DRYER FACILITY PIPE Thin Film Dryer -TFD203-1 (12'x12'x25')	U.C. per Ea	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	3000 \$3,000	1000000 \$1,000,000	0 \$0	0 \$0	1006758 \$1,006,758
PIPE TFD Feed Pump - P-203-225 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$7 5	0 \$0	500 \$500	0 \$0	0 \$0	575.16 \$575
PIPE Strip Cystallizer Condensate Pump - P-203-1 - Skld Mounted	U.C. per Ea	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	0 \$0	7500 \$7,500	0 \$0	0 \$0	7875.8 \$7,876
PIPE TFD Vacuum Pump - VP-203-1	U.C. per Ea	1.00	6 6	CN-PIPE \$37.58	225.48 \$225	0 \$0	10000 \$10,000	0 \$0	0 \$0	10225.48 \$10,225
PIPE Chrystallizer Condensate Tank - T-203-1 - 10 Gal - SST	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	1500 \$1,500	0 \$0	0 \$0	1575.16 \$1,575
PIPE Strip Feed Tank - T-203-2 - 1124 Gal SST (NWCF Only)	U.C. per Ea	1.00	8 8	CN-PIPE \$37.58	300,64 \$301	500 \$500	15000 \$15,000	0 \$0	0 \$0	15800.64 \$15,801
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$4,810 \$0 \$2,314	\$3,500 \$0 \$1,684	\$1,034,500 \$51,725 \$522,518	\$0 \$0 \$0	\$0 \$0 \$0	\$1,042,810 \$51,725 \$526,515
Subtotal Estimate Escalation Contingency					\$1,828 \$6,177	\$1,330 \$4,494	\$412,803 \$1,394,867	\$0 \$0	\$0 \$0 _.	\$1,621,050 \$415,962 \$1,405,538
Total 9111.2 EQUIPMENT - THIN FILM DRYER FACILITY			128		\$15,129	\$11,008	\$3,416,413	\$0	\$0	\$3,442,550
9111.3 EQUIPMENT - BOILER HOUSE GEN BOILERS	U.C. per EA	2.00	60 120	CN-BOILMK \$23.08	1384.8 \$2,770	0 \$0	200000 \$400,000	0 \$0	0 \$0	201384.8 \$402,770
GEN FEED WATER HEATER	U.C. per EA	2.00	40 80	CN-BOILMK \$23.08	923.2 \$1,846	0 \$0	20000 \$40,000	0 \$0	0 \$0	20923.2 \$41,846

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option C

Client:

V. J. Balls

LEVEL Org/Subcontractor 9111.3 EQUIPMENT - BOILER HOUSE	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	_TOTAL_
PIPE CHEMICAL FEED SYSTEM	U.C. per LOT	500 500	CN-PIPE \$37.58	18790 \$18,790	0 \$0	100000 \$100,000	0 \$0	0 \$0	118790 \$118,790
PIPE	U.C. per LOT	1800	CN-PIPE	67644	0	250000	0	0	317644
WATER TREATMENT SYSTEM	1.0	00 1,800	\$37.58	\$67,644	\$0	\$250,000	\$0	\$0	\$317,644
TANK OIL STORAGE TANK, ~750 BBL	U.C. per BBL 750.0	00 O		0 \$0	0 \$0	0 \$0	65 \$48,750	0 \$0	65 \$48,750
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$91,050 \$0 \$43,216	\$0 \$0 .\$0	\$790,000 \$39,500 \$340,707	\$48,750 \$0 \$20,442	\$0 \$0 \$0	\$929,800 \$39,500 \$404,365
Subtotal Estimate Escalation Contingency				\$34,453 \$116,416	\$0 \$0	\$300,275 \$1,014,632	\$17,755 \$59,993	\$0 \$0	\$1,373,665 \$352,482 \$1,191,042
Total 9111.3 EQUIPMENT - BOILER HOUSE		2,500		\$285,135	\$0	\$2,485,114	\$146,941	\$0	\$2,917,189
9111.6 EQUIPMENT - STORAGE FACILITY GEN Remote Handling Equipment	U.C. per Lot	750 00 750	CN-SKWK \$34.52	25890 \$25,890	0 \$0	750000 \$750,000	O \$0	0 \$0	775890 \$775,890
GEN	U.C. per Ea	400	CN-SKWK	13808	0	2500000	0	0	2513808
Smeared Canister Loadout Crane	1.0	400	\$34.52	\$13,808	\$0	\$2,500,000	\$0	\$0	\$2,513,808
GEN Canister Storage Crane - Clean Environment	U.C. per Ea	400	CN-SKWK	13808	0	250000	0	0	263808
	1.0	400	\$34.52	\$13,808	\$0 .	\$250,000	\$0	\$0	\$263,808
GEN	U.C. per Ea	200	CN-SKWK	6904	0	103000	0	0	109904
Canister Heater	. 2.0	00 400	\$34.52	\$13,808	\$0	\$206,000	\$0	\$0	\$219,808
GEN	U.C. per Ea	100	CN-SKWK	3452	0	175000	0	0	178452
CO2 System	1.0	00 100	\$34.52	\$3,452	\$0	\$175,000	\$0	\$0	\$178,452
GEN Canister Transportation Cart	U.C. per Ea	100	CN-SKWK	3452	0	25000	0	0	28452
	1.0	00 100	\$34.52	\$3,452	\$0	\$25,000	\$0	\$0	\$28,452
GEN Canister Lifting Mechanism	U.C. per Ea	120	CN-SKWK	4142.4	0	257500	0	0	261642.4
	2.0	00 240	\$34.52	\$8,285	\$0	\$515,000	\$0	\$0	\$523,285
GEN	U.C. per Ea	80	CN-SKWK	2761.6	0	120000	0	0	122761.6
Canister Sealing Manipulator		80	\$34.52	\$2,762	\$0	\$120,000	\$0	\$0	\$122,762
GEN Decon Solution Pumping Station	U.C. per Ea	120	CN-SKWK	4142.4	0	50000	0	0	54142.4
	1.0	00 120	\$34.52	\$4,142	\$0	\$50,000	\$0	\$0	\$54,142
GEN Decon Cell Equipment	U.C. per Lot	240	CN-SKWK	8284.8	0	515000	0	0	523284.8
	1.0	00 240	\$34.52	\$8,285	\$0	\$515,000	\$0	\$0	\$523,285

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

Client:

V. J. Balls

	Org/Subcontractor	QTY	_	<u>Hrs</u>	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
	NT - STORAGE FACILITY GEN Equipment - Turntable, Manipulator	U.C. per Lot	1.00	240 240	CN-SKWK \$34.52	8284.8 \$8,285	0 \$0	500000 \$500,000	o \$0	0 \$0	508284.8 \$508,285
Smear Monitor	GEN	U.C. per Ea	1.00	100 100	CN-SKWK \$34.52	3452 \$3,452	0 \$0	515000 \$515,000	0 \$0	0 \$0	518452 \$518,452
Smear Station Module	GEN .	U.C. per Ea	1.00	0	CN-SKWK	0 \$0	0 \$0	0 \$0	42000 \$42,0 00	0 \$0	42000 \$42,000
Shuttle Cart	GEN	U.C. per Ea	1.00	80 80	CN-SKWK \$34.52	2761.6 \$2,762	0 \$0	150000 \$150,000	0 \$0	0 \$0	152761.6 \$152,762
Glove Box	GEN	U.C. per Ea	1.00	. 40	CN-SKWK \$34.52	1380.8 \$1,381	0 \$0	41200 \$41,200	0 \$0	0 \$0	42580.8 \$42,581
Cameras	GEN	U.C. per Ea	30.00	24 720	CN-SKWK \$34.52	828.48 \$24,854	0 \$0	3000 \$90,000	0 \$0	0 \$0	3828.48 \$114,854
Weld Station Module	GEN	U.C. per Ea	1.00	200 200	CN-SKWK \$34.52	6904 \$6, 904	0 \$0	103000 \$103,000	0 \$0	0 \$0	109904 \$109,904
HLW Canister Transfe	GEN or Cart	U.C. per Ea	1.00	400 400	CN-SKWK \$34.52	13808 \$13,808	0 \$0	2575000 \$2,575,000	0 \$0	0 \$0	2588808 \$2,588,808
Emply Canister Receiv	GEN ving Crane	U.C. per Ea	2.00	200 400	CN-SKWK • \$34.52	6904 \$13,808	0 \$0	7000 \$14,000	0 \$0	0 \$0	13904 \$27,808
PaR Manipulator	GEN	U.C. per Ea	1.00	200 200	CN-SKWK \$34.52	6904 \$6,904	0 \$0	250000 \$250,000	0 \$0	0 \$0	256904 \$256,904
Canister Fill Monitoring	GEN g Instruments	U.C. per Ea	2.00	0	CN-SKWK	0 \$0	0 \$0	0 \$0	2060000 \$4,120,000	0 \$0	2060000 \$4,120,000
Canister Welder Leak	GEN Check Module	U.C. per Ea	1.00	100 100	CN-SKWK \$34.52	3452 \$3,452	0 \$0	1030000 \$1,030,000	0 \$0	0 \$0	1033452 \$1,033,452
Misc. Equipment .	GEN	U.C. per Lot	1.00	300 300	CN-SKWK \$34.52	10356 \$10,356	· \$0	1000000 \$1,000,000	0 \$0	0 \$0	1010356 \$1,010,356
Subtotal Sales Tax INEEL ORG Labor/S	Subcontractor Overheads		-			\$193,657 \$0 \$68,712	\$0 \$0 \$0	\$11,374,200 \$568,710 \$4,237,524	\$4,162,000 \$0 \$1,476,740	\$0 \$0 \$0	\$15,729,857 \$568,710 \$5,782,976
Subtotal Estimate Escalation Contingency						\$67,324 \$227,489	\$0 \$0	\$4,151,899 \$14,029,310	\$1,446,901 \$4,889,092	\$0 \$0	\$22,081,543 \$5,666,124 \$19,145,890
Total 9111.6 EQUI	PMENT - STORAGE FACILITY			5,610		\$557,182	\$0	\$34,361,643	\$11,974,733	\$0	\$46,893,558

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

Client:

V. J. Balls

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
9111.7.1 EQUIPMENT DEMOLITION - CALCINER CELL PIPE Mock-Up Facility	U.C. per Lot	1.00	0	CN-PIPE	o \$0	o \$0	0 \$0	250000 \$250,000	0 \$0	250000 \$250,000
PIPE Lift & Bag Hatch Covers	U.C. per Lot	1.00	50 50	CN-PIPE \$37,58	1879 \$1,879	0 \$0	2000 \$2,000	0 \$0	0 \$0	3879 \$3,879
PIPE Portable Crane	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	5000 \$5,000	0 \$0	0 \$0	5000 \$5,000
PIPE Hydraulic Shears Modified For Remote Operation	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	20000 \$20,000	0 \$0	0 \$0	20000 \$20,000
PIPE Large Plasma Arc Modified For Remote Operation	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	50000 \$50,000	0 \$0	0 \$0	50000 \$50,000
PIPE Misc. Remote Adaptations	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	20000 \$20,000	0 \$0	0 \$0	20000 \$20,000
PIPE Cut Cyclone Bracket Supports PIPE	U.C. per Lot	1.00	200 200 300	CN-PIPE \$37,58 CN-PIPE	7516 \$7,516 11274	0 \$0	0 \$0 0	0 \$0	0 \$0 0	7516 \$7,516 11274
Temporary Support of Calciner PIPE	U.C. per Lot	1.00	300 300 200	\$37.58 CN-PIPE	\$11,274 \$11,274 7516	0 \$0 0	\$0 10000	0 \$0	\$0 0	\$11,274 \$11,274 17516
Demo Tent PIPE	U.C. per Lot U.C. per Lot	1,00	200	\$37.58 CN-PIPE	\$7,516 \$7,516	\$0 0	\$10,000 0	\$0 · 0	\$0 0	\$17,516 \$17,516
Cut Up And Hot-Box Celciner PIPE	U.C. per Box	1.00	2,000	\$37.58 CN-PIPE	\$75,160 751.6	\$0 0	\$0 0	\$0 0	\$0 0	\$75,160 751.6
"Hot Box" Malerials PIPE	U.C. per Lot	10.00	200 5000	\$37.58 CN-PIPE	\$7,516 187900	\$0 0	\$0 0	\$0 0	\$0 0	\$7,516 187900
Labor Adjustment For Working In "Hot" Area - 200% PIPE	U.C. per Lot	1,00	5,000 1875	\$37.58 CN-PIPE	\$187,900 70462.5	\$0 0	\$0 0	\$0 0	\$0 0	\$187,900 70462.5
Burn-Out Allowance - 25% Of Hot Work PIPE	U.C. per Lot	1.00	1,875 2500	\$37.58 CN-PIPE	\$70,463 93950	\$0 0	\$0 0	\$0 0	\$0 0	\$70,463 93950
Mock-Up Training - 100% Of Unadjusted Work		1.00	2,500	\$37.58	\$93,950	\$0	\$0	\$0	\$0	\$93,950

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC
Estimate Number: 2570 - Option C

LEVEL Org/Subcontractor 9111.7.1 EQUIPMENT DEMOLITION - CALCINER CELL	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C_	Other	TOTAL
PIPE Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0		0 \$0	0 \$0	37000 \$37,000	0 \$0	0 \$0	37000 \$37,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			, ,	,	\$463,174 \$0 \$222,805	\$0 \$0 \$0	\$144,000 \$7,200 \$72,733	\$250,000 \$0 \$120,260	\$0 \$0 \$0	\$857,174 \$7,200 \$415,798
Subtotal Estimate Escalation Contingency					\$176,022 \$594,780	\$0 \$0	\$57,461 \$194,162	\$95;009 \$321,035	\$0 \$0	\$1,280,172 \$328,492 \$1,109,978
Total 9111.7.1 EQUIPMENT DEMOLITION - CALCINER CELL	•		12,325		\$1,456,781	\$0	\$475,557	\$786,304	\$0	\$2,718,642
9111.7.2 EQUIPMENT DEMOLITION - OFF GAS CELL PIPE Lift & Bag Hatch Covers	U.C. per Lot	1.00	50 50	CN-PIPE \$37.58	1879 \$1,879	0 \$0	2000 \$2,000	0 \$0	0 \$0	3879 \$3,879
PIPE Portable Crane	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	5000 \$5,000	0 \$0	0 \$0	5000 \$5,000
PIPE Hydraulic Shears Modified For Remote Operation	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	20000 \$20,000	0 \$0	0 \$0	20000 \$20,000
PIPE Large Plasma Arc Modified For Remote Operation	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	50000 \$50,000	0 \$0	0 \$0	50000 \$50,000
PIPE Misc. Remote Adaptations	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	20000 \$20,000	· \$0	0 \$0	20000 \$20,000
PIPE Cut Tank Bracket Supports	U.C. per Ea	3.00	200 600	CN-PIPE \$37.58	7516 \$22,548	0 \$0	0 \$0	0 \$0	0 \$0	7516 \$22,548
PIPE Temporary Support of Tanks	U.C. per Ea	3.00	300 900	CN-PIPE \$37.58	11274 \$33,822	0 \$0	o \$0	0 \$0	0 \$0	11274 \$33,822
PIPE Demo Tent	U.C. per Lot	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	10000 \$10,000	0 \$0	0 \$0	17516 \$17,516
PIPE Cut Up And Hot-Box Tanks - 3 Ea.	U.C. per Lot	1.00	2000 2,000	CN-PIPE \$37.58	75160 \$75,160	0 \$0	0 \$0	0 \$0	0 \$0	75160 \$75,160
PIPE "Hot Box" Other Materials	U.C. per Box	10.00	20 200	CN-PIPE \$37.58	751.6 \$7,516	0 \$0	0 \$0	0 \$0	0 \$0	751.6 \$7,516
PIPE Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	7900 7,900	CN-PIPE \$37.58	296882 \$296,882	0 \$0	0 \$0	0 \$0	0 \$0	296882 \$296,882
PIPE Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	2960 2,960	CN-PIPE \$37.58	111236.8 \$111,237	0 \$0	0 \$0	0 \$0	0 \$0	111236.8 \$111,237

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC
Estimate Number:2570 - Option C

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	_S/C	Other	TOTAL
— 9111.7.2 EQUIPMENT DEMOLITION - OFF GAS CELL PIPE Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	3950 3,950	CN-PIPE \$37.58	148441 \$148,441	0 \$0	0 \$0	0 \$0	0 \$0	148441 \$148,441
PIPE Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0		0 \$0	0 \$0	56400 \$56,400	0 \$0	0 \$0	56400 \$56,400
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$705,001 \$0 \$339,134	\$0 \$0 \$0	\$163,400 \$8,170 \$82,532	\$0 \$0 \$0	\$0 \$0 \$0	\$868,401 \$8,170 \$421,666
Subtotal Estimate Escalation Contingency		,			\$267,925 \$905,321	\$0 \$0	\$65,203 \$220,320	\$0 \$0	\$0 \$0 \$0	\$1,298,236 \$333,127 \$1,125,641
Total 9111.7.2 EQUIPMENT DEMOLITION - OFF GAS CEL			18,760		\$2,217,380	\$0	\$539,625	\$0	\$0	\$2,757,005
9111,7.3 EQUIPMENT DEMOLITION - BLEND & HOLD CI PIPE Mock-Up Facility	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	0 \$0	250000 \$250,000	0 \$0	250000 \$250,000
PIPE Lift & Bag Hatch Covers	U.C. per Lot	1.00	50 50	CN-PIPE \$37.58	1879 \$1,879	0 \$0	2000 \$2,000	0 \$0	0 \$0	3879 \$3,879
PIPE Portable Crane	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	5000 \$5,000	0 \$0	0 \$0	5000 \$5,000
PIPE Hydraulic Shears Modified For Remote Operation	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	20000 \$20,000	° \$0	0 \$0	20000 \$20,000
PIPE Large Plasma Arc Modified For Remote Operation	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	50000 \$50,000	0 \$0	0 \$0	50000 \$50,000
PIPE Misc. Remote Adaptations	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	20000 \$20,000	0 \$0	0 \$0	20000 \$20,000
PIPE Cut Tank Bracket Supports	U.C. per Lot	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	0 \$0	0 \$0	0 \$0	7516 \$7,516
PIPE Temporary Support of Tanks	U.C. per Ea	3.00	300 900	CN-PIPE \$37.58	11274 \$33,822	0 \$0	0 \$0	0 \$0	0 \$0	11274 \$33,822
PIPE Demo Tent	U.C. per Lot	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	10000 \$10,000	0 \$0	0 \$0	17516 \$17,516
PIPE Cut Up And Hot-Box Tanks - 3 Ea.	U.C. per Lot	1.00	2000 2,000	CN-PIPE \$37.58	75160 \$75,160	0 \$0	0 \$0	0 \$0	0 \$0	75160 \$75,160
PIPE "Hot Box" Other Materials	U.C. per Box	10.00	20 200	CN-PIPE \$37.58	751.6 \$7,516	o \$0	0 \$0	0 \$0	0 \$0	751.6 \$7,516

40

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Project Location: INTEC
Estimate Number:2570 - Option C

LEVEL Org/Subcontractor 9111.7.3 EQUIPMENT DEMOLITION - BLEND & HOLD C	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
PIPE Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	7100 7,100	CN-PIPE \$37.58	266818 \$266,818	0 \$0	0 \$0	0 \$0	0 \$0	266818 \$266,818
PIPE Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	3550 3,550	CN-PIPE \$37.58	133409 \$133,409	0 \$0	0 \$0	0 \$0	0 \$0	133409 \$133,409
PIPE Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	2660 2,660	CN-PIPE \$37.58	99962.8 \$99,963	0 \$0	0 \$0	0 \$0	0 \$0	99962.8 \$99,963
PIPE Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0		0 \$0	0 \$0	50700 \$50,700	o \$0	0 \$0	50700 \$50,700
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$633,599 \$0 \$304,786	\$0 \$0 \$0	\$157,700 \$7,885 \$79,653	\$250,000 \$0 \$120,260	\$0 \$0 \$0	\$1,041,299 \$7,885 \$504,699
Subtotal Estimate Escalation Contingency					\$240,790 \$813,631	\$0 \$0	\$62,928 \$212,635	\$95,009 \$321,035	\$0 \$0	\$1,553,883 \$398,726 \$1,347,301
Total 9111.7.3 EQUIPMENT DEMOLITION - BLEND & HO	LD CELL	-	16,860		\$1,992,805	\$0	\$520,801	\$786,304	\$0	\$3,299,910
9111.7.4 EQUIPMENT DEMOLITION - VALVE CUBICLE PIPE Mock-Up Facility	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	0 \$0	250000 \$250,000	0 \$0	250000 \$250,000
PIPE Lift & Bag Hatch Covers	U.C. per Lot	1.00	50 50	CN-PIPE \$37.58	1879 \$1,879	0 \$0	2000 \$2,000	0 \$0	0 \$0	3879 \$3,879
PIPE Portable Crane	U.C. per Löt	1.00	0	CN-PIPE	0 \$0	0 \$0	5000 \$5,000	o. \$0	0 \$0	5000 \$5,000
PIPE Hydraulic Shears Modified For Remote Operation	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	20000 \$20,000	0 \$0	0 \$0	20000 \$20,000
PIPE Large Plasma Arc Modified For Remote Operation	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	50000 \$50,000	0 \$0	0 \$0	50000 \$50,000
PIPE Misc. Remote Adaptations	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	20000 \$20,000	0 \$0	0 \$0	20000 \$20,000
PIPE Cut Up & "Hot Box" Materials	U.C. per Box	10.00	20 200	CN-PIPE \$37.58	751.6 \$7,516	o \$0	0 \$0	0 \$0	0 \$0	751.6 \$7,516
PIPE Demo Materials	U.C. per Lot	1.00	750 750	CN-PIPE \$37.58	28185 \$28,185	0 \$0	0 \$0	0 \$0	0 \$0	28185 \$28,185
PIPE Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	2000 2,000	CN-PIPE \$37.58	• 75160 \$75,160	0 \$0	0 \$0	0 \$0	0 \$0	75160 \$75,160

Page No.

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC

Cllent:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Estimate Number: 2570 - Option C				40	g				
LEVEL Org/Subcontractor 9111.7.4 EQUIPMENT DEMOLITION - VALVE CUBICLE	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	_S/C_	Other	TOTAL

LEVEL OTG/Subcontractor	<u>Q11</u>		nis	Crewikate	Labor	Const Eqp	<u>iviati</u>	3/6	Other	TOTAL
9111.7.4 EQUIPMENT DEMOLITION - VALVE CUBICLE PIPE	U.C. per Lot		750	CN-PIPE	28185	0	0	0	0	28185
Burn-Out Allowance - 25% Of Hot Work	O.C. per Lot	1.00	750 750	\$37.58	\$28,185	\$0	\$0	\$0	\$0	\$28,185
		.,			• •	·	·	•	•	
PIPE	U.C. per Lot	4.00	1000	CN-PIPE	37580	. 0	0	0	0	37580
Mock-Up Training - 100% Of Unadjusted Work		1.00	1,000	\$37.58	\$37,580	\$0	\$0	\$0	\$0	\$37,580
PIPE	U.C. per Lot				0	0	14250	0	0	14250
Small Tools & Consumables - 8% Of Labor Cost		1.00	0		\$0	\$0	\$14,250	\$0	\$0	\$14,250
					A					
Subtotal Sales Tax		•			\$178,505 \$0	\$0 \$0	\$111,250 \$5,563	\$250,000 \$0	\$0 \$0	\$539,755 \$5,563
INEEL ORG Labor/Subcontractor Overheads					\$85,868	\$0 \$0	\$56,191	\$120,260	\$0 \$0	\$262,320
	····	···				*-	*******	*		
Subtotal Estimate Escalation					¢67.020	¢0	644.202	£05.000	40	\$807,637
Contingency					\$67,838 \$229,226	\$0 \$0	\$44,393 \$150,004	\$95,009 \$321,035	\$0 \$0	\$207,240 \$700,265
										
Total 9111.7.4 EQUIPMENT DEMOLITION - VALVE CUBIC	LE		4,750		\$561,437	\$0	\$367,401	\$786,304	\$0	\$1,715,142
9114.4 CONVEYING SYSTEMS - STORAGE FACILITY										
GEN	U.C. per EA		1000	CN-SKWK	34520	0	2500000	0	0	2534520
GANTRY CRANE		2.00	2,000	\$34.52	\$69,040	\$0	\$5,000,000	\$0	\$0	\$5,069,040
GEN	U.C. per EA		500	CN-SKWK	17260	0	300000	0	0	317260
TRANSFER CART IN TUNNEL	•	1.00	500	\$34.52	\$17,260	\$0	\$300,000	\$0	\$0	\$317,260
GEN	U.C. per EA		300	CN-SKWK	10356	0	250000	0	0	260356
5 TON DECONTAMINATABLE BRIDGE CRANE	O.C. per EA	2.00	600	\$34.52	\$20,712	\$0	\$500,000	\$0	\$0	\$520,712
	_			•				•	•	
GEN CARL MARKET HAS LIVED AND A LIVED AND	U.C. per EA	4.00	1000	CN-SKWK	34520	0	1000000	0	0	1034520
CASK MANUVERING HYDRAULIC PLATFORM		1.00	1,000	\$34.52	\$34,520	\$0	\$1,000,000	\$0	\$0	\$1,034,520
Subtotal					\$141,532	\$0	\$6,800,000	\$0	\$0	\$6,941,532
Sales Tax					\$0	\$0	\$340,000	\$0	\$0	\$340,000
INEEL ORG Labor/Subcontractor Overheads					\$50,218	\$0	\$2,533,379	\$0	\$0	\$2,583,597
Subtotal Estimate										\$9,865,129
Escalation					\$49,203	\$0	\$2,482,189	\$0	\$0	\$2,531,392
Contingency					\$21,686	\$0	\$1,094,001	\$0	\$0	\$1,115,687
Total 9114.4 CONVEYING SYSTEMS - STORAGE FACILIT	Υ		4,100		\$262,638	\$0	\$13,249,569	\$0	\$0	\$13,512,208
9115.1.1 MECHANICAL DEMO - CALCINER CELL										
PIPE	U.C. per Ea		3	CN-PIPE	112.74	0	12	0	0	124.74
Cut & Cap Piping At Cell Wall - Small		28.00	84	\$37.58	\$3,157	\$0	\$336	\$0	\$0	\$3,493
PIPE	U.C. per Ea		4	CN-PIPE	150.32	0	30	0	0	180.32
Cut & Cap Piping At Cell Wall - 4"	3.2. ps. 20	2.00	8	\$37.58	\$301	\$0	\$60	\$0	\$0	\$361
• • •										

42

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Project Location: INTEC

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Estimate Number: 2570 - Option C

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	_S/C_	Other	TOTAL
9115.1.1 MECHANICAL DEMO - CALCINER CELL PIPE Cut & Cap Piping At Cell Wall - 8"	U.C. per Ea	1.00 6	CN-PIPE \$37.58	225.48 \$225	0 \$0	50 \$50	0 \$0	0 \$0	275.48 \$275
PIPE Remove Piping - Small	U.C. per Lf 90	0.12 00.00 108	CN-PIPE \$37.58	4.51 \$4,059	0 \$0	0 \$0	o \$0	. 0 \$0	4.51 \$4,059
PIPE Remove Piping - 4™	U.C. per Lf 6	0.25 60.00 15	CN-PIPE \$37.58	9.395 \$564	0 \$0	0 \$0	0 \$0	0 \$0	9.395 \$564
PIPE Remove Piping - 8"	U.C. per Lf 3	0.5 30.00 15	CN-PIPE \$37.58	18.79 \$564	0 \$0	0 \$0	0 \$0	0 \$0	18.79 \$564
PIPE Remove Pipe Supports		31.00 62	CN-PIPE \$37.58	75.16 \$2,330	0 \$0	, so	0 \$0	0 \$0	75.16 \$2,330
PIPE Remove Large Knife Gate Valves		2.00 8	CN-PIPE \$37.68	300.64 \$601	0 \$0	0 \$0	0 \$0	,\$0	300.64 \$601
PIPE Identify, Verify, And Isolate Piping To Be Removed		10 31.00 310	CN-PIPE \$37.58	375.8 \$11,650	0 \$0	0 \$0	0 \$0	0 \$0	375.8 \$11,650
PIPE Cut Up Piping For "Hot Boxing"		1.00 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	0 . \$0	0 \$0	0 \$0	7516 \$7,516
PIPE Bag & Box Piping		1.00 1,000	CN-PIPE \$37.58	37580 \$37,580	0 \$0	0 \$0	0 \$0	0 · \$0	37580 \$37,580
PIPE Scaffolding In Cell		1.00 400	CN-PIPE \$37.58	15032 \$15,032	* 0 \$0	2000 \$2,000	. \$0	\$0 \$0	17032 · \$17,032
PIPE Cut 16" Pipe PIPE		5.00 400 160	CN-PIPE \$37.58 CN-PIPE	3006.4 \$15,032 6012.8	0 \$0 0	0 \$0	0 \$0	0 \$0	3006.4 \$15,032
Cut 16" Pipe At Cyclone PIPE	U.C. per Ea	1.00 160	\$37.58 CN-PIPE	\$6,013 375.8	\$0 0	0 \$0 0	0 \$0	0 \$0 0	6012.8 \$6,013 375.8
Cut Calciner Pipes PIPE	20 U.C. per Lot	2,000	\$37.58 CN-PIPE	\$75,160 7516	\$0 0	\$0 0	\$0 0	\$0 0	\$75,160 7516
Cut Piping At Bottom Of Calciner PIPE		1.00 200	\$37.58 CN-PIPE	\$7,516 75.16	\$0 . 0	. \$0 20	\$0 0	\$0 0	\$7,516 95.16
Plug Calciner Pipe Ends PIPE		50.00 500	\$37.58 CN-PIPE	\$18,790 52612	` \$0 0	\$5,000 0	\$0 0	\$0 0	\$23,790 52612
Remove Misc. Piping & Supports PIPE	U.C. per Lot	1.00 1,400 13770	\$37.58 CN-PIPE	\$52,612 517476.6	\$0 0	\$0 0	\$0 0	\$0 0	\$52,612 517476.6
Labor Adjustment For Working In "Hot" Area - 200%		1.00 13,770	\$37.58	\$517,477	\$0	\$0	\$0	\$0	\$517,477

Page No.

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor 9115,1.1 MECHANICAL DEMO - CALCINER CELL	QTY	, 	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
PIPE Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	5165 5,165	CN-PIPE \$37.58	194100.7 \$194,101	0 \$0	0 \$0	0 \$0	0 \$0	194100.7 \$194,101
PIPE Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	6885 6,885	CN-PIPE \$37,58	258738,3 \$258,738	0 \$0	0 \$0	0 \$0	0 \$0	258738.3 \$258,738
PIPE Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	98000 \$98,000	0 \$0	0 \$0	98000 \$98,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$1,229,016 \$0 \$591,206	\$0 \$0 \$0	\$105,446 \$5,272 \$53,260	\$0 \$0 \$0	\$0 \$0 \$0	\$1,334,462 \$5,272 \$644,466
Subtotal Estimate Escalation Contingency					\$467,069 \$937,789	\$0 \$0	\$42,077 \$84,483	\$0 \$0	\$0 \$0	\$1,984,201 \$509,146 \$1,022,272
Total 9115.1.1 MECHANICAL DEMO - CALCINER CELL			32,704		\$3,225,081	\$0	\$290,538	\$0	\$0	\$3,515,618
9115.1.3 MECHANICAL DEMO - OFF GAS CELL PIPE Cut & Cap Piping At Cell Wall - Small	U.C. per Ea	28.00	3 84	CN-PIPE \$37,58	112.74 \$3,157	0 \$0	12 \$336	0 \$0	0 \$0	124.74 \$3,493
PIPE Cut & Cap Piping At Cell Wall - Medium	U.C. per Ea	12.00	4 48	CN-PIPE \$37.58	150.32 \$1,804	0 \$0	30 \$360	0 \$0	0 \$0	180.32 \$2,164
PIPE Cut & Cap Piping At Cell Wali - Large	U.C. per Ea	10.00	6 60	CN-PIPE `\$37.58	225.48 \$2,255	· 0 \$0	50 \$500	0 \$0	0 \$0	275.48 \$2,755
PIPE Remove Piping - Small	U.C. per Lf	900.00	0.12 108	CN-PIPE \$37.58	4.51 \$4,059	0 \$0	0 \$0	0 \$0	0 \$0	4.51 \$4,059
PIPE Remove Piping - Medium	U.C. per Lf	60.00	0.25 15	CN-PIPE \$37.58	9.395 \$564	0 \$0	0 \$0	0 \$0	0 \$0	9,395 \$564
PIPE Remove Piping - Large	U.C. per Lf	30.00	0.5 15	CN-PIPE \$37.58	18.79 \$564	0 \$0	0 \$0	0 \$0	0 \$0	18.79 \$564
PIPE Remove Pipe Supports	U.C. per Ea	31.00	2 62	CN-PIPE \$37.58	75.16 \$2,330	0 \$0	0 \$0	. 0 \$0	0 \$0	75.16 \$2,330
PIPE Remove Valves	U.C. per Ea	2.00	8 16	CN-PIPE \$37.58	300.64 \$601	0 \$0	o \$0	0 \$0	0 \$0	300.64 \$601
PIPE Identify, Verify, And Isolate Piping To Be Removed	U.C. per Line	31.00	10 310	CN-PIPE \$37.58	375.8 \$11,650	0 \$0	0 \$0	0 \$0	0 \$0	375.8 \$11,650
PIPE Cut Up Piping For "Hot BoxIng"	U.C. per Lot	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	0 \$0	0 \$0	0 \$0	7516 \$7,516

CONSTRUCTION DETAIL ITEM REPORT

V. J. Balls Client:

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Estimate Number: 2570 - Option C

LEVEL Org/Subcontractor	QTY	·	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
9115.1.3 MECHANICAL DEMO - OFF GAS CELL PIPE Bag & Box Piping	U.C. per Lot	1.00	1000 1,000	CN-PIPE \$37.58	37580 \$37,580	0 \$0	0 \$0	0 \$0	0 \$0	37580 \$37,580
PIPE Scaffolding In Cell	U.C. per Lot	1.00	400 400	CN-PIPE \$37.58	15032 \$15,032	0 \$0	·2000 \$2,000	0 \$0	0 \$0	17032 \$17,032
PIPE Cut Pipes @ Tanks	U.C. per Ea	9.00	10 90	CN-PIPE \$37,58	375.8 \$3,382	0 \$0	0 \$0	0 \$0	0 \$0	375.8 \$3,382
PIPE Remove Misc. Piping & Supports	U.C. per Lot	1.00	1400 1,400	CN-PIPE \$37.58	52612 \$52,612	0 \$0	0 \$0	0 \$0	0 \$0	52612 \$52,612
PIPE Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	7600 7,600	CN-PIPE \$37.58	285608 \$285,608	0 \$0	0 \$0	0 \$0	0 \$0	285608 \$285,608
PIPE Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	2850 2,850	CN-PIPE \$37.58	107103 \$107,103	, \$0	0 \$0	0 \$0	0 \$0	107103 \$107,103
PIPE Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	3800 3,800	CN-PIPE \$37.58	142804 \$142,804	0 \$0	0 \$0	0 \$0	0 \$0	142804 \$142,804
. PIPE Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0 	54300 \$54,300	0 \$0	0 \$0	54300 \$54,300
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$678,620 \$0 \$326,443	\$0 \$0 \$0	\$57,496 \$2,875 \$29,041	\$0 \$0 \$0	\$0 \$0 \$0	\$736,116 \$2,875 \$355,484
Subtotal Estimate Escalation Contingency					\$257,899 \$517,814	\$0 \$0	\$22,943 \$46,065	\$0 \$0	\$0 \$0	\$1,094,474 \$280,842 \$563,880
Total 9115.1.3 MECHANICAL DEMO - OFF GAS CELL			18,058		\$1,780,776	\$0	\$158,420	\$0	\$0	\$1,939,196
9115.1.4 MECHANICAL DEMO - BLEND & HOLD CELL PIPE Cut & Cap Piping At Cell Wall - Small	U.C. per Ea	28.00	3 84	CN-PIPE \$37.58	112.74 \$3,157	0 \$0	12 \$336	0 \$0	0 \$0	124.74 \$3,493
PIPE Cut & Cap Piping At Cell Wall - Medium	U.C. per Ea	12.00	4 48	CN-PIPE \$37.58	150.32 \$1,804	• \$0	30 \$360	0 \$0	0 \$0	180.32 \$2,164
PIPE Cut & Cap Piping At Cell Wall - Large	U.C. per Ea	10.00	6 60	CN-PIPE \$37.58	225.48 \$2,255	0 \$0	50 \$500	0 \$0	0 \$0	275.48 \$2,755
PIPE Remove Piping - Small	U.C. per Lf	900.00	0.12 108	CN-PIPE \$37.58	4.51 \$4,059	0 \$0	0 \$0	0 \$0	0 \$0	4.51 \$4,059
PIPE Remove Piping - Medium	U.C. per Lf	60.00	0,25 15	CN-PIPE \$37.58	9.395 \$564	0 \$0	0 \$0	0 \$0	0 \$0	9.395 \$564

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option C

Client: V. J. Balls

LEVEL Org/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
9115.1.4 MECHANICAL DEMO - BLEND & HOLD CELL PIPE Remove Piping - Large	U.C. per Lf	30.00	0.5 15	CN-PIPE \$37.58	18.79 \$564	0 \$0	0 \$0	0 \$0	0 \$0	18.79 \$564
PIPE Remove Pipe Supports	U.C. per Ea	31.00	2 62	CN-PIPE \$37.58	75.16 \$2,330	0 \$0	0 \$0	o \$0	0 \$0	75.16 \$2,330
PIPE Remove Valves	U.C. per Ea	2.00	8 16	CN-PIPE \$37.58	300.64 \$601	0 \$0	0 \$0	0 \$0	0 \$0	300.64 \$601
PIPE Idenlify, Verify, And Isolate Piping To Be Removed	U.C. per Line	31.00	10 310	CN-PIPE \$37.58	375.8 \$11,650	0 \$0	0 \$0	0 \$0	0 \$0	375.8 \$11,650
PIPE Cut Up Piping For "Hot Boxing"	U.C. per Lot	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	0 \$0	0 \$0	0 \$0	7516 \$7,516
PIPE . Bag & Box Piping	U.C. per Lot	1.00	1000 1,000	CN-PIPE \$37.58	37580 \$37,580	0 \$0	0 \$0	0 \$0	0 \$0	37580 \$37,580
PIPE Scaffolding In Cell	U.C. per Lot	1.00	400 400	CN-PIPE \$37.58	15032 \$15,032	0 \$0	. 2000 \$2,000	0 \$0	0 \$0	17032 \$17,032
PIPE Cut Pipes @ Tanks	U.C. per Ea	9.00	10 90	CN-PIPE \$37.58	375.8 \$3,382	0 \$0	0 \$0	0 \$0	0 \$0	375.8 \$3,382
PIPE Remove Misc. Piping & Supports	U.C. per Lot	1.00	1400 1,400	CN-PIPE \$37.58	52612 \$52,612	0 \$0	0 \$0	0 \$0	0 \$0	52612 \$52,612
PIPE Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	7600 7,600	CN-PIPE \$37.58	285608 \$285,608	0 \$0	0 \$0	0 \$0	0 \$0	285608 \$285,608
PIPE Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	2850 2,850	CN-PIPE \$37.58	107103 \$107,103	0 \$0	0 \$0	0 \$0	0 \$0	107103 \$107,103
PIPE Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	3800 3,800	CN-PIPE \$37.58	142804 \$142,804	0 \$0	0 \$0	0 \$0	0 \$0	142804 \$142,804
PIPE Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	54300 \$54,300	0 \$0	0 \$0	54300 \$54,300
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$678,620 \$0 \$326,443	\$0 \$0 \$0	\$57,496 \$2,875 \$29,041	\$0 \$0 \$0	\$0 \$0 \$0	\$736,116 \$2,875 \$355,484
Subtotal Estimate Escalation Contingency	·,W				\$257,899 \$517,814	\$0 \$0	\$22,943 \$46,065	\$0 \$0	\$0 \$0	\$1,094,474 \$280,842 \$563,880
Total 9115.1.4 MECHANICAL DEMO - BLEND & HOLD CI	ELL		18,058		\$1,780,776	\$0	\$158,420	\$0	\$0	\$1,939,196

CONSTRUCTION DETAIL ITEM REPORT

V. J. Balls Client: Prepared By: Rowley / Mitchell / Marler

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Estimate Type: Planning

Project Location: INTEC
Estimate Number: 2570 - Option C

LEVEL Org/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
9115.1.5 MECHANICAL DEMO - VALVE CUBICLE PIPE Cut & Cap Piping At Cell Wall - Small	U.C. per Ea	28.00	3 84	CN-PIPE \$37.58	112.74 \$3,157	0 \$0	12 \$336	0 \$0	0 \$0	124.74 \$3,493
PIPE Cut & Cap Piping At Cell Wall - Medium	U.C. per Ea	12.00	4 48	CN-PIPE \$37.58	150.32 \$1,804	0 \$0	30 \$360	0 \$0	0 \$0	180.32 \$2,164
PIPE Cut & Cap Piping At Cell Wall - Large	U.C. per Ea	10.00	6 60	CN-PIPE \$37.58	225.48 \$2,255	0 \$0	50 \$500	0 \$0	0 \$0	275.48 \$2,755
PIPE Remove Piping - Small	U.C. per Lf	900.00	0.12 108	· CN-PIPE \$37,58	4.51 \$4,059	· \$0	0 \$0	0 \$0	0 \$0	4.51 \$4,059
PIPE Remove Piplng - Medium	U.C. per Lf	60.00	0.25 15	CN-PIPE \$37.58	9.395 \$564	0 \$0	0 \$0	0 \$0	0 \$0	9.395 \$564
PIPE Remove Piping - Large	U.C. per Lf	30.00	0.5 15	CN-PIPE \$37.58	18.79 \$564	o \$0	0 \$0	0 \$0	0 \$0	18.79 \$564
PIPE Remove Pipe Supports	U.C. per Ea	31.00	2 62	CN-PIPE \$37.58	75.16 \$2,330	0 \$0	0 \$0	0 \$0	0 \$0	75.16 \$2,330
PIPE Remove Valves	U.C. per Ea	2.00	8 16	CN-PIPE \$37.58	300.64 \$601	0 \$0	0 \$0	0 \$0	0 \$0	300,64 \$601
PIPE Identify, Verify, And Isolate Piping To Be Removed	U.C. per Line	31.00	10 310	CN-PIPE \$37.58	375.8 \$11,650	o \$0	0 \$0	0 \$0	0 \$0	375.8 \$11,650
PIPE Cut Up Piping For "Hot Boxing"	U.C. per Lot	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	0 \$0	· 0 \$0	0 \$0	7516 \$7,516
PIPE Bag & Box Piping	U.C. per Lot	1.00	1000 1,000	CN-PIPE \$37.58	37580 \$37,580	0 \$0	0 \$0	0 \$0	0 \$0	37580 \$37,580
PIPE Scaffolding In Cell	U.C. per Lot	1.00	400 400	CN-PIPE \$37.58	15032 \$15,032	0 \$0	2000 \$2, 000	0 \$0	0 \$0	17032 \$17,032
PIPE Remove Misc. Piping & Supports	U.C. per Lot	1.00	1400 1,400	CN-PIPE \$37.58	52612 \$52,612	0 \$0	0 \$0	0 \$0	0 \$0	52612 \$52,612
PIPE Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	7436 7,436	CN-PIPE \$37.58	279444.88 \$279,445	0 \$0	, o \$0	0 \$0	0 \$0	279444.88 \$279,445
PIPE Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	892 892	CN-PIPE \$37.58	33521.36 \$33,521	0 \$0	0 \$0	0 \$0	0° \$0	33521.36 \$33,521
PIPE Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	3718 3,718	CN-PIPE \$37.58	139722.44 \$139,722	0 \$0	0 \$0	0 \$0	0 \$0	139722.44 \$139,722

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor 9115.1.5 MECHANICAL DEMO - VALVE CUBICLE	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	47400 \$47,400	0 \$0	0 \$0	47400 \$47,400
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$592,411 \$0 \$284,973	\$0 \$0 \$0	\$50,596 \$2,530 \$25,556	\$0 \$0 \$0	\$0 \$0 \$0	\$643,007 \$2,530 \$310,529
Subtotal Estimate Escalation Contingency					\$225,137 \$452,034	\$0 \$0	\$20,190 \$40,537	\$0 \$0	\$0 \$0	\$956,088 \$245,327 \$492,571
Total 9115.1.5 MECHANICAL DEMO - VALVE CUBICLE			15,764		\$1,554,555	\$0	\$139,408	\$0	\$0	\$1,693,963
9115.2.1 HVAC - NEW - NWCF HVAC Vent. Centrifugal Fans - 20 hp	U.C. per Ea	5.00	10 50	CN-SHEE \$35.48	354.8 \$1,774	500 \$2,500	5700 \$28,500	0 \$0	0 \$0	6554.8 \$32,774
HVAC Vent. Centrifugal Fans - 25 hp	U.C. per Ea	7.00	12 84	CN-SHEE \$35.48	425.76 \$2,980	500 \$3,500	9000 \$63,000	0 \$0	0 \$0	9925.76 \$69 , 480
HVAC Vent. Centrifugal Fans - 30 hp	U.C. per Ea	5.00	12 60	CN-SHEE \$35.48	425.76 \$2,129	500 \$2,500	9000 \$45,000	0 \$0	0 \$0	9925.76 \$49,629
HVAC Vent. Centrifugal Fans - 40 hp	U.C. per Ea	5.00	18 90	CN-SHEE \$35.48	638.64 \$3,193	500 \$2,500	13000 \$65,000	0 \$0	0 \$0	14138.64 \$70,693
HVAC Vent. Centrifugal Fans - 50 hp	U.C. per Ea	14.00	14 196	CN-SHEE \$35.48	496.72 \$6,954	500 \$7,000	15000 \$210,000	0 \$0	0 \$0	15996.72 \$223,954
HVAC Vent. Centrifugal Fans - 60 hp	U.C. per Ea	3.00	40 120	CN-SHEE \$35.48	1419.2 \$4,258	500 \$1,500	27000 \$81,000	0 \$0	0 \$0	28919.2 \$86,758
HVAC *HEPA Filler Bank - Single Stage - 4X4 - 12 Filters Per Bank Memo; Each Filler is 24" x 24".	U.C. per Ea	2.00	30 60	CN-SHEE \$35.48	1064.4 \$2,129	500 \$1,000	72000 \$144,000	0 \$0	0 \$0	73564.4 \$147,129
HVAC *HEPA Filter Bank - Single Stage - 4X4 - 16 Filters Per Bank Memo: Each Filter is 24" x 24".	U.C. per Ea	23.00	40 920	CN-SHEE \$35.48	1419.2 \$32,642	500 \$11,500	96000 \$2,208,000	0 \$0	0 \$0	97919.2 \$2,252,142
HVAC *HEPA Filter Bank - Dual Stage - 4X4 - 12 Filters Per Bank Memo: Each Filter is 24" x 24".	U.C. per Ea	2,00	40 80	CN-SHEE \$35,48	1419.2 \$2,838	500 \$1,000	144000 \$288,000	0 \$0	0 \$0	145919.2 \$291,838
HVAC *HEPA Filter Bank - Dual Stage - 4X4 - 16 Filters Per	U.C. per Ea	4.00	50 200	CN-SHEE \$35.48	1774 \$7,096	500 \$2,000	192000 \$768,000	0 \$0	0 \$0	194274 \$777,096

Memo: Each Filter is 24" x 24".

Bank

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC
Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

	Org/Subcontractor	QTY	_	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	_S/C_	<u>Other</u>	TOTAL
9115.2.1 HVAC - N Chiller (Complete With C	EW - NWCF HVAC Compressor & Fans) - 80 Ton	U.C. per Ea	1.00	60 60	CN-SHEE \$35.48	2128.8 \$2,129	0 \$0	35000 \$35,000	0 \$0	0 \$0	37128.8 \$37,129
Chiller (Complete With t	HVAC Compressor & Fans) - 40 Ton	U.C. per Ea	1.00	48 48	CN-SHEE \$35.48	1703.04 \$1,703	0 \$0	21000 \$21,000	0 \$0	0 \$0	22703.04 \$22,703
Actuated Air Dampers	HVAC	U.C. per Ea	100.00	0.9 90	CN-SHEE \$35.48	31.932 \$3,193	0 \$0	150 \$15,000	0 . \$0	0 \$0	181.932 . \$18,193
Pre-Fillers	HVAC	U.C. per Lot	1.00	100 100	CN-SHEE \$35,48	3548 \$3,548	0 \$0	2500 \$2,500	0 \$0	0 \$0	6048 \$6,048
Heating Coils	HVAC	U.C. per Lot	1.00	100 100	CN-SHEE \$35.48	3548 \$3,548	0 \$0	5000 \$5,000	0 \$0	0 \$0	8548 \$8,548
Cooling Coils	HVAC	U.C. per Lot	1.00	100 100	CN-SHEE \$35.48	3548 \$3,548	0 \$0	5000 \$5,000	0 \$0	0 \$0	8548 \$8,548
Heat Recovery Coil	HVAC	U.C. per Lot	1.00	40 40	CN-SHEE \$35.48	1419.2 \$1,419	0 \$0	2000 \$2,000	0 \$0	0 \$0	3419.2 \$3,419
Sheet Metal Ductwork	HVAC	U.C. per Lot	1.00	3500 3,500	CN-SHEE \$35.48	124180 \$124,180	0 \$0	65000 \$65,000	0 \$0	0 \$0	189180 \$189,180
Test & Balance	HVAC	U.C. per Lot	1.00	0		0 \$0	0 \$0	0 \$0	7500 \$7,500	0 \$0	7500 \$7,500
Subtotal Sales Tax INEEL ORG Labor/S	ubcontractor Overheads					\$209,261 \$0 \$95,498	\$35,000 \$0 \$15,972	\$4,051,000 \$202,550 \$1,941,133	\$7,500 \$0 \$3,423	\$0 \$0 \$0	\$4,302,761 \$202,550 \$2,056,026
Subtotal Estimate Escalation Contingency						\$78,201 \$157,013	\$13,080 \$26,261	\$1,589,556 \$3,191,538	\$2,803 \$5,627	\$0 \$0	\$6,561,337 \$1,683,639 \$3,380,440
Total 9115.2.1 HVA	C - NEW - NWCF			5,898		\$539,973	\$90,313	\$10,975,777	\$19,353	\$0	\$11,625,416
9115.2.2 PIPING - Piping Modifications	<u>NEW - NWCF</u> PIPE	U.C. per Lot	1.00	3500 3,500	CN-PIPE \$37.58	131530 \$131,530	0 \$0	150000 \$150,000	o \$0	0 \$0	281530 \$281,530

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option C

V. J. Balls Client:

LEVEL Org/Subcontractor 9115.2.2 PIPING - NEW - NWCF	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C_	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$131,530 \$0 \$63,271	\$0 \$0 \$0	\$150,000 \$7,500 \$75,764	\$0 \$0 \$0	\$0 \$0 \$0	\$281,530 \$7,500 \$139,035
Subtotal Estimate Escalation Contingency					\$49,986 \$100,363	\$0 \$0	\$59,855 \$120,179	\$0 \$0	\$0 \$0	\$428,065 \$109,841 \$220,542
Total 9115.2.2 PIPING - NEW - NWCF			3,500		\$345,150	\$0	\$413,298	\$0	\$0	\$758,448
9115.2.3 FIRE PROTECTION - NEW - NWCF FP Fire Protection Modifications	U.C. per Lot	1.00	750 750	CN-SPRI \$36,92	27690 \$27,690	0 \$0	30000 \$30,000	0 \$0	0 \$0	57690 \$57,690
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		***			\$27,690 \$0 \$11,611	\$0 \$0 \$0	\$30,000 \$1,500 \$13,209	\$0 \$0 \$0	\$0 \$0 \$0	\$57,690 \$1,500 \$24,820
Subtotal Estimate Escalation Conlingency					\$10,085 \$20,248	\$0 \$0	\$11,472 \$23,034	\$0 \$0	\$0 \$0	\$84,010 \$21,557 \$43,283
Total 9115.2.3 FIRE PROTECTION - NEW - NWCF			750		\$69,634	\$0	\$79,215	\$0	\$0	\$148,850
9115.2.1 HVAC - TFD FACILITY - HOT CELL HVAC (*)Sheet Metal Ductwork Memo: The hot cell is approximately 77' x 51' x 77' high.	U.C. per Lot	1.00	1100 1,100	CN-SHEE \$35,48	39028 \$39,028	0 \$0	20000 \$20,000	o \$0	0 \$0	59028 \$59,028
HVAC HVAC Equipment	U.C. per Lot	1.00	750 750	CN-SHEE \$35.48	26610 \$26,610	3000 \$3,000	300000 \$300,000	0 \$0	0 \$0	329610 \$329,610
HVAC HEPA Filters	U.C. per Lot	1.00	300 300	CN-SHEE \$35.48	10644 \$10,644	0 \$0	150000 \$150,000	0 \$0	0 \$0	160644 \$160,644
HVAC . Diffusers, Grilles, Dampers, Registers	U.C. per Lot	1.00	100 100	CN-SHEE \$35.48	3548 \$3,548	0 \$0	9000 \$9,000	0 \$0	0 \$0	12548 \$12,548
HVAC Misc. Sheet Metal	U.C. per Lot	1.00	200 200	CN-SHEE \$35.48	7096 \$7,096	0 \$0	2500 \$2,500	0 \$0	0 \$0	9596 \$9,596

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option C

LEVEL	Org/Subcontractor - TFD FACILITY - HOT CELL	QTY		Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Mati	S/C	<u>Other</u>	TOTAL
Test & Balance	HVAC	U.C. per Lot	1.00	200 200	CN-SHEE \$35.48	7096 \$7, 096	0 \$0	0 \$0	· \$0	0 \$0	7096 \$7, 096
Subtotal Sales Tax INEEL ORG Labo	or/Subcontractor Overheads				•	\$94,022 \$0 \$42,908	\$3,000 \$0 \$1,369	\$481,500 \$24,075 \$230,722	\$0 \$0 \$0	\$0 \$0 \$0	\$578,522 \$24,075 \$274,999
Subtotal Estimat Escalation Conlingency	le					\$35,136 \$70,547	\$1,121 \$2,251	\$188,934 \$379,345	\$0 \$0	\$0 \$0	\$877,596 \$225,191 \$452,143
Total 9115.2.1 H	VAC - TFD FACILITY - HOT CELL			2,650		\$242,613	\$7,741	\$1,304,576	\$0	\$0	\$1,554,929
Memo: (*)Sheet Metal Duch	TFD FACILITY - OPERATING CORI The operating corridors and equipm HVAC work corridors and equipment areas - appro	nent areas are approxima U.C. per Lot	1.00	4000 4,000	eet of total floor ar CN-SHEE \$35.48	ea. Includes the 141920 \$141,920	e floor area of all le 0 \$0	<i>vels.</i> 140000 \$140,000	0 \$0	0 \$0	281920 \$281,920
HVAC Equipment	HVAC	U.C. per Lot	1.00 .	4000 4,000	CN-SHEE \$35.48	141920 \$141,920	15000 \$15,000	525000 \$525,000	0 \$0	0 \$0	681920 \$681,920
Diffusers, Grilles, Da	HVAC ampers, Registers	U.C. per Lot	1.00	200 200	CN-SHEE \$35,48	7096 \$7, 096	0 \$0	13000 \$13,000	0 \$0	0 \$0	20096 \$20,096
Misc. Sheet Metal	HVAC .	U.C. per Lot	1.00	350 350	CN-SHEE \$35.48	12418 \$12,418	0 \$0	5000 \$5,000	0 \$0	0 \$0	17418 \$17,418
Test & Balance	HVAC	U.C. per Lot	1.00	300 300	CN-SHEE \$35.48	10644 \$10,644	0 \$0	0 \$0	0 \$0	0 \$0	10644 \$10,844
Subtotal Sales Tax INEEL ORG Labo	or/Subcontractor Overheads					\$313,998 \$0 \$143,295	\$15,000 \$0 \$6,845	\$683,000 \$34,150 \$327,276	\$0 \$0 \$0	\$0 \$0 \$0	\$1,011,998 \$34,150 \$477,416
Subtotal Estimat Escalation Contingency	le .					\$117,341 \$235,600	\$5,606 \$11,255	\$268,000 \$538,094	\$0 \$0	\$0 \$0	\$1,523,564 \$390,947 \$784,949
Total 9115.2.2 H	VAC - TFD FACILITY - OPERATING O	CORRIDORS		8,850		\$810,234	\$38,706	\$1,850,520	\$0	\$0	\$2,699,460
9115.2.3 PLUM Process Piping	BING / PIPING - TFD FACILITY PIPE	U.C. per Sf 13,	700.00	0.15 2,055	CN-PIPE \$37.58	5.637 \$77,227	0 \$0	7 \$95,900	0 \$0	0 \$0	12.637 \$173,127

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor 9115.2.3 PLUMBING / PIPING - TFD FACILITY	QTY	<u> </u>	<u>Irs</u>	Crew/Rate	Labor	Const Eqp	Matl	S/C_	Other	TOTAL
PIPE Building Plumbing	U.C. per Sf 13	,700.00	0.05 685	CN-PIPE \$37.58	1.879 \$25,742	0 \$0	3 \$41,100	0 \$0	0 \$0	4.879 \$66,842
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$102,969 \$0 \$49,532	\$0 \$0 \$0	\$137,000 \$6,850 \$69,198	\$0 \$0 \$0	\$0 \$0 \$0	\$239,969 \$6,850 \$118,730
Subtotal Estimate Escalation Conlingency					\$39,132 \$78,570	\$0 \$0	\$54,668 \$109,763	\$0 \$0	\$0 \$0	\$365,549 \$93,800 \$188,333
Total 9115.2.3 PLUMBING / PIPING - TFD FACILITY			2,740		\$270,203	\$0	\$377,479	\$0	\$0	\$647,682
9115.3.1 HVAC - BOILER HOUSE HVAC HVAC Memo: Based on AFC estimate #2547-A. This will be a two bo	U.C. per LOT oiler system vs. a fou	1.00 Ir in estimate 25	200 200 547-A; a	CN-SHEE \$35.48 Il quantities are ha	7096 \$7,096 Ived.	240 \$240	36700 \$36,700	1000 \$1,000	0 \$0	45036 \$45,036
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$7,096 \$0 \$3,238	\$240 \$0 \$110	\$36,700 \$1,835 \$17,586	\$1,000 \$0 \$456	\$0 \$0 \$0	\$45,036 \$1,835 \$21,390
Subtotal Estimate Escalation Contingency					\$2,652 \$5,324	\$90 \$180	\$14,401 \$28,914	\$374 \$750	\$0 \$0	\$68,261 \$17,516 \$35,168
Total 9115.3.1 HVAC - BOILER HOUSE			200		\$18,310	\$619	\$99,435	\$2,580	\$0	\$120,945
9115.3.2 PLUMBING - BOILER HOUSE PIPE Building Drain	U.C. per Lot	1.00	40 40	CN-PIPE \$37.58	1503,2 \$1,503	0 \$0	600 \$600	0 \$0	0 \$0	2103.2 \$2,103
PIPE Building Water	U.C. per Lot	1,00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	300 \$300	0 \$0	0 \$0	1051.6 \$1,052
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$2,255 \$0 \$1,085	\$0 \$0 \$0	\$900 \$45 \$455	\$0 \$0 \$0	\$0 \$0 \$0	\$3,155 \$45 \$1,539
Subtotal Estimate Escalation Contingency					\$857 \$1,721	\$0 \$0	\$359 \$721	\$0 \$0	\$0 \$0	\$4,739 \$1,216 \$2,442
Total 9115.3.2 PLUMBING - BOILER HOUSE			60		\$5,917	\$0	\$2,480	\$0	\$0	\$8,397
9115.3.3 PIPING - BOILER HOUSE PIPE Boilers	∪.C. per Ea	2.00	200 400	CN-PIPE \$37.58	7516 \$15,032	2000 \$4,000	50000 \$100,000	o \$0	0 \$0	59516 \$119,032

52

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC Estimate Number:2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor 9115.3.3 PIPING - BOILER HOUSE	QT	Υ	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
PIPE STEAM & SUPPORT PIPING	U.C. per LOT	Г 1.00	750 750	CN-PIPE \$37.58	28185 \$28,185	. 0 \$0	40000 \$40,000	0 \$0	0 \$0	68185 \$68,185
INSUL PIPE INSULATION	U.C. per LOT	T 1.00	175 175	. CN-ASBE \$36,92	6461 \$6,461	0 \$0	8920 \$8,920	0 \$0	0 \$0	15381 \$15,381
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$49,678 \$0 \$23,498	\$4,000 \$0 \$1,924	\$148,920 \$7,446 \$74,640	\$0 \$0 \$0	\$0 \$0 \$0	\$202,598 \$7,446 \$100,063
Subtotal Estimate Escalation Contingency	•				\$18,777 \$37,701	\$1,520 \$3,052	\$59,276 \$119,016	\$0 \$0	\$0 \$0	\$310,107 \$79,573 \$159,769
Total 9115.3.3 PIPING - BOILER HOUSE			1,325		\$129,654	\$10,498	\$409,298	\$0	\$0	\$549,449
9115.3.4 FIRE PROTECTION - BOILER HOUSE FP FIRE SPRINKLER SYSTEM - BOILER BUILDING	U.C. per SF	3,120.00	0		0 \$0	0 \$0	0 \$0	4 \$12,480	0 \$0	4 \$12,480
Sublotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	1000			1000	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$12,480 \$0 \$5,233	\$0 \$0 \$0	\$12,480 \$0 \$5,233
Subtotal Estimate Escalation Conlingency					\$0 \$0	\$0 \$0	\$0 \$0	\$4,545 \$9,126	\$0 \$0	\$17,713 \$4,545 \$9,126
Total 9115.3.4 FIRE PROTECTION - BOILER HOUSE			0		\$0	\$0	\$0	\$31,384	\$0	\$31,384
9115.4.1 HVAC - STORAGE FACILITY HVAC (*)Sheet Metal Ductwork Memo: The Interim Storage Facility is approximately 140' x 146'	U.C. per Lot x 36' high.	1.00	1100 1,100	CN-SHEE \$35.48	39028 \$39,028	0 \$0	20000 \$20,000	0 \$0	0 \$0	59028 \$59,028
HVAC HVAC Equipment	U.C. per Lot	1.00	500 500	CN-SHEE \$35.48	17740 \$17,740	3000 \$3,000	100000 \$100,000	0 \$0	0 \$0	120740 \$120,740
HVAC HEPA Fillers	U.C. per Lot	1.00	300 300	CN-SHEE \$35.48	10844 \$10,644	0 \$0	150000 \$150,000	0 \$0	0 \$0	160644 \$160,644
HVAC Diffusers, Grilles, Dampers, Registers	U.C. per Lot	1.00	100 100	CN-SHEE \$35.48	. 3548 \$3,548	0 \$0	9000 \$9,000	0 \$0	0 \$0	12548 \$12,548
HVAC Misc. Sheet Metal	U.C. per Lot	1.00	200 200	CN-SHEE \$35.48	7096 \$7,098	0 \$0	2500 \$2,500	0 \$0	0 \$0	9596 \$9, 596

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC
Estimate Number:2570 - Option C

Client:

V. J. Balls

LEVEL Org/Subcontractor 9115.4.1 HVAC - STORAGE FACILITY	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
HVAC Test & Balance	U.C. per Lot	1.00	200 200	CN-SHEE \$35.48	7096 \$7, 098	0 \$0	0 \$0	0 \$0	0 \$0	7096 \$7,096
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$85,152 \$0 \$38,860	\$3,000 \$0 \$1,369	\$281,500 \$14,075 \$134,887	\$0 \$0 \$0	\$0 \$0 \$0	\$369,652 \$14,075 \$175,116
Subtotal Estimate Escalation Contingency					\$31,821 \$63,892	\$1,121 \$2,251	\$110,457 \$221,777	\$0 \$0	\$0 \$0	\$558,843 \$143,399 \$287,919
Total 9115.4.1 HVAC - STORAGE FACILITY			2,400		\$219,725	\$7,741	\$762,696	\$0	\$0	\$990,162
9115.4,2 PIPING / PLUMBING - STORAGE FACILITY PIPE MISC. PIPING - ALLOW	U.C. per LOT	1.00	o .		0 \$0	0 \$0	0 \$0	60000 \$60,000	0 \$0	60000 \$60,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$60,000 \$0 \$28,862	\$0 \$0 . \$0	\$60,000 \$0 \$28,862
Subtotal Estimate Escalation Contingency					\$0 \$0	\$0 \$0	\$0 \$0	\$22,802 \$45,782	\$0 \$0	\$88,862 \$22,802 \$45,782
Total 9115.4.2 PIPING / PLUMBING - STORAGE FACILITY			0	· · · · · · · · · · · · · · · · · · ·	\$0	\$0	\$0	\$157,447	\$0	\$157,447
9115.4.3 FIRE PROTECTION - STORAGE FACILITY FP FIRE PROTECTION	U.C. per SF 20	,440.00	0		0 \$0	0 \$0	0 \$0	4 \$81,760	0 \$0	4 \$81,760
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			-		\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$81,760 \$0 \$34,284	\$0 \$0 \$0	\$81,760 \$0 \$34,284
Subtotal Estimate Escalation Contingency					\$0 \$0	\$0 \$0	\$0 \$0	\$29,777 \$59,787	\$0 \$0	\$116,044 \$29,777 \$59,787
Total 9115.4.3 FIRE PROTECTION - STORAGE FACILITY			0		\$0	\$0	\$0	\$205,608	\$0	\$205,608
9116.1.1 ELECTRICAL DEMO - CALCINER CELL ELEC Electrical Demo - Calciner Cell	U.C. per Lot	1.00	850 850	CN-ELEC \$34.12	29002 \$29,002	0 \$0	0 \$0	0 \$0	0 \$0	29002 \$29,002
ELEC Cut Up Conduit For "Hot Boxing"	U.C. per Lot	1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	0 \$0	0 \$0	0 \$0	3412 \$3,412

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor 9116.1.1 ELECTRICAL DEMO - CALCINER CELL	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
ELEC Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	1900 1,900	CN-ELEC \$34.12	64828 \$64,828	` 0 \$0	0 \$0	0 \$0	0 \$0	64828 \$64,828
ELEC Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	712 712	CN-ELEC \$34.12	24293,44 \$24,293	0 \$0	0 \$0	0 \$0	0 \$0	24293.44 \$24,293
ELEC Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	950 950	CN-ELEC \$34.12	32414 \$32,414	0 \$0	0 \$0	0 \$0	0 \$0	32414 \$32,414
ELEC Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0	CN-ELEC	0 \$0	0 \$0	2600 \$2,600	0 \$0	0 \$0	2600 \$2,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	•		, · , .		\$153,949 \$0 \$64,556	\$0 \$0 \$0	\$2,600 \$130 \$1,145	\$0 \$0 \$0	\$0 \$0 \$0	\$156,549 \$130 \$65,700
Subtotal Estimate Escalation Contingency					\$56,068 \$142,778	\$0 \$0	\$994 \$2,532	\$0 \$0	\$0 \$0	\$222,380 \$57,063 \$145,310
Total 9116.1.1 ELECTRICAL DEMO - CALCINER CELL			4,512		\$417,352	\$0	\$7,401	\$0	\$0	\$424,753
9116.1.3 ELECTRICAL DEMO - OFF GAS CELL. ELEC Electrical Demo - Calciner Cell	U.C. per Lot	1.00	850 850	CN-ELEC \$34.12	29002 \$29,002	0 \$0	0 \$0	· 0 \$0	0 \$0	29002 \$29,002
ELEC Cut Up Conduit For "Hot Boxing"	U.C. per Lot	1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	. 0 \$0	0 \$0	0 \$0	3412 \$3,412
ELEC Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	1900 1,900	CN-ELEC \$34.12	64828 \$64,828	0 \$0	0 \$0	0 \$0	0 \$0	64828 \$64,828
ELEC Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	712 712	CN-ELEC \$34.12	24293.44 \$24,293	0 \$0	0 \$0	0 \$0	0 \$0	24293.44 \$24,293
ELEC Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	950 950	CN-ELEC \$34.12	32414 \$32,414	0 \$0	. \$0	0 \$0	0 \$0	32414 \$32,414

08/30/2000

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor 9116.1,3 ELECTRICAL DEMO - OFF GAS CELL	QTY	_	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Mati	S/C	Other	TOTAL
Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0	CN-ELEC	0 \$0	0 \$0	2600 \$2,600	0 \$0	0 \$0	2600 \$2,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$153,949 \$0 \$64,556	\$0 \$0 \$0	\$2,600 \$130 \$1,145	\$0 \$0 \$0	\$0 \$0 \$0	\$156,549 \$130 \$65,700
Subtotal Estimate Escalation Contingency					\$56,068 \$142,778	\$0 \$0	\$994 \$2,532	\$0 \$0	\$0 \$0	\$222,380 \$57,063 \$145,310
Total 9116.1.3 ELECTRICAL DEMO - OFF GAS CELL			4,512		\$417,352	\$0	\$7,401	\$0	\$0	\$424,753
9116.1.4 ELECTRICAL DEMO - BLEND & HOLD CELL ELEC Electrical Demo - Calciner Cell	U.C. per Lot	1.00	850 850	CN-ELEC \$34.12	29002 \$29,002	0 \$0	0 \$0	0 \$0	0 \$0	29002 \$29,002
ELEC Cut Up Conduit For "Hot Boxing"	U.C. per Lot	1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	o \$0	o \$0	0 \$0	3412 \$3,412
ELEC Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	1900 1,900	CN-ELEC \$34.12	64828 \$64,828	· 0 \$0	0 \$0	0 \$0	0 \$0	64828 \$64,828
ELEC Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	712 712	CN-ELEC \$34.12	24293.44 \$24,293	0 \$0	0 \$0	0 \$0	0 \$0	24293.44 \$24,293
ELEC Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	950 950	CN-ELEC \$34.12	32414 \$32,414	0 \$0	0 \$0	0 \$0	0 \$0	32414 \$32,414
ELEC Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0	CN-ELEC	0 \$0	0 \$0	2600 \$2,600	0 \$0	0 \$0	2600 \$2,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$153,949 \$0 \$64,556	\$0 \$0 \$0	\$2,600 \$130 \$1,145	\$0 \$0 \$0	\$0 \$0 \$0	\$156,549 \$130 \$65,700
Subtotal Estimate Escalation Contingency					\$56,068 \$142,778	\$0 \$0	\$994 \$2,532	\$0 \$0	\$0 \$0	\$222,380 \$57,063 \$145,310
Total 9116.1.4 ELECTRICAL DEMO - BLEND & HOLD CEL	L		4,512		\$417,352	\$0	\$7,401	\$0	\$0	\$424,753
9116.1.5 ELECTRICAL DEMO - VALVE CUBICLE ELEC Electrical Demo - Calciner Cell	U.C. per Lot	1.00	850 850	CN-ELEC \$34.12	29002 \$29,002	0 \$0	0 \$0	0 \$0	0 \$0	29002 \$29,002
ELEC Cut Up Conduit For "Hot Boxing"	U.C. per Lot	1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	0 \$0	0 \$0	0 \$0	3412 \$3,412

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

Client:

V. J. Balis

LEVEL Org/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	_S/C_	Other	TOTAL
9116.1.5 ELECTRICAL DEMO - VALVE CUBICLE ELEC Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	1900 1,900	CN-ELEC \$34.12	64828 \$64,828	o \$0	0 \$0	0 \$0	0 \$0	64828 \$64,828
ELEC Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	712 712	CN-ELEC \$34.12	24293.44 \$24,293	0 \$0	0 \$0	0 \$0	0 \$0	24293.44 \$24,293
ELEC Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	950 950	CN-ELEC \$34.12	32414 \$32,414	0 \$0	0 \$0	0 \$0	0 \$0	32414 \$32,414
ELEC Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0	CN-ELEC	. 0 \$0	0 \$0	2600 \$2,600	, 0 \$0	0 \$0	2600 \$2,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	,				\$153,949 \$0 \$64,556	\$0 \$0 \$0	\$2,600 \$130 \$1,145	\$0 \$0 \$0	\$0 \$0 \$0	\$156,549 \$130 \$65,700
Subtotal Estimate Escalation Contingency					\$56,068 \$142,778	\$0 \$0	\$994 \$2,532	\$0 \$0	\$0 \$0	\$222,380 \$57,063 \$145,310
Total 9116.1.5 ELECTRICAL DEMO - VALVE CUBICLE			4,512		\$417,352	\$0	\$7,401	\$0	\$0	\$424,753
9116.2.1 SWITCHGEAR AND TRANSFORMERS - NWCF ELEC 2000 amp, 480/277 double ended 3R walk-in switchgear	U.C. per Ea	1.00	72 72	CN-ELEC \$34.12	2456.64 \$2,457	2500 \$2,500	150000 \$150,000	0 \$0	0 \$0	154956.64 \$154,957
ELEC 1500 kVA 13.8-480/277 transformers	U.C. per Ea	2.00	24 48	CN-ELEC \$34.12	818.88 \$1,638	2500 \$5,000	50000 \$100,000	0 \$0	0 \$0	53318.88 \$106,638
ELEC 2000 amp armor clad busway	U.C. per Ls	1.00	24 24	CN-ELEC \$34.12	818.88 \$819	0 \$0	7500 \$7,500	o \$0	0 \$0	8318.88 \$8,319
ELEC 1200 amp 480 volt normal power panels	U.C. per Ea	2.00	16 32	CN-ELEC \$34.12	545.92 \$1,092	0 \$0	10000 \$20,000	0 \$0	0 \$0	10545.92 \$21, 092
ELEC 480 volt power panels	U.C. per Ea	2.00	12 24	CN-ELEC \$34.12	409.44 \$819	0 \$0	5000 \$10,000	0 \$0	0 \$0	5409.44 \$10,819

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

Client: V. J. Balls

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
9116.2.1 SWITCHGEAR AND TRANSFORMERS - NWCI ELEC Vault and equipment pads for main gear and transformers	U.C. per Ls	1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	35000 \$35,000	35000 \$35,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			\$6,824 \$0 \$2,862	\$7,500 \$0 \$3,145	\$287,500 \$14,375 \$126,585	\$0 \$0 \$0	\$35,000 \$0 \$0	\$336,824 \$14,375 \$132,592
Subtotal Estimate Escalation Contingency					\$2,485 \$6,329	\$2,732 \$6,956	\$109,943 \$279,970	\$0 \$0	\$8,981 \$22,870	\$483,791 \$124,141 \$316,124
Total 9116.2.1 SWITCHGEAR AND TRANSFORMERS - N	IWCF		200		\$18,500	\$20,332	\$818,373	\$0	\$66,851	\$924,056
9116.2.2 RACEWAYS, CONDUCTORS, AND GROUNDII ELEC 15kV electrical duct bank, 2 runs of 200 lf.	NG - NWCF U.C. per Lf	400.00	0		0 \$0	0 \$0	0 \$0	0 \$0	125 \$50,000	125 \$50,000
ELEC 600 volt feeders	U.C. per Ls	1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	25000 \$25,000	25000 \$25,000
ELEC Branch power and lighting circuits	U.C. per Ls	1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	50000 \$50,000	50000 \$50,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$125,000 \$0 \$0	\$125,000 \$0 \$0
Subtotal Estimate Escalation Conlingency					\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$32,075 \$81,679	\$125,000 \$32,075 \$81,679
Total 9116.2.2 RACEWAYS, CONDUCTORS, AND GROU	NDING - NWCF		0		\$0	\$0	\$0	\$0	\$238,754	\$238,754
9116.2.3 MISC. COSTS - NWCF ELEC Testing of systems and equipment	U.C. per Ls	1.00	120 120	CN-ELEC \$34.12	4094.4 \$4,094	0 \$0	0 \$0	o \$0	0 \$0	4094.4 \$4,094
ELEC Material handling	U.C. per Ls	1.00	120 120	CN-ELEC \$34.12	4094.4 \$4,094	0 \$0	0 \$0	0 \$0	0 \$0	4094.4 \$4 , 094
ELEC Voice Paging / Evac.	U.C. per Lot	1.00	o		0 \$0	0 \$0	0 \$0	40000 \$40,000	0 \$0	40000 \$40,000

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC

Prepared By: Rowley / Mitchell / Marler

Estimate Number: 2570 - Option C

Estimate Type: Planning

LEVEL Org/Subcontractor 9116.2.3 MISC. COSTS - NWCF	QTY		Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C	Other	TOTAL
Wiring Devices & Enclosures	U.C. per Lot	1.00	0		0 \$0	0 \$0	0 \$0	40000 \$40,000	0 \$0	40000 \$40,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				1 11	\$8,189 \$0 \$3,434	\$0 \$0 \$0	\$0 \$0 \$0	\$80,000 \$0 \$33,546	\$0 \$0 \$0	\$88,189 \$0 \$36,980
Subtotal Estimate Escalation Contingency					\$2,982 \$7,595	\$0 \$0	\$0 \$0	\$29,136 \$74,195	\$0 \$0	\$125,169 \$32,118 \$81,789
Total 9116.2.3 MISC. COSTS - NWCF	•		240		\$22,200	\$0	. \$0	\$216,877	\$0	\$239,077
9116.3.1 SWITCHGEAR AND TRANSFORMERS - TFD ELEC 480-208/120 75 kVA transformers	U.C. per Ea	2.00	8 16	CN-ELEC \$34.12	272.96 \$546	0 \$0	1700 \$3,400	0 \$0	0 \$0	1972.96 \$3,946
ELEC 208/120 panels, lighting & misc. power loads	U.C. per Ea	2.00	16	CN-ELEC \$34.12	272.96 \$546	0 \$0	2500 \$5,000	0 \$0	0 \$0	2772.96 \$5,546
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$1,092 \$0 \$458	\$0 \$0 \$0	\$8,400 \$420 \$3,698	\$0 \$0 \$0	\$0 \$0 \$0	\$9,492 . \$420 \$4,156
Subtotal Estimate Escalation Contingency					\$398 \$1,013	\$0 \$0	\$3,212 \$8,180	\$0 \$0	\$0 \$0	\$14,068 \$3,610 \$9,193
Total 9116.3.1 SWITCHGEAR AND TRANSFORMERS - T	FD		32		\$2,960	, \$0	\$23,911	\$0	\$0	\$26,871
9116.3.2 RACEWAYS, CONDUCTORS, AND GROUNDII ELEC Branch power and lighting circuits	NG - TFD U.C. per Ls	1.00	0		0 \$0	0 \$0	o \$0	0 \$0	35000 \$35,000	35000 \$35,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$35,000 \$0 \$0	\$35,000 \$0 \$0
Subtotal Estimate Escalation Contingency					\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$8,981 \$22,870	\$35,000 \$8,981 \$22,870
Total 9116.3.2 RACEWAYS, CONDUCTORS, AND GROU	INDING - TFD		0		\$0	\$0	\$0	. \$0	\$66,851	\$66,851
9116.3.3 MISC. COSTS - TFD ELEC Testing of systems and equipment	U.C. per Ls	1.00	90 90	CN-ELEC \$34.12	3070.8 \$3,071	o \$0	0 \$0	0 \$0	0 \$0	3070.8 \$3,071

Page No.

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX in NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
9116.3.3 MISC. COSTS - TFD ELEC Material handling	U.C. per Ls 1.00	90 90	CN-ELEC \$34.12	3070.8 \$3,071	0 \$0	0 \$0	0 \$0	0 \$0	3070.8 \$3,071
ELEC Voice Paging / Evac.	U.C. per Sf 13,700.00	0		0 \$0	0 \$0	0 \$0	\$54,800	0 \$0	4 \$54,800
ELEC Lightning Protection	U.C. per Sf 13,700.00	0		0 \$0	0 \$0	0 \$0	2 \$27,400	0 \$0	2 \$27,400
·ELEC Grounding Grid	U.C. per Sf 13,700.00	0		0 \$0	0 \$0	0 \$0	1 \$13,700	0 \$0	1 \$13,700
ELEC Wiring Devices & Enclosures	U.C. per Sf 13,700.00	0		0 \$0	0 \$0	0 \$0	1 \$13,700	0 \$0	1 \$13,700
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$6,142 \$0 \$2,575	\$0 \$0 \$0	\$0 \$0 \$0	\$109,600 \$0 \$45,959	\$0 \$0 \$0	\$115,742 \$0 \$48,534
Subtotal Estimate Escalation Contingency				\$2,237 \$5,696	\$0 \$0	\$0 \$0	\$39,916 \$101,647	\$0 \$0	\$164,276 \$42,153 \$107,343
Total 9116.3.3 MISC. COSTS - TFD		180		\$16,650	\$0	\$0	\$297,122	\$0	\$313,772
9116.3.4 LIGHTING - TFD ELEC Lighting	U.C. per Sf 13,700.00	0		0 \$0	. \$0 ·	0 \$0	0 \$0	3.9 \$53,430	3.9 \$53,430
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$53,430 \$0 \$0	\$53,430 \$0 \$0
Subtotal Estimate Escalation Contingency				\$0 \$0 .	\$0 \$0	\$0 \$0	\$0 \$0	\$13,710 \$34,913	\$53,430 \$13,710 \$34,913
Total 9116.3.4 LIGHTING - TFD		0		\$0	\$0	\$0	\$0	\$102,053	\$102,053
9116.4.2 RACEWAYS, CONDUCTORS, AND GROUNDING ELEC Branch power and lighting circuits	NG - BOILER HOUSE U.C. per Ls 1.00	0		0 \$0	0 \$0	0 \$0	· 0 \$0	12000 \$12,000	12000 \$12,000

60

CONSTRUCTION DETAIL ITEM REPORT

Project Name: CONSTR

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

Client:

V. J. Balls

LEVEL 9116.4.2 RACEWA	Org/Subcontractor	QT\ DUNDING - BOILER HOU	SE .	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labori/S	ubcontractor Overheads	****				\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$12,000 \$0 \$0	\$12,000 \$0 \$0
Subtotal Estimate Escalation Contingency						\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,079 \$7,841	\$12,000 \$3,079 \$7,841
Total 9116.4.2 RAC HOUSE	EWAYS, CONDUCTORS, AND	GROUNDING - BOILER		` 0		. \$0	\$0	\$0	\$0	\$22,920	\$22,920
9116.4.3 MISC. CO	OSTSBOILER HOUSE ELEC l equipment	U.C. per Ls	1.00	40 40	CN-ELEC \$34.12	1364.8 \$1,365	0 \$0	0 \$0	0 \$0	0 \$0	1364.8 \$1,365
Material handling	ELEC	U.C. per Ls	1.00	40 40	CN-ELEC \$34.12	1364.8 \$1,365	0 \$0	0 \$0	0 \$0	0 \$0	1364.8 \$1,365
Voice Paging / Evac.	ELEC	U.C. per Sf	3,120.00	· o		0 \$0	0 \$0	0 \$0	3 \$9,360	0 \$0	3 \$9,360
Lightning Protection	ELEC	U.C. per Sf	3,120.00	0		0 \$0	0 \$0	0 \$0	2 \$6,240	0 \$0	2 \$6,240
Grounding Grid	ELEC	U.C. per Sf	3,120.00	0		0 \$0	0 \$0	· \$0	1 \$3,120	0 \$0	1 \$3,120
Wiring Devices & Enclo	ELEC osures	U.C. per Sf	3,120.00	0		0 \$0	0 \$0	0 \$0	1 \$3,120	0 \$0	1 \$3,120
Subtotal Sales Tax INEEL ORG Labor/S	Subcontractor Overheads					\$2,730 \$0 \$1,145	\$0 \$0 \$0	\$0 \$0 \$0	\$21,840 \$0 \$9,158	\$0 \$0 \$0	\$24,570 \$0 \$10,303
Subtotal Estimate Escalation Contingency					. •	\$994. \$2,532	\$0 \$0	· \$0 \$0	\$7,954 \$20,255	\$0 \$0	\$34,872 \$8,948 \$22,787
Total 9116.4.3 MISC	C. COSTS - BOILER HOUSE	•		80		\$7,400	\$0	\$0	\$59,207	\$0	\$66,607
— 9116.4.4 LIGHTING	G - BOILER HOUSE ELEC	U.C. per Sf	3,120.00	0		0 \$0	0 \$0	o . \$0	3 \$9,360	0 \$0	3 \$9,360

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option C

V. J. Balls witte

Prepared By: Rowley / Mitchell / Marler

LEVEL 9116.4.4 LIGH	Org/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	_S/C_	Other	TOTAL
Subtotal Sales Tax INEEL ORG La	bor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$9,360 \$0 \$3,925	\$0 \$0 \$0	\$9,360 \$0 \$3,925
Subtotal Estim Escalation Contingency	nate					\$0 \$0	\$0 \$0	\$0 \$0	\$3,409 \$8,681	\$0 \$0	\$13,285 \$3,409 \$8,681
Total 9116.4.4	LIGHTING - BOILER HOUSE			0		\$0	\$0	\$0	\$25,375	\$0	\$25,375
	AR AND TRANSFORMERS - INTERIM S ELEC IND TRANSFORMERS	U.C. per LOT	1.00	480 480	CN-ELEC \$34.12	16377.6 \$16,378	0 \$0	100000 \$100,000	0 \$0	0 - \$0	116377.6 \$116,378
Subtotal Sales Tax INEEL ORG La	bor/Subcontractor Overheads					\$16,378 \$0 \$6,868	\$0 \$0 \$0	\$100,000 \$5,000 \$44,030	\$0 \$0 \$0	\$0 \$0 \$0	\$116,378 \$5,000 \$50,897
Subtotal Estim Escalation Contingency	nate					\$5,965 \$15,189	\$0 \$0	\$38,241 \$97,381	\$0 \$0	\$0 \$0	\$172,275 \$44,206 \$112,570
Total SWITCH	IGEAR AND TRANSFORMERS - INTER	RIM STORAGE		480		\$44,399	\$0	\$284,651	\$0	\$0	\$329,051
RACEWAYS Branch power and	i, CONDUCTORS, AND GROUNDING - ELEC I lighling circuits	U.C. per Ls	1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	21000 \$21,000	21000 \$21,000
Subtotal Sales Tax INEEL ORG La	bor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$21,000 \$0 \$0	\$21,000 \$0 \$0
Subtotal Estim Escalation Contingency	nate ,					\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$5,389 \$13,722	\$21,000 \$5,389 \$13,722
Total RACEW	AYS, CONDUCTORS, AND GROUNDINGE	NG - INTERIM		0		\$0	\$0	\$0	\$0	\$40,111	\$40,111
Testing of system		U.C. per Ls	1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	o \$0	0 \$0	0 \$0	0 \$0	3412 \$3,412
Material handling	ELEC	U.C. per Ls	1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	0 \$0	0 \$0	0 \$0	3412 \$3,412
Voice Paging / Ev	ELEC ac.	U.C. per Sf 20	,440.00	0		0 \$0	0 \$0	0 \$0	4 \$81,760	0 \$0	4 \$81,760

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option C

Client:

V. J. Balls

LEVEL Org/Subcontractor MISC. COSTS - INTERIM STORAGE	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
ELEC Lightning Protection	U.C. per Sf 20,440.00) 0		0 \$0	0 \$0	0 \$0	2 \$40,880	0 \$0	2 \$40,880
ELEC Grounding Grid	U.C. per Sf 20,440.00	0		0 \$0	0 \$0	0 \$0	1 \$20,440	• o \$0	1 \$20,440
ELEC Wiring Devices & Enclosures	U.C. per Sf 20,440.00	0		0 \$0	0 \$0	0 \$0	1 \$20,440	0 \$0	1 \$20,440
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$6,824 \$0 \$2,862	\$0 \$0 . \$0	\$0 \$0 \$0	\$163,520 \$0 \$68,569	\$0 \$0 \$0	\$170,344 \$0 \$71,430
Subtotal Estimate Escalation Contingency				\$2,485 \$6,329	\$0 \$0	\$0 \$0	\$59,554 \$151,654	\$0 \$0	\$241,774 \$62,039 \$157,983
Total MISC. COSTS - INTERIM STORAGE		200		\$18,500	\$0	\$0	\$443,297	\$0	\$461,797
9116.5 LIGHTING - INTERIM STORAGE ELEC Lighting	U.C. per Sf 20,440.00) 0		0 \$0	0 \$0	0 \$0	3.5 \$71,540	\$0	3.5 \$71,540
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$71,540 \$0 \$29,999	\$0 \$0 \$0	\$71,540 \$0 \$29,999
Subtotal Estimate Escalation Contingency				\$0 \$0	\$0 \$0	\$0 \$0	\$26,055 \$66,349	\$0 \$0	\$101,539 \$26,055 \$66,349
Total 9116.5 LIGHTING - INTERIM STORAGE		0		\$0	\$0	\$0	\$193,942	\$0	\$193,942
9116.6 ELECTRICAL - TRANSFER TUNNEL ELEC LIGHTING	U.C. pèr SF 1,500.0) 0	CN-ELEC	0 \$0	0 \$0	0 \$0	2.75 \$4,125	0 \$0	2.75 \$4,125
ELEC VOICE PAGING / EVAC.	U.C. per SF 1,500.00	0.03) 45		1.024 \$1,535	0 \$0	\$3,000	0 \$0	0 \$0	3.024 \$4,535
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$1,535 \$0 \$644	\$0 \$0 \$0	\$3,000 \$150 \$1,321	\$4,125 \$0 \$1,730	\$0 \$0 \$0	\$8,660 \$150 \$3,694
Subtotal Estimate Escalation Contingency				\$559 \$1,424	\$0 \$0	\$1,147 \$2,921	\$1,502 \$3,826	\$0 \$0	\$12,505 \$3,209 \$8,171
Total 9116.6 ELECTRICAL - TRANSFER TUNNEL		45		\$4,162	\$0	\$8,540	\$11,183	\$0	\$23,885

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option C

Client:

V. J. Balls

LEVEL Org/Subcontractor 9301.1 CONSTRUCTION SUPPORT	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C_	Other	TOTAL
BWI Construction Support1% Of TCC	U.C. per Lot 1.00	0		173600 \$173,600	0 \$0	0 \$0	o \$0	0 \$0	173600 \$173,600
7620 Radiological Control Technicians - 4 FTE - 2 Years	U.C. per Wk 104.00	160 16,640		3945.6 \$410,342	0 \$0	0 \$0	0 \$0	0 \$0	3945.6 \$410,342
7610 Radiation Control - Management Support - 10% OF RCT Total	U.C. per Hr 16,640.00	0.1 1,664		5,232 \$87,060	0 \$0	0 \$0	0 \$0	0 \$0	5.232 \$87,060
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$671,003 \$0 \$442,689	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$671,003 \$0 \$442,689
Subtotal Estimate Escalation Contingency				\$285,773 \$1,161,556	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$1,113,691 \$285,773 \$1,161,556
Total 9301.1 CONSTRUCTION SUPPORT		18,304		\$2,561,020	\$0	\$0	\$0	\$0	\$2,561,020
9301.2 CONSTRUCTION QUALITY CONTROL BWI Construction Quality Control1% Of TCC	U.C. per Lot	0		173600 \$173,600	0 \$0	o \$0	0 \$0	0 \$0	173600 \$173,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$173,600 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$173,600 \$0 \$0
Subtotal Estimate Escalation Contingency				\$44,546 \$181,061	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$173,600 \$44,546 \$181,061
Total 9301.2 CONSTRUCTION QUALITY CONTROL		0		\$399,207	\$0	\$0	\$0	\$0	\$399,207
9301.3 CONSTRUCTION DOCUMENTATION BWI PM Construction Document Control5% Of TCC	U.C. per Lot	0		868100 \$868,100	0 \$0	0 \$0	0 \$0	0 \$0	868100 \$868,100
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$868,100 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$868,100 \$0 \$0
Subtotal Estimate Escalation Contingency				\$222,754 \$905,409	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$868,100 \$222,754 \$905,409
Total 9301.3 CONSTRUCTION DOCUMENTATION		0		\$1,996,264	\$0	\$0	\$0	\$0	\$1,996,264

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC
Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor OPC3100 TESTING AND TURNOVER PLANNING	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
Testing & Turnover Planning2% Of TCC	U.C. per Lot	1.00	0		347200 \$347,200	0 \$0	0 \$0	0 \$0	0 \$0	347200 \$347,200
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$347,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$347,200 \$0 \$0
Subtotal Estimate Escalation Contingency					\$128,186 \$489,648	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$347,200 \$128,186 \$489,648
Total OPC3100 TESTING AND TURNOVER PLANNING			0		\$965,034	\$0	\$0	\$0	\$0	\$965,034
OPC3200 S. O. TESTING BWI SO Testing - 5% Of TCC	U.C. per Lot	1.00	0		8681100 \$8,681,100	0 \$0	0 \$0	0 \$0	0 \$0	8681100 \$8,681,100
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			·····	· · · · · · · · · · · · · · · · · · ·	\$8,681,100 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$8,681,100 \$0 \$0
Subtotal Estimate Escalation Contingency					\$3,205,062 \$12,242,747	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$8,681,100 \$3,205,062 \$12,242,747
Total OPC3200 S. O. TESTING			0	•	\$24,128,909	\$0	\$0	\$0	\$0	\$24,128,909
OPC3300 ORR SUPPORT BWI ORR Support22% Of TCC	U.C. per Lot	1.00	0		382000 \$382,000	0 \$0	0 \$0	0 \$0	0 \$0	382000 \$382,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$382,000 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$382,000 \$0 \$0
Subtotal Estimate Escalation Contingency					\$141,034 \$538,725	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$382,000 \$141,034 \$538,725
Total OPC3300 ORR SUPPORT			0		\$1,061,760	\$0	\$0	\$0	\$0 -	\$1,061,760
OPC3400 FACILITY ACCEPTANCE REVIEW BWI Facility Acceptance Review15% Of TCC	U.C. per Lot	1.00	,		260400 \$260,400	0 \$0	0 \$0	0 \$0	0 \$0	260400 \$260,400

Project Name: CONSTRUCTION DETAIL ITEM REPORT

U.C. per Lot

1.00

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor OPC3400 FACILITY ACCEPTANCE REVIEW	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	_S/C_	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$260,400 \$0 \$0	\$0 \$0 . \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$280,400 \$0 \$0
Subtotal Estimate Escalation Contingency					\$96,140 \$367,236	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$260,400 \$96,140 \$367,236
Total OPC3400 FACILITY ACCEPTANCE REVIEW	.,		0		\$723,776	\$0	\$0	\$0	\$0	\$723,776
OPC3500 RADIOLOGICAL CONTROL SUPPORT BWI Radiological Control Support11% Of TCC	U.C. per Lot	1.00	0		191000 \$191,000	0 \$0	o \$0	0 \$0	0 \$0	191000 \$191,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$191,000 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$191,000 \$0 \$0
Subtotal Estimate Escalation Contingency			1.5.1.5.1.5.1		\$70,517 \$269,363	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$191,000 \$70,517 \$269,363
Total OPC3500 RADIOLOGICAL CONTROL SUPPORT	************		0	· · · · · · · · · · · · · · · · · · ·	\$530,880	\$0	\$0	\$0	\$0	\$530,880
OPC3600 OPERATOR TRAINING BWI Operator Training - 2% Of TCC	U.C. per Lot	1.00	0		3472400 \$3,472,400	0 \$0	0 \$0	0 \$0	0 \$0	3472400 \$3,472,400
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$3,472,400 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,472,400 \$0 \$0
Subtotal Estimate Escalation Contingency					\$1,282,010 \$4,897,042	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,472,400 \$1,282,010 \$4,897,042
Total OPC3600 OPERATOR TRAINING			0		\$9,651,452	\$0	\$0	\$0	\$0	\$9,651,452

--- OPC3700 OPERATING PROCEDURES

Operating Procedures - .44% Of TCC

763900

\$763,900

0

\$0

0

\$0

\$0

\$0

763900

\$763,900

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC
Estimate Number: 2570 - Option C

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor OPC3700 OPERATING PROCEDURES	QTY	Hrs Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			\$763,900 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$763,900 \$0 \$0
Subtotal Estimate Escalation Contingency			\$282,032 \$1,077,310	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$763,900 \$282,032 \$1,077,310
Total OPC3700 OPERATING PROCEDURES		0 .	\$2,123,242	\$0	\$0	\$0	\$0	\$2,123,242
OPC3800 START-UP COORDINATION BWI Startup Coordination13% Of TCC	U.C. per Lot	0	225700 \$225,700	0 \$0	0 \$0	0 \$0	0 \$0	225700 \$225,700
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			\$225,700 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$225,700 \$0 \$0
Subtotal Estimate Escalation Contingency			\$83,328 \$318,299	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$225,700 \$83,328 \$318,299
Total OPC3800 START-UP COORDINATION		0	\$627,328	\$0	\$0	\$0	\$0	\$627,328
<u>OPC3900 SPARES</u> BWI Spares	U.C. per Lot	0	1000000 \$1,000,000	0 \$0	0 \$0	0 \$0	0 \$0	1000000 \$1,000,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			\$1,000,000 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	* \$0 \$0 \$0	\$0 \$0 \$0	\$1,000,000 \$0 \$0
Subtotal Estimate Escalation Contingency			\$369,200 \$1,410,276	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$1,000,000 \$369,200 \$1,410,276
Total OPC3900 SPARES		0	\$2,779,476	\$0	\$0	· \$ 0	\$0	\$2,779,476
PF NOGAPIF Procurement Fee %	U.C. per \$ 1,735,289.00	0	0 \$0	0 \$0	0 \$0	0 \$0	1 \$1,735,289	1 \$1,735,289

CONSTRUCTION DETAIL ITEM REPORT

Universal Solvent Extraction (UNEX) Feasibility Study - Option C - UNEX In NWCF

Project Location: INTEC

Project Name:

Estimate Number: 2570 - Option C

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

LEVEL Org/Subcontractor GAPIF Non-Org G&A and PIF	_QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$1,735,289 \$0 \$0	\$1,735,289 \$0 \$0
Subtotal Estimate Escalation Contingency				\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$1,214,702	\$1,735,289 \$0 \$1,214,702
Total GAPIF Non-Org G&A and PIF		0		\$0	\$0	\$0	\$0	\$2,949,991	\$2,949,991
Subtotal UNEX IN NWCF - OPTION C Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$**,***,*** \$0 \$7,835,424	\$326,250 \$0 \$125,424	\$90,244,479 \$4,512,224 \$35,427,140	\$55,176,409 \$0 \$4,668,307	\$2,016,719 \$0 \$0	\$**,***,*** \$4,512,224 \$48,056,296
Subtotal Estimate Escalation Contingency				\$31,577,764 \$98,537,616	\$115,900 \$330,681	\$33,405,174 \$63,798,649	\$9,595,689 \$20,977,637	\$72,215 \$1,398,598	\$**,***,*** \$74,766,742 \$**,***,***
Total UNEX IN NWCF - OPTION C		512,121		\$282,166,340	\$898,255	\$227,387,667	\$90,418,043	\$3,487,532	604.357.835

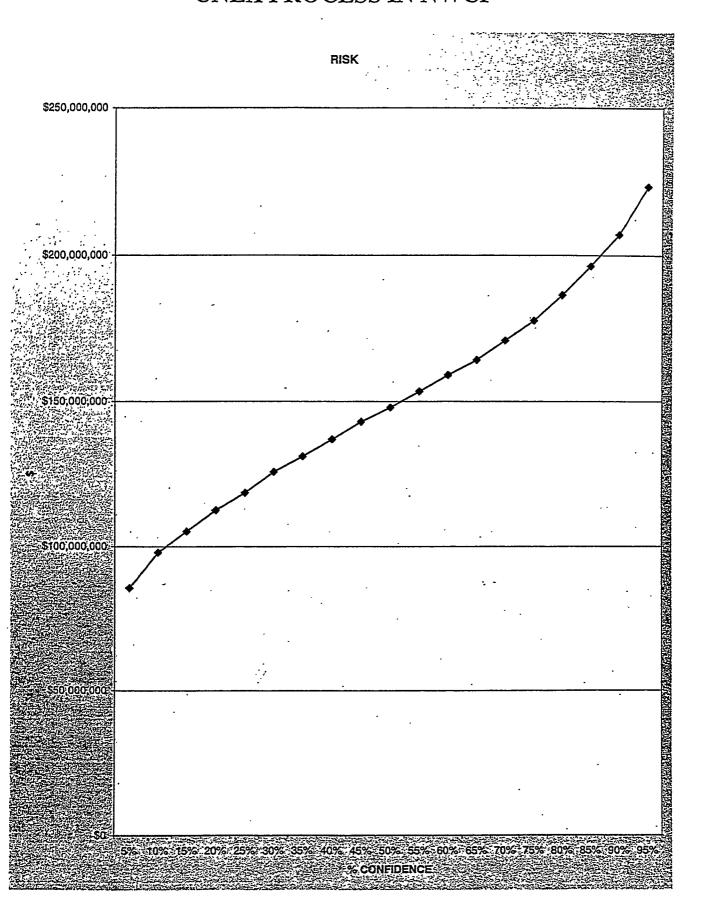
UNEX PROCESS IN NWCF

@RISK Sensitivity Report

OPTION C

Sensitivity Ranking Step-Wise Regression

Rank	Name .	Cell	Regression	Weight	Amount	Level Markup
- PROJ	ECT DEVELOPMENT / Contingency at \$F\$3,	for Simulat	ion 1			
1	EQUIPMENT	\$B\$22	0.5736	0.1809	\$33,718,762	¹ 69%
2	SPECIALTIES	\$B\$21	0.5122	0.1616	\$30,112,217	#30%
3	PROJECT ACCEPTANCE/CLOSEOUT	\$B\$27	0.3737	0.1179	\$21,969,386	² 103%
4	CONSTRUCTION MANAGEMENT	\$B\$7	0.2387	0.0753	\$14,032,818	§ 58%
5	PROJECT MANAGEMENT	\$B\$11	0.2129	0.0671	\$12,514,353	43%
6	TECHNICAL DEVELOPMENT	\$B\$4	0.2012	0.0635	\$11,828,407	101%
7	DECON SOLUTION PROCESSING	\$B\$6	0.1872	0.0590	\$11,004,388	¹ 23%
8	GENERAL CONDITIONS	\$B\$14	0.1819	0.0574	\$10,691,107	45%
9	TITLE II DESIGN	\$B\$9	0.1286	0.0406	\$7,559,116	'33%
10	MECHANICAL	\$B\$24	0.1060	0.0334	\$6,233,004	641%
11	TITLE I DESIGN	\$B\$8	0.0856	0.0270	\$5,031,267	42%
12	PROJECT EXECUTION	\$B\$5	0.0743	0.0234	. \$4,366,246	445%
13	QUALITY ASSURANCE.	\$B\$10	0,0603	0.0190	\$3,547,107	¹ 32%
14	CONSTRUCTION MISCELLANEOUS	\$B\$26	0.0386	0.0122	\$2,268,488	£83%
15	PROJECT DEVELOPMENT	\$B\$3	0.0325	0.0103	\$1,911,477	9:33%
16	ELECTRICAL	\$B\$25	0.0276	0.0087	\$1,624,106	52%
17	METALS	\$B\$17	0.0272	0.0086	\$1,598,187	26%
18	CONCRETE	\$B\$16	0.0231	0.0073	\$1,356,287	`26%
19	Non-Org G&A and PIF	\$B\$28	0.0208	0.0066	\$1,223,347	₽ 70%
20	CONVEYING SYSTEMS	\$B\$23	0.0182	0.0058	\$1,072,602	r 9%
21	CONSTRUCTION AE SUPPORT	\$B\$12	0.0159	0.0050	\$936,896	28%
22	SITEWORK	\$B\$15	0.0126	0.0040	\$738,256	∉64%
23	THERMAL & MOISTURE PROTECTION	\$B\$18	0.0071	0.0022	\$417,965	26%
24	FINISHES	\$B\$20	0.0052	0.0016		
25	GOVERNMENT FURNISHED EQUIPMENT	\$B\$13	0.0036	0.0011	\$212,380	[§] 134%
26	DOORS & WINDOWS	\$B\$19	0.0016	0.0005	\$91,313	


UNEX PROCESS IN NWCF

@RISK Output Details Report

Output Statistics

Simulation#	Contingency 1 \$F\$3 \$33,466,366
	\$33,466,366
Minimum	****** **** * * * * * * * * * * * * * *
1 1.	6000 074 744
Maximum	\$288,671,744
Mean	\$150,103,611
Standard Deviation	41961010.78
Variance	1.76073E+15
Skewness	0.284612116
Kurtosis	2.774579693
NumErrs	. 0
Mode	155403016.8
5%	\$85,583,616
10%	\$97,936,112
15%	\$105,284,384
20%	\$112,584,632
25%	\$118,574,696
30%	\$125,720,907
35%	\$131,076,118
40%	\$136,934,048
45%	\$142,941,072
50%	\$147,863,808
55%	\$153,410,978
60%	\$158,985,186
65%	\$164,211,294
70%	\$170,829,630
75%	\$177,672,192
80%	\$186,365,136
85%	\$196,340,250
90%	\$207,195,669
95%	\$223,625,421

UNEX PROCESS IN NWCF

TPC Summary Report 2

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX in NWCF

Project Location: INTEC

Project Number: 2570 - Option D

ESTIMATE ELEMENT	Estimate Subtotal	Escalation	Contingency	TOTAL
		24.17%	41.06%	
Total Estimated Cost (TEC)	\$262,325,469	\$63,404,363 17.02%	\$133,742,854 <i>52.40%</i>	\$459,472,685
Other Project Cost (OPC)	\$84,058,300	\$14,304,517	\$51,539,367	\$149,902,184
		22.43%	43.69%	
Total Project Cost (TPC)	\$346,383,769	\$77,708,880	\$185,282,221	\$609,374,869
Rounded TPC (Rounded to the nearest \$ 1000000)				\$609,000,000

		Remarks
Type of Estimate:	<u>Planning</u>	
Estimator:	Rowley / Mitchell / Marler	
Checked By:	LOA.	
Approved By:	by	

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX in NWCF

Project Location: INTEC

Estimate Number: 2570 - Option D

Project Summary Report

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL		Estimate Subtotal	Escalation	Contingency	Contingency %	TOTAL
OPC1000	PROJECT DEVELOPMENT	\$16,448,500	\$980,331	\$13,677,322	78.48%	\$31,106,153
OPC1001	PROJECT DEVELOPMENT	\$5,448,500	\$324,731	\$1,905,166	33.00%	\$7,678,397
OPC1001.1	CONCEPTUAL DESIGN	\$3,495,100	\$208,308	\$1,222,125	33.00%	\$4,925,533
OPC1001.2	PROJECT EXECUTION PLAN	\$174,800	\$10,418	\$61,122	33.00%	\$246,340
OPC1001.3	WORK PACKAGE DEVELOPMENT	\$401,900	\$23,953	\$140,532	33.00%	\$566,385
OPC1001.4	TASK BASELINE AGREEMENT	\$576,700	\$34,371	\$201,654	33.00%	\$812,725
OPC1001.5	PRELIMINARY SAFETY ANALYSIS REPORT (PSAR)	\$800,000	\$47,680	\$279,734	33.00%	\$1,127,414
OPC1600	TECHNICAL DEVELOPMENT	\$11,000,000	\$655,600	\$11,772,156	101.00%	\$23,427,756
OPC2000	PROJECT EXECUTION	\$52,192,600	\$7,632,156	\$16,330,630	27.30%	\$76,155,386
OPC2001	PROJECT EXECUTION	\$9,742,600	\$2,499,951	\$5,386,723	44.00%	\$17,629,274
OPC2001.1	PROJECT SUPPORT	\$5,242,600	\$1,345,251	\$2,898,655	44.00%	\$9,486,506
OPC2001.2	PERMITTING	\$4,500,000	\$1,154,700	\$2,488,068	44.00%	\$8,142,768
OPC2300	DECON SOLUTION PROCESSING	\$42,450,000	\$5,132,205	\$10,943,907	23.00%	\$58,526,112
1000	CONSTRUCTION MANAGEMENT	\$18,873,500	\$4,842,940	\$13,992,700	59.00%	\$37,709,140
1100	CONSTRUCTION SUPERVISION & ENGINEERING	\$15,727,900	\$4,035,779	\$11,660,571	59.00%	\$31,424,250
1110	CM - CONDUCT OF OPERATIONS/CONDUCT OF MAINTENANCE	\$349,500	\$89,682	\$259,117	59.00%	\$698,299
1200	CM PROJECT CONTROLS	\$1,223,300	\$313,899	\$906,947	59.00%	\$2,444,146
1300	CM ENVIRONMENTAL SAFETY & HEALTH (ES&H)	\$873,800	\$224,217	\$647,830	59.00%	\$1,745,847
1400	CM TRAINING	\$349,500	\$89,682	\$259,117	59.00%	\$698,299
1500	CM - OTHER DIRECT COSTS	\$349,500	\$89,682	\$259,117	59.00%	\$698,299
2000 <i>INEEL</i>	TITLE I DESIGN	\$10,485,200	\$1,267,661	\$5,053,730	43.00%	\$16,806,591

08/30/2000 14:46:44 Success Estimating and Cost Management System

Page No.

INEEL

08/30/2000

14:46:44

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option D

Project Summary Report

Client:

V. J. Balls

LEVEL	······································	Estimate Subtotal	Escalation	Contingency	Contingency %	
2400	DESIGN ACTIVITIES	\$10,485,200	\$1,267,661	\$5,053,730	43.00%	\$16,806,591
3000	TITLE II DESIGN	\$19,747,200	\$3,029,220	\$7,288,455	32.00%	\$30,064,875
3400	DESIGN ACTIVITIES	\$19,747,200	\$3,029,220	\$7,288,455	32.00%	\$30,064,875
4000	QUALITY ASSURANCE	\$8,737,700	\$2,242,094	\$3,403,736	31.00%	\$14,383,530
4100	QUALITY ASSURANCE	\$8,737,700	\$2,242,094	\$3,403,736	31.00%	\$14,383,530
5000	PROJECT MANAGEMENT	\$23,040,400	\$5,912,167	\$12,449,604	43.00%	\$41,402,170
5100	PM ADMINISTRATION	\$13,980,300	\$3,587,345	\$7,554,087	43.00%	\$25,121,732
5110	PM - CONDUCT OF OPERATIONS/CONDUCT OF MAINTENANCE	\$69,900	\$17,936	\$37,770	43.00%	\$125,606
5200	PM PROJECT CONTROLS	\$3,495,100	\$896,843	\$1,888,535	43.00%	\$6,280,478
5300	PM RECORDS MANAGEMENT	\$3,495,100	\$896,843	\$1,888,535	43.00%	\$6,280,478
5400	SAFETY ANALYSIS	\$2,000,000	\$513,200	\$1,080,676	43.00%	\$3,593,876
6000	CONSTRUCTION AE SUPPORT	\$2,621,300	\$672,626	\$922,299	28.00%	\$4,216,225
8000	GOVERNMENT FURNISHED EQUIPMENT	\$158,420	\$40,651	\$258,791	130.00%	\$457,862
8300	GFE LABOR	\$158,420	\$40,651	\$258,791	130.00%	\$457,862
9000	CONSTRUCTION	\$176,917,400	\$45,397,005	\$89,169,939	40.11%	\$311,484,343
9100	CONSTRUCTION SUBCONTRACTS	\$174,753,908	\$44,841,853	\$86,913,465	39.58%	\$306,509,226
9101	GENERAL CONDITIONS	\$17,284,734	\$4,435,263	\$9,339,599	43.00%	\$31,059,596
9101.1	GENERAL CONDITIONS	\$15,879,604	\$4,074,706	\$8,580,353	43.00%	\$28,534,663
9101.2	GC - CONDUCT OF OPERATIONS/CONDUCT OF MAINTENANCE	\$1,405,130	\$360,556	\$759,245	43.00%	\$2,524,932
9102	SITEWORK	\$913,302	\$234,353	\$768,929	67.00%	\$1,916,585

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX in NWCF

Project Location: INTEC

Estimate Number: 2570 - Option D

Project Summary Report

Client:

V. J. Balis

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL		Estimate Subtotal	Escalation 049.400	Contingency	Contingency % 67.00%	TOTAL \$150,799
9102.1	SITEWORK - UTILITIES	\$71,860	\$18,439	\$60,500		
9102.2	SITEWORK - TFD FACILITY	\$353,216	\$90,635	\$297,380	67.00%	\$741,231
9102.3	SITEWORK - BOILER HOUSE	\$68,112	\$17,478	\$57,345	67.00%	\$142,935
9102.4	SITEWORK - STORAGE FACILITY	\$158,102	\$40,569	\$133,110	67.00%	\$331,781
9102.5	SITEWORK - TUNNEL	\$197,085	\$50,572	\$165,930	67.00%	\$413,587
9102.6	SITEWORK - PAVING	\$64,927	\$16,660	\$54,664	67.00%	\$136,251
9103	CONCRETE	\$4,104,590	\$1,053,238	\$1,341,035	26.00%	\$6,498,863
9103.2	CONCRETE - TFD FACILITY	\$2,670,605	\$685,277	\$872,529	26.00%	\$4,228,411
9103.3	CONCRETE - BOILER HOUSE	\$48,364	\$12,410	\$15,801	26.00%	\$76,576
9103.4	CONCRETE - STORAGE FACILITY	\$1,292,540	\$331,666	\$422,293	26.00%	\$2,046,499
9103.5	CONCRETE - TUNNEL	\$93,081	\$23,885	\$30,411	26.00%	\$147,377
9105	METALS	\$4,812,980	\$1,235,011	\$1,572,478	26.00%	\$7,620,468
9105.1	METALS - DEMOLITION	\$10,882	\$2,792	\$3,555	26.00%	\$17,229
9105.1.1	METALS DEMOLITION - CALCINER CELL	\$10,882	\$2,792	\$3,555	26.00%	\$17,229
9105.3	METALS - TFD FACILITY	\$546,606	\$140,259	\$178,585	26.00%	\$865,451
9105.4	METALS - BOILER HOUSE	\$151,151	\$38,785	\$49,383	26.00%	\$239,319
9105.5	METALS - STORAGE FACILITY	\$4,104,341	\$1,053,174	\$1,340,954	26.00%	\$6,498,469
9107	THERMAL & MOISTURE PROTECTION	\$1,287,364	\$330,338	\$420,602	26.00%	\$2,038,304
9107.1	THERMAL & MOISTURE PROTECTION - TFD FACILITY	\$721,911	\$185,242	\$235,860	26.00%	\$1,143,014
9107.2	THERMAL & MOISTURE PROTECTION - BOILER HOUSE	\$85,532	\$21,948	\$27,945	26.00%	\$135,424
9107.3	THERMAL & MOISTURE PROTECTION - STORAGE FACILITY	\$479,921	\$123,148	\$156,798	26.00%	\$759,866
9108	DOORS & WINDOWS	\$281,930	\$72,343	\$92,111	26.00%	\$446,385

INEEL

08/30/2000 14:46:44 Success Estimating and Cost Management System

Page No.

3

UNEX Feasibility Study - Option D - Modified UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option D

Project Summary neport

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

<u>LEVEL</u> 9108.2	DOORS & WINDOWS - TFD FACILITY	Estimate Subtotal \$184,721	Escalation \$47,399	Contingency \$60,351	Contingency % 26.00%	TOTAL \$292,472
9108.3	DOORS & WINDOWS - BOILER HOUSE	\$35,221	\$9,038	\$11,507	26.00%	\$55,766
9108.4	DOORS & WINDOWS - STORAGE FACILITY	\$61,988	\$15,906	\$20,253	26.00%	\$98,147
9109	FINISHES	\$955,827	\$245,265	\$312,284	26.00%	\$1,513,377
9109.1	FINISHES - NWCF	\$152,711	\$39,186	\$49,893	26.00%	\$241,790
9109.2	FINISHES - TFD FACILITY	\$500,276	\$128,371	\$163,448	26.00%	\$792,095
9109.3	FINISHES - BOILER HOUSE	\$1,902	\$488	\$621	26.00%	\$3,011
9109.4	FINISHES - STORAGE FACILITY	\$300,938	\$77,221	\$98,321	26.00%	\$476,481
9110	SPECIALTIES	\$77,738,352	\$19,947,661	\$29,305,804	30.00%	\$126,991,817
9110.1	SPECIALTIES - NWCF	\$2,916,849	\$748,463	\$1,099,594	30.00%	\$4,764,906
9110.2	SPECIALTIES - TFD FACILITY	\$18,398,054	\$4,720,941	\$6,935,699	30.00%	\$30,054,694
9110.3	SPECIALTIES - BOILER HOUSE	\$62,343	\$15,997	\$23,502	30.00%	\$101,843
9110.4	SPECIALTIES - STORAGE FACILITY	\$56,361,106	\$14,462,260	\$21,247,010	30.00%	\$92,070,376
9111	EQUIPMENT	\$38,876,290	\$9,975,656	\$32,730,804	67.00%	\$81,582,750
9111.1	EQUIPMENT - IN NWCF	\$8,860,103	\$2,273,502	\$7,459,515	67.00%	\$18,593,120
9111.1.1	EQUIPMENT - CALCINER CELL	\$406,709	\$104,361	\$342,417	67.00%	\$853,487
9111.1.2	EQUIPMENT - OFF GAS CELL	\$1,423,784	\$365,343	\$1,198,715	67.00%	\$2,987,842
9111.1.3	EQUIPMENT - BLEND & HOLD CELL	\$234,834	\$60,258	\$197,712	67.00%	\$492,804
9111.1.4	EQUIPMENT - VALVE CUBICLE	\$14,665	\$3,763	\$12,347	67.00%	\$30,776
9111.1.5	EQUIPMENT - STORAGE AREA	\$1,271,493	\$326,265	\$1,070,498	67.00%	\$2,668,256
9111.6	EQUIPMENT - GROUT FACILITY	\$5,508,618	\$1,413,511	\$4,637,826	67.00%	\$11,559,955
9111.2	EQUIPMENT - THIN FILM DRYER FACILITY	\$1,621,050	\$415,962	\$1,364,798	67.00%	\$3,401,810

INEEL

08/30/2000 14:46:44 Success Estimating and Cost Management System

Page No.

4

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning Contingency % Client: \$563,880 \$8,312,285 \$1,022,272 \$563,880 \$492,571 \$3,380,440 \$679,967 \$2,642,603 3,644,264 \$220,542 Contingency \$1,156,519 \$1,077,805 \$1,093,014 \$1,308,248 \$18,590,937 \$4,159,034 \$1,115,687 \$1,115,687 \$280,842 \$333,127 \$328,492 \$207,240 \$2,531,392 \$4,139,960 \$1,316,157 \$509,146 \$280,842 \$1,815,037 \$1,683,639 \$352,482 \$5,666,124 \$1,267,586 \$398,726 \$2,531,392 \$245,327 \$109,841 Escalation **Project Summary Report** \$5,129,215 \$956,066 \$22,081,543 \$1,280,172 \$1,298,236 \$9,865,129 \$16,133,906 \$1,094,474 \$1,094,474 \$7,073,412 \$428,065 \$1,373,665 \$4,939,928 \$1,553,883 \$807,637 9,865,129 \$1,984,201 \$6,561,337 **Estimate Subtotal**EQUIPMENT DEMOLITION - BLEND & HOLD CELL UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D ------EQUIPMENT DEMOLITION - VALVE CUBICLE ------EQUIPMENT DEMOLITION - CALCINER CELL ------MECHANICAL DEMO - BLEND & HOLD CELLCONVEYING SYSTEMS - STORAGE FACILITY ------EQUIPMENT DEMOLITION - OFF GAS CELL ------MECHANICAL DEMO - VALVE CUBICLEMECHANICAL DEMO - CALCINER CELLMECHANICAL DEMO - OFF GAS CELL -----EQUIPMENT - STORAGE FACILITY -----EQUIPMENT - BOILER HOUSE-MECHANICAL - NEW - NWCFMECHANICAL DEMOLITION ----EQUIPMENT DEMOLITION -----PIPING - NEW - NWCF -----HVAC - NEW - NWCF --- CONVEYING SYSTEMS ---MECHANICAL

9111.7.3

9111.7.4

9114.4

9115

9114

9111.7.2

9111.7.1

9115.1.3 9115.1.4 9115.1.5

9115.1.1

9115.1

TOTAL \$2,882,666

V. J. Balls

Project Name:

LEVEL

9111.3

9111.6

9111.7

\$46,338,604 \$10,366,548 \$2,686,469 \$2,724,378 \$3,260,858 \$1,694,844 \$13,512,208

67.00% 67.00% 67.00% 67.00% 67.00%

Success Estimating and Cost Management System

Page No.

14:46:44 08/30/2000

INEEL

9115.2.2

9115.2.1

9115.2

-----HVAC - TFD FACILITY - OPERATING CORRIDORS

-----MECHANICAL - NEW - TFD FACILITY -----FIRE PROTECTION - NEW - NWCF

9115.2.3

9115.2.2

9115.2.1

9115.2

-----HVAC - TFD FACILITY - HOT CELL

S

\$758,448

\$148,850

\$43,283

\$21,557 \$709,937

\$84,010

\$2,766,709 \$877,596 \$1,523,564

\$1,425,425 \$452,143

\$1,554,929 \$2,699,460

\$784,949

\$225,191 \$390,947

\$4,902,071

\$9,087,975

\$28,586,151

\$3,515,618 \$1,939,196 \$1,939,196 \$1,693,963 \$12,532,714 \$11,625,416

\$13,512,208

37.00% 9.00% 9.00% 41.00% 41.00% 41.00% 41.00% 41.00% 41.00% 41.00% 41.00% 41.00% 41.00% 41.00% 41.00% 41.00%

08/30/2000

14:46:44

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

Project Summary Report

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Page No.

<u>LEVEL</u> 9115.2.3	PLUMBING / PIPING - TFD FACILITY	Estimate Subtotal \$365,549	Escalation \$93,800	Contingency \$188,333	Contingency %	TOTAL \$647,682
9115.3	MECHANICAL - NEW - BOILER HOUSE	\$400,820	\$102,850	\$206,505	41.00%	\$710,175
9115.3.1	HVAC - BOILER HOUSE	\$68,261	\$17,516	\$35,168	41.00%	\$120,945
9115.3.2	PLUMBING - BOILER HOUSE	\$4,739	\$1,216	\$2,442	41.00%	\$8,397
9115.3.3	PIPING - BOILER HOUSE	\$310,107	\$79,573	\$159,769	41.00%	\$549,449
9115.3.4	FIRE PROTECTION - BOILER HOUSE	\$17,713	\$4,545	\$9,126	41.00%	\$31,384
9115.4	MECHANICAL - NEW - STORAGE FACILITY	\$763,750	\$195,978	\$393,489	41.00%	\$1,353,217
9115.4.1	HVAC - STORAGE FACILITY	\$558,843	\$143,399	\$287,919	41.00%	\$990,162
9115.4.2	PIPING / PLUMBING - STORAGE FACILITY	\$88,862	\$22,802	\$45,782	41.00%	\$157,447
9115.4.3	FIRE PROTECTION - STORAGE FACILITY	\$116,044	\$29,777	\$59,787	41.00%	\$205,608
9116	ELECTRICAL	\$2,499,503	\$641,372	\$1,601,846	51.00%	\$4,742,722
9116.1	ELECTRICAL - DEMOLITION	\$889,519	\$228,251	\$570,063	51.00%	\$1,687,833
9116.1.1	ELECTRICAL DEMO - CALCINER CELL	\$222,380	\$57,063	\$142,516	51.00%	\$421,958
9116.1.3	ELECTRICAL DEMO - OFF GAS CELL	\$222,380	\$57,063	\$142,516	51.00%	\$421,958
9116.1.4	ELECTRICAL DEMO - BLEND & HOLD CELL	\$222,380	\$57,063	\$142,516	51.00%	\$421,958
9116.1.5	ELECTRICAL DEMO - VALVE CUBICLE	\$222,380	\$57,063	\$142,516	51.00%	\$421,958
9116.2	ELECTRICAL - NEW - NWCF	\$733,960	\$188,334	\$470,370	51.00%	\$1,392,664
9116.2.1	SWITCHGEAR AND TRANSFORMERS - NWCF	\$483,791	\$124,141	\$310,045	51.00%	\$917,976
9116.2.2	RACEWAYS, CONDUCTORS, AND GROUNDING - NWCF	\$125,000	\$32,075	\$80,108	51.00%	\$237,183
9116.2.3	MISC. COSTS - NWCF	\$125,169	\$32,118	\$80,217	51.00%	\$237,504
9116.3	ELECTRICAL - NEW - TFD FACILITY	\$266,774	\$68,454	\$170,966	51.00%	\$506,194
9116.3.1	SWITCHGEAR AND TRANSFORMERS - TFD	\$14,068	\$3,610	\$9,016	51.00%	\$26,694
INEEL						

Success Estimating and Cost Management System

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option D

Project Summary Report

Client:

V. J. Balls

LEVEL 9116.3.2	RACEWAYS, CONDUCTORS, AND GROUNDING - TFD	Estimate Subtotal \$35,000	Escalation \$8,981	Contingency \$22,430	Contingency % 51.00%	TOTAL \$66,411
9116.3.3	MISC. COSTS - TFD	\$164,276	\$42,153	\$105,279	51.00%	\$311,707
9116.3.4	LIGHTING - TFD	\$53,430	\$13,710	\$34,241	51.00%	\$101,382
9116.4	ELECTRICAL - BOILER HOUSE	\$60,157	\$15,436	\$38,553	51.00%	\$114,146
9116.4.2	RACEWAYS, CONDUCTORS, AND GROUNDING - BOILER HOUSE	\$12,000	\$3,079	\$7,690	51.00%	\$22,770
9116.4.3	MISC. COSTS - BOILER HOUSE	\$34,872	\$8,948	\$22,349	51.00%	\$66,169
9116.4.4	LIGHTING - BOILER HOUSE	\$13,285	\$3,409	\$8,514	51.00%	\$25,208
9116.5	ELECTRICAL - STORAGE FACILITY	\$536,588	\$137,689	\$343,881	51.00%	\$1,018,158
	SWITCHGEAR AND TRANSFORMERS - INTERIM STORAGE	\$172,275	\$44,206	· \$110,405	51.00%	\$326,886
	RACEWAYS, CONDUCTORS, AND GROUNDING - INTERIM STORAGE	\$21,000	\$5,389	\$13,458	51.00%	\$39,847
	MISC. COSTS - INTERIM STORAGE	\$241,774	\$62,039	\$154,945	51.00%	\$458,759
9116.5	LIGHTING - INTERIM STORAGE	\$101,539	\$26,055	\$65,073	51.00%	\$192,667
9116.6	ELECTRICAL - TRANSFER TUNNEL	\$12,505	\$3,209	\$8,014	51.00%	\$23,728
9301	CONSTRUCTION MISCELLANEOUS	\$2,163,491	\$555,152	\$2,256,474	83.00%	\$4,975,117
9301.1	CONSTRUCTION SUPPORT	\$1,114,891	\$286,081	\$1,162,807	83.00%	\$2,563,780
9301.2	CONSTRUCTION QUALITY CONTROL	\$174,800	\$44,854	\$182,313	83.00%	\$401,966
9301.3	CONSTRUCTION DOCUMENTATION	\$873,800	\$224,217	\$911,354	83.00%	\$2,009,371
OPC3000	PROJECT ACCEPTANCE/CLOSEOUT	\$15,417,200	\$5,692,030	\$21,531,415	102.00%	\$42,640,645
OPC3100	TESTING AND TURNOVER PLANNING	\$349,500	\$129,035	\$488,106	102.00%	\$966,642
OPC3200	S. O. TESTING	\$8,737,700	\$3,225,959	\$12,202,932	102.00%	\$24,166,591
OPC3300	ORR SUPPORT	\$384,500	\$141,957	\$536,987	102.00%	\$1,063,444
OPC3400 INEEL	FACILITY ACCEPTANCE REVIEW	\$262,100	\$96,767	\$366,045	102.00%	\$724,912
08/30/2000	14:46:44 Success Esti	mating and Cost Managem	nent System		Page N	lo. 7

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX in NWCF

Project Location: INTEC

Estimate Number: 2570 - Option D

Project Summary Report

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL		Estimate Subtotal	Escalation	Contingency	Contingency %	<u>TOTAL</u>	
OPC3500	RADIOLOGICAL CONTROL SUPPORT	\$192,200	\$70,960	\$268,423	102.00%	\$531,584	
OPC3600	OPERATOR TRAINING	\$3,495,100	\$1,290,391	\$4,881,201	102.00%	\$9,666,692	
OPC3700	OPERATING PROCEDURES	\$768,900	\$283,878	\$1,073,833	102.00%	\$2,126,611	
OPC3800	START-UP COORDINATION	\$227,200	\$83,882	\$317,304	102.00%	\$628,386	
OPC3900	SPARES	\$1,000,000	\$369,200	\$1,396,584	102.00%	\$2,765,784	
GAPIF	Non-Org G&A and PIF	\$1,744,349	\$0	\$1,203,601	69.00%	\$2,947,950	
Total MOI	DIFIED UNEX IN NWCF - OPTION D	\$346,383,769	\$77,708,880	\$185,282,221	43.69%	\$609,374,869	=

INEEL

08/30/2000 14:46:44 Success Estimating and Cost Management System

Page No.

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

UNEX Feasibility Study - Option D - Modified UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor OPC1001.1 CONCEPTUAL DESIGN	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
BWI CONCEPTUAL DESIGN (2% OF TCC)	U.C. per LOT	1.00	0		3495100 \$3,495,100	0 \$0	0 \$0	0 \$0	0 \$0	3495100 \$3,495,100
Sublotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$3,495,100 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,495,100 \$0 \$0
Subtotal Estimate Escalation Contingency					\$208,308 \$1,222,125	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,495,100 \$208,308 \$1,222,125
Total OPC1001.1 CONCEPTUAL DESIGN		•	0		\$4,925,533	\$0	\$0	\$0	\$0	\$4,925,533
OPC1001.2 PROJECT EXECUTION PLAN BWI ACDC/SQW,CPDS,PEP,DC,/SOW REVIEWS @ .1% OF TCC	U.C. per LOT	1.00	0		174800 \$174,800	0 \$0	0 \$0	0 \$0	0 \$0	174800 \$174,800
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$174,800 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$174,800 \$0 \$0
Subtotal Estimate Escalation Contingency		`			\$10,418 \$61,122	\$0 · \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$174,800 \$10,418 \$61,122
Total OPC1001.2 PROJECT EXECUTION PLAN			0		\$246,340	\$0	\$0	\$0	\$0	\$246,340
OPC1001.3 WORK PACKAGE DEVELOPMENT BWI Work Package Development23% Of TCC	U.C. per Lot	1.00	0		401900 \$401,900	0 \$0	0 \$0	o \$0	0 \$0	401900 \$401,900
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$401,900 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$401,900 \$0 \$0
Subtotal Estimate Escalation Contingency					\$23,953 \$140,532	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$401,900 \$23,953 \$140,532
Total OPC1001.3 WORK PACKAGE DEVELOPMENT			0		\$566,385	\$0	\$0	\$0	\$0	\$566,385
OPC1001.4 TASK BASELINE AGREEMENT BWI Task Baseline Agreement33% Of TCC	U.C. per Lot	1.00	0		576700 \$576,700	0 \$0	0 \$0	0 \$0	· \$0	576700 \$576,700

LIRUCTION LLIME .. LIN REPORT

Project Name: UNEX Feasibility Study - Option D - Modified UNLA

Project Location: INTEC

Estimate Number: 2570 - Option D

Client:

V. J. Balls

LEVEL Org/Subcontractor OPC1001.4 TASK BASELINE AGREEMENT	QTY	 .	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	_S/C_	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$576,700 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$576,700 \$0 \$0
Subtotal Estimate Escalation Contingency	,	***************************************			\$34,371 \$201,654	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$576,700 \$34,371 \$201,654
Total OPC1001.4 TASK BASELINE AGREEMENT			0		\$812,725	\$0	\$0	\$0	\$0	\$812,725
OPC1001.5 PRELIMINARY SAFETY ANALYSIS REI BWI Preliminary Safety Analysis Report (PSAR)	PORT (PSAR) U.C. per Lot	1.00	0		800000 \$800,000	0 \$0	0 \$0	0 \$0	0 \$0	800000 \$800,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$800,000 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$800,000 \$0 \$0
Subtotal Estimate Escalation Contingency					\$47,680 \$279,734	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$800,000 \$47,680 \$279,734
Total OPC1001.5 PRELIMINARY SAFETY ANALYSIS	REPORT (PSAR)		0		\$1,127,414	\$0	\$0	\$0	\$0	\$1,127,414
OPC1600 TECHNICAL DEVELOPMENT BWI (*)Modified UNEX Process Development Memo: Cost for process development is per the HLW SBI	U.C. per Lot W Process Development	1.00 Costs (Arlin L	0 Olson).		11000000 \$11,000,000	0 \$0	0 \$0	0 \$0	0 \$0	11000000 \$11,000,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		***************************************		,	\$11,000,000 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$11,000,000 \$0 \$0
Subtotal Estimate Escalation Conlingency					\$655,600 \$11,772,156	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$11,000,000 \$655,600 \$11,772,156
Total OPC1600 TECHNICAL DEVELOPMENT			0		\$23,427,756	\$0	\$0	\$0	\$0	\$23,427,756
OPC2001.1 PROJECT SUPPORT BWI Project Support - 3% OF TCC	U.C. per Lot	1.00	0		5242600 \$5,242,600	0 \$0	0 \$0	0 \$0	0 \$0	5242600 \$5,242,600

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

LEVEL OPC2001.1 PROJ	Org/Subcontractor ECT SUPPORT	QTY	-	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
Subtotal						\$5,242,600	\$0	\$0	\$0	\$0	\$5,242,600
Sales Tax	Subcontractor Overheads					\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0
		 				- - 4 0			φU		
Subtotal Estimate Escalation						\$1,345,251	\$0	\$0	\$0	\$0	\$5,242,600 \$1,345,251
Contingency						\$2,898,655	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$2,898,655
Total OPC2001.1 P	PROJECT SUPPORT			0		\$9,486,506	\$0	\$0	\$0	\$0	\$9,486,506
OPC2001.2 PERM	AITTING										
***************************************	BWI	U.C. per Lot				1500000	0	0	0	0	1500000
Permitting			1.00	0		\$1,500,000	\$0	\$0	\$0	\$0	\$1,500,000
	BWI	U.C. per Lot				2500000	0	0	0	0	2500000
WIPP Certification			1.00	0		\$2,500,000	\$0	\$0	\$0	\$0	\$2,500,000
	BWI	U.C. per Lot				500000	0	0	0	0	500000
Hanford Certification			1.00	0		\$500,000	\$0	\$0	\$0	\$0	\$500,000
Subtotal						\$4,500,000	\$0	\$0	\$0	\$0	\$4,500,000
Sales Tax	Sub-catacata Ourabaada					\$0	\$0	\$0	\$0	\$0	\$0
INEEL ORG Labors	Subcontractor Overheads					\$0	\$0	\$0	\$0	\$ 0	\$0
Subtotal Estimate					*	64 454 700	A O	**	**	**	\$4,500,000
Escalation Contingency			ž.			\$1,154,700 \$2,488,068	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$1,154,700 \$2,488,068
Total OPC2001.2 P	PERMITTING			0	 	\$8,142,768	\$0	\$0	\$0	\$0	\$8,142,768
OPC2300 DECON	SOLUTION PROCESSING										
	BWI	U.C. per Gal				0	0	0	1.15	0	1.15
	ution Through Evaporator ns - approximately 1,000,000 gallons		,000.00 used to de	0 scon the N\	NCF areas. This s	\$0 olution will be sent	\$0 to the evaporator for v	\$0 olume reduction	\$1,150,000	\$0	\$1,150,000
	BWI	U.C. per Gal				0	0	0	413	0	413
(*)Allowance For Liquid	d Sent To The Tank Farm	100	,000.00	0		\$0	\$0	\$0	\$41,300,000	\$0	\$41,300,000
Memo: Per Anna Pol	oski - The liquid sent to the evaporat	or will be reduced to 10%	of its origi	nal volume	. The costs to send	d liquid to the evap	orator and to send / m	aintain liquid in tl	he tank farm are pe	r Anna Poloski.	
Subtotal						\$0	\$0	\$0	\$42,450,000	\$0	\$42,450,000
Sales Tax						\$0	\$0	\$0	\$0	\$0	\$0
INEEL ORG Labor/S	Subcontractor Overheads					\$0	\$0	\$0	\$0	\$0	\$0
Subtotal Estimate		•									\$42,450,000
Escalation						\$0 \$0	\$0 \$0	\$0 \$0	\$5,132,205 \$10,943,907	\$0 \$0	\$5,132,205
Contingency		· · · · · · · · · · · · · · · · · · ·								\$0	\$10,943,907
Total OPC2300 DE	CON SOLUTION PROCESSING			0		\$0	\$0	\$0	\$58,526,112	\$0	\$58,526,112

3

UNEX Feasibility Study - Option D - Modified UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option D

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL	Org/Subcontractor	QTY		Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Mati	S/C	Other	TOTAL
00401400	UCTION SUPERVISION & ENGINEERING BWI gement - 9% Of TCC	U.C. per Lot	1.00	1	\$***. * *	15727900 \$15,727,900	0 \$0	0 \$0	0 \$0	0 \$0	15727900 \$15,727,900
Subtotal Sales Tax INEEL ORG Lab	or/Subcontractor Overheads					\$15,727,900 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$15,727,900 \$0 \$0
Subtotal Estima Escalation Contingency	ate					\$4,035,779 \$11,660,571	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$15,727,900 \$4,035,779 \$11,660,571
Total 1100 CON	ISTRUCTION SUPERVISION & ENGINEERIN	IG		1		\$31,424,250	\$0	\$0	\$0	\$0	\$31,424,250
00401400	NDUCT OF OPERATIONS/CONDUCT OF MA BWI Operations / Conduct Of Maintenance -	U.C. per Lot	1.00	1 1	\$***.* *	349500 \$349,500	0 \$0	0 \$0	0 \$0	0 \$0	349500 \$349,500
Subtotal Sales Tax INEEL ORG Lab	oor/Subcontractor Overheads					\$349,500 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$349,500 \$0 \$0
Subtotal Estima Escalation Contingency	ate					\$89,682 \$259,117	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$349,500 \$89,682 \$259,117
Total 1110 CM -	- CONDUCT OF OPERATIONS/CONDUCT OF	F		1		\$698,299	\$0 ,	\$0	\$0	\$0	\$698,299
1200 CM PRO	JECT CONTROLS BWI s7% Of TCC	U.C. per Lot	1.00	0		1223300 \$1,223,300	0 \$0	0 \$0	0 \$0	0 \$0	1223300 \$1,223,300
Subtotal Sales Tax INEEL ORG Lab	oor/Subcontractor Overheads					\$1,223,300 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$1,223,300 \$0 \$0
Subtotal Estima Escalation Contingency	ate					\$313,899 \$906,947	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$1,223,300 \$313,899 \$906,947
Total 1200 CM	PROJECT CONTROLS			0		\$2,444,146	\$0	\$0	\$0	\$0	\$2,444,146
1300 CM ENV	IRONMENTAL SAFETY & HEALTH (ES&H) BWI DITCC	U.C. per Lot	1.00	o		873800 \$873,800	0 \$0	0 \$0	0 \$0	0 \$0	873800 \$873,800

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option D - Modified UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option D

Client:

V. J. Balls

LEVEL Org/Subcontractor 1300 CM ENVIRONMENTAL SAFETY & HEALTH (QTY ES&H)	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	<u>s/c</u>	Other	_TOTAL_
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$873,800 \$0 \$0	\$0 \$0 \$0 ·	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$873,800 \$0 • \$0
Subtotal Estimate Escalation Conlingency					\$224,217 \$647,830	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$873,800 \$224,217 \$647,830
Total 1300 CM ENVIRONMENTAL SAFETY & HEAL	TH (ES&H)		0		\$1,745,847	\$0	\$0	\$0	\$0	\$1,745,847
1400 CM TRAINING BWI CM - Training2% Of TCC	. U.C. per Lot	1.00	0		349500 \$349,500	o \$0	0 \$0	o \$0	0 \$0	349500 \$349,500
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$349,500 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$349,500 \$0 \$0
Subtotal Estimate Escalation Contingency			7		\$89,682 \$259,117	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$349,500 \$89,682 \$259,117
Total 1400 CM TRAINING			0		\$698,299	\$0	\$0	\$0	\$0	\$698,299
- 1500 CM - OTHER DIRECT COSTS BWI CM - Other Direct Costs2% Of TCC	U.C. per Lot	1.00	0	•	349500 \$349,600	0 \$0	0 \$0	0 \$0	0 \$0	349500 \$349,500
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$349,500 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$349,500 \$0 \$0
Subtotal Estimate Escalation Contingency	:				\$89,682 \$259,117	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$349,500 \$89,682 \$259,117
Total 1500 CM - OTHER DIRECT COSTS			0		\$698,299	\$0	\$0	\$0	\$0	\$698,299
2400 DESIGN ACTIVITIES BWI Title I Design - 6% Of TCC	U.C. per Lot	1.00	0		10485200 \$10,485,200	0 \$0	0 \$0	0 \$0	0 \$0	10485200 \$10,485,200

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option D

Client: V. J. Balls

LEVEL Org/Subcontractor 2400 DESIGN ACTIVITIES	QTY	_	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	Matl	S/C_	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$10,485,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$10,485,200 \$0 \$0
Subtotal Estimate Escalation Contingency					\$1,267,661 \$5,053,730	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$10,485,200 \$1,267,661 \$5,053,730
Total 2400 DESIGN ACTIVITIES			0		\$16,806,591	\$0	\$0	\$0	\$0	\$16,806,591
3400 DESIGN ACTIVITIES BWI Title II Design - 11.3% Of TCC	U.C. per Lot	1.00	0		19747200 \$19,747,200	0 \$0	0 \$0	0 \$0	0 \$0	19747200 \$19,747,200
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		24			\$19,747,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$19,747,200 \$0 \$0
Subtotal Estimate Escalation Contingency					\$3,029,220 \$7,288,455	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$19,747,200 \$3,029,220 \$7,288,455
Total 3400 DESIGN ACTIVITIES			0		\$30,064,875	\$0	\$0	\$0	\$0	\$30,064,875
4100 QUALITY ASSURANCE BWI Quality Assurance - 5% Of TCC	U.C. per Lat	1.00	0.1 0	\$***.* *	8737700 \$8,737,700	0 \$0	o \$0	o \$0	0 \$0	8737700 \$8,737,700
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				<u>.</u>	\$8,737,700 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$8,737,700 \$0 \$0
Subtotal Estimate Escalation Contingency					\$2,242,094 \$3,403,736	\$0 ,\$0	\$0 \$0	\$0 \$0	\$0 \$0	\$8,737,700 \$2,242,094 \$3,403,736
Total 4100 QUALITY ASSURANCE			0		\$14,383,530	\$0	\$0	\$0	\$0	\$14,383,530
5100 PM ADMINISTRATION BWI Project Management - 8% Of TCC	U.C. per Lot	1.00	0		13980300 \$13,980,300	0 \$0	0 \$0	0 \$0	0 \$0	13980300 \$13,980,300

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

LEVEL C	Org/Subcontractor FRATION	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Su	ubcontractor Overheads					\$13,980,300 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$13,980,300 \$0 \$0
Subtotal Estimate Escalation Contingency						\$3,587,345 \$7,554,087	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$13,980,300 \$3,587,345 \$7,554,087
-Total 5100 PM ADM	INISTRATION			0		\$25,121,732	\$0	\$0	\$0	\$0	\$25,121,732
\	CT OF OPERATIONS/CONDUCT OF MAI BWI ons / Conduct Of Maintenance04%	NTENANCE U.C. per Lot	1.00	0		69900 \$69,900	0 \$0	0 \$0	0 \$0	0 \$0	69900 \$69,900
Subtotal Sales Tax INEEL ORG Labor/Su	ubcontractor Overheads				, , , , , , , , , , , , , , , , , , , ,	\$69,900 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$69,900 \$0 \$0
Subtotal Estimate Escalation Contingency						\$17,936 \$37,770	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$69,900 \$17,936 \$37,770
Total 5110 PM - COMMAINTENANC	NDUCT OF OPERATIONS/CONDUCT OF E			0		\$125,606	\$0	\$0	\$0	\$0	\$125,606
5200 PM PROJECT PM Project Controls - 25	CONTROLS BWI	U.C. per Lot	1.00	0	,	3495100 \$3,495,100	0 \$0	0 \$0	0 \$0	0 \$0	3495100 \$3,495,100
Subtotal Sales Tax INEEL ORG Labor/Su	ubcontractor Overheads				,	\$3,495,100 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,495,100 \$0 \$0
Subtotal Estimate Escalation Contingency						\$896,843 \$1,888,535	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,495,100 \$896,843 \$1,888,535
Total 5200 PM PRO.	JECT CONTROLS			0		\$6,280,478	\$0	\$0	\$0	\$0	\$6,280,478
5300 PM RECORD	BWI	U.C. per Lot	1.00	0		3495100 \$3,495,100	0 \$0	0 \$0	0 \$0	0 \$0	3495100 \$3,495,100

08/30/2000

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

V. J. Balls Client:

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor 5300 PM RECORDS MANAGEMENT	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$3,495,100 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,495,100 \$0 \$0
Subtotal Estimate Escalation Contingency					\$896,843 \$1,888,535	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,495,100 \$896,843 \$1,888,535
Total 5300 PM RECORDS MANAGEMENT			0		\$6,280,478	\$0	\$0	\$0	\$0	\$6,280,478
5400 SAFETY ANALYSIS BWI Safety Analysis Report (SAR)	U.C. per Lot	1.00	0		2000000 \$2,000,000	· 0 \$0	0 \$0	0 \$0	0 \$0	2000000 \$2,000,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$2,000,000 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$2,000,000 \$0 \$0
Subtotal Estimate Escalation Contingency					\$513,200 \$1,080,676	\$0 \$0	\$0 \$0	· \$0 \$0	\$0 \$0	\$2,000,000 \$513,200 \$1,080,676
Total 5400 SAFETY ANALYSIS			0		\$3,593,876	\$0	\$0	\$0	\$0	\$3,593,876
6000 CONSTRUCTION AE SUPPORT BWI Construction AE Support - 1.5% Of TCC	U.C. per Lot	1.00	0		2621300 \$2,621,300	· 0 \$0	0 \$0	0 \$0	0 \$0	. 2621300 \$2,621,300
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$2,621,300 \$0 \$0	. \$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$2,621,300 \$0 \$0
Subtotal Estimate Escalation Contingency	· · · · · · · · · · · · · · · · · · ·				\$672,626 \$922,299	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$2,621,300 \$672,626 \$922,299
Total 6000 CONSTRUCTION AE SUPPORT			0		\$4,216,225	\$0	\$0	\$0	\$0	\$4,216,225
8300 GFE LABOR 2440 Allowance To Decontaminate The Calciner Cell	- U.C. per Lot	1.00	1200 1,200	U21 \$17.45	20940 \$20,940	0 \$0	0 \$0	0 \$0	0 \$0	20940 \$20,940
2440 Clothing Allowance - Calcinier Cell	U.C. per Chng	240.00	0		0 \$0	0 \$0	45 \$10,800	0 \$0	0 \$0	45 \$10,800
2440 Allowance To Decontaminate The Off-Gas Cell	U.C. per Lot	1.00	800 800	U21 \$17.45	13960 \$13,960	0 \$0	0 \$0	0 \$0	0 \$0	13960 \$13,960

CONSTRUCTION DETAIL ITEM REPORT

V. J. Balls Client:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor 8300 GFE LABOR	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
2440 Clothing Allowance - Off-Gas Cell	U.C. per Chng 20	00.00	0		0 \$0	0 \$0	45 \$9,000	0 \$0	0 \$0	45 \$9,000
2440 Allowance To Decontaminate The Blend & Hold Cell	U.C. per Lot	1.00	800 800	U21 \$17:45	\$13,960	0 \$0	0 \$0	`0 \$0	0 \$0	13960 \$13,960
2440 Clothing Allowance - Blend & Hold Cell	U.C. per Chng 20	00,00	0		0 \$0	0 \$0	45 \$9,000	o \$0	0 \$0	45 \$9,000
2440 Allowance To Decontaminate The Valve Cubicle	U.C. per Lot	1.00	. 800 800	U21 \$17.45	13960 \$13,960	0 \$0	o \$0	0 \$0	0 \$0	13960 \$13,960
2440 Clothing Allowance - Valve Cubicle	U.C. per Chng 20	00.00	0		0 \$0	0 \$0	45 \$9,000	0 \$0	0 \$0	45 \$9,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$62,820 \$0 \$55,910	\$0 \$0 \$0	\$37,800 \$1,890 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$100,620 \$1,890 \$55,910
Subtotal Estimate Escalation Contingency					\$30,466 \$193,955	\$0 \$0	\$10,184 \$64,837	\$0 \$0	\$0 \$0	\$158,420 \$40,651 \$258,791
Total 8300 GFE LABOR			3,600		\$343,150	\$0	\$114,711	\$0	\$0	\$457,862
9101.1 GENERAL CONDITIONS GEN Supervision - 15% Of Labor Hours	U.C. per Lot	1.00	56333 56,333	CN-SUPR \$40,00	2253320 \$2,253,320	0 \$0	0 \$0	0 \$0	0 \$0	2253320 \$2,253,320
GEN Training - 7% Of Labor Hours	U.C. per Lot	1.00	26289 26,289	CN-LABR \$30.09	791036.01 \$791,036	0 \$0	\$0	0 \$0	0 \$0	791036.01 \$791,036
GEN Mobilization & Demobilization5% Of Labor Hours	U.C. per Lot	1.00	1878 1,878	CN-LABR \$30.09	56509.02 \$56,509	10000 \$10,000	0 \$0	0 \$0	0 \$0	66509.02 \$66,509
GEN (*)Material Adjustment - Additional 10% On Material & Subcontracts Memo: Adjustment for DOE/RW/0333P Quality Standards.	U.C. per Lat	1.00	o .		0 \$0	0 \$0	8200000 \$8,200,000	0 \$0	0 \$0	8200000 \$8,200,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$3,100,865 \$0 \$1,100,233	\$10,000 \$0 \$3,548	\$8,200,000 \$410,000 \$3,054,957	\$0 \$0 \$0	\$0 \$0 \$0	\$11,310,865 \$410,000 \$4,158,739
Subtotal Estimate Escalation Contingency		-			\$1,078,002 \$2,270,013	\$3,476 \$7,321	\$2,993,228 \$6,303,020	\$0 \$0	\$0 \$0	\$15,879,604 \$4,074,706 \$8,580,353
Total 9101.1 GENERAL CONDITIONS			84,500		\$7,549,113	\$24,345	\$20,961,205	\$0	\$0	\$28,534,663

Project Name: UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

Client:

V. J. Balls

LEVEL	Org Ontractor	QTY OF MAINTENANCE	Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	_S/C_	Other	TOTAL
(*)Labor Adjustment	GEN Department of Maintenance	U.C. per Hr 375,59			2.762 \$1,037,138	0 \$0	o \$0	0 \$0	0 \$0	2.762 \$1,037,138
Subtotal Sales Tax INEEL ORG Labor	/Subcontractor Overheads		,		\$1,037,138 \$0 \$367,992	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$1,037,138 \$0 \$367,992
Subtotal Estimate Escalation Contingency	,				\$360,556 \$759,245	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$1,405,130 \$360,556 \$759,245
Total 9101.2 GC MAINTENAN	CONDUCT OF OPERATIONS/CONNCE	DUCT OF	30,0	15	\$2,524,932	\$0	\$0	\$0	\$0	\$2,524,932
9102.1 SITEWOR (*)Excavation & Backle Memo: Assume utilit	GEN			.7 CN-LABR 50 \$30.09	21,063 \$16,850	5 \$4,000	0 \$0	0 \$0	0 \$0	26.063 \$20,850
Piping - Firewater	GEN	U.C. per Lf 30	00.00 1	.5 CN-LABR 50 \$30.09	15.045 \$4,514	2 \$600	. 12 \$3,600	0 \$0	0 \$0	29.045 \$8,714
(*)Excavation & Backf Memo: Assume utiliti	GEN fill - Sewer ies to be 300 feet. Trench to be 6' to		0 00.00 50		21.063 \$16,850	5 \$4,000	0 \$0	0 \$0	0 \$0	26.063 \$20,850
Piping - Sewer	GEN	U.C. per Lf	0.00	03 CN-LABR 9 \$30.09	0.903 \$271	2 \$600	5 \$1,500	0 \$0	0 \$0	7.903 \$2,371
Subtotal Sales Tax INEEL ORG Labor/	Subcontractor Overheads		.—		\$38,485 \$0 \$13,655	\$9,200 \$0 \$3,284	\$5,100 \$255 \$1,900	\$0 \$0 \$0	\$0 \$0 \$0	\$52,785 \$255 \$18,819
Subtotal Estimate Escalation Contingency					\$13,379 \$43,898	\$3,198 \$10,494	\$1,862 \$6,108	\$0 \$0	\$0 \$0	\$71,860 \$18,439 \$60,500
Total 9102.1 SITE	WORK - UTILITIES		1,27	'9	\$109,417	\$26,157	\$15,225	\$0	\$0	\$150,799
9102.2 SITEWOR	RK - TFD FACILITY GEN	U.C per Sf 27,00	0.00		0.903 \$24,373	0.5 \$13,500	0 \$0	0 \$0	0 \$0	1.403 \$37,873

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option D - Modified UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option D

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Const Eqp S/C Org/Subcontractor QTY Crew/Rate Other TOTAL Hrs Labor Mati 9102.2 SITEWORK - TFD FACILITY U.C. per Cy 0.7 CN-LABR 21.063 0 0 0 26.063 5 Excavation & Backfill 8,550.00 5.985 \$30.09 \$180,089 \$42,750 \$0 \$0 \$0 \$222,839 Subtotal \$204,462 \$56,250 \$0 \$0 \$0 \$260,712 Sales Tax \$0 \$0 \$0 \$0 \$0 \$0 INEEL ORG Labor/Subcontractor Overheads \$72,546 \$19.958 \$0 \$0 \$0 \$92,504 Subtotal Estimate \$353,216 \$71,080 \$19,555 \$0 \$0 \$0 Escalation \$90,635 Contingency \$233,219 \$64,161 \$0 \$0 \$0 \$297,380 --- Total 9102.2 SITEWORK - TFD FACILITY 6,795 \$581,306 \$159,925 \$0 \$0 \$0 \$741,231 - 9102.3 SITEWORK - BOILER HOUSE GEN U.C. per Sf 0.03 CN-LABR 0.903 0.5 0 0 1.403 0 Site Grading 4.000.00 120 \$30.09 \$3,611 \$2,000 \$0 \$0 \$0 \$5,611 GEN 0.7 CN-LABR 21.063 U.C. per Cy 5 O n 0 26.063 **Excavation & Backfill** 500.00 350 \$30.09 \$10,532 \$2,500 \$0 \$0 \$0 \$13,032 GEN U.C. per Cy 0.7 **CN-LABR** 21.063 0 0 0 26,063 (*)Excavation & Backfill - Steam & Condensate 800.00 560 \$30.09 \$16,850 \$4,000 \$0 \$0 \$0 \$20,850 Memo: Assume utilities to be 300 feet. Trench to be 6' to bottom of trench. **GEN** U.C. per Lf 0.05 CN-LABR 1.505 2 5 0 0 8.505 Piping - Steam & Condensate 6.00 0 \$30.09 \$9 \$12 \$30 \$0 \$0 \$51 GEN U.C. per Cf 0.17 CN-LABR 5.115 16.55 0 0 21.665 Gilsulate Insulation 477.00 81 \$30,09 \$2,440 \$0 \$7,894 \$0 \$0 \$10,334 \$33,442 \$8.512 \$7,924 \$0 Subtotal \$0 \$49,878 \$396 \$0 Sales Tax \$0 \$0 \$0 \$396 INEEL ORG Labor/Subcontractor Overheads \$11,866 \$3,020 \$2,952 \$0 \$0 \$17,838 **Subtotal Estimate** \$68,112 Escalation \$11.626 \$2,959 \$2,893 \$0 \$0 \$17,478 Contingency \$38,145 \$9,709 \$9,491 \$0 \$0 \$57,345 --- Total 9102.3 SITEWORK - BOILER HOUSE 1,111 \$95,078 \$24,201 \$23,656 \$0 \$0 \$142,935 -- 9102.4 SITEWORK - STORAGE FACILITY **CN-ENGR** GEN U.C. per CY 0.012 0.391 2 0 0 0 2.391 **BUILDING EXCAVATION** 17,160.00 206 \$32.56 \$6,705 \$34,320 \$0 \$0 \$0 \$41,025 0.08 **CN-ENGR** 1.954 GEN U.C. per CY 0 0 0 3.954 **BUILDING BACKFILL** 12,240.00 734 \$32,56 \$23,912 \$24,480 \$0 \$0 \$0 \$48,392

Page No.

Project Name: UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option D

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

LEVEL Org/Subcontractor	QT	Υ	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
9102.4 SITEWORK - STORAGE FACILITY GEN BUILDING BERM FILL	U.C. per CY	6,900.00	0.06 414	CN-ENGR \$32,56	1,954 \$13,480	2 \$13,800	0 \$0	0 \$0	0 \$0	3.954 \$27,280
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		y 14 7 Wali		W-14-0	\$44,097 ^\$0 \$15,646	\$72,600 \$0 \$25,760	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$116,697 \$0 \$41,406
Subtotal Estimate Escalation Contingency				7777	\$15,330 \$50,299	\$25,239 \$82,811	\$0 \$0	\$0 \$0	\$0 \$0	\$158,102 \$40,569 \$133,110
Total 9102.4 SITEWORK - STORAGE FACILITY			1,354		\$125,372	\$206,410	\$0	\$0	\$0	\$331,781
9102.5 SITEWORK - TUNNEL GEN (*)Excavate & Backfill For Tunnet Memo: Tunnel bottom to be 23' below existing grade. Tunnet	U.C. per Cy ol shall be 10' wide a	4,500.00 at the bottom	0.6 2,700 , 15' high and	CN-LABR \$30.09 I 100' long.	18.054 \$81,243	12 \$54,000	0 \$0	0 \$0	0 \$0	30.054 \$135,243
GEN Allowance For Hand Excavation	U.C. per Cy	100.00	3 300	CN-LABR \$30.09	90.27 \$9,027	12 \$1,200	0 \$0	0 \$0	0 \$0	102.27 \$10,227
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$90,270 \$0 \$32,029	\$55,200 \$0 \$19,586	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 . \$0	\$145,470 \$0 \$51,615
Subtotal Estimate Escalation Contingency					\$31,382 \$102,966	\$19,190 \$62,964	\$0 \$0	\$0 \$0	\$0 \$0	\$197,085 \$50,572 \$165,930
Total 9102.5 SITEWORK - TUNNEL			3,000		\$256,647	\$156,940	\$0	\$0	\$0	\$413,587
9102.6 SITEWORK - PAVING GEN Pavement Removal	U.C. per Sf	7,050.00	0.05 353	CN-SKWK \$34.52	1.726 \$12,168	1.2 \$8,460	0 \$0	0 \$0	o \$0	2.926 \$20,628
GEN New Pavement	U.C. per Sf	6,600.00	0.03 198	CN-SKWK \$34.52	1.036 \$6,835	1 \$6,600	\$13,200	0 \$0	0 \$0	4.036 \$26,635
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$19,003 \$0 \$6,743	\$15,060 \$0 \$5,344	\$13,200 \$660 \$4,918	\$0 \$0 \$0	\$0 \$0 \$0	\$47,263 \$660 \$17,004
Subtotal Estimate Escalation Contingency					\$6,606 \$21,676	\$5,236 \$17,178	\$4,818 \$15,809	\$0 \$0	\$0 \$0	\$64,927 \$16,660 \$54,664
Total 9102.6 SITEWORK - PAVING			551		\$54,028	\$42,817	\$39,405	\$0	\$0	\$136,251

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option D - Modified UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor 9103.2 CONCRETE - TFD FACILITY	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C_	Other	TOTAL ·
GEN (*)Concrete Footings Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	5	CN-SKWK	172.6	0	180	0	0	352.6
	430.00	2,150	\$34.52	\$74,218	\$0	\$77,400	\$0	\$0	\$151,618
GEN (*)Concrete Floors - 12* Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	5	CN-SKWK	172.6	0	180	0	0	352.6
	725.00	3,625	\$34.52	\$125,135	\$0	\$130,500	\$0	\$0	\$255,635
GEN (*)Concrete Floors - 24" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	5	CN-SKWK	172.6	0	180	0	0	352.6
	585.00	2,925	\$34.52	\$100,971	\$0	\$105,300	\$0	\$0	\$206,271
GEN (*)Concrete Shielding Walls - 24" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	5	CN-SKWK	172.6	0	180	0	· 0	352.6
	1,005.00	5,025	\$34.52	\$173,463	\$0	\$180,900	\$0	\$0	\$354,363
GEN (*)Concrete Walls - 12* Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	5	CN-SKWK	172.6	0	180	0	0	352.6
	200.00	1,000	\$34.52	\$34,520	\$0	\$36,000	\$0	\$0	\$70,520
GEN (*)Concrete Roof Topping Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	5	CN-SKWK	172.6	0	180	0	0	352.6
	170.00	850	\$34.52	\$29,342	\$0	\$30,600	\$0	\$0	\$59,942
GEN (*)Concrete Misc. Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	. 5	CN-SKWK	172.6	0 · ·	180	0	0	352.6
	250.00	1,250	\$34.52	\$43,150	\$0	\$45,000	\$0	\$0	\$88,150
GEN Misc. Concrete Pads	U.C. per Lot	120	CN-SKWK	4142.4	0	2500	0	0	6642.4
	1.00	120	\$34,52	\$4,142	\$0	\$2, 500	\$0	\$0	\$6,642
GEN Precast Concrete Walls - 12" Thick	U.C. per Sf 36,345.00	0	CN-SKWK	0 \$0	0 \$0	0 \$0	12.25 \$445,226	0 \$0	12.25 \$445,226
GEN Pre-Stressed Concrete Double Tee Roof Panels	U.C. per Sf · 13,700.00	0	CN-SKWK	0 \$0	0 \$0	9 \$123,300	0 \$0	0 \$0	9 \$123,300
GEN Installation Of Pre-Stressed / Precast Panels	U.C. per Ea	8	CN-SKWK	276.16	0	0	0	0	276.16
	170.00	1,360	\$34.52	\$46,947	\$0	\$0	\$0	\$0	\$46,947
GEN Craning For Panets & Beams	U.C. per Day	20	CN-SKWK	690.4	0	0	0	0	690.4
	24.00	480	\$34.52	\$16,570	\$0	\$0	\$0	\$0	\$16,570
GEN Welding & Patching Of Panels	U.C. per Ea 170.00	8 1,360	CN-SKWK \$34.52	276.16 \$46,947	0 \$0	20 \$3,400	0 \$0	0 \$0	296.16 \$50,347
GEN	U.C. per Ea	250	CN-SKWK	8630	0	45000	0	0	53630
Stairwell	1.00	250	\$34.52	\$8,630	\$0	\$45 , 000	\$0	\$0	\$53,630

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option D

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor 9103.2 CONCRETE - TFD FACILITY	QTY	Hrs Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
GEN Concrete Sidewalks - 5' Wide	U.C. per Lf 250.00	0.2 CN-SKWK 50 \$34.52	6.904 \$1,726	0 \$0	5 \$1,250	0 \$0	0 \$0	11.904 \$2,976
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			\$705,761 \$0 \$250,415	\$0 \$0 \$0	\$781,150 \$39,058 \$291,022	\$445,226 \$0 \$157,973	\$0 \$0 \$0	\$1,932,138 \$39,058 \$699,410
Subtotal Estimate Escalation Contingency			\$245,355 \$312,398	\$0 \$0	\$285,141 \$363,056	\$154,781 \$197,075	\$0 \$0	\$2,670,605 \$685,277 \$872,529
Total 9103.2 CONCRETE - TFD FACILITY		20,445	\$1,513,929	\$0	\$1,759,427	\$955,055	\$0	\$4,228,411
9103.3 CONCRETE - BOILER HOUSE GEN (*)Concrete Footings & Floors Memo: Includes formwork, concrete, and rebar.	U.C. per Cy 92.00	5 CN-SKWK 460 \$34.52	172.6 \$15,879	0 \$0	180 \$1 6 ,560	0 \$0	0 \$0	352.6 \$32,439
GEN Misc. Concrete Pads	U.C. per Lot 1.00	20 CN-SKWK 20 \$34.52	690.4 \$690	0 \$0	500 \$500	0 \$0	0 \$0	1190.4 \$1,190
GEN Concrete Sidewalks - 5' Wide	U.C. per Lf 100.00	0.2 CN-SKWK 20 \$34.52	6.904 \$690	0 \$0	5 \$500	0 \$0	0 \$0	11.904 \$1,190
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			\$17,260 \$0 \$6,124	\$0 \$0 \$0	\$17,560 \$878 \$6,542	\$0 \$0 \$0	\$0 \$0 \$0	\$34,820 \$878 \$12,666
Subtotal Estimate Escalation Contingency			\$6,000 \$7,640	\$0 \$0	\$6,410 \$8,161	\$0 \$0	\$0 \$0	\$48,364 \$12,410 \$15,801
Total 9103.3 CONCRETE - BOILER HOUSE		500	\$37,024	\$0	\$39,551	\$0	\$0	\$76,576
9103.4 CONCRETE - STORAGE FACILITY GEN Hatch Plugs	U.C. per EA 3.00	0	0 \$0	0 \$0	0 \$0	75000 \$225,000	0 \$0	75000 \$225,000
GEN Precast Concrete Walls - 6" Thick	U.C. per Sf 17,160.00	CN-SKWK 0	0 \$0	0 \$0	0 \$0	8.5 \$145,860	0 \$0	8.5 \$145,860
GEN Pre-Stressed Concrete Double Tee Roof Panels	U.C. per Sf 20,440.00	CN-SKWK 0	0 \$0	0 \$0	9 \$183,960	0 \$0	0 \$0	9 \$183,960
GEN Installation Of Pre-Stressed / Precast Panels .	U.C. per Ea 126.00	8 CN-SKWK 1,008 \$34.52	276.16 \$34,796	0 \$0	0 \$0	0 \$0	0 \$0	276.16 \$34 , 796
GEN Craning For Panels & Beams	U.C. per Day 22.00	20 CN-SKWK 440 \$34.52	690.4 \$15,189	0 \$0	0 \$0	0 \$0	0 \$0	690.4 \$15,189

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor 9103.4 CONCRETE - STORAGE FACILITY	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	Other	TOTAL
GEN Welding & Patching Of Panels	U.C. per Ea	126,00	8 1,008	CN-SKWK \$34.52	276,16 \$34,796	0 \$0	20 \$2, 520	0 \$0	0 \$0	296.16 \$37,316
GEN (*)Concrete Footings Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	260.00	5 1,300	CN-SKWK \$34.52	172,6 \$44,876	0 \$0	180 \$46,800	0 \$0	0 \$0	352.6 \$91,676
GEN (*)Concrete Floors - 6" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	380.00	5 1,900	CN-SKWK \$34.52	172.6 \$65,588	0 \$0	180 \$68,400	0 \$0	. 0 \$0	352.6 \$133,988
GEN (*)Concrete Partition Wall - 12" Thick Memo: Includes formwork, concrete, and rebar.	U.C. per Cy	180.00	5 900	CN-SKWK \$34.52	172.6 \$31,068	0 \$0	180 \$32,400	0 \$0	0 \$0	352.6 \$63,468
GEN Concrete Sidewalks - 5' Wide	U.C. per Lf	500.00	0,2 100	CN-SKWK \$34.52	6.904 \$3,452	0 \$0	5 \$2,500	0 \$0	0 \$0	11.904 \$5,952
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				PERM	\$229,765 \$0 \$81,524	\$0 \$0 \$0	\$336,580 \$16,829 \$125,395	\$370,860 \$0 \$131,587	\$0 \$0 \$0	\$937,205 \$16,829 \$338,506
Subtotal Estimate Escalation Conlingency					\$79,877 \$101,703	\$0 \$0	\$122,861 \$156,433	\$128,928 \$164,157	\$0 \$0	\$1,292,540 \$331,666 \$422,293
Total 9103.4 CONCRETE - STORAGE FACILITY			6,656		\$492,869	\$0	\$758,098	\$795,532	\$0	\$2,046,499
— 9103.5 CONCRETE - TUNNEL GEN (*)Concrete For Tunnel - 12" Thick All Surfaces Memo: Includes formwork, concrete, and rebar. Tunnel botton	U.C. per Cy m to be 23' below e	190.00 kisting grade	5 · 950 . Tunnel sh	CN-SKWK \$34.52 all be 10' wide at th	172.6 \$32,794 ne bottom, 15' higi	0 \$0 h and 100' long.	180 \$34,200	0 \$0	0 \$0	352.6 \$66,994
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			,,,		\$32,794 \$0 \$11,636	\$0 \$0 \$0	\$34,200 \$1,710 \$12,741	\$0 \$0 \$0	\$0 \$0 \$0	\$66,994 \$1,710 \$24,377
Subtotal Estimate Escalation Conlingency					\$11,401 \$14,516	\$0 \$0	\$12,484 \$15,895	\$0 \$0	\$0 \$0.	\$93,081 \$23,885 \$30,411
Total 9103.5 CONCRETE - TUNNEL			950		\$70,346	\$0	\$77,031	\$0	\$0	\$147,377
9105.1.1 METALS DEMOLITION - CALCINER CELL GEN Remove Support Steel For Installation Of New Wall	U.C. per Lot	1.00	60 60	CN-IRON \$40.16	2409.6 \$2,410	0 \$0	0 \$0	0 \$0	0 \$0	2409.6 \$2,410
GEN Allowance To "Hot Box" Material	U.C. per Box	2.00	10 20	CN-IRON \$40.16	401.6 \$803	0 \$0	0 \$0	0 \$0	0 \$0	401.6 \$803

Project Name:

08/30/2000

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

Client:

V. J. Balls

LEVEL Org/Subcontractor 9105.1.1 METALS DEMOLITION - CALCINER CELL	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Mati	_S/C_	Other	TOTAL
GEN Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	120 1.00 120	CN-IRON \$40.16	4819.2 \$4,819	0 \$0	0 \$0	0 \$0	0 \$0	4819.2 \$4,819
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			,	\$8,032 · \$0 \$2,850	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$8,032 \$0 \$2,850
Subtotal Estimate Escalation Contingency				\$2,792 \$3,555	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$10,882 \$2,792 \$3,555
Total 9105.1.1 METALS DEMOLITION - CALCINER CELL		200		\$17,229	\$0	\$0	\$0	\$0	\$17,229
9105.3 METALS - TFD FACILITY STEEL Liner Plate - 4' Up From Floor	U.C. per Sf	•	CN-IRON \$40.16	80.32 \$82,328	0 \$0	10 \$10,250	0 \$0	0 \$0	90.32 \$92,578
STEEL Misc. Embeds	U.C. per Lot	200 1.00 200	CN-IRON \$40.16	8032 \$8,032	0 \$0	25000 \$25,000	0 \$0	0 \$0	33032 \$33,032
STEEL Grating & Misc. Metals	U.C. per Lot	1000 1,000	CN-IRON \$40.16	40160 \$40,160	0 \$0	150000 \$150,000	0 \$0	0 \$0	190160 \$190,160
STEEL Structural Steel - Superstructure	U.C. per Sf 13,700	0.04 0.00 548	CN-IRON \$40.16	1.606 \$22,008	0 \$0	2.4 \$32,880	0 \$0	o \$0	4.006 \$54,888
STEEL Stairway	U.C. per Ea	10 1.00 10	CN-IRON \$40.16	401.6 \$402	0 \$0 ·	3000 \$3,000	0 \$0	0 \$0	3401.6 \$3,402
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$152,929 \$0 \$64,128	\$0 \$0 \$0	\$221,130 \$11,057 \$97,363	\$0 \$0 \$0	\$0 \$0 \$0	\$374,059 \$11,057 \$161,491
Subtotal Estimate Escalation Contingency				\$55,697 \$70,916	\$0 \$0	\$84,562 \$107,669	\$0 \$0	\$0 \$0	\$546,606 \$140,259 \$178,585
Total 9105.3 METALS - TFD FACILITY		3,808		\$343,670	\$0	\$521,781	\$0	\$0	\$865,451
9105,4 METALS - BOILER HOUSE GEN Pre-Engineered Metal Building	U.C. per Sf 3,120			0 \$0	0 \$0	0 \$0	18 \$56,160	0 \$0	18 \$56,160
GEN Misc. Metals	U.C. per Lot	1.00 40	CN-IRON \$40.16	1606.4 \$1,606	0 \$0	1200 \$1,200	0 \$0	0 \$0	2806.4 \$2,806
STEEL BOILER STACK SUPPORTS	U.C. per EA	40 2,00 80	CN-IRON \$40.16	1606.4 \$3,213	0 \$0	275 \$550	0 \$0	0 \$0	1881.4 \$3,763

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor 9105.4 METALS - BOILER HOUSE	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	<u>Other</u>	TOTAL
STEEL BOILER BUILDING PLATFORMS	U.C. per LBS	0.018	CN-IRON	0.723	0	1.62	0	0	2.343
	11,000.00	198	\$40.16	\$7,952	\$0	\$17,820	\$0	\$0	\$25,772
· STEEL	U.C. per LBS	0.012	CN-IRON	0.482	0	0.4	0	0	0,882
BOILER BUILDING ROOF FRAMING	21,840.00	262	\$40.16	\$10,525	\$0	\$8,736	\$0	\$0	\$19,261
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$23,296 \$0 \$9,685	\$0 \$0 \$0	\$28,306 \$1,415 \$12,382	\$56,160 \$0 \$19,926	\$0 \$0 \$0	\$107,762 \$1,415 \$41,973
Subtotal Estimate Escalation Contingency				\$8,458 \$10,769	\$0 \$0	\$10,804 \$13,756	\$19,524 \$24,859	\$0 \$0	\$151,151 \$38,785 \$49,383
Total 9105.4 METALS - BOILER HOUSE		580		\$52,188	\$0	\$66,662	\$120,469	\$0	\$239,319
9105.5 METALS - STORAGE FACILITY STEEL CHARGE FACE SLAB FRAME	U.C. per TON	6	CN-IRON	240.96	0	1100	o	0	1340.96
	780.00	4,680	\$40.16	\$187,949	\$0	\$858,000	\$0	\$0	\$1,045,949
STEEL	U.C. per TON	10	CN-IRON	401.6	0	1200	0	0	1601.6
BUILDING STRUCTURAL STEEL	756.00	7,560	\$40.16	\$303,610	\$0	\$907,200	\$0	\$0	\$1,210,810
STEEL	U.C. per LF	3.85	CN-IRON	154.616	0	161	0	0	315.616
GANTRY CRANE RAILS, EMBEDS, ETC.	400.00	1,540	\$40.16	\$61,846	\$0	\$64,400	\$0	\$0	\$126,246
STEEL RAILROAD TRACKS - WITHIN BUILDING	U.C. per LF 180.00	2 360	CN-IRON \$40.18	80.32 \$14,458	0 \$0	92 \$16,560	0 \$0	0 \$0	172.32 \$31,018
STEEL	U.C. per LF	2	CN-IRON	80.32	0	92	0	0	172.32
TRANSFER CART RAILS	210.00	420	\$40.16	\$16,867	\$0	\$19,320	\$0	\$0	\$36,187
STEEL	U.C. per SF	0.25	CN-IRON	10.04	0	40	0	0	50,04
BIRD SCREEN AND VENT LOUVERS	2,300.00	575	\$40.16	\$23,092	\$0	\$92,000	\$0	\$0	\$115,092
STEEL AIR OUTLET WALL (INSIDE)	U.C. per SF 12,600.00	0	CN-IRON	0 \$0	0 \$0	0 \$0	12 \$151,200	0 \$0	12 \$151,200

08/30/2000

UNEX Feasibility Study - Option D - Modified UNEX In NWCF

Project Location: INTEC

Estimate Number. 2570 - Option D

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
9105.5 METALS - STORAGE FACILITY STEEL (*)Misc. Steel Memo: Handralls, stairways, grating, and etc.	U.C. per Lot	750 750	CN-IRON \$40.16	30120 \$30,120	0 \$0	45000 \$45,000	0 \$0	0 \$0	75120 \$75,120
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$637,942 \$0 \$267,508	\$0 \$0 \$0	\$2,002,480 \$100,124 \$881,685	\$151,200 \$0 \$63,403	\$0 \$0 \$0	\$2,791,622 \$100,124 \$1,212,596
Subtotal Estimate Escalation Contingency				\$232,338 \$295,825	\$0 \$0	\$765,769 \$975,015	\$55,067 \$70,114	\$0 \$0	\$4,104,341 \$1,053,174 \$1,340,954
Total 9105.5 METALS - STORAGE FACILITY		15,885		\$1,433,613	\$0	\$4,725,072	\$339,784	\$0	\$6,498,469
- 9107.1 THERMAL & MOISTURE PROTECTION - TFI GEN 2" Thick Foundation Insulation Board	U.C. per Sf 2,000.00	0.033 66	CN-CARP \$34.64	1.143 \$2,286	0 \$0	0.6 \$1,200	0 \$0	0 \$0	1.743 \$3,486
GEN 3" Thick Extruded Polystyrene Insulation Board	U.C. per Sf 37,000.00	0.06 2,220	CN-CARP \$34.64	2.078 \$76,901	0 \$0	2.1 \$77,700	0 \$0	0 \$0	4.178 \$154,601
GEN Stucco Finish - 1/2" Thick	U.C. per Sf 37,000.00	0.08 2,960	CN-LABR \$30.09	2.407 . \$89,066	0 \$0	4.5 \$166,500	0 \$0	· 0 \$0	6.907 \$255,566
GEN High Work Allowance - Add 25% To Labor	U.C. per Hr 1,290.00	0,25 323	CN-LABR \$30.09	7.523 \$9,704	0 \$0	0 \$0	0 \$0	0 \$0	7.523 \$9,704
GEN Manlift Allowance	U.C. per Lot 1.00	0		0 \$0	3000 \$3,000	0 \$0	0 \$0	0 \$0	3000 \$3,000
GEN 4" Rigid Roof Insulation - 2 Ea. 2" Layers Of Polyisocyanurate Insulation Board	U.C. per Sf 13,700.00	0.02 274	CN-LABR \$30,09	0.602 \$8,245	0 \$0	0.95 \$13,015	0 \$0	0 \$0	1.552 \$21,260
ROOF EPDM Single Ply Membrane Roofing	U.C. per Sf 13,700.00	0.014 192	CN-ROFC \$29,95	0.419 \$5,744	0 \$0	2.2 \$30,140	0 \$0	0 \$0	2.619 \$35,884
ROOF Redwood, Flashing, & Etc.	U.C. per Lot 1.00	200 200	CN-ROFC \$29.95	5990 \$5,990	0 \$0	5000 \$5,000	0 \$0	0 \$0	10990 \$10,990
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$197,937 \$0 \$77,972	\$3,000 \$0 \$1,064	\$293,555 \$14,678 \$133,706	\$0 \$0 \$0	\$0 \$0 \$0	\$494,492 \$14,678 \$212,742
Subtotal Estimate Escalation Contingency				\$70,798 \$90,144	\$1,043 \$1,328	\$113,401 \$144,388	\$0 \$0	\$0 \$0	\$721,911 \$185,242 \$235,860
Total 9107.1 THERMAL & MOISTURE PROTECTION	- TFD FACILITY	6,234		\$436,850	\$6,435	\$699,729	\$0	\$0	\$1,143,014

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

UNEX Feasibility	Study - Option D - Modified UNEX In NWCF

Project Location: INTEC
Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor — 9107.2 THERMAL & MOISTURE PROTECTION - BOILER	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	Other	TOTAL
INSUL EXTERIOR WALL INSULATION W/ Z-GIRTS	U.C. per SF 6,720.00	0		0 \$0	0 \$0	0 \$0	1.9 \$12,768	0 \$0	1.9 \$12,768
INSUL ROOF INSULATION	U.C. per SF ,3,120.00	0		0 \$0	0 \$0	0 \$0	1 \$3,120	0 \$0	1 \$3,120
GEN EXTERIOR WALL METAL SIDING	U.C. per SF 6,720.00	0.023 155	CN-SHEE \$35.48	0.816 \$5,484	0 \$0	3 \$20,160	0 \$0	0 \$0	3.816 \$25,644
GEN STANDING SEAM METAL ROOF	U.C. per SF 3,120.00	0.016 50	CN-SHEE \$35.48	0.568 \$1,771	0 \$0	5 \$15,600	0 \$0	0 \$0	5.568 \$17,371
GEN 2" Thick Foundation Insulation Board	U.C. per Sf 950,00	0.033 31	CN-CARP \$34.64	1.143 \$1,086	0 \$0	0.6 \$570	0 \$0	0 \$0	1.743 \$1,656
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$8,341 \$0 \$2,959	\$0 \$0 \$0	\$36,330 \$1,817 \$13,535	\$15,888 \$0 \$6,662	\$0 \$0 \$0	\$60,559 \$1,817 \$23,157
Subtotal Estimate Escalation Contingency				\$2,900 \$3,692	\$0 \$0	\$13,261 \$16,885	\$5,786 \$7,368	\$0 \$0	\$85,532 \$21,948 \$27,945
Total 9107.2 THERMAL & MOISTURE PROTECTION - BO	ILER HOUSE	236		\$17,892	\$0	\$81,828	\$35,704	\$0	\$135,424
9107.3 THERMAL & MOISTURE PROTECTION - STORA GEN 2" Thick Foundation Insulation Board	GE FACILITY U.C. per Sf 2,300.00	0.033 76	CN-CARP \$34.64	1.143 \$2,629	o \$0	0.6 \$1,380	0 \$0	0 \$0	1.743 \$4,009
GEN 3" Thick Extruded Polystyrene Insulation Board	U.C. per Sf 17,200.00	0.06 1,032	CN-CARP \$34.64	2.078 \$35,748	0 \$0	2.1 . \$36,120	0 \$0	0 \$0	4.178 _. \$71,868
GEN Stucco Finish - 1/2" Thick	U.C. per Sf 17,200.00	0.08 1,376	CN-LABR \$30,09	2.407 \$41,404	0 \$0	4.5 \$77,400	0 \$0	0 \$0	6.907 \$118,804
GEN High Work Allowance - Add 25% To Labor	U.C. per Hr 2,408.00	0.25 602	CN-LABR ⁻ \$30,09	7.523 \$18,114	· \$0	0 \$0	0 \$0	0 \$0	7.523 \$18,114
GEN Manlift Allowance	U.C. per Lot 1.00	0		0 \$0	3000 \$3,000	0 \$0	0 \$0	0 \$0	3000 \$3,000
GEN 4" Rigid Roof Insulation - 2 Ea. 2" Layers Of Polyisocyanurate Insulation Board	U.C. per Sf 20,500.00	0.02 410	CN-LABR \$30,09	0.602 \$12,337	o \$0	° 0.95 \$19,475	0 \$0	0` \$0	1.552 \$31,812
ROOF EPDM Single Ply Membrane Roofing	U.C. per Sf 20,500.00	0.014 287	CN-ROFC \$29.95	0.419 \$8,596	0 \$0	2.2 \$45,100	0 \$0	0 \$0	2.619 \$53,696

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option D

Client:

V. J. Balls

LEVEL Org/Subcontractor 9107.3 THERMAL & MOISTURE PROTECTION - ST	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Matl	_S/C	Other	TOTAL
ROOF Redwood, Flashing, & Etc.	U.C. per Lot	1.00	200 200	CN-ROFC \$29,95	5990 \$5,990	0 \$0	5000 \$5,000	. \$0	0 \$0	10990 \$10,990
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$124,818 \$0 \$53,909	\$3,000 \$0 \$1,064	\$184,475 \$9,224 \$103,430	\$0 \$0 \$0	\$0 \$0 \$0	\$312,293 \$9,224 \$158,404
Subtotal Estimate Escalation Contingency					\$45,861 \$58,393	\$1,043 \$1,328	\$76,243 \$97,077	\$0 \$0	\$0 \$0	\$479,921 \$123,148 \$156,798
Total 9107.3 THERMAL & MOISTURE PROTECTION FACILITY	- STORAGE		3,983		\$282,982	\$6,435	\$470,448	\$0	\$0	\$759,866
9108.2 DOORS & WINDOWS - TFD FACILITY GEN Single HM Doors & Hardware	U.C. per Ea	12.00	10 120	CN-CARP \$34.64	346.4 \$4,157	0 \$0	1000 \$12,000	0 \$0	0 \$0	1346.4 \$16,157
GEN Double HM Doors & Hardware	U.C. per Ea	6.00	15 90	CN-CARP \$34.64	519.6 \$3,118	0 \$0	1800 \$10,800	0 \$0	0 \$0	2319.6 \$13,918
GEN Exterior Doors	U.C. per Ea	4.00	12 48	CN-CARP \$34.64	415.68 \$1,663	0 \$0	2000 \$8,000	0 \$0	0 \$0	2415.68 \$9,663
GEN 3' x 7' Shielding Doors	U.C. per Ea	2.00	40 80	CN-CARP \$34.64	1385.6 \$2,771	500 \$1,000	25000 \$50,000	0 \$0	0 \$0	26885.6 \$53,771
GEN 12'x12' Overhead Roll-Up Door	U.C. per Ea	2.00	75 150	CN-CARP \$34.64	2598 \$5,196	0 \$0	16000 \$32,000	0 \$0	0 \$0	18598 \$37,196
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$16,904 \$0 \$5,998	\$1,000 \$0 \$355	\$112,800 \$5,640 \$42,024	\$0 \$0 \$0	\$0 \$0 \$0	\$130,704 \$5,640 \$48,377
Subtotal Estimate Escalation Contingency					\$5,877 \$7,483	\$348 \$443	\$41,175 \$52,426	\$0 \$0	\$0 \$0	\$184,721 \$47,399 \$60,351
Total 9108.2 DOORS & WINDOWS - TFD FACILITY		•	488		\$36,261	\$2,145	\$254,066	\$0	\$0	\$292,472
9108.3 DOORS & WINDOWS - BOILER HOUSE GEN Single HM Doors & Hardware	U.C. per Ea	3.00	10 30	CN-CARP \$34.64	346.4 \$1,039	o \$0	1000 \$3,000	0 \$0	0 \$0	1346.4 \$4,039
GEN Double HM Doors & Hardware	U.C. per Ea	1.00	15 15	CN-CARP \$34.64	519,6 \$520	0 \$0	1800 \$1, 800	0 \$0	0 \$0	2319.6 \$2,320

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	_S/C_	<u>Other</u>	TOTAL
9108.3 DOORS & WINDOWS - BOILER HOUSE . GEN 12'x12' Overhead Roll-Up Door	U.C. per Ea	1.00	75 75	CN-CARP \$34.64	2598 \$2,598	0 \$0	16000 \$16,000	0 \$0	0 \$0	18598 \$18,598
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				4.17	\$4,157 \$0 \$1,475	\$0 \$0 \$0	\$20,800 \$1,040 \$7,749	\$0 \$0 \$0	\$0 \$0 \$0	\$24,957 \$1,040 \$9,224
Subtotal Estimate Escalation Contingency					\$1,445 \$1,840	\$0 \$0	\$7,593 \$9,667	\$0 \$0	\$0 \$0	\$35,221 \$9,038 \$11,507
Total 9108.3 DOORS & WINDOWS - BOILER HOUSE			120		\$8,917	\$0	\$46,849	\$0	\$0	\$55,766
9108.4 DOORS & WINDOWS - STORAGE FACILITY GEN OVERHEAD DOORS GEN	U.C. per EA	2,00	75 150	CN-SKWK \$34.52 CN-SKWK	2589 \$5,178 345,2	0 \$0 0	16000 \$32,000 1000	0 \$0	0 \$0	18589 \$37,178 1345.2
PERSONNEL DOORS	o.o. per EX	5.00	50	\$34.52	\$1,726	\$0	\$5,000	\$0	0 \$0	\$6,726
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$6,904 \$0 \$2,450	\$0 \$0 \$0	\$37,000 \$1,850 \$13,785	\$0 \$0 \$0	\$0 \$0 \$0	\$43,904 \$1,850 \$16,234
Subtotal Estimate Escalation Contingency					\$2,400 \$3,056	\$0 \$0	\$13,506 \$17,197	\$0 \$0	\$0 \$0	\$61,988 \$15,906 \$20,253
Total 9108.4 DOORS & WINDOWS - STORAGE FACILITY			200		\$14,810	\$0	\$83,337	\$0	\$0	\$98,147
9109.1 FINISHES - NWCF PAINT Misc. Painting	U.C. per Lot	1.00	200 200	CN-PAIN \$30.39	6078 \$6,078	0 \$0	2500 \$2,500	0 \$0	0 \$0	8578 \$8,578
GEN RCRA Floor - Grouting Facility	U.C. per Sf	4,800.00	0		0 \$0	0 \$0	0 \$0	7 \$103,600	0 \$0	7 \$103,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	•				\$6,078 \$0 \$2,549	\$0 \$0 \$0	\$2,500 . \$125 \$1,101	\$103,600 \$0 \$36,759	\$0 \$0 \$0	\$112,178 \$125 \$40,408
Subtotal Estimate Escalation Contingency					\$2,214 \$2,818	\$0 \$0	\$956 \$1,217	\$36,016 \$45,857	\$0 \$0	\$152,711 \$39,186 \$49,893
Total 9109.1 FINISHES - NWCF			200		\$13,659	\$0	\$5,899	\$222,232	\$0	\$241,790

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option D - Modified UNEX In NWCF

Project Location: INTEC
Estimate Number: 2570 - Option D

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL 9109.2 FINISHES	Org/Subcontractor - TFD FACILITY	QTY	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
Building Painting	PAINT	U.C. per Sf 100,000.0	0.03 0 3,000	CN-PAIN \$30.39	0.912 \$91,170	0 \$0	0.75 \$75,000	0 \$0	0 \$0	1.662 \$166,170
Paint Structural Steel	PAINT	U.C. per SF 13,700.0	0.08 0.098	CN-PAIN \$30.39	2.431 \$33,307	. ° \$0	0.1 \$1,370	0 · \$0	0 \$0	2.531 \$34,677
Decontaminable Coatin	PAINT ng - Hot Cell	U.C. per Sf 26,000.0	0.08 0 2, 080	CN-PAIN \$30.39	2.431 \$63,211	0 \$0	1.5 \$39,000	0 \$0	0 \$0	3.931 \$102,211
Floor Painting	PAINT	U.C. per Sf 30,000.0	0.011 0 330	CN-PAIN \$30.39	0.334 \$10,029	, o \$0	0.5 \$15,000	0 \$0	0 \$0	0.834 \$25,029
Pipe Painting / I.D.	PAINT	U.C. per Lot	250 0 250	CN-PAIN \$30.39	7597.5 \$7,598	0 \$0	4000 \$4,000	0 \$0	0 \$0	11597.5 \$11,598
Paint Doors & Frames	PAINT	U.C. per Ea 20.0	4 0 80	CN-PAIN \$30.39	121.56 \$2,431	0 \$0	50 \$1,000	0 \$0	0 \$0	171.56 \$3,431
Touch-Up Paint	PAINT	U.C. per Lot	80 08 C	CN-PAIN \$30.39	2431.2 \$2,431	0 \$0	150 \$150	0 \$0	0 \$0	2581.2 \$2,581
Subtotal Sales Tax INEEL ORG Labor/S	Subcontractor Overheads				\$210,177 \$0 \$88,134	\$0 \$0 \$0	\$135,520 \$6,776 \$59,669	\$0 \$0 \$0	\$0 \$0 \$0	\$345,697 \$6,776 \$147,803
Subtotal Estimate Escalation Contingency					\$76,547 \$97,463	\$0 \$0	\$51,824 \$65,985	\$0 \$0	\$0 \$0	\$500,276 \$128,371 \$163,448
Total 9109.2 FINISH	HES - TFD FACILITY		6,916		\$472,320	\$0	\$319,774	\$0	\$0	\$792,095
9109.3 FINISHES Paint Doors & Frames	- BOILER HOUSE PAINT	U.C. per Ea	4	CN-PAIN \$30.39	121.56 \$486	0 \$0	50 \$200	0 \$0	0 \$0	171.56 \$686
Touch-Up Paint	PAINT	U.C. per Lot	16) 16	CN-PAIN \$30,39	486.24 \$486	0 \$0	150 \$150	0 \$0	0 \$0	636.24 \$636
Subtotal Sales Tax INEEL ORG Labor/S	Subcontractor Overheads				\$972 \$0 \$408	\$0 \$0 \$0	\$350 \$18 \$154	\$0 \$0 \$0	\$0 \$0 \$0	\$1,322 \$18 \$562
Subtotal Estimate Escalation Contingency					\$354 \$451	\$0 \$0	\$134 \$170	\$0 \$0	\$0 \$0	\$1,902 \$488 \$621

-- Total 9109.3 FINISHES - BOILER HOUSE

32

\$2,185

\$0

\$826

\$0

\$0

\$3,011

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option D

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Eslimate Type: Planning

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
- 9109.4 FINISHES - STORAGE FACILITY PAINT Paint Structural Steel	U.C. per SF	0.08	CN-PAIN	2.431	0	0.1	o	0	2.531
	13,700.00	1,096	\$30,39	\$33,307	\$0	\$1,370	\$0	\$0	\$34,677
PAINT	U.C. per Sf	0.03	CN-PAIN	0.912	0	0.75	0	0	1.662
Building Painting	2,500.00	75	\$30.39	\$2,279	\$0	\$1, 875	\$0	\$0	\$4,154
PAINT Decontaminable Coating - Remote Handling Area	U.C. per Sf	0.08	CN-PAIN	2.431	0	1.5	0	0	3.931
	22,000.00	1,760	\$30.39	\$53,486	\$0	\$33,000	\$0	\$0	\$86,486
PAINT Floor Painting - Decontaminable - Remote Handling Area	U.C. per Sf	0.08	CN-PAIN	2.431	0	1.5	0	0	3.931
	17,600.00	1,408	\$30.39	\$42,789	\$0	\$26,400	\$0	\$0	\$69,189
PAINT Pipe Painting / I.D.	U.C. per Lot	250	CN-PAIN	7597.5	0	4000	0	0	11597.5
	1.00	250	\$30.39	\$7,598	\$0	\$4,000	\$0	\$0	\$11,598
PAINT Paint Doors & Frames	U.C. per Ea	4	CN-PAIN	121.56	. 0	50	0	0	171.56
	7.00	28	\$30.39	\$851	\$0	\$350	\$0	\$0	\$1,201
PAINT	U.C. per Lot	40	CN-PAIN	1215.6	0	150	0	0	1365.6
Touch-Up Paint	1.00	40	\$30,39	\$1,216	\$0	\$150	\$0	\$0	\$1,366
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$141,526 \$0 \$59,346	\$0 \$0 \$0	\$67,145 \$3,357 \$29,564	\$0 \$0 \$0	\$0 \$0 \$0	\$208,671 \$3,357 \$88,910
Subtotal Estimate Escalation Contingency			•	\$51,544 \$65,628	\$0 \$0	\$25,677 \$32,693	\$0 \$0	\$0 \$0	\$300,938 \$77,221 \$98,321
Total 9109.4 FINISHES - STORAGE FACILITY		4,657		\$318,045	\$0	\$158,436	\$0	\$0	\$476,481
9110.1 SPECIALTIES - NWCF GEN Storage Racks	U.C. per Lf 4,700.00	0.25 1,175	CN-LABR \$30.09	7.523 \$35,356	0 \$0	80 \$376,000	0 \$0	o \$0	87.523 \$411,356
GEN	U.C. per Ea	400	CN-SKWK	13808	0	750000	0	0	763808
Auto Retrieval System With Three Fork Lifts	1.00	400	\$34.52	\$13,808	\$0	\$750,000	\$0	\$0	\$763,808
GEN Truck Loading Station	U.C. per Ea	550	CN-SKWK	18986	0	50000	0	0	68986
	1.00	550	· \$34.52	\$18,986	\$0	\$50,000	\$0	\$0	\$68,986

Page No.

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option D

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	_S/C_	Other	TOTAL
9110.1 SPECIALTIES - NWCF GEN	U.C. per Ea			0	0	0	850000	0	850000
TRU-Pak Assembly	1.0	0 0		\$0	\$0	\$0	\$850,000	\$0	\$850,000
Subtotal				\$68,150	\$0	\$1,176,000	\$850,000	\$0	\$2,094,150
Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$0 \$24,181	\$0 \$0	\$58,800 \$438,126	\$0 \$301,593	\$0 \$0	\$58,800 \$763,899
Subtotal Estimate	· · · · · · · · · · · · · · · · · · ·			***		* . -			\$2,916,849
Escalation Contingency				\$23,692 \$34,807	\$0 \$0	\$429,273 \$630,659	\$295,499 \$434,127	\$0 \$0	\$748,463 \$1,099,594
Total 9110.1 SPECIALTIES - NWCF		2,125	***************************************	\$150,829	\$0	\$2,732,858	\$1,881,219	\$0	\$4,764,906
9110.2 SPECIALTIES - TFD FACILITY	110	400	01110011	1010.0		75000		_	
GEN 20 Ton O.H. Crane	U.C. per Ea 1.0	120 0 120	CN-IRON \$40.16	4819.2 \$4,819	0 \$0	75000 \$75,000	0 \$0	0 \$0	79819.2 \$79,819
GEN	U.C. per Ea	80	CN-IRON	3212.8	0	50000	0	0	53212.8
Hot Cell O.H. Crane	1.0	0 80	\$40.16	\$3,213	\$0	\$50,000	\$0	\$0	\$53,213
GEN Shielding Windows - 2' Thick	U.C. per Ea 8.0	100 0 800	CN-MILL \$32,92	3292 \$26,336	0 \$0	170000 \$1,360,000	0 \$0	0 \$0	173292 \$1,386,336
•			•	•				•	
GEN PaR Manipulators - Model 4350 - Wall Mounted	U.C. per Ea 4.0	200 0 800	CN-MILL \$32.92	5584 \$26,336	0 \$0	1419000 \$5,676,000	0 \$0	0 \$0	1425584 \$5,702,336
GEN	U.C. per Lot			0	0	0	6000000	0	6000000
Robolic / Remote Handling Allowance	1.0	0 0		\$0	\$0	\$0	\$6,000,000	\$0	\$6,000,000
Subtotal			· · · · · · · · · · · · · · · · · · ·	\$60,704	\$0	\$7,161,000	\$6,000,000	\$0	\$13,221,704
Sales Tax INEEL ORG Labor/Subconfractor Overheads				\$0 \$21,539	\$0 \$0	\$358,050 \$2,667,872	\$0 \$2,128,890	\$0 \$0	\$358,050 \$4,818,300
Subtotal Estimate									\$18,398,054
Escalation Contingency				\$21,103 \$31,004	\$0 \$0	\$2,613,964 \$3,840,266	\$2,085,873 \$3,064,429	\$0 \$0	\$4,720,941 \$6,935,699
Total 9110.2 SPECIALTIES - TFD FACILITY	· · · · · · · · · · · · · · · · · · ·	1,800		\$134,350	\$0	\$16,641,152	\$13,279,192	\$0	\$30,054,694
9110.3 SPECIALTIES - BOILER HOUSE GEN	U.C. nor Fo	100	CN-IRON	4016	^	40000	•	•	44040
10 Ton O.H. Crane	U.C. per Ea 1.0		\$40.16	4016 \$4,016	0 \$0	\$40,000	0 \$0	0 \$0	44016 \$44,016

24

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

Client:

V. J. Balls

LEVEL Org/Subcontractor 9110.3 SPECIALTIES - BOILER HOUSE	QTY	<u>r</u>	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	Matl	<u>s/c</u>	<u>Other</u>	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$4,016 \$0 \$1,425	\$0 \$0 \$0	\$40,000 \$2,000 \$14,902	\$0 \$0 \$0	\$0 \$0 \$0	\$44,016 \$2,000 \$16,327
Subtotal Estimate . Escalation Contingency					\$1,396 \$2,051	\$0 \$0	\$14,601 - \$21,451	\$0 \$0	\$0 \$0	\$62,343 \$15,997 \$23,502
Total 9110.3 SPECIALTIES - BOILER HOUSE			100		\$8,888	\$0	\$92,954	\$0	\$0	\$101,843
9110.4 SPECIALTIES - STORAGE FACILITY GEN VAULT TUBE ASSEMBLIES	U.C. per EA	1,584.00	50 79,200	CN-IRON \$40.16	2008 \$3,180,672	0 \$0	23100 \$36,590,400	0 \$0	0 \$0	25108 \$39,771,072
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$3,180,672 \$0 \$1,128,550	\$0 \$0 \$0	\$36,590,400 \$1,829,520 \$13,631,964	\$0 \$0 \$0	\$0 \$0 \$0	\$39,771,072 \$1,829,520 \$14,760,514
Subtotal Estimate Escalation Conlingency					\$1,105,746 \$1,624,491	\$0 \$0	\$13,356,513 \$19,622,519	\$0 \$0	\$0 \$0	\$56,361,106 \$14,462,260 \$21,247,010
Total 9110.4 SPECIALTIES - STORAGE FACILITY			79,200		\$7,039,459	\$0 -	\$85,030,917	\$0	\$0	. \$92,070,376
9111.1.1 EQUIPMENT - CALCINER CELL PIPE Filter Feed Pump - P-201-2a & 2b (Skid Mounted)	U.C. per Ea	2.00	10 20	CN-PIPE \$37.58	375.8 \$752	0 \$0	7500 \$15,000	o \$0	0 \$0	7875.8 \$15,752
PIPE SBW Slurry XFR Pump - P-201-6a, b - 30 hp	U.C. per Ea	2.00	6 12	CN-PIPE \$37.58	225.48 \$451	500 \$1,000	5500 \$11,000	0 \$0	0 \$0	6225.48 \$12,451
PIPE SBW Day Tank - T-201-2a, b - 1179 Gal SST	U.C. per Ea	2.00	8 16	CN-PIPE \$37.58	300.64 \$601	0 \$0	15000 \$30,000	0 \$0	0 \$0	15300.64 \$30,601
PIPE Cross Flow Filter - CF-201-1, 2 (36"x60"x65")	U.C. per Ea	2.00	40 80	CN-PIPE \$37.58	1503.2 \$3,008	0 \$0	100000 .\$200,000	0 \$0	0 \$0	101503.2 \$203,006
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$4,810 \$0 \$2,314	\$1,000 \$0 \$481	\$256,000 \$12,800 \$129,304	\$0 \$0 \$0	\$0 \$0 \$0	\$261,810 \$12,800 \$132,099
Subtotal Estimate Escalation Contingency					\$1,828 \$5,998	\$380 \$1,247	\$102,153 \$335,172	\$0 \$0	\$0 \$0	\$406,709 \$104,361 \$342,417
Total 9111.1.1 EQUIPMENT - CALCINER CELL			128		\$14,950	\$3,108	\$835,429	\$0	\$0	\$853,487

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option D

Client:

V. J. Balls

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C	Other	TOTAL
- 9111.1.2 EQUIPMENT - OFF GAS CELL PIPE Extraction Feed Pump - P-201-5375 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	o \$0	1200 \$1,200	0 \$0	0 \$0	1275.16 \$1,275
PIPE Solvent Feed Pump - P-202-525 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	500 \$500	0 \$0	0 \$0	575.16 \$575
PIPE UNEX Solvent Tank - T-202-5 - 500 Gal SST	U.C. per Ea	1.00	6 6	CN-PIPE \$37.58	225.48 \$225	0 \$0	8500 \$8,500	0 \$0	0 \$0	8725.48 \$8,725
PIPE Extraction Contactor - CON-202-1-14 (3'x13'x5')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	300000 \$300,000	0 \$0	0 \$0	301751.6 \$301,752
PIPE Scrubbing Contactor - SB-202-1-2 (3'x2'x5')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	300000 \$300,000	0 \$0	0 \$0	301751.6 \$301,752
PIPE Stripping Contactor - SP-202-1-8 (3'x7'x5')	U.C. per Ea	1.00	20 20	CN-PIPE \$37,58	751.6 \$752	1000 \$1,000	300000 \$300,000	0 \$0	0 \$0	301751.6 \$301,752
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$2,631 \$0 \$1,265	\$3,000 \$0 \$1,443	\$910,200 \$45,510 \$459,735	\$0 \$0 \$0	\$0 \$0 \$0	\$915,831 \$45,510 \$462,443
Subtotal Estimate Escalation Contingency					\$1,000 \$3,280	\$1,140 \$3,741	\$363,203 \$1,191,694	\$0 \$0	\$0 \$0	\$1,423,784 \$365,343 \$1,198,715
Total 9111.1.2 EQUIPMENT - OFF GAS CELL			70	•	\$8,176	\$9,324	\$2,970,342	\$0	\$0	\$2,987,842
9111.1.3 EQUIPMENT - BLEND & HOLD CELL PIPE SBW Feed Tank - T-201-1 - 4718 Gal. SST	U.C. per Ea	1.00	12 12	CN-PIPE \$37.58	450.96 \$451	500 \$500	31000 \$31,000	o \$0	0 \$0	31950.96 \$31,951
PIPE · Extraction Feed Tank - T-201-5a, b, c - 2359 Gal. SST	U.C. per Ea	3,00	10 30	CN-PIPE \$37.58	375.8 \$1,127	500 \$1,500	21000 \$63,000	0 \$0	0 \$0	21875.8 \$65,627
PIPE UNEX Raffinate Tank - T-202-6a, b - 1761 Gal. SST	U.C. per Ea	2.00	8 16	CN-PIPE \$37,58	300.64 \$601	250 \$500	18600 \$37,200	0 \$0	0 \$0	19150.64 \$38,301

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor — 9111.1.3 EQUIPMENT - BLEND & HOLD CELL	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
PIPE UNEX Strip Effluent Tank - T-202-14 - 1124 Gal. SST	U.C. per Ea	1.00	6 6	CN-PIPE \$37.58	225.48 \$225	250 \$ 250	14900 \$14,900	0 \$0	0 \$0	15375,48 \$15,375
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		, , , , , , , , , , , , , , , , , , , ,			\$2,405 \$0 \$1,157	\$2,750 \$0 \$1,323	\$146,100 \$7,305 \$73,794	\$0 \$0 \$0	\$0 \$0 \$0	\$151,255 \$7,305 \$76,274
Subtotal Estimate Escalation Contingency					\$914 \$2,999	\$1,045 \$3,429	\$58,299 \$191,284,	\$0 \$0	\$0 \$0	\$234,834 \$60,258 \$197,712
Total 9111.1.3 EQUIPMENT - BLEND & HOLD CELL			64		\$7,475	\$8,547	\$476,782	\$0	\$0	\$492,804
9111.1.4 EQUIPMENT - VALVE CUBICLE PIPE SBW XFR Pump - P201-1 - 30 hp	U.C. per Ea	1.00	16 16	CN-PIPE \$37,58	601.28 \$601	0 \$0	4500 \$4,500	0 \$0	°0 \$0	5101.28 \$5,101
PIPE Raffinate XFR Pump - P-202-6a25 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	600 \$600	0 \$0	0 \$0	712.74 \$713
PIPE Raffinate Off Spec. XFR Pump - P-202-6b - 2 hp	U.C. per Ea	1.00	4	CN-PIPE \$37.58	150.32 \$150	o \$0	2800 \$2,800	0 \$0	0 \$0	2950.32 \$2,950
PIPE Strip Effluent XFR Pump - P-202-1425 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	600 \$600	0 \$0	0 \$0	712.74 \$713
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$977 \$0 \$470	\$0 \$0 \$0	\$8,500 \$425 \$4,293	\$0 \$0 \$0	\$0 \$0 \$0	\$9,477 \$425 \$4,763
Subtotal Estimate Escalation Contingency					\$371 \$1,218	\$0 . \$0	\$3,392 \$11,129	\$0 \$0	\$0 \$0	\$14,665 \$3,763 \$12,347
Total 9111.1.4 EQUIPMENT - VALVE CUBICLE			26		\$3,037	\$0	\$27,739	\$0	\$0	\$30,776
9111.1.5 EQUIPMENT - STORAGE AREA PIPE HF Pump - P-201-4125 hp	U.C. per Ea	1.00	2 2	CN-PIPE , \$37,58	75.16 \$75	0 \$0	600 \$600	o \$0	o \$0	675.16 \$675
PIPE Dicarbolide Feed Pump - P-202-175 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	o [.] \$0	912.74 \$913
PIPE PEG Feed Pump - P-202-275 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE CMPO Feed Pump - P-202-375 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option D

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor 8111.1.5 EQUIPMENT - STORAGE AREA	QTY	<u>Hrs</u>	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	_S/C	Other	TOTAL
PIPE FS-13 Feed Pump - P-202-475 hp	U.C. per Ea	3		112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE Acid Feed Pump - P-202-775 hp	U.C. per Ea	3		112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE Aluminum Nitrate Feed Pump - P-202-875 hp	U.C. per Ea	3		112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE Scrub Makeup XFR Pump - P-202-925 hp	U.C. per Ea	2		75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Scrub Solution Feed Pump - P-202-1025 hp	U.C. per Ea 1.0	2		75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE DTPA Feed Pump - P-202-1175 hp	U.C. per Ea 1.00	3		112.74 \$113	0 \$0	800 \$800	0 \$0	0 \$0	912.74 \$913
PIPE Strip Makeup XFR Pump - P-202-1225 hp	U.C. per Ea 1.00	2 2		75.16 \$75	0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Strip Solution Feed Pump - P-202-1325 hp	U.C. per Ea 1.00	2 2		75.16 \$75	. 0 \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE	U.C. per Ea	16	CN-PIPE	601.28	500	20500	0	0	21601.28
HF Storage Tank - T-201-3 - 4000 Gal C-276	1.00) 16	\$37.58	\$601	\$500	\$20,500	\$0	\$0	\$21,601
PIPE	U.C. per Ea	3	CN-PIPE	112.74	0	4000	0	0	4112.74
HF Makeup Tank - T-201-4 - 237 Gal C-276	1.00		\$37.58	\$113	\$0 ·	\$4,000	\$0	\$0	\$4,113
PIPE	U.C. per Ea	3	CN-PIPE	112.74	0	2000	0	0	2112.74
Dicarbolide Feed Tank - T-202-1 - 55 Gal. SST	1.00		\$37.58	\$113	\$0	\$2,000	\$0	\$0	\$2,113
PIPE	U.C. per Ea	3	CN-PIPE	112.74	0	2000	0	0	2112.74
PEG 400 Feed Tank - T-202-2 - 55 Gal. SST	1.00		\$37.58	\$113	\$0	\$2,000	\$0	\$0	\$2,113
PIPE	U.C. per Ea	3 6	CN-PIPE	112.74	0	2000	0	0	2112.74
Ph2Bu2CMPO Feed Tank - T-202-3a, b - 55 Gal. SST	2.00		\$37.58	\$225	\$0	\$4,000	\$0	\$0	\$4,225
PIPE	U.C. per Ea	3	CN-PIPE	112.74	0	2000	0	0	2112.74
FS-13 Tank - T-202-4 - 55 Gal. SST	1.00		\$37.58	\$113	\$0	\$2,000	\$0	\$0	\$2,113
PIPE	U.C. per Ea	3	CN-PIPE	112.74	0	2000	0	0	2112.74
Recycle Acid Tank - T-202-7 - 55 Gal. SST	1.00		\$37.58	\$113	\$0	\$2,000	\$0	\$0	\$2,113
PIPE	U.C. per Ea	3	CN-PIPE	112.74	0	2000	o	0	2112.74
Aluminum Nitrate Tank - T-202-8 -55 Gal. SST	1.00	3	\$37.58	\$113	\$0	\$2,000	\$0	\$0	\$2,113
PIPE	U.C. per Ea	10	CN-PIPE	375.8	500	11900	0	0	12775.8
UNEX Scrub Makeup Tank - T-202-9 - 807 Gal. SST	1.00	10	\$37.58	\$376	\$500	\$11,900	\$0	\$0	\$12,776

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor 9111.1.5 EQUIPMENT - STORAGE AREA	QTY	_	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	Matl	<u>s/c</u>	<u>Other</u>	TOTAL
PIPE UNEX Scrub Solution Tank - T-202-10 - 888 Gal. SST	U.C. per Ea	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	500 \$500	12500 \$12,500	0 \$0	0 \$0	13375.8 \$13,376
PIPE UNEX Strip Makeup Tank - T-202-12 - 1132 Gal. SST	U.C. per Ea	1.00	12 12	CN-PIPE \$37.58	450.96 \$451	500 \$500	15000 \$15,000	0 \$0	0 \$0	15950.96 \$15,951
PIPE UNEX Strip Solution Feed Tank - T-202-13 - 1245 Gal. SST	U.C. per Ea	1,00	12 12	CN-PIPE \$37.58	450.96 \$ 451	500 \$500	16000 \$16,000	0 \$0	0 \$0	16950.96 \$16,951
GEN Remote Handling Equipment	U.C. per.Lot	1.00	750 750	CN-SKWK \$34.52	25890 \$25,890	0 \$0	750000 \$750,000	0 \$0	0 \$0	775890 \$775,890
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$30,212 \$0 \$11,265	\$2,500 \$0 \$1,203	\$852,500 \$42,625 \$331,189	\$0 . \$0 \$0	\$0 \$0 \$0	\$885,212 \$42,625 \$343,656
Subtotal Estimate Escalation Contingency			•		\$10,643 \$34,920	\$950 \$3,117	\$314,672 \$1,032,461	\$0 \$0	\$0 \$0	\$1,271,493 \$326,265 \$1,070,498
Total 9111.1.5 EQUIPMENT - STORAGE AREA			865		\$87,040	\$7,770	\$2,573,446	\$0	\$0	\$2,668,256
9111.6 EQUIPMENT - GROUT FACILITY PIPE LAW Evaporator Feed Pump - P-204-175 hp	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 . \$113	. \$0	800 \$800	o \$0	0 \$0	912.74 \$913
PIPE LAW Evaporator Recirc / XFR Pump - P-204-2 (Skid Mounted)	U.C. per Ea	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	0 \$0	7500 \$7,500	0 \$0	0 \$0	7875.8 \$7,876
PIPE LET&D Supply Pump - P-204-325 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	800 \$800	0 \$0	0 \$0	875.16 \$875
PIPE NaOl-I Feed Pump - P-205-1125 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	o \$0	600 \$600	0 \$0	0 \$0	675.16 \$675
PIPE Neutralization Tank Pump - P-205-2a, b, c75 hp	U.C. per Ea	3.00	3 9	CN-PIPE \$37.58	112.74 \$338	0 \$0	800 \$2, 400	0 \$0	0 \$0	912.74 \$2,738
PIPE LAW Evaporator Feed Tank - T-204-1 - 7884 Gal SST	U.C. per Ea	1.00	24 24	CN-PIPE \$37.58	901.92 \$902	1000 \$1,000	45000 \$45,000	0 \$0	0 \$0	46901.92 \$46,902
PIPE LET&D Feed Tank - T-204-3 - 352 Gal SST	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	0 \$0	7500 \$7,500	0 \$0	0 \$0	7650.32 \$7,650
PIPE NaOH Storage Tank - T-205-1 - 400 Gal SST	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	0 \$0	8000 \$8,000	0 \$0	0 \$0	8150.32 \$8 . 150
PIPE Neutralization Tank - T-205-2a, b, c - 1200 Gal SST	U.C. per Ea	3.00	8 24	CN-PIPE \$37.58	300.64 \$902	500 \$1,500	15400 \$46,200	0 \$0	0 \$0	16200.64 \$48,602

UNEX Feasibility Study - Option D - Modified UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option D

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor	QTY		<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
9111.6 EQUIPMENT - GROUT FACILITY B-105 PIPE Slag Storage Bin - T-205-5 - 875 CF	U.C. per EA	1.00	. 80 . 80	CN-PIPE \$37.58	3006.4 \$3,006	1000 \$1,000	55000 \$55,000	0 \$0	0 \$0	59008.4 \$59,006
B-102 PIPE CaO Storage Bin - T-205-6 - 1071 CF	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	1000 \$1,000	45000 \$45,000	0 \$0	0 \$0	48254.8 \$48,255
B-103 PIPE Portland Cement Bin - T-205-7 - 641 CF	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	1000 \$1,000	45000 \$45,000	0 \$0	0 \$0	48254.8 \$48,255
PIPE Slag Day Storage Tank - T-205-6a - 257 CF	U.C. per Ea	1.00	4 4	CN-PIPE \$37.58	150.32 \$150	250 \$250	9600 \$9,600	0 \$0	0 \$0	10000.32 \$10,000
PIPE Portland Cement Day Storage Tank - T-205-6c - 28CF	U.C. per Ea	1.00	3 3	CN-PIPE \$37.58	112.74 \$113	0 \$0	3100 \$3,100	0 \$0	0 \$0	3212.74 \$3,213
PIPE LAW Evaporator - EV-204-1 (8'x10'x8')	U.C. per Ea	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	1000 \$1,000	170000 \$170,000	0 \$0	0 \$0	171751.6 \$171,752
PIPE Vertical Auger - VA-205-1-6 (20"x40"x140")	U.C. per Ea	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	2000 \$2,000	150000 \$150,000	0 \$0	0 \$0	153503.2 \$153,503
PIPE Vertical Mixer - VM-205-1-6 (30"x60"x140")	U.C. per Ea	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	2000 \$2,000	150000 \$150,000	0 \$0	0 \$0	154254.8 \$154,255
B-104 PIPE FLYASH BIN - 34 M3	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	0 \$0	45000 \$45,000	0 \$0	0 \$0	47254.8 \$47,255
ED-101,2,3,4 PIPE AIR EDUCTOR - 9 Kg-S/hr	U.C. per EA	4.00	10 40	CN-PIPE \$37.58	375.8 \$1,503	0 \$0	3500 \$14,000	0 \$0	0 \$0	3875.8 \$15,503
B-107 PIPE CaO WEIGHT BIN4 M3	U.C. per EA	1.00	30 30	CN-PIPE \$37.58	1127.4 \$1,127	0 \$0	4000 \$4,000	0 \$0	0 \$0	5127.4 \$5,127
T-104A&B PIPE GROUT FEED TANK - 7 M3	U.C. per EA	2.00	80 160	CN-PIPE \$37.58	3006.4 \$6,013	0 \$0	35000 \$70,000	0 \$0	0 \$0	38006.4 \$76,013
N-101A&B PIPE pH SAMPLER/NEUTRALIZER	U.C. per EA	2.00	10 20	CN-PIPE \$37.58	375.8 \$752	0 \$0	6000 \$12,000	0 \$0	0 \$0	6375.8 \$12,752
P-105A&B PIPE GROUT MIXER FEED PUMP - 2-16 L/MIN	U.C. per EA	2.00	15 30	CN-PIPE \$37.58	563.7 \$1,127	0 \$0	6000 \$12,000	0 \$0	0 \$0	6563.7 \$13,127
B-108A,B&C PIPE DRY INGREDIENT WEIGH BIN2 M3	U.C. per EA	3.00	15 45	CN-PIPE \$37.58	563.7 \$1,691	0 \$0	2000 \$6,000	0 \$0	0 \$0	2563.7 \$7,691
C-101A,B&C PIPE SOLIDS FEED CONVEYOR - 8 Kg/MIN	U.C. per EA	3.00	10 30	CN-PIPE \$37.58	375.8 \$1,127	0 \$0	2500 \$7,500	0 \$0	0 \$0	2875.8 \$8,627
M-101A,B&C PIPE GROUT MIXER3 M3	U.C. per EA	3.00	60 180	CN-PIPE \$37.58	2254.8 \$6,764	0 \$0	20000 \$60,000	0 \$0	0 \$0	22254.8 \$66,764

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

UNEX Feasibility Study - Option D - Modified UNEX In NI	NCF
Project Location: INTEC	•
Faller At At and a second Country D	

Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor 9111,6 EQUIPMENT - GROUT FACILITY	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	_S/C_	Other	TOTAL
B-106A PIPE DRY GROUT ADMIXTURES BIN4 M3	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	2500 \$2,500	0 \$0	0 \$0	3251.6 \$3,252
B-106B&C PIPE LIQUID GROUT ADMIXTURES TANK	U.C. per EA	2.00	15 30	CN-PIPE \$37.58	563.7 \$1,127	0 \$0	500 \$1,000	0 \$0	0 \$0	1063.7 \$2,127
P-106 PIPE DECON AGENT PUMP - 76 L/MIN	U.C. per EA	1.00	30 30	CN-PIPE \$37.58	1127.4 \$1,127	0 \$0	8000 \$8,000	0 \$0	0 \$0	9127.4 \$9,127
P-115 PIPE METERING PUMP/ADMIXTURES - 1 L/MIN	U.C. per EA	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	.0 \$0	5000 \$5,000	0 \$0	0 \$0	5375.8 \$5,376
T-106 PIPE MIXER WASH TANK - 1 M3	U.C. per EA	1.00	50 50	CN-PIPE \$37.58	1879 \$1,879	0 \$0	10000 \$10,000	o \$0	0 \$0	11879 \$11,879
P-116 PIPE DECON RETURN PUMP - 76 L/MIN	U.C. per EA	1.00	30 30	CN-PIPE \$37.58	1127.4 \$1,127	0 \$0	8000 \$8,000	0 \$0	0 \$0	9127.4 \$9,127
F-105 PIPE SPENT DECON SOLUTION FILTER -	U.C. per EA	1.00	10 10	CN-PIPE \$37.68	375.8 \$376	o \$0	5000 \$5,000	o \$0	0 \$0	5375.8 \$5,376
PIPE STORAGE AREA CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1, 503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE AIRLOCK	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	80000 \$80,000	0 \$0	0 \$0	87516 \$87,516
PIPE AIRLOCK CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE MAIN INLET CONVEYOR	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	35000 \$35,000	0 \$0	0 \$0	38758 \$38,758
PIPE TRANSVERSE SECTION LIFT	U.C. per EA	2.00	30 60	CN-PIPE \$37.58	1127.4 \$2,255	0 \$0	10000 \$20,000	0 \$0	0 \$0	11127.4 \$22,255
PIPE MIXER BOOTH INLET CONVEYOR ·	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE MIXER BOOTH	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758
PIPE MIXER BOOTH CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE FILL ASSEMBLY	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	50000 \$50,000	0 \$0	• 0 \$0	57516 \$57,516
PIPE LID PLACEMENT BOOTH	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option D

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	Other	TOTAL
9111.6 EQUIPMENT - GROUT FACILITY PIPE LID PLACEMENT INLET CONVEYOR	U.C. per EA	20	CN-PIPE	751.6	0	5000	0	0	5751.6
	1.00	20	\$37.58	\$752	\$0	\$5,000	\$0	\$0	\$5,752
PIPE	U.C. per EA	20	CN-PIPE	751.6	0	5000	0	0	5751.6
LID PLACEMENT OUTLET CONVEYOR	1.00	20	\$37.58	\$752	\$0	\$5,000	\$0	\$0	\$5,752
PIPE	U.Ć. per EA	40	CN-PIPE	1503.2	0	15000	0	0	16503.2
LID PLACEMENT CONVEYOR	1.00	40	\$37.58	\$1,503	\$0	\$15,000	\$0	\$0	\$16,503
PIPE . ROTATING TABLE	U.C. per EA	100	CN-PIPE	3758	0	20000	0	0	23758
	1.00	100	\$37.58	\$3,758	\$0	\$20,000	\$0	\$0	\$23,758
PIPE	U.C. per EA	100	CN-PIPE	3758	0	20000	0	0	23758
DRUM RIM CLEANING MECHANISM	1.00	100	\$37.58	\$3,768	\$0	\$20,000	\$0	\$0	\$23,758
PIPE	U.C. per EA	100	CN-PIPE	3758	0	30000	0	0	33758
LID PLACEMENT ASSEMBLY	1.00	100	\$37.58	\$3,758	\$0	\$30,000	\$0	\$0	\$33,758
PIPE	U.C. per EA	200	CN-PIPE	7516	0	70000	0	0	77516
TRANSFER SECTION TUNNEL	1.00	200	\$37.58	\$7,516	\$0	\$70,000	\$0	\$0	\$77,516
PIPE TRANSFER SECTION INLET CONVEYOR	U.C. per EA	40	CN-PIPE	1503.2	0	10000	0	0	11503.2
	3.00	120	\$37.58	\$4,510	\$0	\$30,000	\$0	\$0	\$34,510
PIPE	U.C. per EA	40	CN-PIPE	1503.2	0	10000	0	0	11503.2
TRANSFER SECTION EXIT CONVEYOR	3.00	120	\$37.58	\$4,510	\$0	\$30,000	\$0	\$0	\$34,510
PIPE	U.C. per EA	30	CN-PIPE	1127.4	0	10000	0	0	11127.4
TRANSFER TABLE	3.00	90	\$37.58	\$3,382	\$0	\$30,000	\$0	\$0	\$33,382
PIPE	U.C. per EA	40	CN-PIPE	1503.2	0	10000	0	0	11503.2
TRANSVERSE CONVEYOR	2.00	80	\$37.58	\$3,006	\$0	\$20,000	\$0	\$0	\$23,008
PIPE INSPECTION BOOTH	U.C. per EA	100	CN-PIPE	3758	0	80000	0	0	83758
	1.00	100	\$37.58	\$3,758	\$0	\$80,000	\$0	\$0	\$83,758
PIPE INSPECT/DECON INLET CONVEYOR	U.C. per EA 1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE INSPECT/DECON EXIT CONVEYOR	U.C. per EA 1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752
PIPE INSPECT/DECON CONVEYOR	U.C. per EA 1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	\$0 \$0	0 \$0	11503.2 \$11,503
PIPE ROTATING TABLE	U.C. per EA	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE	U.C. per LOT	100	CN-PIPE	3758	0	30000	0	0	33758
DECON EQUIPMENT	1.00	100	\$37.58	\$3,758	\$0	\$30,000	\$0	\$0	\$33,758

32

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option D - Modified UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor 9111.6 EQUIPMENT - GROUT FACILITY	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	SIC	Other	TOTAL
INSPECTION EQUIPMENT	U.C. per LOT	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	50000 \$50,000	0 \$0	0 \$0	53758 \$53,758
PIPE DISCHARGE SECTION TUNNEL	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	70000 \$70,000	0 \$0	0 \$0	77516 \$77,516
PIPE DISCHARGE SECTION INLET CONVEYOR	U.C. per EA	3.00	40 120	CN-PIPE \$37.58	1503.2 \$4,510	0 \$0	10000 \$30,000	0 \$0	0 \$0	11503.2 \$34,510
PIPE MAIN DISCHARGE CONVEYOR .	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	35000 \$35,000	0 \$0	0 \$0	38758 \$38,758
PIPE TRANSFER SECTION LIFT	U.C. per EA	3.00	30 90	CN-PIPE \$37.58	1127.4 \$3,382	0 \$0	10000 \$30,000	0 . \$0	0 \$0	11127.4 \$33,382
PIPE AIRLOCK	U.C. per EA	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	80000 \$80,000	0 \$0	0 \$0	87516 \$87,516
PIPE AIRLOCK CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE TILT & PAN CAMERA	U.C. per EA	14.00	10 140	CN-PIPE \$37.58	375.8 \$5,261	0 \$0	2000 \$28,000	0 \$0	0 \$0	2375.8 \$33,261
PIPE CAMERA CONTROL STATION	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	15000 \$15,000	0 \$0	0 \$0	16503.2 \$16,503
PIPE INLET STAGING, DRUM LIFT, CURE LINE & DRUM LIFT ENCLOSURE	U.C. per LOT	1.00	500 500	CN-PIPE \$37.58	18790 \$18,790	0 \$0	250000 \$250,000	· 0 \$0	0 \$0	268790 \$268,790
PIPE INLET STAGING CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE DRUM LIFT	U.C. per EA	2.00	30 60	CN-PIPE \$37.58	1127.4 \$2,255	. 0 \$0	10000 \$20,000	0 \$0	0 \$0	11127.4 \$22,255
PIPE DRUM LIFT CONVEYOR	U.C. per EA	2.00	40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	10000 \$20,000	0 \$0	0 \$0	11503.2 \$23,006
PIPE CURE LINE CONVEYOR	U.C. per EA	2.00	40 80	CN-PIPE \$37.58	1503.2 \$3,006	0 \$0	10000 \$20,000	0 \$0	0 \$0 ·	11503.2 \$23,006
PIPE 180 DEGREE CONVEYOR	U.C. per EA	8.00	60 480	CN-PIPE \$37.58	2254.8 \$18,038	0 \$0	20000 \$160,000	0 \$0	0 \$0	22254.8 \$178,038
PIPE CURE LINE CONVEYOR 13'	U.C. per EA	8.00	60 480	CN-PIPE \$37.58	2254.8 \$18,038	0 \$0	20000 \$160,000	0 \$0	0 \$0	22254.8 \$178,038
PIPE STAGING CONVEYOR	U.C. per EA	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	5000 \$5,000	0 \$0	0 \$0	5751.6 \$5,752

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option D

Client

V. J. Balls

LEVEL Org/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C_	Other	TOTAL
9111.6 EQUIPMENT - GROUT FACILITY PIPE DRUM ELEVATOR & ENCLOSURE	U.C. per EA	1.00	400 400	CN-PIPE \$37.58	15032 \$15,032	0 \$0	200000 \$200,000	0 \$0	0 \$0	215032 \$215,032
PIPE INLET INDEXING LIFT CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	. 0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE INDEXING LIFT TABLE	U.C. per EA	1.00	30 30	CN-PIPE \$37.58	1127.4 \$1,127	0 \$0	10000 \$10,000	0 \$0	0 \$0	11127.4 \$11,127
PIPE INDEXING ARM	U.C. per EA	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	0 \$0	20000 \$20,000	0 \$0	0 \$0	23758 \$23,758
PIPE DEWATERING STATION 30' CONVEYOR	U.C. per EA	1.00	70 70	CN-PIPE \$37.58	2630.6 \$2,631	0 \$0	40000 \$40,000	0 \$0	0 \$0	42630.6 \$42,631
PIPE 90 DEG TRANSFER & LIFT	U.C. per EA	2.00	20 40	CN-PIPE \$37.58	751.6 \$1,503	0 \$0	5000 \$10,000	0 \$0	0 \$0	5751.6 \$11,503
PIPE DEWATERING STATION CONVEYOR	U.C. per EA	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	10000 \$10,000	0 \$0	0 \$0	11503.2 \$11,503
PIPE AIR HEATERS	U.C. per EA	9.00	10 90	CN-PIPE \$37.58	375.8 \$3,382	0 \$0	2000 \$18,000	0 \$0	0 \$0	2375.8 \$21,382
PIPE DEWATERING STATION LINE LIFT	U.C. per EA	9.00	30 270	CN-PIPE \$37.58	1127.4 \$10,147	0 \$0	10000 \$90,000	0 \$0	0 \$0	11127.4 \$100,147
PIPE DRUM OFF LOAD CONVEYOR	U.C. per EA	1.00	60 60	CN-PIPE \$37.58	2254.8 \$2,255	0 \$0	20000 \$20,000	0 \$0	0 \$0	22254.8 \$22 , 255
PIPE HYDRAULIC DRUM LIFT	U.C. per EA	1,00	50 50	CN-PIPE \$37.58	1879 \$1,879	0 \$0	20000 \$20,000	0 \$0	0 \$0	21879 \$21,879
E-104 PIPE VAPOR CONDENSER - 2 Kg/hr	U.C. per EA	1.00	. 60 . 60	CN-PIPE \$37.58	2254.8 \$2,255	, 0 \$0	50000 \$50,000	0 \$0	0 \$0	52254.8 \$52,255
P-118 PIPE CONDENSATE PUMP - 4 L/MIN	U.C. per EA	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	0 \$0	6000 \$6,000	0 \$0	0 \$0	6375.8 \$6,376
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$282,000 \$0 \$135,653	\$10,750 \$0 \$5,171	\$3,263,500 \$163,175 \$1,648,368	\$0 \$0 \$0	\$0 \$0 \$0	\$3,556,250 \$163,175 \$1,789,192
Subtotal Estimate Escalation Contingency					\$107,170 \$351,632	\$4,085 \$13,404	\$1,302,256 \$4,272,790	\$0 \$0	\$0 \$0	\$5,508,618 \$1,413,511 \$4,637,826
Total 9111.6 EQUIPMENT - GROUT FACILITY			7,504		\$876,456	\$33,411	\$10,650,089	\$0	\$0	\$11,559,955

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	<u>Other</u>	TOTAL
— 9111.2 EQUIPMENT - THIN FILM DRYER FACILITY PIPE Thin Film Dryer -TFD203-1 (12'x12'x25')	U.C. per Ea	1.00	100 100	CN-PIPE \$37.58	3758 \$3,758	3000 \$3,000	1000000 \$1, 000,000	0 \$0	0 \$0	1006758 \$1,006,758
PIPE TFD Feed Pump - P-203-225 hp	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	500 \$500	0 \$0	0 \$0	575.16 \$575
PIPE Strip Cystallizer Condensate Pump - P-203-1 - Skid Mounted	U.C. per Ea	1.00	10 10	CN-PIPE \$37.58	375.8 \$376	0 \$0	7500 \$7,500	0 \$0	, 0 \$0	7875.8 `\$7,876
PIPE TFD Vacuum Pump - VP-203-1	U.C. per Ea	1.00	6 6	CN-PIPE \$37.58	225.48 \$225	0 \$0	10000 \$10, 000	0 \$0	0 \$0	10225.48 \$10,225
PIPE Chrystallizer Condensate Tank - T-203-1 - 10 Gal - SST	U.C. per Ea	1.00	2 2	CN-PIPE \$37.58	75.16 \$75	0 \$0	1500 \$1,500	· 0 \$0	0 \$0	1575.16 \$1,575
PIPE Strip Feed Tank - T-203-2 - 1124 Gal SST (NWCF Only)	U.C. per Ea	1.00	8 8	CN-PIPE \$37.58	300.64 \$301	500 \$500	15000 \$15,000	o \$0	0 \$0	15800,64 \$15,801
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	· · · · · · · · · · · · · · · · · · ·				\$4,810 \$0 \$2,314	\$3,500 \$0 \$1,684	\$1,034,500 \$51,725 \$522,518	\$0 \$0 \$0	\$0 \$0 \$0	\$1,042,810 \$51,725 \$526,515
Subtotal Estimate Escalation Contingency					\$1,828 \$5,998	\$1,330 \$4,364	\$412,803 \$1,354,436	\$0 \$0	\$0 \$0	\$1,621,050 \$415,962 \$1,364,798
Total 9111.2 EQUIPMENT - THIN FILM DRYER FACILITY			128		\$14,950	\$10,878	\$3,375,982	\$0	\$0	\$3,401,810
9111.3 EQUIPMENT - BOILER HOUSE GEN BOILERS	U.C. per EA	2.00	60 120	CN-BOILMK \$23.08	1384.8 . \$2,77 0	0 \$0	200000 \$400,000	0 \$0	0 \$0	201384.8 \$402,770
GEN . FEED WATER HEATER	U.C. per EA	2.00	40 80	CN-BOILMK \$23.08	923.2 \$1,846	0 \$0	20000 \$40 , 000	0 \$0	0 \$0	20923.2 \$41,846
PIPE CHEMICAL FEED SYSTEM	U.C. per LOT	1.00	500 500	CN-PIPE \$37.58	18790 \$18,790	0 \$0	100000 \$100,000	0 \$0	0 \$0	118790 \$118,790
PIPE . WATER TREATMENT SYSTEM	U.C. per LOT	1.00	1800 1,800	CN-PIPE \$37.58	67644 \$67,644	0 \$0	250000 \$250,000	0 \$0	. 0 \$0	317644 \$317,644

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option D

V. J. Balls Cllent:

LEVEL Org/Subcontractor	QTY		<u>Hrs</u>	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
9111.3 EQUIPMENT - BOILER HOUSE TANK OIL STORAGE TANK, ~750 BBL	U.C. per BBL	750.00	0		0 \$0	0 \$0	0 \$0	65 \$48,750	0 \$0	65 \$48,750
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		•			\$91,050 \$0 \$43,216	\$0 \$0 \$0	\$790,000 \$39,500 \$340,707	\$48,750 \$0 \$20,442	\$0 \$0 \$0	\$929,800 \$39,500 \$404,365
Subtotal Estimate Escalation Contingency					\$34,453 \$113,042	\$0 \$0	\$300,275 \$985,223	\$17,755 \$58,255	\$0 \$0	\$1,373,665 \$352,482 \$1,156,519
Total 9111.3 EQUIPMENT - BOILER HOUSE			2,500		\$281,760	\$0	\$2,455,705	\$145,202	\$0	\$2,882,666
9111.6 EQUIPMENT - STORAGE FACILITY GEN Remote Handling Equipment	U.C. per Lot	1.00	750 750	CN-SKWK \$34.52	25890 \$25,890	0 \$0	750000 \$750,000	0 \$0	0 \$0	775890 \$775,890
GEN Smeared Canister Loadout Crane	U.C. per Ea	1.00	400 400	CN-SKWK \$34.52	13808 \$13,808	0 \$0	2500000 \$2,500,000	0 \$0	0 \$0	2513808 \$2,513,808
GEN Canister Storage Crane - Clean Environment	U.C. per Ea	1.00	400 400	CN-SKWK \$34.52	13808 \$13,808	o \$0	250000 \$250,000	0 \$0	0 \$0	263808 \$263,808
GEN Canister Heater	U.C. per Ea	2.00	200 400	CN-SKWK \$34.52	6904 \$13,808	0 \$0	103000 \$206,000	0 \$0	0 \$0	109904, \$219,808
GEN CO2 System	U.C. per Ea	1.00	100 100	CN-SKWK \$34.52	3452 \$3,452	0 \$0	175000 \$175,000	0 \$0	0 \$0	178452 \$178,452
GEN Canister Transportation Cart	U.C. per Ea	1.00	100 100	CN-SKWK \$34.52	3452 \$3,452	0 \$0	25000 \$25,000	0 \$0	0 \$0	28452 \$28,452
GEN Canister Lifting Mechanism	U.C. per Ea	2.00	120 240	CN-SKWK \$34.52	4142.4 \$8,285	0 \$0	257500 \$515,000	o . \$0	0 \$0	261642.4 \$523,285
GEN Canister Sealing Manipulator	U.C. per Ea	1.00	80 80	CN-SKWK \$34.52	2761.6 \$2,762	0 \$0	120000 \$120,000	0 \$0	0 \$0	122761.6 \$122,762
GEN Decon Solution Pumping Station	U.C. per Ea	1.00	120 120	CN-SKWK \$34.52	4142.4 \$4,142	0 \$0	50000 \$50,000	0 \$0	0 \$0	54142.4 \$54,142
GEN Decon Cell Equipment	U.C. per Lot	1.00	240 240	CN-SKWK \$34.52	8284.8 \$8,285	0 \$0	515000 \$515,000	0 \$0	0 \$0	523284.8 \$523,285
GEN Decon / Disassembly Equipment - Turntable, Manipulator Tools, W/ Rack & Etc.	U.C. per Lot	1.00	240 240	CN-SKWK \$34.52	8284.8 \$8,285	0 \$0	500000 \$500,000	. 0	0 \$0	508284.8 \$508,285
GEN Smear Monitor	U.C. per Ea	1.00	100 100	CN-SKWK \$34.52	3452 \$3,452	0 \$0	515000 \$515,000	0 \$0	0 \$0	518452 \$518,452

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
9111.6 EQUIPMENT - STORAGE FACILITY GEN Smear Station Module	U.C. per Ea	1.00		CN-SKWK	0 \$0	0 \$0	0 \$0	42000 \$42,000	 0 \$0	42000 \$42,000
GEN Shuttle Cart	U.C. per Ea	1.00	80 80	CN-SKWK \$34.52	2761.6 \$2,762	0 \$0	150000 \$150,000	0 \$0	. \$0	152761.6 \$152,762
GEN Glove Box	U.C. per Ea	1.00	40 40	CN-SKWK \$34.52	1380,8 \$1,381	0 \$0	41200 \$41,200	0 \$0	0 \$0	42580.8 \$42,581
GEN Cameras	U.C. per Ea	30.00	24 720	CN-SKWK \$34.52	828.48 \$24, 854	0 \$0	3000 \$90 , 000	0 \$0	0 \$0	3828.48 \$114,854
GEN Weld Station Module	U.C. per Ea	1.00	200 200	CN-SKWK \$34.52	6904 \$6,904	0 \$0	103000 \$103,000	0 \$0	0 \$0	109904 \$109,904
GEN HLW Canister Transfer Cart	U.C. per Ea	1.00	400 400	CN-SKWK \$34.52	13808 \$13,808	0 \$0	2575000 \$2,575,000	0 \$0	0 \$0	2588808 \$2, 588,808
GEN Empty Canister Receiving Crane	U.C. per Ea	2.00	200 400	CN-SKWK \$34.52	6904 \$13,808	0 \$0	7000 \$14,000	, \$0	0 \$0	13904 \$27,808
GEN PaR Manipulator	U.C. per Ea	1.00	200 200	CN-SKWK \$34.52	6904 \$6,904	0 \$0	250000 \$250,000	0 \$0	0 \$0	256904 \$256,904
GEN Canister Fill Monitoring Instruments	U.C. per Ea	2.00	0	CN-SKWK	0 \$0	· 0 \$0	0 \$0	2060000 \$4,120,000	0 ,	2060000 \$4,120,000
GEN Canister Welder Leak Check Module	U.C. per Ea	1.00	100 100	CN-SKWK \$34.52	3452 \$3,452	0 \$0	1030000 \$1,030,000	0 \$0	0 \$0	1033452 \$1,033,452
GEN Misc. Equipment	U.C. per Lot	1.00	300 300	CN-SKWK \$34.52	10356 \$10,356	0 \$0	1000000 \$1,000,000	0 \$0	0 \$0	1010356 \$1,010,356
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$193,657 \$0 \$68,712	\$0 \$0 . \$0	\$11,374,200 \$568,710 \$4,237,524	\$4,162,000 \$0 \$1,478,740	\$0 \$0 \$0	\$15,729,857 \$568,710 \$5,782,976
Subtotal Estimate Escalation Contingency					- \$67,324 \$220,895	\$0 \$0	\$4,151,899 \$13,622,663	\$1,446,901 \$4,747,379	\$0 \$0	\$22,081,543 \$5,666,124 \$18,590,937
Total 9111.6 EQUIPMENT - STORAGE FACILITY			5,610		\$550,589	\$0	\$33,954,996	\$11,833,020	\$0	\$46,338,604
9111.7.1 EQUIPMENT DEMOLITION - CALCINER CELL PIPE Mock-Up Facility	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	o \$0	0 \$0	250000 \$250,000	0 \$0	250000 \$250,000
PIPE Lift & Bag Hatch Covers	U.C. per Lot	1.00	50 50	CN-PIPE \$37.58	1879 \$1,879	0 \$0	2000 \$2,000	0 \$0	0 \$0	3879 \$3,879

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option D

Client:

V. J. Balls

LEVEL Org/Subcontractor 9111.7.1 EQUIPMENT DEMOLITION - CALCINER CELL	QTY		<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
PIPE Portable Crane	U.C. per Lot	1.00	o	CN-PIPE	0 \$0	0 \$0	5000 \$5,000	0 \$0	0 \$0	5000 \$5,000
PIPE Hydraulic Shears Modified For Remote Operation	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	20000 \$20,000	0 \$0	0 \$0	20000 \$20,000
PIPE Large Plasma Arc Modified For Remote Operation	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	50000 \$50,000	0 \$0	0 \$0	50000 \$50,000
PIPE Misc. Remote Adaptations	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	20000 \$20,000	0 \$0	0 \$0	20000 \$20,000
PIPE Cut Cyclone Bracket Supports	U.C. per Lot	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	0 \$0	0 \$0	0 \$0	7516 \$7,516
PIPE Temporary Support of Calciner	U.C. per Lot	1.00	300 300	CN-PIPE \$37.58	11274 \$11,274	0 \$0	0 \$0	0 \$0	0 \$0	11274 \$11,274
PIPE Demo Tent	U.C. per Lot	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	o \$0	10000 \$10,000	0 \$0	0 \$0	17516 \$17,516
PIPE Cut Up And Hot-Box Calciner	U.C. per Lot	1.00	2000 2,000	CN-PIPE \$37.58	75160 \$75,160	. \$0 . \$0	0 \$0	0 \$0	0 \$0	75160 \$75,160
PIPE "Hot Box" Materials	U.C. per Box	10.00	20 200	CN-PIPE \$37.58	751.6 \$7,516	0 \$0	0 \$0	0 \$0	0 \$0	751.6 \$7,516
PIPE Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	5000 5,000	CN-PIPE \$37,58	187900 \$187,900	0 \$0	0 \$0	0 \$0	0 \$0	187900 \$187,900
PIPE Burn-Out Allowance - 25% Of Hot Work	U.C. per Ļot	1.00	1875 1,875	CN-PIPE \$37.58	70462.5 \$70,463	0 \$0	0 \$0	0 \$0	0 \$0	70462.5 \$70,463
PIPE Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	2500 2,500	CN-PIPE \$37.58	93950 \$93,950	0 \$0	0 \$0	0 \$0	0 \$0	93950 \$93,950
PIPE Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0		0 \$0	0 \$0	37000 \$37,000	0 \$0	0 \$0	37000 \$37,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$463,174 \$0 \$222,805	\$0 \$0 • \$0	\$144,000 \$7,200 \$72,733	\$250,000 \$0 \$120,260	\$0 \$0 \$0	\$857,174 \$7,200 \$415,798
Subtotal Estimate Escalation Contingency					\$176,022 \$577,540	\$0 \$0	\$57,461 \$188,534	\$95,009 \$311,730	\$0 \$0	\$1,280,172 \$328,492 \$1,077,805
Total 9111.7.1 EQUIPMENT DEMOLITION - CALCINER CEL	L		12,325		\$1,439,541	\$0	\$469,929	\$776,999	\$0	\$2,686,469

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option D - Modified UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor	QTY		<u>Hrs</u>	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Mati</u>	S/C	<u>Other</u>	TOTAL
B111.7.2 EQUIPMENT DEMOLITION - OFF GAS CELL PIPE Lift & Bag Hatch Covers	U.C. per Lot	1.00	50 50	CN-PIPE \$37.58	1879 \$1,879	0 \$0	2000 \$2,000	0 \$0	0 \$0	3879 \$3,879
PIPE Portable Crane	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	` o \$0	5000 \$5,000	0 \$0	0 \$0	5000 \$5,000
PIPE Hydraulic Shears Modified For Remote Operation	U.C. per Lot	1,00	0	CN-PIPE	0 \$0	0 \$0	20000 \$20,000	0 \$0	0 \$0	20000 \$20,000
PIPE Large Plasma Arc Modified For Remote Operation	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	50000 \$50,000	0 \$0	0 \$0	50000 \$50,000
PIPE Misc. Remote Adaptations	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	20000 \$20,000	0 \$0	0 \$0	20000 \$20,000
PIPE Cut Tank Bracket Supports	U.C. per Ea	3.00	200 600	CN-PIPE \$37.58	7516 \$22,548	0 \$0	0 \$0	0 \$0	0 \$0	7516 \$22,548
PIPE Temporary Support of Tanks	U.C. per Ea	3.00	300 900	CN-PIPE \$37.58	11274 \$33,822	0 \$0	0 \$0	0 \$0	0 \$0	11274 \$33,822
PIPE Demo Tent	U.C. per Lot	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	10000 \$10,000	0 \$0	0 \$0	17516 \$17,516
PIPE Cut Up And Hot-Box Tanks - 3 Ea.	U.C. per Lot	1.00	2000 2,000	CN-PIPE \$37.58	75160 \$75,160	0 \$0	0 \$0	0 \$0	0 \$0	75160 \$75,160
PIPE "Hot Box" Other Materials .	U.C. per Box	10.00	20 200	CN-PIPE \$37.58	751.6 \$7,516	0 \$0	0 \$0	0 \$0	0 \$0	751.6 \$7,516
PIPE Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1,00	7900 7,900	CN-PIPE \$37.58	296882 \$296,882	0 \$0	0 \$0	0 \$0	0 \$0	296882 \$296,882
PIPE Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	2960 2,960	CN-PIPE \$37.58	111236,8 \$111,237	0 \$0	0 \$0	0 \$0	0 \$0	111236.8 \$111,237
PIPE Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lat	1.00	3950 3,950	CN-PIPE \$37.58	148441 \$148,441	0 \$0	0 \$0	0 \$0	0 \$0	148441 \$148,441

08/30/2000

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

V. J. Balls Client:

LEVEL Org/Subcontractor 9111.7.2 EQUIPMENT DEMOLITION - OFF GAS CELL	QTY		Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	_S/C_	Other	TOTAL
Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0		0 \$0	0 \$0	56400 \$56,400	0 \$0	0 \$0	56400 \$56,400
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$705,001 \$0 \$339,134	\$0 \$0 \$0	\$163,400 \$8,170 \$82,532	\$0 \$0 \$0	\$0 \$0 \$0	\$868,401 \$8,170 \$421,666
Subtotal Estimate Escalation Contingency					\$267,925 \$879,080	\$0 \$0	\$65,203 \$213,934	\$0 \$0	\$0 \$0	\$1,298,236 \$333,127 \$1,093,014
Total 9111.7.2 EQUIPMENT DEMOLITION - OFF GAS CEL	L		18,760		\$2,191,139	\$0	\$533,239	\$0	\$0	\$2,724,378
9111.7.3 EQUIPMENT DEMOLITION - BLEND & HOLD C	ELL U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	0 \$0	250000 \$250,000	0 \$0	250000 \$250,000
PIPE Lift & Bag Hatch Covers	U.C. per Lot	1.00	50 50	CN-PIPE \$37,58	1879 \$1,879	0 \$0	. 2000 \$2,000	0 \$0	0 \$0	3879 \$3,879
PIPE Portable Crane	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	5000 \$5,000	0 \$0	0 \$0	5000 \$5,000
PIPE Hydraulic Shears Modified For Remote Operation	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	20000 \$20,000	0 \$0	0 \$0	20000 \$20,000
PIPE Large Plasma Arc Modified For Remote Operation	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	50000 \$50,000	0 \$0	0 \$0	50000 \$50,000
PIPE Misc. Remote Adaptations	U.C. per Lot	1.00	0	CN-PIPE	\$0	0 \$0	20000 \$20,000	0 \$0	0 \$0	20000 \$20,000
PIPE Cut Tank Bracket Supports	U.C. per Lot	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	0 \$0	0 \$0	0 \$0	7516 \$7,516
PIPE Temporary Support of Tanks	U.C. per Ea	3.00	300 900	CN-PIPE \$37.58	11274 \$33,822	0 \$0	0 \$0	0 \$0	0 \$0	11274 \$33,822
PIPE Demo Tent	U.C. per Lot	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	10000 \$10,000	0 \$0	0 \$0	17516 \$17,516
PIPE Cut Up And Hot-Box Tanks - 3 Ea.	U.C. per Lot	1.00	2000 2,000	CN-PIPE \$37.58	75160 \$75,160	0 \$0	o \$0	0 \$0	0 \$0	75160 \$75,160
PIPE "Hot Box" Other Materials	U.C. per Box	10.00	20 200	CN-PIPE \$37.58	751.6 \$7,516	0 \$0	0 \$0	0 \$0	0 \$0	751.6 \$7,516
PIPE Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	7100 7,100	CN-PIPE \$37.58	266818 \$266,818	0 \$0	0 \$0	· 0 \$0	0 \$0	266818 \$266,818

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate	Number: 2570 -	Option	ı D
Louinate	I TOTTIDOTATOR OF	Opuoi	,

LEVEL Org/Subcontractor	QTY	_	<u>Hrs</u>	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	<u>s/c</u>	<u>Other</u>	<u>TOTAL</u>
— 9111.7.3 EQUIPMENT DEMOLITION - BLEND & HOLD PIPE Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	3550 3,550	CN-PIPE \$37.58	133409 • \$133,409	0 \$0	0 \$0	0 \$0	0 \$0	133409 \$133,409
PIPE Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	2660 2,660	CN-PIPE \$37,58	99962.8 \$99,963	0 \$0	0 \$0	0 \$0	0 \$0	99962.8 \$99,963
PIPE Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0		0 \$0	0 \$0	50700 \$50,700	0 \$0	0 \$0	50700 \$50,700
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$633,599 \$0 \$304,786	\$0 \$0 \$0	\$157,700 \$7,885 \$79,653	\$250,000 \$0 \$120,260	\$0 \$0 \$0	\$1,041,299 \$7,885 \$504,699
Subtotal Estimate Escalation Contingency					\$240,790 \$790,047	· \$0 \$0	\$62,928 \$206,471	\$95,009 \$311,730	\$0 \$0	\$1,553,883 \$398,726 \$1,308,248
Total 9111.7.3 EQUIPMENT DEMOLITION - BLEND & I	HOLD CELL		16,860		\$1,969,222	\$0	\$514,637	\$776,999	\$0	\$3,260,858
9111.7.4 EQUIPMENT DEMOLITION - VALVE CUBICI PIPE Mock-Up Facility	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	0 \$0	250000 \$250,000	0 \$0	250000 \$250,000
PIPE Lift & Bag Hatch Covers	U.C. per Lot	1.00	50 50	CN-PIPE \$37.58	1879 \$1,879	0 \$0	2000 \$2,000	0 \$0	0 \$0	3879 \$3,879
PIPE Portable Crane	U.C. per Lột	1.00	0	CN-PIPE	0 \$0	0 \$0	5000 \$5,000	0 \$0	0 \$0	5000 \$5,000
PIPE Hydraulic Shears Modified For Remote Operation	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	20000 \$20,000	0 \$0	0 \$0	20000 \$20,000
PIPE Large Plasma Arc Modified For Remote Operation	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	50000 \$50,000	· 0 \$0	0 \$0	50000 \$50,000
PIPE Misc. Remote Adaptations	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	20000 \$20,000	0 \$0	0 \$0	20000 \$20,000
PIPE Cut Up & "Hot Box" Materials	U.C. per Box	10.00	20 200	CN-PIPE \$37.58	751.6 \$7,516	0 \$0	0 \$0	0 \$0	0 \$0	751.6 \$7,516
PIPE Demo Materials	U.C. per Lot	1.00	750 750	CN-PIPE \$37.58	28185 \$28,185	0 \$0	0 \$0	0 \$0	o [*] \$0	28185 \$28,185
PIPE Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	2000 2,000	CN-PIPE \$37.58	75160 \$75,160	0 \$0	0 \$0	0 \$0	0 \$0	75160 \$75,160
PIPE Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	750 750	CN-PIPE \$37.58	28185 \$28,185	0 \$0	0 \$0	0 \$0	0 \$0	28185 \$28,185

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option D - Modified UNEX In NWCF
Project Location: INTEC

Estimate Number: 257() - Option D

Client:

V. J. Balls

LEVEL Org/Subcontractor 9111.7.4 EQUIPMENT DEMOLITION - VALVE CUBICLE	QTY	·	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
PIPE Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	1000 1,000	CN-PIPE \$37.58	37580 \$37,580	0 \$0	0 \$0	0 \$0	0 \$0	37580 \$37,580
PIPE Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0		0 \$0	0 \$0	14250 \$14,250	0 \$0	0 \$0	14250 \$14,250
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$178,505 \$0 \$85,868	\$0 \$0 \$0	\$111,250 \$5,563 \$56,191	\$250,000 \$0 \$120,260	\$0 \$0 \$0	\$539,755 \$5,563 \$262,320
Subtotal Estimate Escalation Contingency					\$67,838 \$222,581	\$0 \$0	\$44,393 \$145,656	\$95,009 \$311,730	\$0 \$0	\$807,637 \$207,240 \$679,967
Total 9111.7.4 EQUIPMENT DEMOLITION - VALVE CUBICS	-E	•	4,750		\$554,793	\$0	\$363,053	\$776,999	\$0	\$1,694,844
9114.4 CONVEYING SYSTEMS - STORAGE FACILITY GEN GANTRY CRANE	U.C. per EA	2.00	1000 2,000	CN-SKWK \$34.52	34520 \$69,040	0 \$0	2500000 \$5,000,000	0 \$0	0 \$0	2534520 \$5,069,040
GEN TRANSFER CART IN TUNNEL	U.C. per EA	1.00	500 500	CN-SKWK \$34.52	17260 \$17,260	0 \$0	300000 \$300,000	0 \$0	0 \$0	317260 \$317,260
GEN 5 TON DECONTAMINATABLE BRIDGE CRANE	U.C. per EA	2.00	300 600	CN-SKWK \$34.52	10356 \$20,712	0 \$0	250000 \$500,000	0 \$0	0 \$0	260356 \$520,712
GEN CASK MANUVERING HYDRAULIC PLATFORM	U.C. per EA	1.00	1000 1,000	CN-SKWK \$34.52	34520 \$34,520	0 \$0	1000000 \$1,000,000	0 \$0	0 \$0	1034520 \$1,034,520
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$141,532 \$0 \$50,218	\$0 \$0 \$0	\$6,800,000 \$340,000 \$2,533,379	\$0 \$0 \$0	\$0 \$0 \$0	\$6,941,532 \$340,000 \$2,583,597
Subtotal Estimate Escalation Contingency					\$49,203 \$21,686	\$0 \$0	\$2,482,189 \$1,094,001	\$0 \$0	\$0 \$0	\$9,865,129 \$2,531,392 \$1,115,687
Total 9114.4 CONVEYING SYSTEMS - STORAGE FACILITY	1		4,100		\$262,638	\$0	\$13,249,569	\$0	\$0	\$13,512,208
9115.1.1 MECHANICAL DEMO - CALCINER CELL PIPE Cut & Cap Piping At Cell Wall - Small	U.C. per Ea	28.00	3 84	CN-PIPE \$37.58	112.74 \$3,157	0 \$0	12 \$336	0 \$0	0 \$0	124.74 \$3,493
PIPE Cut & Cap Piping At Cell Wall - 4"	U.C. per Ea	2.00	4 8	CN-PIPE \$37.58	150,32 \$301	0 \$0	30 \$60	0 \$0	0 \$0	180.32 \$361
PIPE Cut & Cap Piping At Cell Wall - 8"	U.C. per Ea	1.00	6 6	CN-PIPE \$37.58	225.48 \$225	0 \$0	50 \$50	0 \$0	0 \$0	275.48 \$275

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option D

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	<u>Other</u>	TOTAL
PIPE Remove Piping - Small	U.C. per Lf 900.00	0.12 108	CN-PIPE \$37,58	4.51 \$4,059	Ò \$0	0 \$0	0 \$0	0 \$0	4.51 \$4,059
PIPE Remove Piping - 4"	U.C. per Lf 60.00	0.25 15	CN-PIPE \$37.58	9.395 \$564	0 . \$0	0 \$0	0 \$0	0 \$0	9,395 \$564
PIPE · Remove Piping - 8"	U.C. per Lf 30.00	0,5 15	CN-PIPE \$37.58	18.79 \$564	0 \$0	0 \$0	0 \$0	0 \$0	18.79 \$564
PIPE Remove Pipe Supports	U.C. per Ea . 31.00	2 62		75.16 \$2,330	0 \$0	0 \$0	0 \$0	0 \$0	75.16 \$2,330
PIPE Remove Large Knife Gate Valves	U.C. per Ea 2.00	8 16		300.64 \$601	0 \$0	0 \$0	0 \$0	0 \$0	300.64 \$601
PIPE Identify, Verify, And Isolate Piping To Be Removed	U.C. per Line 31.00	10 310		375.8 \$11,650	0 \$0	0 \$0	0 \$0	0 \$0	375.8 \$11,650
PIPE Cut Up Piping For "Hot Boxing"	U.C. per Lot 1.00	200 200	\$37.58	7516 \$7,516	0 \$0	0 \$0	0 \$0	0 \$0	7516 \$7,516
PIPE Bag & Box Piping	U.C. per Lot 1.00	-	CN-PIPE \$37.58	37580 \$37,580	0 \$0	. \$0	0 \$0	0 \$0	37580 \$37,580
PIPE Scaffolding In Cell	U.C. per Lot	400 400	•	15032 \$1 5,032	· 0 \$0	2000 \$2, 000	0 \$0	0 \$0	17032 \$17,032
PIPE Cut 16" Pipe	U.C. per Ea 5.00		\$37.58	3008.4 \$15,032	0 \$0	0 \$0	0 \$0	0 \$0	3006.4 \$15,032
PiPE Cut 16" Pipe At Cyclone	U.C. per Ea 1.00		\$37.58	6012.8 \$6,013	0 \$0	0 \$0	0 \$0	0 \$0	6012.8 \$6,013
PIPE Cut Calciner Pipes	U.C. per Ea 200.00	•	\$37.58	375.8 \$75,160	0 \$0	0 \$0	0 \$0	0 \$0	375.8 \$75,160
PIPE Cut Piping At Bottom Of Calciner	U.C. per Lot 1.00		\$37.58	7516 \$7,516	0 \$0	- \$0	0 \$0	0 \$0	7516 \$7,516
PIPE Plug Calciner Pipe Ends	U.C. per Ea 250.00		\$37.58	75.16 \$18,790	0 \$0	20 \$5,000	0 \$0	0 \$0	95.16 \$23,790
PIPE Remove Misc. Piping & Supports	U.C. per Lot 1.00		\$37.58	52612 \$52,612	0 \$0	0 \$0	0 \$0	0 \$0	52612 \$52,612
PIPE Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot 1,00	•	\$37.58	517476.6 \$517,477	0 \$0	0 \$0	0 \$0	0 \$0	517476.6 \$517,477
PIPE Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot 1.00	5165 5,165		194100.7 \$194,101	o \$0	0 \$0	0 \$0	0 \$0	194100.7 \$194,101

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option D

Client:

V. J. Balls

LEVEL Org/Subcontractor 9115.1.1 MECHANICAL DEMO - CALCINER CELL	QTY	<u></u>	Hrs	Crew/Rate	Labor	Const Eqp	· <u>Mati</u>	S/C	<u>Other</u>	TOTAL
PIPE Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	6885 6,885	CN-PIPE \$37.58	258738.3 \$258,738	o \$0	0 \$0	0 \$0	0 \$0	258738.3 \$258,738
PIPE Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	98000 \$98,000	0 \$0	0 \$0	98000 \$98,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$1,229,016 \$0 \$591,206	\$0 \$0 \$0	\$105,446 \$5,272 \$53,260	\$0 \$0 \$0	\$0 \$0 \$0	\$1,334,462 \$5,272 \$644,466
Subtotal Estimate Escalation Contingency					\$467,069 \$937,789	\$0 \$0	\$42,077 \$84,483	\$0 \$0	\$0 \$0	\$1,984,201 \$509,146 \$1,022,272
Total 9115.1.1 MECHANICAL DEMO - CALCINER CELL			32,704		\$3,225,081	\$0	\$290,538	\$0	\$0	\$3,515,618
9115.1.3 MECHANICAL DEMO - OFF GAS CELL PIPE Cut & Cap Piping At Cell Wall - Small	U.C. per Ea	28.00	3 84	CN-PIPE \$37.58	112.74 \$3,157	0 \$0	12 \$336	0 \$0	o \$0	124.74 \$3,493
PIPE Cut & Cap Piping At Cell Wall - Medium	U.C. per Ea	12.00	4 48	CN-PIPE \$37.58	150.32 \$1,804	0 \$0	30 \$360	0 \$0	0 \$0	180.32 \$2,164
PIPE Cut & Cap Piping At Cell Wall - Large	U.C. per Ea	10.00	6 60	CN-PIPE \$37.58	225.48 \$2,255	0 \$0	50 \$500	0 \$0	0 \$0	275.48 \$2,755
PIPE Remove Piping - Small	U.C. per Lf	900.00	0.12 108	CN-PIPE \$37.58	4.51 \$4,059	0 \$0	0 \$0	0 \$0	0 \$0	4.51 \$4,059
PIPE Remove Piping - Medium	U.C. per Lf	60.00	0.25 15	CN-PIPE \$37.58	9.395 \$564	0 \$0	0 \$0	0 \$0	0 \$0	9.395 \$564
PIPE Remove Piping - Large	U.C. per Lf	30.00	0.5 15	CN-PIPE \$37.58	18.79 \$564	0 \$0	0 \$0	0 \$0	0 \$0	18.79 \$564
PIPE Remove Pipe Supports	U.C. per Ea	31.00	2 62	CN-PIPE \$37.58	75,16 \$2,330	0 \$0	0 \$0	0 \$0	0 \$0	75.16 \$2,330
PIPE Remove Valves	U.C. per Ea	2.00	8 16	CN-PIPE \$37.58	300.64 \$601	0 \$0	0 \$0	0 \$0	0 \$0	300.64 \$601
PIPE Identify, Verify, And Isolate Piping To Be Removed	U.C. per Line	31.00	10 310	CN-PIPE \$37.58	375.8 \$11,650	0 \$0	0 \$0	0 \$0	0 \$0	375.8 \$11,650
PIPE Cut Up Piping For "Hot Boxing"	U.C. per Lot	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	0 \$0	0 \$0	0 \$0	7516 \$7,516
PIPE Bag & Box Piping	U.C. per Lot	1.00	1000 1,000	CN-PIPE \$37.58	37580 \$37,580	0 \$0	0 \$0	0 \$0	0 \$0	37580 \$37,580

CONSTRUCTION DETAIL ITEM REPORT

Client: V. J. Balls

UNEX Feasibility Study - Option D - Modified UNEX In NWCF

Prepared By: Rowley / Mitchell / Marler

Project Location: INTEC
Estimate Number: 2570 - Option D

Estimate Type: Planning

50

0

\$0

0

\$0

0

\$0

\$500

\$0

0

\$0

0

\$0

0

\$0

	Org/Subcontractor	QTY		<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	_S/C_	<u>Other</u>	TOTAL
- 9115.1.3 MECHANI Scaffolding In Cell	ICAL DEMO - OFF GAS CELL PIPE	U.C. per Lot	1.00	400 400	CN-PIPE \$37,58	15032 \$15,032	0 \$0	2000 \$2,000	0 \$0	0 \$0	17032 \$17,032
Cut Pipes @ Tanks	PIPE	U.C. per Ea	9.00	10 90	CN-PIPE \$37.58	375.8 \$3,382	° 0 \$0	0 \$0	0 \$0	0 \$0	375.8 \$3,382
Remove Misc. Piping &	PIPE Supports	U.C. per Lot	1.00	1400 1,400	CN-PIPE \$37.58	52612 \$52,612	0 \$0	0 \$0	0 \$0	0 \$0	52612 \$52,612
Labor Adjustment For W	PIPE Vorking in "Hot" Area - 200%	U.C. per Lat	1.00	7600 7,600	CN-PIPE \$37.58	285608 \$285,608	0 \$0	0 \$0	0 \$0	0 \$0	285608 \$285,608
Burn-Out Allowance - 25	PIPE 5% Of Hot Work	U.C. per Lot	1.00	2850 2,850	CN-PIPE \$37.58	107103 \$107,103	0 \$0	0 \$0	0 \$0	0 \$0	107103 \$107,103
Mock-Up Training - 100	PIPE % Of Unadjusted Work	U.C. per Lot	1.00	3800 3,800	CN-PIPE \$37.58	142804 \$142,804	. 0 \$0	o \$0	0 \$0	0 \$0	142804 \$142,804
Small Tools & Consuma	PIPE ables - 8% Of Labor Cost	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	54300 \$54,300	0 \$0	0 \$0	54300 \$54,300
Subtotal Sales Tax INEEL ORG Labor/Su	ubcontractor Overheads					\$678,620 \$0 \$326,443	\$0 \$0 \$0	\$57,496 \$2,875 \$29,041	\$0 \$0 \$0	\$0 \$0 \$0	\$736,116 \$2,875 \$355,484
Subtotal Estimate Escalation Contingency					•	\$257,899 \$517,814	\$0 \$0	\$22,943 \$46,065	\$0 \$0	\$0 \$0	\$1,094,474 \$280,842 \$563,880
Total 9115.1.3 MECH	HANICAL DEMO - OFF GAS CELL			18,058	•	\$1,780,776	\$0	\$158,420	\$0	\$0	\$1,939,196
9115.1.4 MECHANI Cut & Cap Piping At Cel	ICAL DEMO - BLEND & HOLD CELL PIPE II Wall - Small	U.C. per Ea	28.00	3 84	CN-PIPE \$37.58	112.74 \$3,157	0 \$0	12 \$336	0 \$0	0 \$0	124.74 \$3,493
Cut & Cap Piping At Cei	PIPE II Wall - Medium	U.C. per Ea	12.00	4 48	CN-PIPE \$37.58	150.32 \$1,804	0 \$0	30 \$360	0 \$0	0 \$0	180.32 \$2 ,164

CN-PIPE

CN-PIPE

CN-PIPE

CN-PIPE

\$37.58

\$37.58

\$37.58

\$37.58

60

0.12

108

0.25

15

0.5

15

225.48

\$2,255

\$4,059

9.395

\$564

18.79

\$564

4.51

Page No.

\$0

\$0

0

\$0

0

\$0

\$0

\$0

0

\$0

0

\$0

275.48

\$2,755

\$4,059

9.395

\$564

18.79

\$564 .

4.51

PIPE

PIPE

PIPE

PIPE

Cut & Cap Piping At Cell Wall - Large

Remove Piping - Small

Remove Piping - Medium

Remove Piping - Large

U.C. per Ea

U.C. per Lf

U.C. per Lf

U.C. per Lf

10,00

900.00

60.00

30,00

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option D

08/30/2000

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor	QTY		Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
9115.1.4 MECHANICAL DEMO - BLEND & HOLD CELL PIPE Remove Pipe Supports	U.C. per Ea	31.00	2 62	CN-PIPE \$37.58	75.16 \$2,330	0 \$0	0 \$0	0 \$0	0 \$0	75.16 \$2,330
PIPE Remove Valves	U.C. per Ea	2.00	8 16	CN-PIPE \$37.58	300.64 \$601	· 0 · \$0	0 \$0	0 \$0	0 \$0	300.64 \$601
PIPE Identify, Verify, And Isolate Piping To Be Removed	U.C. per Line	31.00	10 310	CN-PIPE \$37.58	375.8 \$11,650	0 \$0	0 \$0	0 \$0	. 0 \$0	375.8 \$11,650
PIPE Cut Up Piping For "Hot Boxing"	U.C. per Lot	1.00	200 200	CN-PIPE \$37.58	7516 \$7,516	0 \$0	0 \$0	0 \$0	0 \$0	7516 \$7,516
PIPE Bag & Box Piping	U.C. per Lot	1.00	1000 1,000	CN-PIPE \$37.58	37580 \$37,580	0 \$0	0 \$0	0 \$0	0 \$0	37580 \$37,580
PIPE Scaffolding In Cell	U.C. per Lot	1.00	400 400	CN-PIPE \$37.58	15032 \$15,032	0 \$0	2000 \$2,000	0 \$0	0 \$0	17032 \$17,032
PIPE Cut Pipes @ Tanks	U.C. per Ea	9.00	10 90	CN-PIPE \$37.58	375.8 \$3,382	0 \$0	0 \$0	0 \$0	0 \$0	375.8 \$3,382
PIPE Remove Misc. Piping & Supports	U.C. per Lot	1.00	1400 1,400	CN-PIPE \$37.58	52612 \$52,612	0 \$0	0 \$0	0 \$0	0 \$0	52612 \$52,612
PIPE Labor Adjustment For Working in "Hot" Area - 200%	U.C. per Lot	1.00	7600 7,600	CN-PIPE \$37.58	285608 \$285,608	0 \$0	0 \$0	0 \$0	0 \$0	285608 \$285,608
PIPE Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	2850 2,850	CN-PIPE \$37.58	107103 \$107,103	0 \$0	0 \$0	0 \$0	0 \$0	107103 \$107,103
PIPE Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	3800 3,800	CN-PIPE \$37.58	142804 \$142,804	. \$0	0 \$0	0 \$0	0 \$0	142804 \$142,804
PIPE Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	54300 \$54,300	\$0	0 \$0	54300 \$54,300
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$678,620 \$0 \$326,443	\$0 \$0 \$0	\$57,496 \$2,875 \$29,041	\$0 \$0 \$0	\$0 \$0 \$0	\$736,116 \$2,875 \$355,484
Subtotal Estimate Escalation Contingency					\$257,899 \$517,814	\$0 \$0	\$22,943 \$46,065	\$0 \$0	\$0 \$0	\$1,094,474 \$280,842 \$563,880
Total 9115.1.4 MECHANICAL DEMO - BLEND & HOLD CEL	L		18,058		\$1,780,776	\$0	\$158,420	\$0	\$0	\$1,939,196
9115.1.5 MECHANICAL DEMO - VALVE CUBICLE PIPE Cut & Cap Piping At Cell Wall - Small	U.C. per Ea	28.00	3 84	CN-PIPE \$37.58	112.74 \$3,157	0 \$0	12 \$336	0 \$0	0 \$0	124.74 \$3,493

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

Client:

V. J. Balls

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Mati</u>	S/C	Other	TOTAL
— 9115.1.5 MECHANICAL DEMO - VALVE CUBICLE PIPE Cut & Cap Piping At Cell Wall - Medium	U.C. per Ea	4	CN-PIPE	150.32	0	30	0	0	180,32
	12.00	48	\$37.58	\$1,804	\$0	\$360	\$0	\$0	\$2,164
PIPE	U.C. per Ea	6	CN-PIPE	225.48	*0	50	0	0	275.48
Cut & Cap Piping At Cell Wall - Large	10.00	60	\$37.58	\$2,255	\$0	\$500	\$0	\$0	\$2,755
PIPE	U.C. per Lf	0.12	CN-PIPE	4.51	0	0	0	0	4.51
Remove Piping - Small	900,00	108	\$37.58	\$4,059	\$0	\$0	\$0	\$0	\$4,059
PIPE	U.C. per Lf	0.25	CN-PIPE	9.395	0	0	0	0	9,395
Remove Piping - Medium	60.00	15	\$37.58	\$564	\$0	\$0	\$0	\$0	\$564
PIPE	U.C. per Lf	0,5	CN-PIPE	18.79	0	0	0	0	18.79
Remove Piping - Large	30.00	15	\$37.58	\$564	\$0	\$0	\$0	\$0	\$564
PIPE Remove Pipe Supports	U.C. per Ea	2	CN-PIPE	75.16	0	0	0	0	75.16
	31.00	62	\$37.58	\$2,330	\$0	\$0	\$0	\$0	\$2, 330
PIPE	U.C. per Ea	8	CN-PIPE	300.64	oʻ	0	0	0	300.64
Remove Valves	2.00	16	\$37.58	\$601	\$0	\$0	\$0	\$0	· \$601
PIPE	U.C. per Line	10	CN-PIPE	375.8	0	0	0	0	375.8
Identify, Verify, And Isolate Piping To Be Removed	31.00	310	\$37.58	\$11,650	\$0	\$0	\$0	\$0	\$11,650
PIPE	U.C. per Lot	200	CN-PIPE	7516	0	0	o	0	7516
Cut Up Piping For "Hot Boxing"	1.00	200	\$37.58	\$7,516	\$0	\$0	\$0	\$0	\$7,516
PIPE	U.C. per Lot	1000	CN-PIPE	37580	0	0	0	0	37580
Bag & Box Piping	1.00	1,000	\$37.58	\$37,580	\$0	\$0	\$0	\$0	\$37,580
PIPE	U.C. per Lot	400	CN-PIPE	15032	0	2000	0	0	17032
Scaffolding In Cell	1.00	400	\$37.58	\$15,032	\$0	\$2,000	\$0	\$0	\$17,032
PIPE	U.C. per Lot	1400	CN-PIPE	52612	0	0	0	0	52612
Remove Misc. Piplng & Supports	1.00	1,400	\$37,58	\$52,612	\$0	\$0	\$0	\$0	\$52,612
PIPE	U.C. per Lot	7436	CN-PIPE	279444.88	0	0	0	0	279444.88
Labor Adjustment For Working In "Hot" Area - 200%	1.00	7,436	\$37.58	\$279,445	\$0	\$0	\$0	\$0	\$279,445
PIPE	U.C. per Lot	892		33521.36	0	0	0	0	33521.36
Burn-Out Allowance - 25% Of Hot Work	1.00	892		\$33,521	\$0	\$0	\$0	\$0	\$33,521
PIPE Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	3718	CN-PIPE	139722.44	0	0	0	0	139722.44
	1.00	3,718	\$37.58	\$139,722	\$0	\$0	\$0	\$0	\$139,722

Project Name: UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option D

Client: V. J. Balls

LEVEL Org/Subcontractor 9115.1.5 MECHANICAL DEMO - VALVE CUBICLE	QTY		Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C	Other	TOTAL
PIPE Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0	CN-PIPE	0 \$0	0 \$0	47400 \$47,400	0 \$0	0 \$0	47400 \$47,400
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$592,411 \$0 \$284,973	\$0 \$0 \$0	\$50,596 \$2,530 \$25,556	\$0 \$0 \$0	\$0 \$0 \$0	\$643,007 \$2,530 \$310,529
Subtotal Estimate Escalation Contingency					\$225,137 \$452,034	\$0 \$0	\$20,190 \$40,537	\$0 \$0	\$0 \$0	\$956,066 \$245,327 \$492,571
Total 9115,1.5 MECHANICAL DEMO - VALVE CUBICLE			15,764		\$1,554,555	\$0	\$139,408	\$0	\$0	\$1,693,963
9115.2.1 HVAC - NEW - NWCF HVAC Vent. Centrifugal Fans - 20 hp	U.C. per Ea	5.00	10 50	CN-SHEE \$35.48	354.8 \$1,774	500 \$2,500	5700 \$28,500	0 \$0	0 \$0	6554.8 \$32,774
HVAC Vent. Centrifugat Fans - 25 hp	U.C. per Ea	7.00	12 84	CN-SHEE \$35.48	425.76 \$2,980	500 \$3,500	9000 \$63,000	0 \$0	0 \$0	9925.76 \$69,480
HVAC Vent. Centrifugal Fans - 30 hp	U.C. per Ea	5.00	12 60	CN-SHEE \$35.48	425.76 \$2,129	500 \$2,500	9000 \$45,000	0 \$0	0 \$0	9925.76 \$49,629
HVAC Vent. Centrifugal Fans - 40 hp	U.C. per Ea	5.00	18 90	CN-SHEE \$35.48	638.64 \$3,193	500 \$2,500	13000 \$65,000	0 \$0	0 \$0	14138.64 \$70,693
HVAC Vent. Centrifugal Fans - 50 hp	U.C. per Ea	14.00	14 196	CN-SHEE \$35.48	496.72 \$6,954	500 \$7,000	15000 \$210,000	0 \$0	0 \$0	15996.72 \$223,954
HVAC Vent. Centrifugal Fans - 60 hp	U.C. per Ea	3.00	40 120	CN-SHEE \$35.48	1419.2 \$4,258	\$1,500	27000 \$81,000	0 \$0	0 \$0	28919.2 \$86,758
HVAC *HEPA Filter Bank - Single Stage - 4X4 - 12 Filters Per Bank Memo: Each Filter is 24" x 24".	U.C. per Ea	2.00	30 60	CN-SHEE \$35.48	1064.4 \$2,129	500 \$1,000	72000 \$144,000	0 \$0	0 \$0	73564.4 \$147,129
HVAC *HEPA Filter Bank - Single Stage - 4X4 - 16 Filters Per Bank Memo: Each Filter is 24" x 24".	U.C. per Ea	23.00	40 920	CN-SHEE \$35.48	1419.2 \$32,642	500 \$11,500	96000 \$2,208,000	0 \$0	0 \$0	97919.2 \$2,252,142
HVAC *HEPA Filler Bank - Dual Stage - 4X4 - 12 Fillers Per Bank Memo: Each Filler is 24" x 24".	U.C. per Ea	2.00	40 80	CN-SHEE \$35,48	1419.2 \$2,838	500 \$1,000	144000 \$288,000	0 \$0	0 \$0	145919.2 \$291,838
HVAC *HEPA Filter Bank - Dual Stage - 4X4 - 16 Filters Per Bank Memo: Each Filter is 24" x 24".	U.C. per Ea	4.00	50 200	CN-SHEE \$35.48	1774 \$7,096	500 \$2,000	192000 \$768,000	0 \$0	0 \$0	194274 \$777,096

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option D - Modified UNEX In NV	/CF
Project Location: INTEC	•
Estimate Number: 2570 - Option D	

LEVEL O	rg/Subcontractor	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
	W - NWCF HVAC ompressor & Fans) - 80 Ton	U.C. per Ea	1.00	60 60	CN-SHEE \$35.48	2128.8 \$2,129	0 \$0	35000 \$35 , 000	0 \$0	0 \$0	37128.8 \$37,129
	HVAC ompressor & Fans) - 40 Ton	U.C. per Ea	1.00	48 48	CN-SHEE \$35.48	1703.04 \$1,703	0 \$0	21000 \$21,000	0 \$0	0 \$0	22703.04 \$22,703
Actuated Air Dampers	HVAC	U.C. per Ea	100.00	0.9 90	CN-SHEE \$35,48	31.932 \$3,193	0 \$0	150 \$15,000	0 \$0	0 \$0	181.932 \$18,193
Pre-Fillers	HVAC	U.C. per Lot	1.00	100 100	CN-SHEE \$35.48	3548 \$3,548	o \$0	2500 \$2, 500	0 \$0	0 \$0	6048 \$6 , 048
Healing Coils	HVAC	U.C. per Lot	1.00	100 100	CN-SHEE \$35.48	3548 \$3,548	0 \$0	5000 \$5,000	0 \$0	0 \$0	8548 \$8,548
Cooling Coils	HVAC	U.C. per Lot	1.00	100 100	CN-SHEE \$35.48	3548 \$3,548	0 \$0	5000 \$5,000	0 \$0	0 \$0	8548 \$8,548
Heat Recovery Coil	HVAC	U.C. per Lot	1.00	40 40	CN-SHEE \$35.48	1419.2 \$1,419	0 \$0	2000 \$2,000	0 \$0	0 \$0	3419.2 \$3,419
Sheet Metal Ductwork	HVAC	U.C. per Lot	1.00	3500 3,500	CN-SHEE \$35.48	124180 \$124,180	0 \$0	65000 \$65,000	0 \$0	0 \$0	189180 \$189,180
Test & Balance	HVAC	U.C. per Lot	1.00	0		0 \$0	0 \$0	0 \$0	7500 \$7,500	0 \$0	7500 \$7,500
Subtotal Sales Tax INEEL ORG Labor/Sut	bconfractor Overheads		•			\$209,261 \$0 \$95,498	\$35,000 \$0 \$15,972	\$4,051,000 \$202,550 \$1,941,133	\$7,500 \$0 \$3,423	\$0 \$0 \$0	\$4,302,761 \$202,550 \$2,056,026
Subtotal Estimate Escalation Contingency						\$78,201 \$157,013	\$13,080 \$26,261	\$1,589,556 \$3,191,538	\$2,803 \$5,627	\$0 \$0	\$6,561,337 \$1,683,639 \$3,380,440
Total 9115.2.1 HVAC	- NEW - NWCF			5,898		\$539,973	\$90,313	\$10,975,777	\$19,353	\$0	\$11,625,416
9115.2.2 PIPING - N	<u>EW - NWCF</u> PIPE	U.C. per Lot	1.00	3500 3,500	CN-PIPE \$37.58	131530 \$131,530	. 0 \$0	150000 \$150,000	0 \$0	0 \$0	281530 \$281,530

Project Name: UNEX Feasibility Study - Option D - Modified UNEX In NWCF

Project Location: INTEC

Estimate Number: 2570 - Option D

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor 9115.2.2 PIPING - NEW - NWCF	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	•				\$131,530 \$0 \$63,271	\$0 \$0 \$0	\$150,000 \$7,500 \$75,764	\$0 \$0 \$0	\$0 \$0 \$0	\$281,530 \$7,500 \$139,035
Subtotal Estimate Escalation Contingency					\$49,986 \$100,363	\$0 \$0	\$59,855 \$120,179	\$0 \$0	\$0 \$0	\$428,065 \$109,841 \$220,542
Total 9115.2.2 PIPING - NEW - NWCF			3,500		\$345,150	\$0	\$413,298	\$0	\$0	\$758,448
9115.2.3 FIRE PROTECTION - NEW - NWCF FP Fire Protection Modifications	U.C. per Lot	1.00	750 750	CN-SPRI \$36.92	27690 \$27,690	0 \$0	30000 \$30,000	0 \$0	0 \$0	57690 \$57,690
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$27,690 \$0 \$11,611	\$0 \$0 \$0	\$30,000 \$1,500 \$13,209	\$0 \$0 \$0	\$0 \$0 \$0	\$57,690 \$1,500 \$24,820
Subtotal Estimate Escalation Contingency					\$10,085 \$20,248	\$0 \$0	\$11,472 \$23,034	\$0 \$0	\$0 \$0	\$84,010 \$21,557 \$43,283
Total 9115.2.3 FIRE PROTECTION - NEW - NWCF			750		\$69,634	\$0	\$79,215	\$0	\$0	\$148,850
9115.2.1 HVAC - TFD FACILITY - HOT CELL HVAC (*)Sheet Metal Ductwork Memo: The hot cell is approximately 77' x 51' x 77' high.	U.C. per Lot	1.00	1100 1,100	CN-SHEE \$35.48	39028 \$39,028	0 \$0	20000 \$20,000	0 \$0	0 \$0	59028 \$59,028
HVAC HVAC Equipment	U.C. per Lot	1.00	750 750	CN-SHEE \$35.48	26610 \$26,610	3000 \$3,000	300000 \$300,000	0 \$0	0 \$0	329610 \$329,610
HVAC HEPA Filters	U.C. per Lot	1.00	300 300	CN-SHEE \$35.48	10644 \$10,644	0 \$0	150000 \$150,000	0 \$0	0 \$0	160644 \$160,644
HVAC Diffusers, Grilles, Dampers, Registers	U.C. per Lot	1.00	100 100	CN-SHEE \$35.48	3548 \$3,548	0 \$0	9000 \$9,000	0 \$0	0 \$0	12548 \$12,548
HVAC Misc. Sheet Metal	U.C. per Lot	1.00	200 200	CN-SHEE \$35.48	7096 \$7,096	0 \$0	2500 \$2,500	0 \$0	0 \$0	9596 \$9,596

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

Client:

V. J. Balls

LEVEL	Org/Subcontractor	QTY		Hrs	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
Test & Balance	TFD FACILITY - HOT CELL HVAC	U.C. per Lot	1.00	200 200	CN-SHEE \$35.48	7096 \$7,096	0 \$0	0 \$0	0 \$0	0 \$0	7096 \$7 , 096
Subtotal						\$94,022	\$3,000	\$481,500	\$0	. \$0	\$578,522
Sales Tax INEEL ORG Labor	/Subcontractor Overheads					\$0 \$42,908	\$0 \$1,369	\$24,075 \$230,722	\$0 \$0	\$0 \$ 0	\$24,075 \$274,999
Subtotal Estimate)					\$35,136	¢4 404	\$188,934	40	60	\$877,598
Contingency						\$70,547	\$1,121 \$2,251	\$379,345	\$0 \$0	\$0 \$0	\$225,191 \$452,143
Total 9115.2.1 HV	AC - TFD FACILITY - HOT CELL			2,650		\$242,613	\$7, 741	\$1,304,576	\$0	\$0	\$1,554,929
Memo: . (*)Sheet Metal Ductw	- TFD FACILITY - OPERATING CORP The operating corridors and equipm HVAC York corridors and equipment areas - appro	ent areas are approxim U.C. per Lot	1.00	4000 4,000	eet of total floor ar CN-SHEE \$35.48	rea. Includes th 141920 \$141,920	e floor area of all le 0 \$0	vels. 140000 \$140,000	0 \$0	o \$0	281920 \$281,920
	HVAC	U.C. per Lot		4000	CN-SHEE	141920	15000	525000	0	0	681920
HVAC Equipment			1.00	4,000	\$35.48	\$141,920	\$15,000	\$525,000	\$0	\$0	\$681,920
Diffusers, Grilles, Da	HVAC mpers, Registers	U.C. per Lot	1.00	200 200	CN-SHEE \$35.48	7098 \$7,096	0 \$0	13000 \$13,000	0 \$0	0 \$0	20096 \$20,096
Misc. Sheet Metal	HVAC	U.C. per Lot	1.00	350 350	CN-SHEE \$35.48	12418 \$12,418	0 \$0	5000 \$5,000	0 \$0	0 \$0	17418 \$17,418
Test & Balance	HVAC	U.C. per Lot	1.00	300 300	CN-SHEE \$35.48	10644 \$10,644	0 \$0	0 \$0	0 \$0	0 \$0	10644 \$10,644
Subtotal				-	·	\$313,998 \$0	\$15,000	\$683,000	\$0	\$0	\$1,011,998
Sales Tax INEEL ORG Labor	r/Subcontractor Overheads					\$143,295	\$0 \$6,845	\$34,150 \$327,276	\$0 \$0	\$0 \$0	\$34,150 \$477,416
Subtotal Estimate	9					\$117,341	\$5,606	\$268,000	60	60	\$1,523,564 \$390,947
Escalation Contingency						\$235,600	\$5,000 \$11,255	\$538,094	\$0 \$0	\$0 \$0	\$784,949
Total 9115.2.2 H\	/AC - TFD FACILITY - OPERATING (CORRIDORS		8,850		\$810,234	\$38,706	\$1,850,520	\$0	\$0	\$2,699,460
9115.2.3 PLUME	BING / PIPING - TFD FACILITY PIPE	U.C. per Sf		0.15	CN-PIPE	5.637	0	7	0	0	12.637
Process Piping		13,	700.00	2,055	\$37.58	\$77,227	\$0	\$95,900	\$0	\$0	\$173,127

08/30/2000

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option D - Modified UNEX in NWCF Project Location: INTEC Estimate Number: 2570 - Option D

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor 9115.2.3 PLUMBING / PIPING - TFD FACILITY	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Mati	S/C	Other	TOTAL
PIPE Building Plumbing	U.C. per Sf 13	3,700.00	0.05 685	CN-PIPE \$37.58	1.879 \$25,742	0 \$0	3 \$41,100	0 \$0	0 \$0	4.879 \$66,842
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$102,969 \$0 \$49,532	\$0 \$0 \$0	\$137,000 \$6,850 \$69,198	\$0 \$0 \$0	\$0 \$0 \$0	\$239,969 \$6,850 \$118,730
Subtotal Estimate Escalation Conlingency					\$39,132 \$78,570	\$0 \$0	\$54,668 \$109,763	\$0 \$0	\$0 \$0	\$365,549 \$93,800 \$188,333
Total 9115.2.3 PLUMBING / PIPING - TFD FACILITY			2,740		\$270,203	\$0	\$377,479	\$0	\$0	\$647,682
9115,3.1 HVAC - BOILER HOUSE HVAC HVAC Memo: Based on AFC estimate #2547-A. This will be a two b	U.C. per LOT oller system vs. a fo	1,00 ur in eslima	200 200 le 2547-A; a	CN-SHEE \$35.48 all quantities are ha	7096 \$7,096 alved.	240 \$240	36700 \$36,700	1000 \$1,000	0 \$0	45036 \$45,036
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$7,096 \$0 \$3,238	\$240 \$0 \$110	\$36,700 \$1,835 \$17,586	\$1,000 \$0 \$456	\$0 \$0 \$0	\$45,036 \$1,835 \$21,390
Subtotal Estimate Escalation Conlingency					\$2,652 \$5,324	\$90 \$180	\$14,401 \$28,914	\$374 \$750	\$0 \$0	\$68,261 \$17,516 \$35,168
Total 9115.3.1 HVAC - BOILER HOUSE			200		\$18,310	\$619	\$99,435	\$2,580	\$0	\$120,945
9115.3.2 PLUMBING - BOILER HOUSE PIPE Building Drain	U.C. per Lot	1.00	40 40	CN-PIPE \$37.58	1503.2 \$1,503	0 \$0	600 \$600	0 \$0	0 \$0	2103.2 \$2,103
PIPE Building Water	U.C. per Lot	1.00	20 20	CN-PIPE \$37.58	751.6 \$752	0 \$0	\$300 \$300	0 \$0	0 \$0	1051.6 \$1,052
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$2,255 \$0 \$1,085	\$0 \$0 \$0	\$900 \$45 \$455	\$0 \$0 \$0	\$0 \$0 \$0	\$3,155 \$45 \$1,539
Subtotal Estimate Escalation Conlingency					\$857 \$1,721	\$0 \$0	\$359 \$721	\$0 \$0	\$0 \$0	\$4,738 \$1,216 \$2,442
Total 9115.3.2 PLUMBING - BOILER HOUSE			60		\$5,917	\$0	\$2,480	\$0	\$0	\$8,397
9115.3.3 PIPING - BOILER HOUSE PIPE Boilers	U.C. per Ea	2.00	200 400	CN-PIPE \$37.58	7516 \$15,032	2000 \$4,000	50000 \$100,000	0 \$0	0 \$0	59516 \$119,032

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor — 9115.3.3 PIPING - BOILER HOUSE	QTY	_	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
PIPE STEAM & SUPPORT PIPING	U.C. per LOT	1.00	750 750	CN-PIPE \$37.58	28185 \$28,185	0 \$0	40000 \$40,000	0 \$0	. <mark>0</mark> \$0	68185 \$68,185
INSUL PIPE INSULATION	U.C. per LOT	1.00	175 175	CN-ASBE \$36.92	6461 \$6,461	0 \$0	8920 \$8,920	0 \$0	0 \$0	15381 \$15,381
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$49,678 \$0 \$23,498	\$4,000 \$0 \$1,924	\$148,920 \$7,446 \$74,640	\$0 \$0 \$0	\$0 \$0 \$0	\$202,598 \$7,446 \$100,063
Subtotal Estimate Escalation Contingency	. ,				\$18,777 \$37,701	\$1,520 \$3,052	\$59,276 \$119,016	\$0 \$0	\$0 \$0	\$310,107 \$79,573 \$159,769
Total 9115.3.3 PIPING - BOILER HOUSE			1,325		\$129,654	\$10,496	\$409,298	\$0	\$0	\$549,449
9115.3.4 FIRE PROTECTION - BOILER HOUSE FP FIRE SPRINKLER SYSTEM - BOILER BUILDING	U.C. per SF 3,	120.00	0		0 \$0	0 \$0	0 \$0	4 \$12, 480	o \$0	4 \$12,480
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	•				\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$12,480 \$0 \$5,233	\$0 \$0 \$0	\$12,480 \$0 \$5,233
Subtotal Estimate Escalation Contingency					\$0 \$0	\$0 \$0	\$0 \$0	\$4,545 \$9,126	\$0 \$0	\$17,713 \$4,545 \$9,126
Total 9115.3.4 FIRE PROTECTION - BOILER HOUSE			0		\$0	\$0	\$0	\$31,384 .	\$0	\$31,384
— 9115.4.1 HVAC - STORAGE FACILITY HVAC (*)Sheet Metal Ductwork Memo: The Interim Storage Facility is approximately 140' x 14	U.C. per Lot 6' x 36' high.	1.00	1100 1,100	CN-SHEE \$35.48	39028 \$39,028	0 \$0	20000 \$20,000	0 \$0	0 \$0	59028 \$59,028
HVAC HVAC Equipment	U.C. per Lot	1.00	500 500	CN-SHEE \$35.48	17740 \$17,740	3000 \$3,000	100000 \$100,000	0 \$0	0 \$0	120740 \$120,740
HVAC	U.C. per Lot	1.00	300 300	CN-SHEE \$35.48	10644 \$10,644	0 \$0	150000 \$150,000	0 \$0	0 \$0	160644 \$160,644
. HVAC Diffusers, Grilles, Dampers, Registers	U.C. per Lot	1.00	100 100	CN-SHEE \$35.48	3548 \$3,548	0 \$0	9000 \$9,000	0 \$0	0 \$0	12548 \$12,548
HVAC Misc. Sheet Metal	U.C. per Lot	1.00	200 200	CN-SHEE \$35.48	7096 \$7,096	° \$0	2500 \$2, 500	0 \$0	0 \$0	9596 \$9,596

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

Client: V. J. Balls

LEVEL Org/Subcontractor 9115.4.1 HVAC - STORAGE FACILITY	QTY		Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
HVAC Test & Balance	U.C. per Lot	1.00	200 200	CN-SHEE \$35.48	7096 \$7,096	0 \$0	0 \$0	0 \$0	0 \$0	7096 \$7,096
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				,	\$85,152 \$0 \$38,860	\$3,000 \$0 \$1,369	\$281,500 \$14,075 \$134,887	\$0 \$0 \$0	\$0 \$0 \$0	\$369,652 \$14,075 \$175,116
Subtotal Estimate Escalation Contingency					\$31,821 \$63,892	\$1,121 \$2,251	\$110,457 \$221,777	\$0 \$0	\$0 \$0	\$558,843 \$143,399 \$287,919
Total 9115.4.1 HVAC - STORAGE FACILITY			2,400		\$219,725	\$7,741	\$762,696	\$0	\$0	\$990,162
9115.4.2 PIPING / PLUMBING - STORAGE FACILITY PIPE MISC. PIPING - ALLOW	U.C. per LOT	1.00	0		0 \$0	0 \$0	0 \$0	60000 \$60,000	0 \$0	60000 \$60,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$60,000 \$0 \$28,862	\$0 \$0 \$0	\$60,000 \$0 \$28,862
Subtotal Estimate Escalation Contingency		<u></u>			\$0 \$0	\$0 \$0	\$0 \$0	\$22,802 \$45,782	\$0 \$0	\$88,862 \$22,802 \$45,782
Total 9115.4.2 PIPING / PLUMBING - STORAGE FACILITY			0		\$0	\$0	\$0	\$157,447	\$0	\$157,447
9115.4.3 FIRE PROTECTION - STORAGE FACILITY FP FIRE PROTECTION	U.C. per SF 20,	440.00	0		0 \$0	0 \$0	0 \$0	4 \$81,760	0 \$0	4 \$81,760
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$81,760 \$0 \$34,284	\$0 \$0 \$0	\$81,760 \$0 \$34,284
Subtotal Estimate Escalation Contingency					\$0 \$0	\$0 \$0	\$0 \$0	\$29,777 \$59,787	\$0 \$0	\$116,044 \$29,777 \$59,787
Total 9115.4.3 FIRE PROTECTION - STORAGE FACILITY			0		\$0	\$0	\$0	\$205,608	\$0	\$205,608
9116.1.1 ELECTRICAL DEMO - CALCINER CELL ELEC Electrical Demo - Calciner Cell	U.C. per Lot	1.00	850 850	CN-ELEC \$34.12	29002 \$29,002	0 \$0	0 \$0	0 \$0	0 \$0	29002 \$29,002
ELEC Cut Up Conduit For "Hot Boxing"	U.C. per Lot	1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	0 \$0	0 \$0	0 \$0	3412 \$3,412

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor 9116.1.1 ELECTRICAL DEMO - CALCINER CELL	QTY	_	Hrs	Crew/Rate	Labor	Const Eqp	Matl	S/C_	<u>Other</u>	TOTAL
ELEC Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	1900 1,900	CN-ELEC \$34.12	· 64828 \$64,828	0 \$0	0 \$0	0 \$0	0 \$0	64828 \$64,828
ELEC Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	· 712 712	CN-ELEC \$34.12	24293.44 \$24,293	0 \$0	0 \$0	0 \$0	0 \$0	24293.44 \$24,293
ELEC . Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	950 950	CN-ELEC \$34.12	32414 \$32,414	0 \$0	0 \$0	0 \$0	0 \$0	32414 \$32,414
ELEC Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0	CN-ELEC	0 \$0	0 \$0	2600 \$2,600	0 \$0	0 \$0	2600 \$2, 600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$153,949 \$0 \$64,556	\$0 \$0 \$0	\$2,600 \$130 \$1,145	\$0 \$0 \$0	\$0 \$0 \$0	\$156,549 \$130 \$65,700
Subtotal Estimate Escalation Conlingency					\$56,068 \$140,032	\$0 \$0	\$994 \$2,483	\$0 \$0	\$0 \$0	\$222,380 \$57,063 \$142,516
Total 9116.1.1 ELECTRICAL DEMO - CALCINER CELL			4,512		\$414,606	\$0	\$7,352	\$0	\$0	\$421,958
9116.1.3 ELECTRICAL DEMO - OFF GAS CELL ELEC Electrical Demo - Calciner Cell	U.C. per Lot	1.00	850 850	CN-ELEC \$34.12	29002 \$29,002	. \$0	0 \$0	0 \$0	0 \$0	29002 \$29,002
ELEC Cut Up Conduit For "Hot Boxing"	U.C. per Lot	1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	0 \$0	0 \$0	0 \$0	3412 \$3,412
ELEC Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	1900 1,900	CN-ELEC \$34.12	64828 \$64,828	0 \$0	0 \$0	0 \$0	0 \$0	64828 \$64,828
ELEC Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	712 712	CN-ELEC \$34.12	24293.44 \$24,293	0 \$0	0 \$0	0 \$0	0 \$0	24293.44 \$24,293
ELEC Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	950 950	CN-ELEC \$34.12	32414 \$32,414	0 \$0	0 \$0	0 \$0	0 \$0	32414 \$32,414

Project Name:

08/30/2000

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor	QTY		<u>Hrs</u>	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C_	Other	TOTAL
9116.1.3 ELECTRICAL DEMO - OFF GAS CELL ELEC Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0	CN-ELEC	0 \$0	0 \$0	2600 \$2,600	0 \$0	0 \$0	2600 \$2,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$153,949 \$0 \$64,556	\$0 \$0 \$0	\$2,600 \$130 \$1,145	\$0 \$0 \$0	\$0 \$0 \$0	\$156,549 \$130 \$65,700
Subtotal Estimate Escalation Contingency			·		\$56,068 \$140,032	\$0 \$0	\$994 \$2,483	\$0 \$0	\$0 \$0	\$222,380 \$57,063 \$142,516
Total 9116.1.3 ELECTRICAL DEMO - OFF GAS CELL			4,512		\$414,606	\$0	\$7,352	\$0	\$0	\$421,958
9116.1.4 ELECTRICAL DEMO - BLEND & HOLD CELL ELEC Electrical Demo - Calciner Cell	U.C. per Lot	1.00	850 850	CN-ELEC \$34.12	29002 \$29,002	o \$0	0 \$0.	0 \$0	0 \$0	29002 \$29,002
ELEC Cut Up Conduit For "Hot Boxing"	U.C. per Lot	1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	0 \$0	0 \$0	0 \$0	3412 \$3,412
ELEC Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	1900 1,900	CN-ELEC \$34.12	64828 \$64,828	0 \$0	0 \$0	0 \$0	0 \$0	64828 \$64,828
ELEC Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	712 712	CN-ELEC \$34.12	24293.44 \$24,293	0 \$0	0 \$0	0 \$0	0 \$0	24293.44 \$24,293
ELEC Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	950 950	CN-ELEC \$34.12	32414 \$32,414	0 \$0	0 \$0	0 \$0	0 \$0	32414 \$32,414
ELEC Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	0	CN-ELEC	0 \$0	0 \$0	2600 \$2,600	0 \$0	0 \$0	2600 \$2,600
Subtotal Sales Tax INEEL ORG Labor/Şubcontractor Overheads			***************************************		\$153,949 \$0 \$64,556	\$0 \$0 \$0	\$2,600 \$130 \$1,145	\$0 \$0 \$0	\$0 \$0 \$0	\$156,549 \$130 \$65,700
Subtotal Estimate Escalation Conlingency					\$56,068 \$140,032	\$0 \$0	\$994 \$2, 483	\$0 \$0	\$0 \$0	\$222,380 \$57,063 \$142,516
Total 9116.1.4 ELECTRICAL DEMO - BLEND & HOLD CE	LL		4,512		\$414,606	\$0	\$7,352	\$0	\$0	\$421,958
9116.1.5 ELECTRICAL DEMO - VALVE CUBICLE ELEC Electrical Demo - Calciner Cell	U.C. per Lot	1.00	850 850	CN-ELEC \$34.12	29002 \$29,002	0 \$0	0 \$0	0 \$0	0 \$0	29002 \$29,002
ELEC Cut Up Conduit For "Hot Boxing"	U.C. per Lot	1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	o \$0	o \$0	0 \$0	3412 \$3,412

56

CONSTRUCTION DETAIL ITEM REPORT

V. J. Balls Client:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

LEVEL Org/Subcontractor — 9116.1.5 ELECTRICAL DEMO - VALVE CUBICLE	QTY		<u>Hrs</u>	Crew/Rate	<u>Labor</u>	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
ELEC Labor Adjustment For Working In "Hot" Area - 200%	U.C. per Lot	1.00	1900 1,900	CN-ELEC \$34.12	64828 \$64,828	0 \$0	0 \$0	0 \$0	0 \$0	64828 \$64,828
ELEC Burn-Out Allowance - 25% Of Hot Work	U.C. per Lot	1.00	712 712	CN-ELEC \$34.12	24293.44 \$24,293	0 \$0	0 \$0	0 \$0	0 \$0	24293.44 \$24,293
ELEC Mock-Up Training - 100% Of Unadjusted Work	U.C. per Lot	1.00	950 950	CN-ELEC \$34.12	32414 \$32,414	0 \$0	0 \$0	0 \$0	0 \$0	32414 \$32,414
ELEC Small Tools & Consumables - 8% Of Labor Cost	U.C. per Lot	1.00	o	CN-ELEC	. \$0	0 \$0	2600 \$2,600	0 \$0	0 \$0	2600 \$2,600
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				***************************************	\$153,949 \$0 \$64,556	\$0 \$0 \$0	\$2,600 \$130 \$1,145	\$0 \$0 . \$0	\$0 \$0 \$0	\$156,549 \$130 \$65,700
Subtotal Estimate Escalation Contingency	•				\$56,068 \$140,032	\$0 \$0	\$994 \$2, 483	\$0 \$0	\$0 \$0	\$222,380 \$57,063 \$142,516
Total 9116.1.5 ELECTRICAL DEMO - VALVE CUBICLE			4,512		\$414,606	\$0	\$7,352	\$0	\$0	\$421,958
9116.2.1 SWITCHGEAR AND TRANSFORMERS - NWCF ELEC 2000 amp, 480/277 double ended 3R walk-in switchgear	U.C. per Ea	1.00	72 72	CN-ELEC \$34.12	2456.64 \$2, 45 7	2500 \$2,500	150000 \$150,000	0 \$0	0 \$0	154956.64 \$154,957
ELEC 1500 kVA 13.8-480/277 transformers	U.C. per Ea	2.00	24 48	CN-ELEC \$34.12	818.88 \$1,638	2500 \$5,000	50000 \$100,000	0 \$0	0 \$0	53318.88 \$106,638
ELEC 2000 amp armor clad busway	U.C. per Ls	1.00	24 24	CN-ELEC \$34.12	818.88 \$819	0 \$0	7500 \$7,500	· \$0	0 \$0	8318.88 \$8,319
ELEC 1200 amp 480 volt normal power panels	U.C. per Ea	2.00	16 32	CN-ELEC \$34.12	545.92 \$1,092	0 \$0	10000 \$20,000	0 \$0	0 \$0	10545.92 \$21, 092
ELEC 480 volt power panels .	U.C. per Ea	2.00	12 24	CN-ELEC \$34.12	409.44 \$819	0 \$0	5000 \$10, 000	0 \$0	0 \$0	5409.44 \$10,819

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

Client:

\$0

\$0

\$40,000

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor	QTY		<u>Hrs</u>	Crew/Rate	<u>Labor</u>	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
9116.2.1 SWITCHGEAR AND TRANSFORMERS - ELEC Vaull and equipment pads for main gear and transformer	U.C. per Ls	1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	35000 \$35,000	35000 \$35,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$6,824 \$0 \$2,862	\$7,500 \$0	\$287,500 \$14,375	\$0 \$0	\$35,000 \$0 \$0	\$336,824 \$14,375 \$132,592
Subtotal Estimate Escalation Contingency					\$2,485 \$6,207	\$3,145 \$2,732 \$6,822	\$126,585 \$109,943 \$274,586	\$0 \$0 \$0	\$8,981 \$22,430	\$483,791 \$124,141 \$310,045
Total 9116.2.1 SWITCHGEAR AND TRANSFORMER	RS - NWCF		200		\$18,378	\$20,198	\$812,989	\$0	\$66,411	\$917,976
9116.2.2 RACEWAYS, CONDUCTORS, AND GROELEC 15kV electrical duct bank, 2 runs of 200 lf.	UNDING - NWCF U.C. per Lf	400.00	0		0 \$0	0 \$0	0 \$0	0 \$0	125 \$50,000	125 \$50,000
ELEC 600 volt feeders	U.C., per Ls	1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	25000 \$25,000	25000 \$25,000
ELEC Branch power and lighting circuits	U.C. per Ls	1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	50000 \$(1) U	50000 \$50,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$125,000 \$0 \$0	\$125,000 \$0 \$0
Subtotal Estimate Escalation Contingency					\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$32,075 \$80,108	\$125,000 \$32,075 \$80,108
Total 9116.2.2 RACEWAYS, CONDUCTORS, AND C	ROUNDING - NWCF		0		\$0	\$0	\$0	\$0	\$237,183	\$237,183
9116.2.3 MISC. COSTS - NWCF ELEC Testing of systems and equipment	U.C. per Ls	1.00	120 120	CN-ELEC \$34.12	4094.4 \$4,094	o \$0	0 \$0	0 \$0	· 0 \$0	4094.4 \$4,094
ELEC Material handling	U.C. per Ls	1.00	120 120	CN-ELEC \$34.12	4094.4 \$4,094	0 \$0	0 \$0	0 \$0	0 \$0	4094.4 \$4,094
ELEC	U.C. per Lot	1.00	0		0	0	0	40000	0	40000

1.00

0

\$0

\$40,000

Voice Paging / Evac.

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option D - Modified UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option D

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor 9116.2.3 MISC, COSTS - NWCF	QTY	_	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	Matl	S/C	Other	TOTAL
ELEC Wiring Devices & Enclosures	U.C. per Lot	1.00	0		0 \$0	0 \$0	0 \$0	40000 \$40,000	0 \$0	40000 \$40,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$8,189 \$0 \$3,434	\$0 \$0 \$0	\$0 \$0 \$0	\$80,000 \$0 \$33,546	\$0 \$0 \$0	\$88,189 \$0 \$36,980
Subtotal Estimate Escalation Contingency					\$2,982 \$7,449	\$0 \$0	\$0 \$0	\$29,136 \$72,768	\$0 \$0	\$125,169 \$32,118 \$80,217
Total 9116.2.3 MISC. COSTS - NWCF			240		\$22,054	\$0	\$0	\$215,450	\$0	\$237,504
9116.3.1 SWITCHGEAR AND TRANSFORMERS - TFD ELEC 480-208/120 75 kVA transformers	U.C. per Ea	2.00	8 16	CN-ELEC \$34.12	272.96 \$546	0 \$0	1700 \$3,400	0 \$0	0 \$0	1972.96 \$3,946
ELEC 208/120 panels, lighting & misc. power loads	U.C. per Ea	2.00	8 16	CN-ELEC \$34.12	272,96 \$546	0 \$0	2500 \$5,000	0 \$0	0 \$0	2772.96 \$5,546
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$1,092 \$0 \$458	\$0 \$0 \$0	\$8,400 \$420 \$3,698	\$0 \$0 \$0	\$0 \$0 \$0	\$9,492 \$420 \$4,156
Subtotal Estimate Escalalion Conlingency					\$398 \$993	\$0 \$0	\$3,212 \$8,023	\$0 \$0	\$0 \$0	\$14,068 \$3,610 \$9,016
Total 9116.3.1 SWITCHGEAR AND TRANSFORMERS - To	FD		32		\$2,940	\$0	\$23,753	\$0	\$0	\$26,694
9116.3.2 RACEWAYS, CONDUCTORS, AND GROUNDIN ELEC Branch power and lighting circuits	NG - TFD U.C. per Ls	1.00	0		0 \$0	o \$0	0 \$0	0 \$0	35000 \$35,000	35000 \$35,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$35,000 \$0 \$0	\$35,000 \$0 \$0
Subtotal Estimate Escalation Contingency					\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$8,981 \$22,430	\$35,000 \$8,981 \$22,430
Total 9116.3.2 RACEWAYS, CONDUCTORS, AND GROU	NDING - TFD		0		\$0	\$0	\$0	\$0	\$66,411	\$66,411
9116.3.3 MISC. COSTS - TFD ELEC Testing of systems and equipment	U.C. per Ls	1.00	90 90	CN-ELEC \$34.12	3070.8 \$3,071	0 \$0	. 0 \$0	0 \$0	0 \$0	3070.8 \$3,071

Project Name: UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option D

V. J. Balls Client:

LEVEL Org/Subcontractor 9116.3.3 MISC, COSTS - TFD	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	_S/C_	Other	TOTAL
9116.3.3 MISC. COSTS - TFD ELEC Material handling	U.C. per Ls 1.00	90 90	CN-ELEC \$34.12	3070.8 \$3,071	0 \$0	0 \$0	0 \$0	0 \$0	3070.8 \$3,071
ELEC Voice Paging / Evac.	U.C. per Sf 13,700,00	0		0 \$0	0 \$0	0 \$0	4 \$54,800	0 \$0	4 \$54,800
ELEC Lightning Protection	U.C. per Sf 13,700.00	0		0 \$0	0 \$0	0 \$0	2 \$27,400	0 \$0	2 \$27,400
ELEC Grounding Grid	U.C. per Sf 13,700.00	0		0 \$0	0 \$0	0 \$0	1 \$13,700	0 \$0	1 \$13,700
ELEC Wiring Devices & Enclosures	U.C. per Sf 13,700.00	0		0 \$0	0 \$0	0 \$0	1 \$13,700	0 \$0	1 \$13,700
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$6,142 \$0 \$2,575	\$0 \$0 \$0	\$0 \$0 \$0	\$109,600 \$0 \$45,959	\$0 \$0 \$0	\$115,742 \$0 \$48,534
Subtotal Estimate Escalation Contingency				\$2,237 . \$5,586	\$0 \$0	\$0 \$0	\$39,916 \$99,692	\$0 \$0	\$164,276 \$42,153 \$105,279
Total 9116.3.3 MISC. COSTS - TFD		180		\$16,540	\$0	\$0	\$295,167	\$0	\$311,707
9116.3.4 LIGHTING - TFD ELEC Lighting	U.C. per Sf 13,700.00	0		0 \$0	0 \$0	0 \$0	0 \$0	3.9 \$53,430	3.9 \$53,430
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$53,430 \$0 \$0	\$53,430 \$0 \$0
Subtotal Estimate Escalation Contingency				\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$13,710 \$34,241	\$53,430 \$13,710 \$34,241
Total 9116.3.4 LIGHTING - TFD		0		\$0	\$0	\$0	\$0	\$101,382	\$101,382
9116.4.2 RACEWAYS, CONDUCTORS, AND GROUND! ELEC Branch power and lighting circuits	NG - BOILER HOUSE U.C. per Ls 1.00	0		0 \$0	0 \$0	0 \$0	0 \$0	12000 \$12,000	12000 \$12,000

CONSTRUCTION DETAIL ITEM REPORT

Client:

V. J. Balls

UNEX Feasibility Study - Option D - Modified UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option D

LEVEL 9116.4.2 RACEW/	Org/Subcontractor AYS, CONDUCTORS, AND GR	QT OUNDING - BOILER HOL	Y ISE	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/S	Subcontractor Overheads					\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$12,000 \$0 \$0	\$12,000 \$0 \$0
Subtotal Estimate Escalation Contingency		·				\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,079 \$7,690	\$12,000 \$3,079 \$7,690
Total 9116.4.2 RAC HOUSE	EWAYS, CONDUCTORS, AND	GROUNDING - BOILER		0		\$0	\$0	\$0	\$0	\$22,770	\$22,770
- 9116.4.3 MISC. Co	OSTS - BOILER HOUSE ELEC I equipment	U.C. per Ls	1.00	40 40	CN-ELEC \$34.12	1364.8 \$1,365	0 \$0 ·	0 \$0	o \$0	o \$0	1364.8 \$1,365
Material handling	ELEC	U.C. per Ls	1.00	40 40	CN-ELEC \$34.12	1364.8 \$1,365	0 \$0	0 \$0	. \$0	0 \$0	1364.8 \$1,365
Voice Paging / Evac.	ELEC	U.C. per Sf	3,120.00	0		0 \$0	0 \$0	0 \$0	3 \$9,360	0 \$0	3 \$9,360
Lightning Protection	ELEC .	U.C. per Sf	3,120.00	0		0 \$0	0 \$0	0 \$0	2 \$6,240	0 \$0	2 \$6,240
Grounding Grid	ELEC	U.C. per Sf	3,120.00	0		0 \$0	0 \$0	0 \$0	1 \$3,120	0 \$0	· 1 \$3,120
Wiring Devices & Enclo	ELEC .	U.C. per Sf	3,120.00	0		0 \$0	0 \$0	0 \$0	1 \$3,120	0 \$0	1 \$3,120
Subtotal Sales Tax INEEL ORG Labor/S	Subcontractor Overheads			· · · · · · · · · · · · · · · · · · ·		\$2,730 \$0 \$1,145	\$0 \$0 \$0	\$0 \$0 \$0	\$21,840 \$0 \$9,158	\$0 \$0 \$0	\$24,570 \$0 \$10,303
Subtotal Estimate Escalation Contingency						\$994 \$2, 483	\$0 \$0	\$0 \$0	\$7,954 \$19,866	\$0 \$0	\$34,872 \$8,948 \$22,349
Total 9116.4.3 MISC	C. COSTS - BOILER HOUSE			80	,	\$7, 351	\$0	\$0	\$58,818	\$0	\$66,169
9116.4.4 LIGHTIN	G - BOILER HOUSE ELEC	U.C. per Sf	3,120.00	0		0 \$0	0 \$0	0 \$0	3 \$9,360	0 \$0	3 \$9,360

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

Client:

V. J. Balls

LEVEL Org/Subcontractor 9116.4.4 LIGHTING - BOILER HOUSE	QTY	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$9,360 \$0 \$3,925	\$0 \$0 \$0	\$9,360 \$0 \$3,925
Subtotal Estimate Escalation Contingency				\$0 \$0	\$0 \$0	\$0 \$0	\$3,409 \$8,514	\$0 \$0	\$13,285 \$3,409 \$8,514
Total 9116.4.4 LIGHTING - BOILER HOUSE		0		\$0	\$0	\$0	\$25,208	\$0	\$25,208
SWITCHGEAR AND TRANSFORMERS - INTERI ELEC SWITCHGEAR AND TRANSFORMERS	M STORAGE U.C. per LOT 1.00	480 480	CN-ELEC \$34.12	16377.6 \$16,378	0 \$0	100000 \$100,000	0 \$0	0 \$0	116377.6 \$116,378
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$16,378 \$0 \$6,868	\$0 \$0 \$0	\$100,000 \$5,000 \$44,030	\$0 \$0 \$0	\$0 \$0 \$0	\$116,378 \$5,000 \$50,897
Subtotal Estimate Escalation Contingency				\$5,965 \$14,897	\$0 \$0	\$38,241 \$95,508	\$0 \$0	\$0 \$0	\$172,275 \$44,206 \$110,405
Total SWITCHGEAR AND TRANSFORMERS - IN	FERIM STORAGE	480		\$44,107	\$0	\$282,779	\$0	\$0	\$326,886
RACEWAYS, CONDUCTORS, AND GROUNDING ELEC Branch power and lighting circuits	G - INTERIM STORAGE U.C. per Ls 1.00	0		0 \$0	o \$0	0 \$0	0 \$0	21000 \$21,000	21000 \$21,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$21,000 \$0 \$0	\$21,000 \$0 \$0
Subtotal Estimate Escalation Contingency				\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$5,389 \$13,458	\$21,000 \$5,389 \$13,458
Total RACEWAYS, CONDUCTORS, AND GROUN STORAGE	DING - INTERIM	0		\$0	\$0	\$0	\$0	\$39,847	\$39,847
MISC. COSTS - INTERIM STORAGE ELEC Testing of systems and equipment	U.C. per Ls 1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	o \$0	0 \$0	0 \$0	0 \$0	3412 \$3,412
ELEC Material handling	U.C. per Ls 1.00	100 100	CN-ELEC \$34.12	3412 \$3,412	0 \$0	0 \$0	0 \$0	0 \$0	3412 \$3,412
ELEC Voice Paging / Evac.	U.C. per Sf 20,440.00	0		0 \$0	0 \$0	0 \$0	4 \$81,760	o \$0	4 \$81,760

CONSTRUCTION DETAIL ITEM REPORT

V. J. Balls Client:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF
Project Location: INTEC
Estimate Number: 2570 - Option D

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor MISC. COSTS - INTERIM STORAGE	_QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C_	<u>Other</u>	TOTAL
ELEC	U.C. per Sf			0	0	0	2	0	2
Lightning Protection	20,440	0.00 , 00.0	•	١ \$0	\$0	\$0	\$40,880	\$0	\$40,880
ELEC Grounding Grid	U.C. per Sf 20,440	0.00)	0 \$0	0 \$0	0 \$0	1 \$20,440	0 \$0	1 \$20,440
ELEC Wiring Devices & Enclosures	U.C. per Sf 20,449	0,00 0	1	0 \$0	0 \$0	0 \$0	1 \$20,440	0 \$0	1 \$20,440
Subtotal Sales Tax		•		\$6,824	\$0	\$0	\$163,520	\$0	\$170,344
INEEL ORG Labor/Subcontractor Overheads				\$0 \$2,862	\$0 \$0	\$0 \$0	\$0 \$68,569	\$0 \$0	. \$0 \$71,430
Subtotal Estimate Escalation				40.40					\$241,774
Contingency				\$2,485 \$6,207	\$0 \$0	\$0 \$0	\$59,554 \$148,738	\$0 \$0	\$62,039 \$154,945
Total MISC. COSTS - INTERIM STORAGE		200)	\$18,378	\$0	\$0	\$440,381	\$0	\$458,759
9116.5 LIGHTING - INTERIM STORAGE ELEC Lighting	U.C. per Sf 20,440).00 C	•	o \$0	o \$0	0 \$0	3.5 \$71,540	0 \$0	3.5 \$71,540
Subtotal				\$0	\$0	\$0	\$71,540	\$0	\$71,540
Sales Tax INEEL ORG Labor/Subcontractor Overheads	•		•	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$29,999	\$0 \$0	\$0 \$29,999
Subtotal Estimate Escalation Contingency		10. e 1. e 1. e 1. e 1. e 1. e 1. e 1. e		\$0 \$0	\$0 \$0	\$0 \$0	\$26,055 \$65,073	\$0 \$0	\$101,539 \$26,055 \$65,073
Total 9116.5 LIGHTING - INTERIM STORAGE		0	l	. \$0	\$0	\$0	\$192,667	\$0	\$192,667
9116.6 ELECTRICAL - TRANSFER TUNNEL ELEC LIGHTING	U.C. per SF 1,500	0.00	CN-ELEC	0 \$0	0 \$0	0 \$0	2.75 \$4,125	0 \$0	2.75 \$4,125
VOICE PAGING / EVAC.	U.C. per SF 1,500	0.03 0.00 45		1.024 \$1,535	0 \$0	\$3,000	0 \$0	0 \$0	3.024 \$4,535
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$1,535 \$0 \$844	\$0 \$0 \$0	\$3,000 \$150 \$1,321	\$4,125 \$0 \$1,730	\$0 \$0 \$0	\$8,660 \$150 \$3,694
Subtotal Estimate Escalation			···	\$559	\$0	\$1,147	\$1,502	\$0	\$12,505 \$3,209
Contingency				\$1,397	\$0	\$2,865	\$3,752	\$0	\$8,014
Total 9116.6 ELECTRICAL - TRANSFER TUNNEL		45	,	\$4,135	\$0	\$8,483	\$11,109	\$0	\$23,728

Project Name:

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option D

V. J. Balls Client:

Prepared By: Rowley / Mitchell / Marler

Est	imate	Type:	Planni	na

LEVEL Org/Subcontractor	QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
9301.1 CONSTRUCTION SUPPORT BWI Construction Support1% Of TCC	U.C. per Lot	0 0		174800 \$174,800	0 \$0	0 \$0	0 \$0	0 \$0	174800 \$174,800
7620 Radiological Control Technicians - 4 FTE - 2 Years	U.C. per Wk 104.0	160 16,640		3945.6 \$410,342	0 \$0	0 \$0	0 \$0	0 \$0	3945.6 \$410,342
7610 Radiation Control - Management Support - 10% OF RCT Total	U.C. per Hr 16,640.0	0.1 0 1,664		5.232 \$87,060	0 \$0	0 \$0	0 \$0	0 \$0	5,232 \$87,060
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$672,203 \$0 \$442,689	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$672,203 \$0 \$442,689
Subtotal Estimate Escalation Contingency				\$286,081 \$1,162,807	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$1,114,891 \$286,081 \$1,162,807
Total 9301.1 CONSTRUCTION SUPPORT		18,304		\$2,563,780	\$0	· \$0	\$0	\$0	\$2,563,780
9301.2 CONSTRUCTION QUALITY CONTROL BWI Construction Quality Control1% Of TCC	U.C. per Lot	0 0		174800 \$174,800	0 \$0	0 \$0	0 \$0	0 \$0	174800 \$174,800
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$174,800 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$174,800 \$0 \$0
Subtotal Estimate Escalation Contingency				\$44,854 \$182,313	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$174,800 \$44,854 \$182,313
Total 9301.2 CONSTRUCTION QUALITY CONTROL		0		\$401,966	\$0	\$0	\$0	\$0	\$401,966
9301.3 CONSTRUCTION DOCUMENTATION BWI PM Construction Document Control5% Of TCC	U.C. per Lot	0 0		873800 \$873,800	0 \$0	0 \$0	0 \$0	0 \$0	873800 \$873,800
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads				\$873,800 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$873,800 \$0 \$0
Subtotal Estimate Escalation Contingency				\$224,217 \$911,354	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$873,800 \$224,217 \$911,354
Total 9301.3 CONSTRUCTION DOCUMENTATION		0		\$2,009,371	\$0	\$0	\$0	\$0	\$2,009,371

64

Project Name:

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

V. J. Balls Client:

Prepared By: Rowley/Mitchell/Marler Estimate Type: Planning

LEVEL Org/Subcontractor OPC3100 TESTING AND TURNOVER PLANNING	QTY		<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	Other	TOTAL
BWI Testing & Turnover Planning2% Of TCC	U.C. per Lot	1.00			349500 \$349,500	o \$0	0 \$0	0 \$0	0 \$0	349500 \$349,500
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		•		V-1	\$349,500 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$349,500 \$0 \$0
Subtotal Estimate Escalation Contingency					\$129,035 \$488,106	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$349,500 \$129,035 \$488,106
Total OPC3100 TESTING AND TURNOVER PLANNING			0		. \$966,642	\$0	\$0	\$0	\$0	\$966,642
OPC3200 S. O. TESTING BWI SO Testing - 5% Of TCC	U.C. per Lot	1.00	0	1	8737700 \$8,737,700	0 \$0	0 \$0	, o \$0	0 \$0	8737700 \$8,737,700
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$8,737,700 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$8,737,700 \$0 \$0
Subtotal Estimate Escalation Conlingency					\$3,225,959 \$12,202,932	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$8,737,700 \$3,225,959 \$12,202,932
Total OPC3200 S. O. TESTING			0		\$24,166,591	\$0	\$0	\$0	\$0	\$24,166,591
OPC3300 ORR SUPPORT BWI ORR Support22% Of TCC	U.C. per Lot	1.00	0		384500 \$384,500	0 \$0	0 \$0	o \$0	0 \$0	384500 \$384,500
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$384,500 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$384,500 \$0 \$0
Subtotal Estimate Escalation Conlingency					\$141,957 \$536,987	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$384,500 \$141,957 \$536,987
Total OPC3300 ORR SUPPORT			0		\$1,063,444	\$0	\$0	\$0	\$0·	\$1,063,444
OPC3400 FACILITY ACCEPTANCE REVIEW BWI Facility Acceptance Review15% Of TCC	U.C. per Lot	1.00	0		262100 \$262,100	0 \$0	0 \$0	0 \$0	0 \$0	262100 \$262,100

Project Name:

CONSTRUCTION DETAIL ITEM REPORT

UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option D

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor OPC3400 FACILITY ACCEPTANCE REVIEW	QTY	_	<u>Hrs</u>	Crew/Rate	Labor	Const Eqp	Matl	S/C	<u>Other</u>	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$262,100 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$262,100 \$0 \$0
Subtotal Estimate Escalation Contingency					\$96,767 \$366,045	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$262,100 \$96,767 \$366,045
Total OPC3400 FACILITY ACCEPTANCE REVIEW			0		\$724,912	\$0	\$0	\$0	\$0	\$724,912
OPC3500 RADIOLOGICAL CONTROL SUPPORT BWI Radiological Control Support11% Of TCC	U.C. per Lot	1.00	0		192200 \$192,200	0 \$0	0 \$0	0 \$0	0 \$0	192200 \$192,200
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$192,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$192,200 \$0 \$0
Subtotal Estimate Escalation Contingency					\$70,960 \$268,423	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$192,200 \$70,960 \$268,423
Total OPC3500 RADIOLOGICAL CONTROL SUPPORT			0		\$531,584	\$0	\$0	\$0	\$0	\$531,584
OPC3600 OPERATOR TRAINING BWI Operator Training - 2% Of TCC	U.C. per Lot	1.00	0	,	3495100 \$3,495,100	0 \$0	0 \$0	0 \$0	0 \$0	3495100 \$3,495,100
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads					\$3,495,100 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$3,495,100 \$0 \$0
Subtotal Estimate Escalation Contingency					\$1,290,391 \$4,881,201	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$3,495,100 \$1,290,391 \$4,881,201
Total OPC3600 OPERATOR TRAINING			0		\$9,666,692	\$0	\$0	\$0	\$0	\$9,666,692
OPC3700 OPERATING PROCEDURES BWI Operating Procedures44% Of TCC	U.C. per Lot	1.00	0		768900 \$768,900	0 \$0	0 \$0	0 \$0	0 \$0	768900 \$768,900

CONSTRUCTION DETAIL ITEM REPORT

Project Name: UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC Estimate Number: 2570 - Option D

Client:

V. J. Balls

Prepared By: Rowley / Mitchell / Marler Estimate Type: Planning

LEVEL Org/Subcontractor OPC3700 OPERATING PROCEDURES	QTY	Hrs Crew/Rate	Labor	Const Eqp	<u>Matl</u>	S/C	<u>Other</u>	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			\$768,900 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$768,900 \$0 \$0
Subtotal Estimate Escalation Conlingency			\$283,878 \$1,073,833	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$768,900 \$283,878 \$1,073,833
Total OPC3700 OPERATING PROCEDURES		0	\$2,126,611	\$0	\$0	\$0	\$0	\$2,126,611
OPC3800 START-UP COORDINATION BWI Startup Coordination13% Of TCC	U.C. per Lot	0	227200 \$227,200	0 \$0	0 \$0	0 \$0	0 \$0	227200 \$227,200
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads	,		\$227,200 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$227,200 \$0 \$0
Subtotal Estimate Escalation Contingency	,		\$83,882 \$317,304	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$227,200 \$83,882 \$317,304
Total OPC3800 START-UP COORDINATION	,	0	\$628,386	\$0	\$0	\$0	\$0	\$628,386
OPC3900 SPARES BWI Spares	U.C. per Lot	0	1000000 \$1,000,000	0 \$0	0 \$0	0 \$0	0 \$0	1000000 \$1,000,000
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads			\$1,000,000 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$1,000,000 \$0 \$0
Subtotal Estimate Escalation Contingency			\$369,200 \$1,396,584	\$0 \$0	. \$0 \$0	\$0 \$0	\$0 \$0	\$1,000,000 \$369,200 \$1,396,584
Total OPC3900 SPARES		Ò	\$2,765,784	\$0	\$0	\$0	. \$0	\$2,765,784
GAPIF Non-Org G&A and PIF PF NOGAPIF Procurement Fee %	U.C. per \$ 1,744,349.00	o	0 \$0	0 \$0	0 \$0	0 \$0	1. \$1,744,349	1 \$1,744,349

CONSTRUCTION DETAIL ITEM REPORT

Project Name: UNEX Feasibility Study - Option D - Modified UNEX In NWCF Project Location: INTEC

Estimate Number: 2570 - Option D

Client: V. J. Balls

Prepared By: Rowley / Mitchell / Marler

Estimate Type: Planning

LEVEL Org/Subcontractor GAPIF Non-Org G&A and PIF	_QTY	Hrs	Crew/Rate	Labor	Const Eqp	<u>Mati</u>	S/C	Other	TOTAL
Subtotal Sales Tax INEEL ORG Labor/Subcontractor Overheads		· · · · · · · · · · · · · · · · · · ·		\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$1,744,349 \$0 \$0	\$1,744,349 \$0 \$0
Subtotal Estimate Escalation Contingency				\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$1,203,601	\$1,744,349 \$0 \$1,203,601
Total GAPIF Non-Org G&A and PIF		0		\$0	\$0	\$0	\$0	\$2,947,950	\$2,947,950
Subtotal MODIFIED UNEX IN NWCF - OPTION D Sales Tax				\$**,***,***	\$325,062	\$90,236,009	\$56,026,409	\$2,025,779	\$** *** ***
INEEL ORG Labor/Subcontractor Overheads				\$0 \$7,834,160	\$0 \$125,003	\$4,511,800 \$35,423,335	\$0 \$4,969,900	\$0 \$0	\$4,511,800 \$48,352,397
Subtotal Estimate Escalation Contingency				\$34,228,074 \$99,549,211	\$115,487 \$339,112	\$33,401,916 \$62,777,746	\$9,891,188 \$21,232,193	\$72,215 \$1,383,960	\$**,***,*** \$77,708,880 \$**,***,***
Total MODIFIED UNEX IN NWCF - OPTION D		512,008		\$286,517,756	\$904,663	\$226,350,807	\$92,119,690	\$3,481,954	609,374,869

68

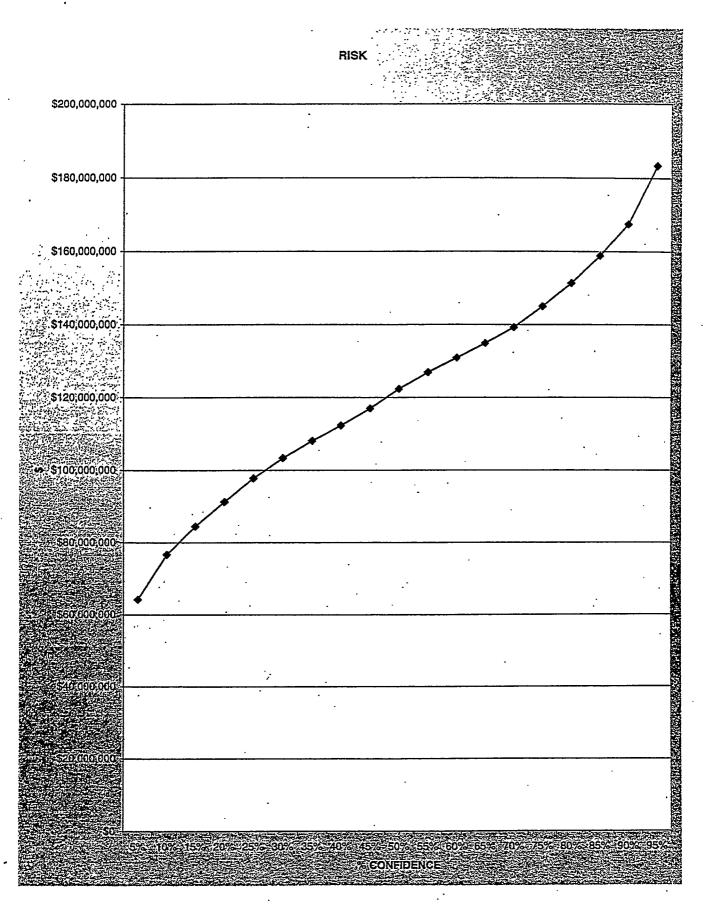
MODIFIED UNEX PROCESS IN NWCF

@RISK Sensitivity Report

OPTION D

Sensitivity Ranking Step-Wise Regression

Rank	Name	Cell	Regression	Welght	Amount	Level Markup
- PROJ	ECT DEVELOPMENT / Contingency at \$F\$3, fo	r Simulation	1			
1	EQUIPMENT	\$B\$22	0.5562	0.1751	\$32,599,255	⊬67%
2	SPECIALTIES .	\$B\$21	0.5178	0.1630	\$30,349,215	:30%
3	PROJECT ACCEPTANCE/CLOSEOUT	\$B\$27	0.3728	0.1174	\$21,848,153	102%
4	CONSTRUCTION MANAGEMENT	\$B\$7	0.2428	0.0764	\$14,232,241	'59%
5	PROJECT MANAGEMENT	\$B\$11	0.2140	0.0674	\$12,545,556	143%
6	TECHNICAL DEVELOPMENT	\$B\$4	0.2002	0.0630	\$11,735,849	4101%
7 .	DECON SOLUTION PROCESSING	\$B\$6	0.1850		\$10,843,000	
8	GENERAL CONDITIONS	\$B\$14	0.1783	0.0561	\$10,449,062	43%
9	TITLE II DESIGN	· \$B\$9	0.1262	0.0397	\$7,398,289	32%
10	MECHANICAL	\$B\$24	0.1069	0.0337	\$6,266,707	:41%
11	PROJECT EXECUTION	\$B\$5	0.0933	0.0294	\$5,470,571	44%
12	TITLE I DESIGN	\$B\$8	0.0880	0.0277	\$5,158,920	43%
13	QUALITY ASSURANCE	\$B\$10	0.0600	0.0189	\$3,517,296	
14	CONSTRUCTION MISCELLANEOUS	\$B\$26	0.0391	0.0123	\$2,291,167	/83%
15	PROJECT DEVELOPMENT	\$B\$3	0,0329	0.0104	\$1,927,218	433%
16	ELECTRICAL	· \$B\$25	0.0272	0.0086	\$1,596,147	<u></u>
17	METALS	\$B\$17	0.0265	0.0084	\$1,555,340	26%
18	CONCRETE	\$B\$16	0.0226	.0.0071	\$1,322,996	[,] 26%
19	Non-Org G&A and PIF	\$B\$28	0.0207	0.0065	\$1,212,461	' 69%
20	CONVEYING SYSTEMS	\$B\$23	0.0184	0.0058	\$1,078,556	. 9%
21	CONSTRUCTION AE SUPPORT	\$B\$12	0.0158	0.0050	\$928,745	6 28%
22	SITEWORK	\$B\$15	0.0131	0.0041	\$769,940	[†] 67%
23	THERMAL & MOISTURE PROTECTION	\$B\$18	0.0072	0.0023	\$420,115	26%
24	FINISHES	\$B\$20	0.0053	0.0017	\$310,463	½6%
25	GOVERNMENT FURNISHED EQUIPMENT	\$B\$13	0.0044	0.0014	\$258,164	6130%
26	DOORS & WINDOWS	\$B\$19	0.0016	0.0005	\$92,832	: 26%


MODIFIED UNEX PROCESS IN A GREEN FIELD FACILITY

@RISK Output Details Report

Output Statistics

Outputs	Contingency
Simulation#	1
Statistics / Cell	\$F\$3
Minimum	22228686
Maximum	275439040
Mean	122245592.1
Standard Deviation	35668522.23
Variance	1.27224E+15
Skewness	0.212454223
Kurtosis	3.094088199
NumErrs	0
Mode	131912237.2
5%	\$64,187,656
10%	\$76,683,504
15%	\$84,461,929
20%	\$91,314,248
25%	\$97,757,688
30%	\$103,280,224
35%	\$108,056,576
40%	\$112,237,552
45%	\$116,950,719
50%	\$122,338,736
55%	\$126,955,816
60%	\$130,884,624
65%	\$134,862,574
70%	\$139,252,207
75%	\$144,914,000
80%	\$151,282,641
85%	\$158,849,875
90%	\$167,473,973
95%	\$183,359,656

MODIFIED UNEX PROCESS IN A GREEN FIELD FACILITY

Appendix F Process Equipment Vendor Literature

ARGONNE NATIONAL LABORATORY - WEST

P.O. Box 2528, Idaho Falls, Idaho 83403-2528

Telephone: (208) 533-7627

March 16, 2000

Sylvester J. Losinski BBWI MS 3625 PO Box 1625 Idaho Falls, ID 83415

SUBJECT: UNIX Process Cross Flow Filteration Equipment

Dear: Mr. Losinski

Per your request please find attached the information concerning the "SpinTek" ST-II-25 cross flow filteration system.

The SpinTek vendor has stated that a stand alone system which utilizes the SpinTek technology is capable of meeting the following conditions:

- Particle removal efficiency of 95% with an inlet stream containing 3 gm/liter solids.
- A permeate flow rate of 200 g.p.h. when supplied with a feed inlet rate of 600 g.p.h. and solids concentration of up to 50% by weight.
- Filtration rate to be based upon 250 gallons of permeate per ft² of filter media per day. Each filter disk contains 1 ft² of media per 11" Ø disk.

The SpinTek system would consist of two parallel flow filtration devices with 10 disks each, a supply pump capable of providing the required 600 g.p.h. flow rate of filter inlet feed, all electrical control and I&C equipment necessary for proper operation, and a tubular steel stand capable of supporting all mechanical and electrical components. The overall "foot print" size would be approximately 3' wide x 5' long x 5' high. Expected cost would run between \$75K - \$100K.

Also attached is information regarding an alternate filtration system manufactured by New Logic International Inc. which employs the cross flow filtration scheme. A review of the literature explains the difference between the SpinTek and V-Sep modes of operation and tends to indicate

the V-Sep filtration system would have a higher maintenance demand due to its method of achieving the cross flow filtration shearing action. Consequently, I have not contacted the New Logic to discuss our application.

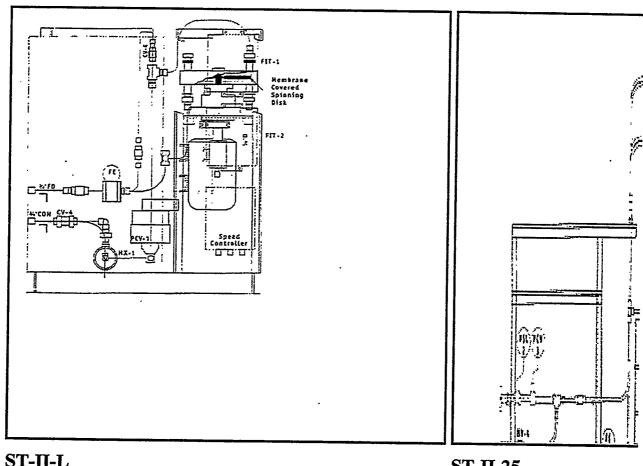
Sincerely,

Scott D. McBride

SDM/rlo

Attachments as stated

cc: w/o Attachments


T. J. Battisti S. D. Herrmann

SDM File

SpinTekTM ST-IIL and ST-II-25

Centrifugal Membrane System for Ultra and Microfiltration

ST-II-L ST-II-25

SpinTekTM ST-II L

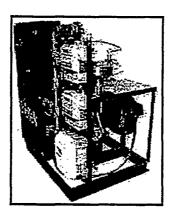
The SpinTekTM ST-II L is a compact cross flow membrane system that utilizes the unique SpinTek process of centrifugal action and shear force to prevent membrane fouling common to conventional systems. The ST-II L has wide open channels, uninhibited by mesh type turbulence promoters, allowing the system to process a wide variety of viscous solutions containing moderate to high solids.

The membrane can be easily removed from the system for inspection after testing or operation. The ST II-L membrane surface can be fully inspected unlike most other membrane systems.

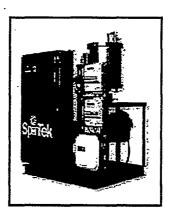
Membranes

The ST-II L can use a wide variety of ceramic or stainless steel membranes. Typical ceramic membranes include titania (Ti02), alumina (Al203), zirconia (ZrO2), or combinations of the three. Membrane pore sizes are available from 0.07 micron Up to 3 microns. Stainless steel membranes are available in pore sizes from 1 to 10 micron. SpinTek can install custom or prototype membranes on SpinTek ST-II disks.

SpinTekTM ST-II-25


General

The SpinTekTM ST-II-25 is a compact cross flow membrane system that utilizes the unique SpinTek process of centrifugal action and shear force to prevent membrane fouling common to conventional systems. The ST-II-25 has wide open channels, uninhibited by mesh type turbulence promoters, allowing the system to process a wide variety of viscous solutions containing moderate to high solids.


The membrane can be easily removed from the system for inspection after testing or operation. The ST-II-25 membrane surface can be fully inspected unlike most other membrane systems.

Membranes

The ST-II-25 can use a wide variety of ceramic or stainless steel membranes. Typical ceramic membranes include titania (Ti02), alumina (Al203), zirconia (ZrO2), or combinations of the three. Membrane pore sizes are available from 0.07 micron Up to 3 microns. Stainless steel membranes are available in pore sizes from 1 to 10 micron. SpinTek can install custom or prototype membranes on SpinTek ST-II disks.

ST-II-L

ST-II-25

View our line items products complete with specifications and send us a RFQ online

Literature by Fax

Receive our Product Specifications by Fax!

How To Keep Your Fluid Processing Budget From Going To Waste

INTRODUCTION

Finally, you can get reliable membrane filtration for even your toughest applications. The new SpinTek ST-II high shear rotary membrane filtration system is specifically designed for those applications previously considered unsuitable for membrane filtration. The unique centrifugal action of the SpinTek ST-II rotary membrane disk can form a slurry or concentrated sludge from a wide variety of feed solutions including kaolin, latex, calcium carbonate, yeast, radioactive precipitates and oily wastewater.

Here is how it works. Membranes are bonded to two sides of a disk, multiple disks are mounted on a hollow shaft that rotates the membranes disks at velocities up to 60 ft/sec, and stationary turbulent promoters are mounted near the rotary membranes to create high shear and turbulence. This high shear keeps the membrane surface clean to maximize filtrate throughput while allowing high concentration of solids to build in the concentrate.

STABLE PERFORMANCE

Membranes like to foul and when they do, down time occurs and usually chemical cleaning is required. Down time, chemical cost and chemical cleaning waste is a detriment to any system. The high shear of the ST-II reduces dramatically the need for cleaning. In a difficult radioactive waste concentration project, the ST-II ran for months at a time before cleaning was needed.

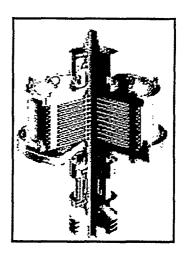
The stainless steel construction of the system combined with high tech ceramic membranes makes SpinTek's Systems ideal for operation in hostile environments, including high temperature, pH, radioactive waste, chemical and solvent solutions.

PUTTING THE POWER WHERE IT IS NEEDED

Energy is a major factor in calculating membrane system operating costs. SpinTek puts the power where it is needed and that is right at the membrane surface. Energy is directly applied to the turning membrane disk so no power is lost through high flow rate pumps or other process inefficiencies.

HIGH SOLIDS

If you have ever tried to pump a high solids stream through a static membrane system to develop high shear, you know it is a costly proposition and at some point becomes impossible. This is where the new SpinTek ST-II takes over. The high shear rotating disks start working where other systems leave off. SpinTek ST-II can concentrate latex and kaolin clays up to 50%, calcium carbonate and oily sludges to 60%.


The new SpinTek ST-II is not only a filtration system but can be used as a dewatering device as well, rivaling some centrifuges. As an immediate concentration process prior to evaporators and spray dryers, SpinTek ST-II improves production substantially. The ST-II can increase kaolin clay spray dryer feed from 35% to 45% contributing directly to increased throughput with lower operating costs.

Most importantly, there is no need for costly filter aids or flocculating chemicals-eliminating secondary waste generation.

MEMBRANES

Because of its unique flat disk design, our rotating disks can be configured with many different types of microporous and ultrafiltration membranes constructed of either polymeric, metallic or ceramic materials. The heart of any membrane filtration system is, of course, its membrane. And several polymeric membranes such as PVDF, polysulfone, and polyether sulfone are available.

Also, ceramic membranes are now available using the latest nanopowder technique from a variety of materials including titanium dioxide (TiO₂), zirconia (ZrO₂), alumina (Al2O₃) and silica (SiO₂). These are available in ultra and micro filtration pore sizes.

NOT FOR EVERYONE

The new Spin Tek ST-II is not for every application. This system is designed for those tough applications where normal static membrane filtration works poorly or not at all. High solids, high viscosity or the need to fractionate is where the ST-II works best. The spinning disk system is the enabling technology on those tough jobs-that is why we have a complete line of static membrane filtration equipment including tubulars, hollow fibers and spiral wound elements. Such flexibility allows us to provide you with the best overall integrated

solution for your application at the lowest possible operating and membrane replacement costs.

SpinTekTM has proven that integrated rotary and static membrane systems work well. Some examples are:

styrene butadiene latex concentrates: a static system concentrates the solids from 1% to 20%-

the ST-II then takes the concentrate to 50% solids;

- metal coolants concentration to 10% with a static system and then to 60% oil with the ST-II; and
- radioactive waste concentration to 2% with a static system and then to 30% with ST-II.

FRACTIONATION

Fractionation of suspended solids with membrane filtration can be difficult. Under normal filtration conditions a boundary layer is formed on the membrane surface which begins to act as the filter barrier. Our high rotational speed creates turbulence which minimizes the formation of a secondary boundary layer. Such layers often become a filtration barrier in static membrane systems when trying to fractionate components. So for once, you can let the pore size of the membrane determine your system's true filtration rating. A membrane rated at 0.2 microns will actually act that way in a SpinTek System-with sharp pore size cutoffs.

SUMMARY

SpinTekTM Systems provides a complete line of membrane systems including rotary disks, tubulars, hollow fibers and spiral wound systems for chemical, nuclear, oil-water and wastewater separations. SpinTek also offers solvent extraction filters for applications in mining: hydrometallurgy and metals recovery, as well as innovative screen coalescers for industrial applications. If you have an application please call our Sales Department for information on our pilot rental systems or in-house testing capabilities. Do not let your processing budget go to waste-call SpinTek!

View our line items products complete with specifications and send us a RFQ online

Literature by Fax

Receive our Product Specifications by Fax!

BACK TO HOME PAGE

SpinTekTM

16421 Gothard Street, Unit A, Huntington Beach, CA 92647 Phone: 714-848-3060 / FAX: 714-848-3034

E-mail to Company

Online Catalog Home

©Thomas Publishing Company, 1999

Centrifugal Membrane Filtration

SpinTekTM Introduces New High Shear Rotary Cross Flow System for Micro and Ultrafiltration

A next generation rotary membrane system is now available from SpinTekTM Systems for filtration and fractionation of high fouling and viscous feed solutions. The patented rotary membrane device provides a high shear force to prevent membrane fouling with a wide variety of feed solutions containing moderate to high solids levels. The ST-II is available in small laboratory sized models to full production sized models for the food, beverage, and chemical industries. Successful operation has been performed in 90%+ recovery of protein from cheese whey, submicron filtration of lube oil, non-settleable solids concentration above 6,400 cP and fine chemical dewatering to above 40% solids. Systems are available with flow rates from 1 lph to over 50 gpm with operating pressure to 150 psig. The ST-II can use polymeric, ceramic and metallic membranes in various pore sizes and can also be configured to utilize any commercially available flat sheet membrane.

Description of Technology

SpinTekTM has developed a new generation high speed rotating membrane filtration system for laboratory and industrial applications. The new SpinTek ST-II utilizes membrane disks that are rotated at variable speeds up to 20m/s to achieve an antifouling force enabling membranes to solve problems not possible before with conventional membrane systems.

The new ST-II offers high and stable membrane flux allowing long term operation between cleaning, the ability to concentrate material up to 6,400 cP, and also to very effectively fractionate closely sized material. The ST-II is capable of this operation due to its unique design of spinning the membrane configured disks near a stationary element. This concept provides a very high relative velocity and shear between the membrane and the feed water effectively minimizing membrane fouling. This translates to high filtrate flow rates.

The energy to control fouling is transferred directly to the membrane surface where it is most effective. The ST-II does not require large and expensive recirculation pumps to attempt to minimize fouling as with conventional static membrane systems. The ST-II is capable of effectively controlling the boundary layer which causes fouling and reduction of permeation flow—power is transferred directly to the membrane surface for highest efficiency.

The ST-II has a unique rotating membrane disk design that eliminates the need for artificial turbulent promoters that can plug with solids and lower system performance. The ST-II can be operated as a microfilter, ultrafilter or nanofilter.

Brief Background of Company

The Management of SpinTek has collectively over thirty years experience with membrane filtration systems and over ten years' experience with rotating membrane systems. The Company holds numerous worldwide patents on the SpinTek technology as well as other filtration patents for solvent extraction of copper.

Effect Caused by Rotating Disks

Two major effects are created by the dynamic spinning action of the new SpinTek ST-II system. The

high shear allows for concentration and dewatering of solids to in some cases above 40%. It also keeps the membrane surface clean so that permeation of material below the cut off size of the membrane can occur.

This is especially useful in such applications as bacterial filtration of food or chemical solutions and protein separation from fermentation broths.

Specific examples of ST-II successes are vanilla extract bacterial filtration without color loss, latex recovery up to 50%, hydrated aluminum concentration to 40%, yeast concentration above 35%, biodigester sludge concentration and blood plasma fractionation.

Field Tests

Laboratory sized pilot units are available with 0.5 sqft of membrane area and larger pilots up to 25 sqft are available. Both types of field test units can be configured with a wide range of polymeric membranes including TFC, PVDF, polysulfone and others plus a selected supply of ceramic membranes. Most membranes are available in pore sizes ranging from 200 NMWC up to 3 microns. Virtually any type of custom membrane developed by materials researchers can also be configured into the ST-II laboratory pilot.

Field test data for many applications are available from SpinTek. Pilot units are available in both standard and explosion proof ratings.

Laboratory and Production Uses

Small lab size units are available as well as production sized units with up to 150 square feet of membrane surface. The systems are capable of processing small volumes up to 50 gpm of permeate flow rate. All stainless steel construction, explosion proof and sanitary versions are available. Piping, instrumentation and controls can be configured to meet any plant specifications and requirements.

Advantages Over Conventional Membrane Systems

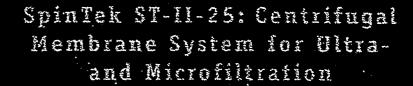
The rotation of the membranes allow for the energy to be applied directly to the membrane surface where it is needed to reduce fouling and the boundary layer. Efficiency is not lost by utilizing large, high pressure pumps to recirculate mass amounts of feed solution through the system to reduce fouling. It is typical for traditional cross flow membrane filters to recirculate over 98% of the feed stream, whereby the SpinTek ST-II requires less than 50% recirculation which is used for mixing. The ST-II, due to the high rotor speed, is capable of controlling the boundary layer to effectively cause fractionation. Membrane filtration is now possible for fractionation of similarly sized particles. An example is defatting of cheese whey. Conventional static membrane systems build up a layer of solids and fat on the membrane surface which impedes the passage of protein through the membrane by up to 65%. The ST-II prevents this material build up on the membrane and allows passage of over 95% of the pure protein at the same time withholding 90%+ of the fat.

Membrane systems have been plagued in the past with severe membrane fouling, concentration limitations, low fluxes and device plugging. The ST-II can operate without prefilters.

Types of Membranes

- Polymeric membranes--hydrophilic and hydrophobic, low protein binding, solvent resistive
- Ceramic membranes
- Metallic membranes
- Pore sizes are available from 200 NMWC up to 3 microns

View our line items products complete with specifications and send us a RFQ online


Literature by Fax

Receive our Product Specifications by Fax!

SpinTekTM
16421 Gothard Street, Unit A, Huntington Beach, CA 92647
Phone: 714-848-3060 / FAX: 714-848-3034

E-mail to Company

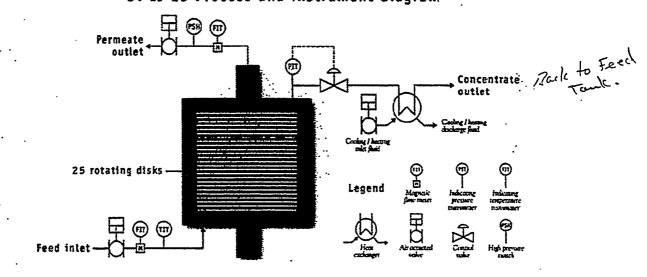
> Controls and Instrumentation

The SpinTek ST-II-25 is fully instrumented and automated for production use or pilot testing. The ST-II-25 controller is simple to operate with a NEMA 4 rated panel, lights, and switches. Explosion proof ratings are also available.

Standard control system includes full PLC control with an operator interface terminal for setpoint entry. Instruments include a variable frequency drive with power output, a feed pressure transmitter with PID pressure control, temperature transmitter and heat exchanger for full temperature control. Alarms are provided for customer specifications. The ST-II-25

rotor motor has a variable speed from 0 to 1200 rpm. Special instrumentation can be provided upon request.

> Construction


The ST-II-25 is built to process an extensive range of feed solutions. To meet the stringent requirements of industrial filtration, all wetted parts of the ST-II-25 are manufactured of 304 SS standard. 316 SS, PTFE and Viton are optional. Special systems can be manufactured with alternate alloys and elastomers.

All components of the system are rated for operation at 100 psig that allows for the use of microporous and ultrafiltration membranes.

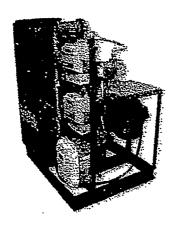
ST-II-25 Flow data, power requirements and dimensions

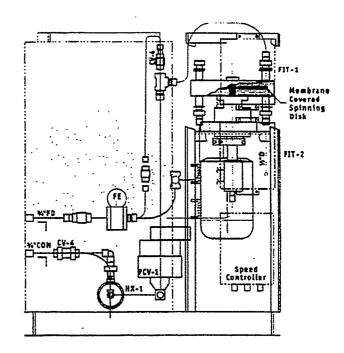
	erita de existat			Poter Motor	, kei	A special	
Qty	Total Area ft ² [m ²]	Feed	Concentrate	Permeate	Hp [kW]	LxWxH inches [cm]	lbs [kg]
25	25.0 [2.3]	1 1/2"	1 1/2"	l"	25 [18,75]	48 x 64 x 84 [122 x 163 x 213]	1500 [680]

ST-II-25 Process and instrument diagram

SpinTek ST-IIL: Centrifugal Membrane System for Ultraand Microfiltration

Centrifugal and high shear action


Single or 3 disk models available


Variety of pore sizes available

Ideal as pilot system or small production system

Explosion proof optional

316 stainless steel construction

>General

The SpinTek™ ST-II L is a compact cross flow membrane system that utilizes the unique SpinTek process of centrifugal action and shear force to prevent membrane fouling common to conventional systems. The ST-II L has wide open channels, uninhibited by mesh type turbulence promoters, allowing the system to process a wide variety of viscous solutions containing moderate to high solids.

The membrane can be easily removed from the system for inspection after testing or operation. The ST-II *L* membrane surface can be fully inspected unlike most other membrane systems.

> Membranes

The ST-II L can use a wide variety of ceramic or stainless steel membranes. Typical ceramic membranes include titania (TiO₂), alumina (Al₂O₃), zirconia (ZrO₂), or combinations of the three. Membrane pore sizes are available from 0.07 micron up to 3 microns. Stainless steel membranes are available in pore sizes from 1 to 10 micron. SpinTek can install custom or prototype membranes on SpinTek ST-II disks.

Visit SpinTek on the Worldwide Web: www.spinteksystems.com SpinTek Systems / 16421 Gothard St., Huntington Beach. CA 92647 / Phone: 714-848-3060 / Fax: 714-848-3034

SpinTek ST-II L: Centrifugal Membrane System for Ultraand Microfiltration

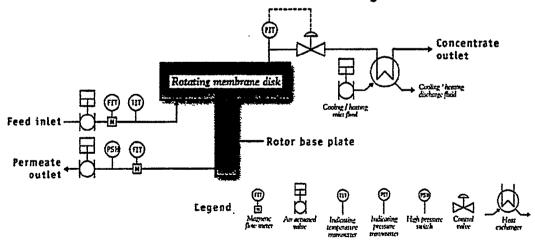
> Controls and Instrumentation

The SpinTek ST-II L is fully instrumented and automated for production use or pilot testing. The ST-II L controller is simple to operate with a NEMA 4 rated panel, lights, and switches. Explosion proof ratings are also available.

Standard control system includes full PLC control with an operator interface terminal for setpoint entry. Instruments include a variable frequency drive with power output, a feed pressure transmitter with PID pressure control, temperature transmitter and heat exchanger for full temperature control. Alarms are provided for customer specifications. The ST-II L rotor

motor has a variable speed from 0 to 1200 rpm. Special instrumentation can be provided upon request.

> Construction

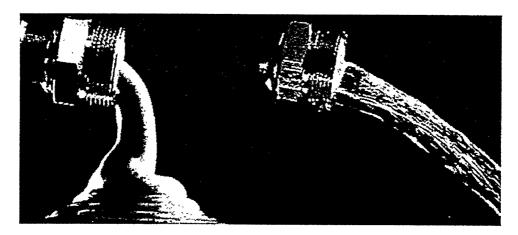

The ST-II L is built to process an extensive range of feed solutions. To meet the stringent requirements of industrial filtration, all wetted parts of the ST-II L are manufactured of 304 SS standard. 316 SS, PTFE and Viton are optional. Special systems can be manufactured with alternate alloys and elastomers.

All components of the system are rated for operation at 100 psig that allows for the use of microporous and ultrafiltration membranes.

ST-IIL Flow data, power requirements and dimensions

Model Number		embrane · Module	See	Connection agelek "Fenale In		Rotor Motor	Skid	Weight
Model	Qty	Total Area ft ² [m ²]	Feed	Concentrate	Permeate	Hp [kW]	LxWxH inches [cm]	lbs [kg]
ST-II-1	ł	1:0-[0:08]	3/4"	3/4"	1/2"	2.0(1.5)	34 x 42 x 48 [86 x 107 x 122]	1000 [450]
ST-11-3	3	3.0 [0.28]	3/4"	3/4"	1/2"	3.0 [2.25]	34 x 42 x 48 [86 x 107 x 122]	1200 [544]

ST-IIL Process and instrument diagram



Visit SpinTek on the Worldwide Web: www.spinteksystems.com SpinTek Systems / 16421 Cixhard St., Huntington Boach, CA 92647 / Phone: 714-848-3060 / Fax: 714-848-3034

INTRODUCTION TO V&SEP

Introduction Technology Operation System Applications 8 Reasons Company Contact

... A New Standard In Rapid Separations -

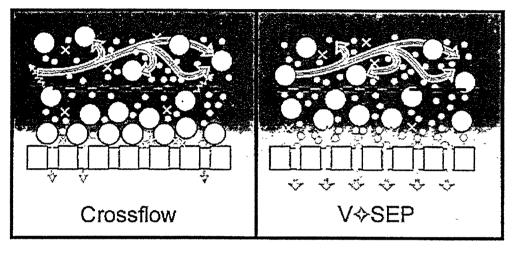
New Logic International presents VSEP (Vibratory Shear Enhanced Processing), a patented non-fouling membrane filtration system. At last, membranes can deliver on the promise of sustained and precise separation of product and waste streams.

The application of intense shear waves at the membrane surface has solved the age-old problem of membrane fouling.

VSEP's shearing action actually sweeps away foulants from the membrane surfaces, allowing high solids concentrations and very high filtration rates.

VSEP is a less expensive alternative to conventional separation systems such as centrifuges, bioreactors, sedimentation, flocculation and other less efficient filtration systems.

VSEP systems are being used in a diverse array of applications by major corporations throughout the world. New applications are continually being added as corporate researchers discover new and exciting uses for this innovative separation technology.


VSEP offers high flux rates, high concentration limits, low operating costs and total dependability in separations ranging from low molecular weights through 30 microns. These unique features, offered for the first time in a membrane system, have allowed VSEP to become a new standard in rapid separations.

Home | Intro | Technology | Operation | System | Applications | 8 Reasons | Company | Contact

Introduction Technology Operation: System Applications 8 Reasons Company Contact

Membrane-based separations of liquids from solids have enjoyed increasing popularity over the last 20 years. This increased interest has been driven by several unique advantages offered by membranes over competing separation techniques such as flocculation with vacuum filtration, centrifugation, and ion exchange. Those advantages include:

Perfect separation and crystal clear permeate.

Controlled size exclusion through selection of pore sizes extending from microns to molecular dimensions.

Excellent materials compatibility due to a wide variety of available membranes. Membrane separations are, however, still largely confined to the processing of high value, low volume streams due to the relatively high capital cost and low throughput capacity of these systems.

In addition, membrane separations suffer from fouling (a long term loss in throughput capacity due to membrane degradation), and they cannot concentrate feed slurries to high solids concentrations due to the rheological requirement that the feed material remain watery in consistency.

Large industrial separations involving millions of gallons per day such as mineral clay slurries, paper pulp, and waste water still require multi-step processing. Typically, chemical flocculation is used to consolidate small particulate solids, followed by vacuum filtration, sedimentation, feeding to spray dryers or filter presses, and other standard deterring techniques.

To broaden the use of membrane separations into mainstream chemical processing, five things are needed:

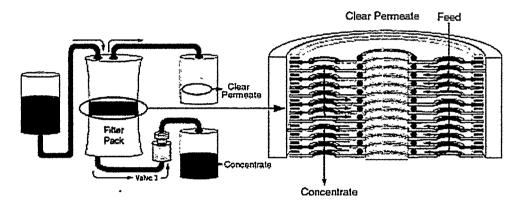
- High filtration rates
- Fouling resistance
- · Solids levels suitable for feeding a spray dryer or filter press
- Low Cost
- Inherent reliability

Inherent reliability

V♦SEP Broadens Membrane Use. . .

Historically, membrane systems designers have struggled to reduce fouling by using tangential flow or cross flow filtration. In this method, membrane elements are placed in a plate-and-frame, tubular, or spiral-wound cartridge assembly, through which the substance to be filtered (the feed stream), is pumped at a high velocity to create shear forces.

In cross flow designs, it is not economic to create shear forces measuring more than 10-15 thousand inverse seconds. This limits the use of cross flow to low-viscosity (watery) fluids, further restricting the use of conventional membrane separations systems.


New Logic has developed an alternative method for producing intense shear waves on the face of a membrane leaf element. The technique is called Vibratory Shear Enhanced Processing (VSEP).

In a VSEP system, the feed slurry remains nearly stationary, moving in a leisurely, meandering flow between parallel membrane leaf elements. The leaf elements move in a vigorous vibratory motion in a direction tangent to the faces of the membranes. The shear waves produced by the membrane's vibration cause solids and foulants to be repelled and allow liquid to flow to the membrane pores unhindered.

Home | Intro | Technology | Operation | System | Applications | 8 Reasons | Company | Contact

V♦SEP Uses High Shear to Prevent Fouling

In an industrial VSEP machine, the leaf elements are arrayed as parallel discs separated by gaskets. The disc stack resembles records on a record changer and is spun in a torsional oscillation. This motion is analogous to the motion of the agitator of a washing machine but occurs at a speed faster than that which can be perceived by the human eye. The oscillation produces a shear rate at the membrane surface of about 150,000 inverse seconds. This rate is ten times greater than the rate obtained using conventional crossflow systems.

In crossflow systems, as little as 10% of the energy required to run the system is converted to shear. In contrast, VSEP enables nearly 99% of the total energy to be converted to shear. The shear is created at the membrane surface where it is most useful in preventing fouling.

Because VSEP does not depend on the shearing forces of the feed flow, the slurry can become extremely viscous and still be successfully dewatered.

The final product is essentially extruded between the vibrating disc elements and out of the machine.

By greatly reducing fouling, the very high shearing produced by VSEP has been shown to prevent diminished filtration rates in a large number of applications. VSEP's resistance to fouling is greatest when the membrane micro-structure is a non-depth type of filtration media (analogous to a screen or colander). Membranes containing cylindrical pores are ideal for use with VSEP.

Non-stick membrane surfaces of polypropylene and teflon also resist fouling when used in VSEP machines, especially when the tightest possible pore size is selected.

Because shear originates at the membrane surface and not in the process fluid, a VSEP machine can be operated successfully in a single pass.

In single pass operation the feed material enters the disc pack, experiences shear forces and is dewatered progressively as it cascades from disc to disc. The final product, once it reaches the desired end point concentration, exits the stack.

The disc pack holdup volume is less than 50 gallons. Therefore, product recovery

in batch processes can be extremely high. Waste after draining the stack is less than 2-3 gallons of material.

System Operation

At startup the VSEP system is fed with a slurry and valve one (see the diagram above) is closed. Permeate is produced and suspended solids in the feed are collected inside the VSEP filter pack.

After a programmed time interval, valve one is opened to release the accumulated concentrated solids. The valve is then closed to allow the concentration of additional feed material. This cycle repeats indefinitely.

Membrane selection is the single most important parameter that affects the quality of the separation. Other important parameters that affect system performance are pressure, temperature, vibration amplitude, and residence time. All of these elements are optimized during testing and entered into the programmable logic controller (PLC) which controls the automation of the system.

The operating pressure is created by the feed pump. VSEP machines can routinely operate at pressures as high as 500 psi. Machines have been modified to operate at higher pressures as well. While higher pressures often produce increased permeate flow rates, they also use more energy. Therefore, an operating pressure is used that optimizes the balance between flow rates and energy consumption.

In most cases, the filtration rate can be further improved by increasing the operating temperature. The temperature limit on a standard VSEP system is 175 °F. Higher temperature constructions are available.

The vibration amplitude and corresponding shear rate can be varied and directly affect filtration rates. Shearing is produced by the torsional oscillation of the disc stack. Typically the stack oscillates with an amplitude of 1 inch peak to peak displacement at the rim of the stack. The oscillation frequency is approximately 60 Hz. This produces a maximum shear intensity of about 150,000 inverse seconds.

Feed residence time is set by the frequency of the opening and closing of the exit valve (valve one). The solids level in the feed increases as the feed material remains in the machine.

Large particles, greater than about 200 microns in size should be removed by screening, sedimentation, or other methods before the material is fed to a VSEP unit. Larger particles may cause abrasion damage to the membrane's surface.

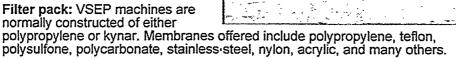
Under normal operating conditions, a VSEP system requires the same amount of operator attention as a pump. Like a pump, a VSEP system performs the instant power is applied.

The VSEP system provides a separation that is entirely physical. No chemical addition or other operator intervention is required.

Home | Intro | Technology | Operation | System | Applications | 8 Reasons | Company | Contact

Introduction Technology Operation System Applications 8 Reasons Company

System Components


The VSEP filtration system consists of 5 major components: the frame, the drive system, plumbing, the filter pack and the control system.

Frame: A 2" tubular steel construction is used with an epoxy powder coat to assure resistance to chemicals and weather.

Drive system: This patented system includes a 10-20 horse power motor which drives an eccentric weight and seismic mass which in turn translates the energy through the torsion spring into the filter pack.

Plumbing: Teflon (FEP) polypropylene and stainless steel are used throughout to assure maximum compatibility with most solvents, caustics and acids.

Filter pack: VSEP machines are normally constructed of either

Membranes containing a wide range of pore sizes are available. At one extreme, reverse osmosis membranes reject everything but water molecules. Ultrafiltration membranes can reject molecules of sizes ranging from 100 M.W. to 1 million M.W.) while microfiltration membranes are available with pore sizes ranging from 0.1 micron to 10 microns. At the other extreme, woven screens are available from 1 micron pore size to standard mesh sizes.

The standard modular size of a VSEP machine is 100 to 1,000 square feet composed of discs with a 19 inch active diameter. Each disc element is manufactured and quality assured by New Logic.

Control system: VSEP systems are normally supplied complete with Allen Bradley SLC 500 series Programmable Logic Controllers. All components are fully contained in a NEMA 4 rated enclosure.

Various levels of control sophistication are available depending on the complexity of the application. For polishing or low solids applications simple controls having minimal outputs and inputs are provided.

For high solids applications controls with more features are used. The VSEP controller typically sets solids levels by actuating the exit valve based on operating parameters such as motor current or temperature.

Other control options available include automatic clean in place, automatic flush, automatic shut down, full alarm features with digital diagnostic displays, remote diagnostics and monitoring, and many others. New Logic engineers have spent

lof3

diagnostics and monitoring, and many others. New Logic engineers have spent years perfecting VSEP controls to maximize reliability and to minimize operator intervention

Implementation

New Logic has run thousands of test samples, therefore it is very probable that data already exist on a sample similar to yours. In any case New Logic can test your material to determine general performance parameters and feasibility. Upon completion of testing in Emeryville, California, a comprehensive report outlining all pertinent data collected is delivered to you along with collected samples of permeate and concentrate.

For further studies to determine optimal shear intensity, pressures, and membrane choice, we recommend that you rent a Series L system. The Series L contains 0.5 square feet of membrane area and allows for easy membrane changing and pressure and shear level adjustment.

Series L is a laboratory-scale machine that holds a single piece of sheet stock membrane. Membrane can be supplied by New Logic or provided by you and hand-cut with a pair of scissors. Because the Series L simulates the environment of a single disc inside a full scale series i system, scale-up calculations can be made.

The Series L runs on 230 volt 3 phase 50/60 hz and consumes about 1 KVA. The feed pump can be supplied by New Logic, or user-supplied. The Series L comes in a caster-mounted cabinet 2 foot square by 7 feet tall and weighs about 500 pounds. For further validation, visit New Logic's modern wet test facility and run your material on a full-scale pilot plant where you can simulate all of the characteristics of a full-scale Series i system.

Series i system modules contain up to 1000 square feet of membrane area. For larger applications the Series i can easily operate in parallel with other Series i machines which share a single control system.

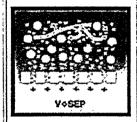
All of the data and information collected during testing is used to customize a Series i to your specific requirements. Controls, motor sizing, membranes and materials of construction will all be specifically selected to assure an optimized system that will give many years of trouble-free service.

To schedule testing or Series L rental, contact a New Logic sales engineer.

I EIGHT REASONS V SEP OUTPERFORMS

Introduction Technology Operation: System Applications 8 Reasons Company Contact

Changing The Way Engineers Think About Separations


1. High Filtration Rates:

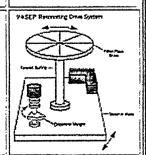
In the separation of most products, VSEP rates average ten times higher than competing membrane technologies such as cross flow filtration. In addition to high rates, there is no product loss as there is in a centrifuge, and unlike rotary drum filters and filter presses, no flocculant addition is required.

2. Fouling Resistance:

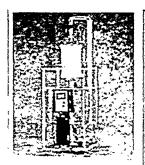
VSEP systems use a patented vibratory shear process to keep the membrane surface clean. Most conventional filtration systems rely on less efficient shear forces far removed from the membrane surface to attempt to reduce fouling effects. Processes such as dewatering, counter current washing and size classification all benefit from VSEP's shearing action.

3. High Solids:

Systems which rely on the feed flow to create shear become increasingly inefficient as the feed stream concentrates. They stop operating as the stream becomes viscous. Because VSEP relies on a vibrating membrane surface to create shear it is able to achieve very high concentrations while retaining fouling resistance. The only solids limit is the ability to discharge the material.


4. High Efficiency:

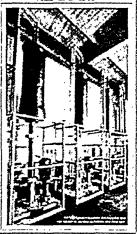
In the VSEP system, shear waves are focused on the membrane surface allowing for a 99% conversion of energy to shear. In typical crossflow systems where only 10% of the energy is actually converted to shear, most of the energy is spent overcoming pressure drops associated with flow turnarounds and screens.


5. Engineered Dependability:

A VSEP system has only two moving parts; the torsion spring (which is tested to assure infinite life), and the bearings (which are automatically lubricated). Membrane integrity is guaranteed through a patented redundant membrane system (RMS). If a membrane element failure occurs it is immediately and automatically repaired.

6. Compact Design:

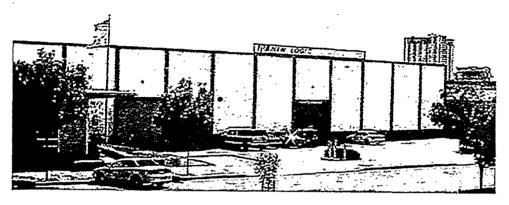
A VSEP system occupying only 16 square feet of floor space supports up to 1000 square feet of membrane area and does the work of a system occupying 10 to 50 times that space. The system is also modular and will allow for easy expansion.


7. Convenient Testing:

New Logic offers a modular approach to system testing. Start with a comprehensive sample test and report provided by New Logic. Then rent a compact Series L laboratory scale system for in house data collection. For further validation, visit New Logic's modern wet test facility and run your material on a full scale pilot plant where you can simulate all of the characteristics of a full scale Series i system.

8. Low Cost:

VSEP uses less energy due to the high efficiencies of the system and uses less membrane area and processing time due to the high rates of the system. VSEP also offers reduced membrane replacement and cleaning maintenance due to the elimination of fouling, less floor space due to the compact design, and less maintenance due to the minimization of moving parts. All this adds up to a low cost separation system.



Home | Intro | Technology | Operation | System | Applications | 8 Reasons | Company | Contact

11 | NEW LOGIC INTERNATIONAL, INC.

Introduction Technology Operation System Applications 8 Reasons Company Contact

Company Profile

New Logic International is a privately held Corporation founded in 1984. Located in a 100,000 square foot facility in Emeryville, California, New Logic manufactures next generation filtration systems utilizing a patented technology known as VSEP (Vibratory Shear Enhanced Processing).

Our customer base includes a large cross section of the Fortune 500, and covers a wide range of industries including chemical, pulp and paper, mining, paints and pigments, municiple water and waste, oil production/ processing. As New Logic continues to increase the capabilities of VSEP, new applications and customers are continually being added.

New Logic International, 1295 Sixty-Seventh Street, Emeryville, CA 94608

Phone: (510) 655-7305, Fax: (510) 655-7307, E-mail: nli@vsep.com

Home | Intro | Technology | Operation | System | Applications | 8 Reasons | Company | Contact

INTEROFFICE MEMORANDUM

Date:

April 4, 2000

To:

Syl Losinski

From:

Jila Banaee

Subject:

Mercury Amalgamation

Enclosed is the information about mercury amalgamation by two commercial vendors, the ADA Technologies and Nuclear Fuel services, as requested. The information includes a description of the type of equipment used and the demonstration results for stabilization of elemental mercury.

Thanks.

Jila

News

ADA Technologies Names New Vice President of Technology Programs

ENGLEWOOD, Colo., March 23, 1999

– Marty Mastroianni has been named vice president of technology programs at ADA Technologies, Inc., where he will manage the technical staff and provide direction and assistance in business development, President Judy Armstrong announced. The full story

ADA Technologies Continues Development of Mercury Control Technologies ENGLEWOOD, Colo., March 23, 1999

-- Three mercury control technologies in various stages of development at ADA Technologies, Inc. hold promise for a number of commercial and government applications, according to the person in charge of business development for mercury technologies. <u>The full story</u>

Top of page

ADA Technologies *Tom Braderick of use 303-792-5615 • Corneg Glatzmaier grajegentzmina adatash. Som

RICK Words PINTEC.
Heis incombraced with ADA

John Leckey Do msg leckerjh Dy12. obe.gov 423-576-5605

The full story ...

ADA Technologies Continues Development of Mercury Control Technologies

ENGLEWOOD, Colo., March 23, 1999

Three mercury control technologies in various stages of development at ADA Technologies, Inc. hold promise for a number of commercial and government applications, according to the person in charge of business development for mercury technologies.

Brian Sperry, ADA's mercury business development manager, said the company has developed expertise in all areas of mercury control, including in air emissions, water and solid waste. In fact, he believes the "suite of capabilities" that has been created at ADA make it the preeminent mercury treatment technology company in the country today.

One technology developed by ADA uses a regenerable sorbent to remove vapor-phase mercury from gaseous waste streams generated when certain types of wastes are thermally treated or when coal is burned to generate power. The sorbent is undergoing field testing at a Department of Energy (DOE) plasma arc centrifugal treatment facility in Butte, Montana, and at a coal research and test facility in Pittsburgh, Pennsylvania.

"This technology can help operators of hazardous waste incinerators meet new regulations that are anticipated in the next couple of years that will require less mercury in their off gases, and it also could be of use to coal-fired power plants if clean air regulations take effect as anticipated," Sperry said.

A second mercury control technology has shown good results in field demonstrations at the Y-12 plant at Oak Ridge, Tennessee, where a unit has been removing soluble mercury in creek water to very low concentrations for more than 15 months. Potential customers for the sorbent-based technology include DOE facilities and any industry that has mercury in its wastewater, according to Sperry. ADA also has developed a method of removing mercury from the wastewater leaving dental offices that could be used by medical and other commercial laboratories.

To address another problem facing DOE, ADA has developed a process for stabilizing radioactively contaminated liquid mercury generated in past weapons production activities. The process, which combines a proven mercury stabilization method with a scaleable, economically viable mixing technology, stabilizes the mercury so that it can be disposed of in landfills for non-hazardous, low-level radioactive waste.

"ADA plans to team with waste treatment companies for stabilizing DOE mercury-containing waste using this method," Sperry said, adding that the technology appears to have a large potential market at DOE facilities.

Mercury Technologies

ADA Technologies, Inc. has a broad range of mercury measurement and control capabilities, and can help solve a variety of mercury contamination problems facing the government and private industry.

ADA, through its primarily government-funded research and development program, has developed a sorbent-based technology for removing mercury from air emissions and aqueous liquids, including wastewater. The company also has expertise in the stabilization of radioactively contaminated liquid

ADA currently offers technology solutions for mercury offgas and flue gas treatment, mercury capture and recovery from wastewater and mercury stabilization/amalgamation.

> Mercury Offgas/Flue Gas Treatment Mercury Stabilization/Amalgamation Mercury Capture and Recovery/Wastewater

Mercury Offgas/Flue Gas Treatment

ADA has developed a technology that uses a regenerable sorbent to remove vapor-phase mercury from gaseous waste streams generated when certain types of wastes are thermally treated or when coal is burned to generate power. The technology can help operators of hazardous waste incinerators meet new regulations that will require less mercury in their off gases, and it also could be of use to coal-fired power plants to dramatically reduce their mercury emissions.

Applications:

Coal-fired power plants

Medical incinerators

- Municipal solid waste incinerators
- Mixed waste incinerators

Lead and zinc smelters

Cement manufacturing operations

Chlor-alkali plants

Features:

- Continuous emissions monitor for mercury measurement
- Vaporizer for mercury injection

Bench-scale testing apparatus

Regenerable mercury removal process for field applications

Results:

Removal to less than 1 mg/m³ in high mercury environment (85,000 mg/m³)
 Effective in high SO₂, NO₂, H₂O, CO and CO₂ environments

Captures vapor-phase mercury on regenerable sorbent

Assures regulatory compliance (meets Environmental Protection Agency's proposed MACT control standards)

Generates minimal secondary waste

Mercury Stabilization/Amalgamation

To address a problem facing the U.S. Department of Energy (DOE), ADA Technologies, Inc. has developed a technology for stabilizing radioactively contaminated liquid mercury generated in past weapons production activities. The process combines a proven mercury stabilization method with a scaleable, economically viable mixing technology. In this process, radioactive waste mercury is mixed with sulfur and other materials in a commercially available pug mill, producing cinnabar – a stable mercury sulfide product that can be disposed of as non-hazardous, low-level radioactive waste. The process also is applicable to soil and sludges.

Applications:

- Environmental remediation at DOE facilities
- Nuclear medicine

Features:

- Converts waste mercury to a stable, non-leachable form suitable for disposal
 Treats mercury regardless of form or speciation
- · Satisfies Environmental Protection Agency's (EPA) definition of an amalgam

Results:

- Produces waste that passes the Toxicity Characteristic Leaching Procedure (0.20 mg/L)
- Produces waste that is no longer considered hazardous
- Minimizes mercury air emissions
 Produces a waste that is non-volatile

Benefits:

- Uses scaleable commercial equipment
- Cost effective
- Reliable
- Assures regulatory compliance
- Safe and easy operation

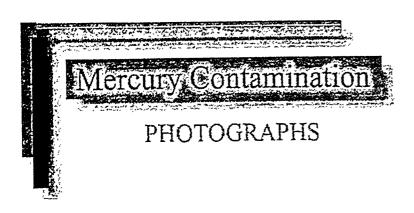
Mercury Capture and Recovery/Wastewater

ADA Technologies, Inc. has developed an effective method for removing mercury from water or aqueous products and recovering the mercury. The proprietary technology uses a sorbent to remove the mercury from the wastewater and recover it in a form suitable for further distillation and ultimate recycle. The company's capabilities range from removal of mercury from contaminated wastewater at former Department of Energy weapons-making operations to removal of waste amalgam from water leaving dental offices.

Applications:

- Dental and medical clinics
- Mining
- Chlor-alkali plants
- · Industrial wastewater
- Groundwater

Features:

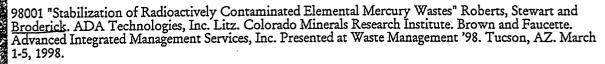

- Cleans contaminated wastewater to improve local water quality
- Captures soluble mercury on a regenerable sorbent

Results:

- Reduced soluble mercury from 1,000 parts per trillion (ppt) to <12 ppt in tests at the Y-12 plant at Oak Ridge, Tennessee
- Reduced soluble mercury in testing at dental clinics

Benefits:

- Provides effective, low-cost method of removing even very low concentrations of mercury from waste streams
- Generates minimal secondary waste
- · Simple process that allows sorbent bed to be thermally regenerated and reused



Publications

<u>1998</u> <u>1997</u> <u>1996</u> <u>1995</u>

98002 "Monitoring HC1 and C1₂ in Flue Gas Using a Real-Time Analyzer" Schlager, Sappey, Hill and Sagan. ADA Technologies, Inc. Presented at the Air & Waste Management Association's 91st Annual Meeting & Exhibition. San Diego, CA. June 14-18, 1998.

98003 "Removal of Mercury from Contaminated Groundwater to Part Per Trillion Levels" Stewart and Roberts. ADA Technologies, Inc. Presented at the Air & Waste Management Association's 91st Annual Meeting & Exhibition. San Diego, CA. June 14-18, 1998.

98004 "Monitoring Beryllium During Site Cleanup and Closure Using a Real-Time Analyzer" Schlager, Sappey and French: ADA Technologies, Inc. Presented at the Air & Waste Management Association's 91st Annual Meeting & Exhibition. San Diego, CA. June 14-18, 1998.

98005 "Removing and Recovering Mercury from Off-Gases of Thermal Treatment Processes" Roberts, Broderick and Stewart. ADA Technologies, Inc. Presented at the Air & Waste Management Association's 91st Annual Meeting & Exhibition. San Diego, CA. June 14-18, 1998.

98006 "Determination of Dry Carbon-Based Sorbent Injection for Mercury Control in Utility ESP and Baghouses" Broderick and Haythornthwaite. ADA Technologies, Inc. Bell, Selegue and Zuber. TDA Research, Inc. Perry. Flue Gas Cleanup Chemistry, Department of Energy, FETC. Presented at the Air & Waste Management Association's 91st Annual Meeting & Exhibition. San Diego, CA. June 14-18, 1998.

98007 "COHPAC as an Air Pollution Control Option at Hudson Unit 2: A Case Study" Waugh. Public Service Electric & Gas Company. Haythornthwaite. ADA Technologies, Inc. Chang. EPRI. Bustard. ADA Environmental Solutions, LLC. Presented at the Air & Waste Management Association's 91st Annual Meeting & Exhibition. San Diego, CA. June 14-18, 1998.

98008 "Evaluation of Carbon Injection for Mercury Control at Coal-Fired Power Plants" Haythornthwaite, Smith and Ruhl. ADA Technologies, Inc. Fox. New Century Energies. Hunt. Utility Engineering. Chang. EPRI. Brown. FETC Contracting Officer Representative. Presented at the DOE Advanced Coal-Based Power & Environmental Systems '98 Conference. Morgantown, WV. July 21-23, 1998.

Publications -- 1997

97017 "Mercury and Acid Gas Control in Utility baghouses through Sorbent Injection - Pilot-Scale Demonstration" Waugh, Jensen, Lapatnick, Gibbons. Public Service Electric and Gas Company (Newark, New Jersey). Haythornthwaite, Sjostrom, Ruhl, Slye. ADA Technologies, Inc.

97016 "Recovery of Mercury from Contaminated Primary and Secondary Wastes" Stewart, Roberts. ADA Technologies, Inc Presented at the Industry Partnerships to Deploy Environmental Technology Meeting. Morgantown, WV. October 21-23, 1997.

97015 "Mercury Control in Utility ESPs and Baghouses through Dry Carbon-Based Sorbent Injection Pilot-Scale Demonstration" Waugh, Jensen, Lapatnick, Gibbons. Public Service Electric and Gas Company (Newark, NJ). Sjostrom, Ruhl, Slye. ADA Technologies, Inc. Chang. Electric Power Research Institute. Presented at the EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium. Washington, DC. August 25-29, 1997.

97014 "Sodium Sorbents for SO₂ Trim in High-Ratio Baghouses" Sjostrom, Butz. ADA Technologies, Inc. Bustard. ADA Environmental Solutions, LLC. Chang. Electric Power Research Institute. Presented at the EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium. Washington, DC. August 25-29, 1997.

97013 "Experience with Combustion Tuning and Fuel System Modifications to Inexpensively Reduce NO_x Emissions from Eleven Coal-Fired Tangential Boilers" Mazzi. Levelton Engineering. Haythornthwaite. ADA Technologies, Inc. Presented at the EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium. Washington, DC. August 25-29,

STABILIZATION OF RADIOACTIVELY CONTAMINATED ELEMENTAL MERCURY WASTES

Daryl Roberts, Robin Stewart, Tom Broderick

ADA Technologies, Englewood, CO 80112

John Litz

Colorado Minerals Research Institute, Golden, CO 80403

Cliff Brown, Andrea Faucette

Advanced Integrated Management Services, Inc., Arvada, CO 80002

ABSTRACT

ADA Technologies and its subcontractors, Colorado Minerals Research Institute (CMRI) and Advanced Integrated Management Services, Inc. (AIMSI), have demonstrated the amalgamation of both "ordinary" elemental mercury and radioactively contaminated elemental mercury in batch sizes up to 75 pounds (2.5 liquid liters) using sulfur in a conventional pug mill mixer. The process satisfies the Environmental Protection Agency's definition of amalgamation as given in 40 CFR 268.42, Table 1. After developing the technology with ordinary mercury, we have demonstrated the technology by conducting treatibility studies on wastes provided by the Los Alamos National Laboratory. To date, three separate batches of LANL waste have been processed, a total of 185 pounds. The extent of conversion of mercury to HgS was over 99.92% for each batch, and each batch passed the Toxic Characterization Leach Procedure (TCLP) test for leachable mercury.

This paper describes demonstration results of a novel process for stabilizing radioactively-contaminated elemental mercury with sulfur. The process combines a proven mercury stabilization method with a scaleable, economically viable mixing technology. Waste mercury is mixed with sulfur in a commercially available pug mill, producing a stable mercury sulfide product. The pug mill is uniquely suited to the process since residence time can be controlled to ensure complete reaction. Also, contamination control requirements for dealing with mixed waste can readily be implemented for the process. The paper describes the treatment of radioactivelycontaminated mercury wastes from three U.S. Department of Energy (DOE) sites. One of the major test objectives described in the paper is a determination of whether leachable mercury in the product is below the 0.20 mg/l treatment standard based on the Toxicity Characteristic Leaching Procedure (TCLP). Another major test objective is a determination of whether the mercury vapor pressure above the product is below 50 μg/m³. This concentration is the OSHA eight-hour worker exposure limit for mercury. When the product's vapor pressure for mercury is below 50 µg/m³, then the workers themselves are exposed to even less concentration of mercury, helping to ensure their safety.

The process described in this paper is readily scaleable to easily match the treatment needs at individual DOE sites. The product passes TCLP treatment standards and meets

vapor pressure requirements described in the "Technology Deficiency Requirements Document" published by the Mixed Waste Focus Area. It also satisfies the Environmental Protection Agency's definition of an amalgam as given in 40 CFR 268.42, Table 1, satisfying disposal requirements as defined in RCRA. The paper includes an overview of the DOE radioactively-contaminated mercury problem, a process description, experimental results, a life cycle cost analysis, and recommendations for implementing the process for routine waste treatment operations.

INTRODUCTION

Mercury and mercury-contaminated wastes are some of the more pervasive and troublesome wastes in the inventory of DOE legacy waste materials. Most of the larger DOE sites have radioactively-contaminated liquid, elemental mercury in their mixed waste inventories. Complex-wide, there are approximately 16.5 m³ (500,000 pounds) of elemental mercury in the legacy waste and about 0.2 m³ (5,700 pounds) per year generated at the Savannah River Site (Petersell, 1998).

The Environmental Protection Agency (EPA) specifies amalgamation as the treatment method for radioactively contaminated elemental mercury. Although the chemistry of amalgamation is settled, the practical engineering of a sizable amalgamation process is not settled (e.g., Gorin, et al., 1984; Tyson, 1992). A process that will serve the DOE need must process at least approximately two to three liters of mercury (50 to 100 pounds) per batch since even at this scale, treating the entire DOE inventory would require approximately 5,000 batches (one batch per day for over ten years, seven days per week).

Before funding work in this area, DOE's Mixed Waste Focus Area established a Technology Deficiency Requirement Document (TDRD) with the following criteria for a successful mercury amalgamation process:

- 1) the process must meet EPA's definition of an amalgam given in 40 CFR 268.42, Table 1;
- 2) the waste form must pass EPA's 0.2 mg/L treatment standard based on TCLP so as to allow the waste form to be disposed in a subtitle D landfill;
- 3) the mercury vapor concentration above the waste form must be less than 50 $\mu g/m^3$;
- 4) the process must be readily scalable; and
- 5) the process must be economically viable.

ADA Technologies, Inc., and its subcontractors, Colorado Minerals Research Institute (CMRI) and Advanced Integrated Management Services, Inc. (AIMSI) have demonstrated the amalgamation of both "ordinary" elemental mercury and radioactively-contaminated elemental mercury in batch sizes up to 75 pounds (2.5 liquid liters) using sulfur in a conventional pug mill mixer. After developing the technology with ordinary mercury, we have demonstrated the technology by conducting treatibility studies on

wastes provided by the Los Alamos National Laboratory. To date, three separate batches of LANL waste have been processed, a total of 185 pounds. The extent of conversion of mercury to HgS was over 99.92% for each batch, and each batch passed the Toxic Characterization Leach Procedure (TCLP) test for leachable mercury. We are confident that the process meets the first two, and the only regulatory, requirements set by the MWFA.

Because we have used conventional mixing equipment to accomplish the amalgamation, the process is both scaleable and economical (requirements number 4 and 5). We have yet to perform the mercury vapor pressure tests, but we expect that our process will meet this requirement also.

The following sections describe the process, testing with ordinary elemental mercury, the treatibility tests with the LANL waste, and an approximate economic evaluation of the process:

DESCRIPTION OF PROCESS

We mix the liquid mercury with sulfur in a conventional mixer known as a pug mill. Pug mill mixers are commonly used in metallurgical and chemical operations where intense mixing of pasty material is required. Tens of thousands of such systems are utilized industrially today. Examples of common pug mills are the Rietz thermal screw, the Holoflite dryer, and the Bethlehem Porcupine Processor. The Holoflite dryer has been used to make sulfur polymer cement in tests at DOE's Idaho National Laboratory (Darnell, et al., 1992). Others have been used to stabilize RCRA wastes (e.g., Barth, 1990; Trezek, 1992). Manufacturers of pug mills for chemical stabilization of contaminated soils and sludges include Portec Chemical Processing Products (Yankton, SD), Pugmill Systems, Inc. (Columbia, TN), and Excel Machinery Company (Amarillo, TX). A brief description of these types of mixers and their relationship to other industrial mixers can be found in Kirk-Othmer's encyclopedia (Faulkner and Rimmer, 1995).

We used a small, dual shaft mixer that accommodates approximately 2 ft³ of material (Figures 1 and 2). This mill is three feet long and has a one-foot square cross section. Its blades are 5.5" long. A liner was placed in the pug mill to reduce the dead volume beneath the blades. The typical rotation speed of the pug mill blades is 50 RPM. This size of pug mill accommodates the desired full-scale processing rate of 100 lb in an eight-hour shift with no difficulty.

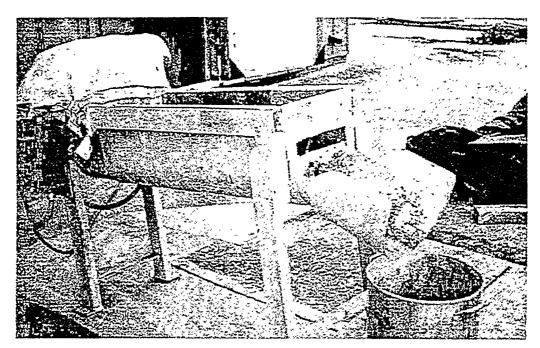


Figure 1 – Side View of Pug Mill

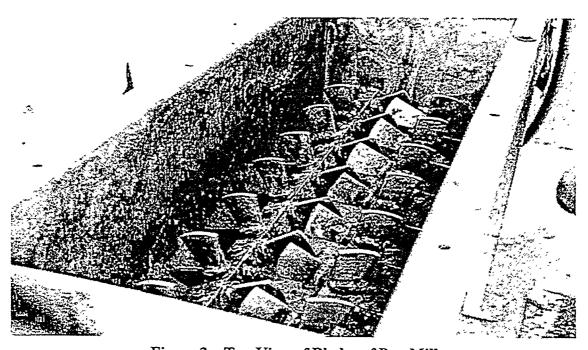


Figure 2 – Top View of Blades of Pug Mill

The basic process involves adding sulfur to the pug mill first, then pouring in the mercury. The mixing and reaction are followed by monitoring the mixture temperature and periodically taking samples for analysis. Mixing is concluded when the reaction exotherm subsides and the free elemental mercury analysis indicates that over 99.9% of the mercury has reacted. The details of the process are the subject of a patent application.

SURROGATE WASTE TEST RESULTS

The reactions of mercury with a variety of amalgamating agents are exothermic and, in principle, should proceed at room temperature. In practice, the mixing of the mercury with the amalgamating agent is the principle difficulty to overcome. Nearly 100% extent of reaction can be achieved when small quantities of mercury, approximately 10 cm³ or less, are reacted in the laboratory with conventional shakers or manual stirring. However, with the quantities of liquid, elemental mercury waste in the DOE complex, batch sizes of approximately two to three liters will be the required to allow the DOE inventory to be processed in a reasonable time.

Therefore, our goal in working with "surrogate waste" (that is, ordinary elemental mercury) was to learn to conduct the mixing of two to three liters of mercury with sulfur in conventional mixing equipment. Working with a conventional mixer was an important part of our process development strategy so that we would be confident in our ability to scale-up the process.

Through a variety of testing in the laboratory, we found an inability to react mercury with sulfur beyond about 50% extent of conversion. We then added a sulfur-containing liquid to the mixture and were able to achieve up to 98.8% extent of reaction of the mercury.

In working with the pug mill and 30 pounds of mercury, we were able to achieve 99.9% extent of conversion of the mercury, but the TCLP results were in the range of 1.2 mg/L to 2.6 mg/L, well above the statuatory limit of 0.2 mg/L. Only when we further added sand to the mixture were we able to achieve more than 99.9% extent of reaction, and then the TCLP results were consistently below 0.1 mg/L. During this work with the pug mill, we found physical forms of sulfur that worked and did not work, quantities of sulfur-containing liquid that worked and did not work, and quantities of sand that worked and did not work. The resulting formulation and processing conditions form the basis of our patent application.

The key results, however, of the "ordinary" mercury tests are that we achieve above 99.9% extent of reaction of the mercury with the sulfur, and we achieve a leachable mercury concentration below the TCLP limit of 0.2 mg/L.

TEST RESULTS WITH RADIOACTIVELY CONTAMINATED MERCURY

We received 242 pounds (110 kg) of contaminated, waste mercury from Los Alamos National Lab. The shipment came from Los Alamos in a 40-gallon carbon steel drum.

Inside the drum were five two-liter steel flasks, each of which were roughly full with mercury. The radioactivity level of the mercury was quite low, and in fact no radioactivity was detected with a standard gamma scan.

To date we have treated 185 pounds of this waste in three separate batches weighing 50 pounds, 62 pounds, and 73 pounds. At the end of each treatment, we determined the mass concentration of the unreacted mercury. The extents of reaction (1 minus the free mercury, expressed as a percentage) in these batches were 99.963%, 99.951%, and 99.922%, respectively. The TCLP testing with each batch showed less than 0.1 mg/L of leachable mercury.

We have one 57-pound batch remaining of the Los Alamos waste in the treatibility study. We have also received a 55-pound batch of waste mercury from the Fernald site. The last Los Alamos batch and the Fernald batch will finish our treatibility study.

ECONOMIC EVALUATION OF PROCESS

Capital equipment costs and operational costs for a full-scale facility were evaluated as part of this study to determine the treatment cost for the process. The basis for this evaluation was a facility designed to treat 50 gallons of waste mercury per year with a life cycle of 10 years. The throughput of the waste facility was based on a projected annual production rate of mercury waste. Waste transportation and disposal costs were not included in the present value life cycle cost for this facility.

Mixing equipment for a full-scale operation would be large enough to process the waste mercury in 40 kilogram batches compared to the 25 kilogram batch size used in the surrogate tests. Larger batch size would be required in order to process 50 gallons of mercury per year with a limited staff. Other equipment would be needed to support the operation which would include safety equipment, such as radiation and mercury monitors, eyewash/shower station, and scales to weigh process materials and drums with treated waste. Laboratory equipment would also be required to perform analytical procedures during the waste processing operation.

The costs associated with the installation of the process equipment, and process materials such as piping and ductwork, electrical, insulation, process structural, and instrumentation were not directly costed but estimated using a method presented by Perry. The method uses average percentages for direct and indirect construction costs based on data from over 200 chemical process capital projects. On average, the process equipment and process materials costs were found to be 33% and 16% of the total installed facility cost, respectively. Labor for process equipment and materials installation is about 13% of installed costs.

Annual maintenance costs were also estimated using recommendations by Perry, which suggests that the maintenance cost be based on a fixed percentage of the captial equipment costs. Capital equipment include the process equipment and process materials. In general, maintenance should be a minimum of 4 percent per year of the

capital equipment cost for chemical processing equipment. Maintenance costs would include the material, installation, and overhead costs.

Labor costs were estimated based on a three person staff. The staff would be required to perform the operational, analytical, and clerical functions associated with the process. Direct labor, materials and supplies, subcontracted analytical costs, as well as the indirect costs were included in the operating costs for this process. Materials and supplies were determined on a per batch basis, which assumed the facility would treat 25 waste streams per year, each consisting of two gallons of mercury, there would be a total of 112 batches per year. The annual analytical costs were determined based on the number of waste streams. These cost included characterization tests of the wastes to document that the waste passed TCLP for mercury and cost of swipe tests to certify cleanliness of the process equipment.

Operating costs for the process were escalated at a rate of 3.5% per year over the life of the project. The present value of each year's operating costs were totalled and added to the construction costs of the facility for the overall present value of life cycle costs. Treatment cost for the stabilization process was estimated to be \$5,500 per gallon of waste mercury, or \$110 per kilogram of mercury.

CONCLUSIONS

REFERENCES

Barth, E. F., "The SITE Demonstration of the CHEMFIX Solidification/Stabilization Process at the Portable Equipment Salvage Company Site," J. Air Waste Man. . Assn., 40, 166-70 (1990).

Darnell, G. R., W. C. Aldrich, J. A. Logan, "Full-Scale Tests of Sulfur Polymer Cement and Non-Radioactive Waste in Heated and Unheated Prototypical Containers," EG&G Report Number WM 10-109, February 1992.

Faulkner, B. P., H. W. Rimmer, "Size Reduction," in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley and Sons, 3rd edition, Vol. 21, pp. 132-163 (1995).

Gorin, A. H., J. H. Leckey, L. E. Nuff, "Final Disposal Options for Mercury/Uranium Mixed Wastes from the Oak Ridge Reservation," report number Y/DZ-1106, prepared by the Oak Ridge Y-12 Plant under contract DE-AC05-84OR21400, August 29, 1984.

Perry, R. H., C. H. Chilton, "Chemical Engineer's Handbook", 5th Ed., p 25-16 (1973).

Trezek, G. J., "Remediation of Heavy Metals in Soils and Sludges," presented at Annual Meeting of the Society for Mining, Metallurgy, and Exploration, Phoenix, AZ, February 24-27, 1992.

Tyson, D. R., "Treatability Study for the Amalgamation of a Radioactively-Contaminated Elemental Mercury Waste at the Idaho National Engineering Laboratory," presented at Second International Mixed Waste Symposium, Baltimore, MD, August 16-20, 1993; also EG&G Internal Report Number EGG-WMO-10392, 1992.

ACKNOWLEDGEMENTS

The tests of the radioactively-contaminated mercury were funded by Lockheed Martin Energy Systems under subcontract 1GX-05496. The test of the surrogate mercury wastes were funded by ADA Technologies.

The authors wish to acknowledge the active participation of the Mercury Working Group headed by Mr. Tom Conley of the Oak Ridge National Lab in pushing hard to develop technologies that will treat real wastes in the DOE Complex. We also wish to thank Mr. Chris Duy at the Los Alamos National Lab and Mr. Al Schmidt at the Fernald site for their diligent assistance in coordinating the transfer of the radioactively-contaminated mercury to CMRI for the treatibility studies.

WHITE PAPER THE NFS MERCURY MIXED WASTE TREATMENT PROGRAM

Nuclear Fuel Services, Inc. (NFS) provides treatment technology for converting mercury mixed wastes typically found at Federal facilities to non-hazardous waste forms that fully achieve disposal criteria. NFS has permitted and operated a mercury mixed waste treatment facility at its Erwin, TN site that recently achieved a significant milestone - conversion of production-generated mercury mixed waste to a non-hazardous waste form!

To supplement current expertise, NFS is developing new and improved technologies for mercury mixed waste treatment. In support of these development programs, NFS operates fully licensed treatability, development, and radio-analytical laboratories in Erwin, Tennessee. NFS performs both bench and pilot scale testing of new treatment technologies. The NFS laboratories operate under the treatability exemption limit of 10,000 kg for hazardous materials, a limit which has recently been accepted by the State of Tennessee.

The following describes NFS applied technologies for treating mercury mixed wastes to produce non-hazardous, disposable waste forms.

Mercury Stabilization

NFS constructed, permitted, and operated a treatment system based on proprietary technology to convert mercury-contaminated solid waste materials containing low levels of mercury to non-hazardous waste forms. Using this system, NFS recently converted 1800 ft³ of mercury mixed waste trash and debris contained in 249 drums to 900 ft³ of non-hazardous waste form contained in 125 drums. The final waste form produced by the NFS system was a solid material that achieved the 0.2 mg/L Toxicity Characteristic Leach Procedure (TCLP) limit for mercury. This system includes operations for material pre-processing, ventilation, process monitoring, and is fully supported by professionals versed in health/safety, licensing, and permitting issues. Furthermore, this system was designed to accept feed materials that contain enriched uranium.

This system will be used to process other Federal and commercial mixed wastes. The NFS mercury mixed waste treatment process is briefly described in the VISITT III database provided by the Environmental Protection Agency (EPA).

NFS has also validated technology for treating aqueous and organic-bearing mercury solutions contaminated with trace levels of tritium. The waste stream tested was from the Martin Marietta Specialty Components (MMSC), Inc., Pinellas Plant, in Largo, Florida. The mercury treatment process selected for this study was demonstrated to be effective for the mercury-bearing solutions. Both the aqueous and organic phases of the treatability samples were treated to produce test filtrates containing 0.02 mg/L mercury and solid residues having TCLP leachate mercury concentrations averaging 0.003 mg/L. This result is nearly three orders of magnitude less than the RCRA treatment standard of 0.2 mg/L mercury in a TCLP leachate. An additional advantage of the process is that it produced a solid, free-standing waste form with good handling and storage characteristics.

Mercury Amalgamation

NFS has developed proprietary technology to stabilize materials containing a high concentration of mercury to produce final waste forms that are non-hazardous. As part of a technology validation effort, NFS successfully completed two technology validation studies on two different waste streams.

NFS completed a validation study on elemental mercury contaminated with low levels of tritium. The waste stream tested was from the Martin Marietta Specialty Components (MMSC), Inc., Pinellas Plant, in Largo, Florida. This study successfully demonstrated the effectiveness of the amalgamation treatment process to immobilize elemental mercury to meet the treatment standard for D009 wastes. The amalgam produced in proving tests using two kilograms of elemental mercury had TCLP leachate mercury concentrations averaging 0.06 mg/L.

NFS can demonstrate the amalgamation process on liquid mercury wastes using a proprietary mixing and blending method. A scaleup process can be implemented for this application.

Fernald Mercury Treatment Validation Studies

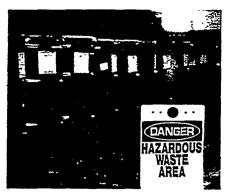
NFS continues to validate its mercury treatment technology on a variety of mercury bearing wastes from FERMCO, including elemental mercury, batteries, contaminated debris, asbestos, water, salts, light bulbs, spill cleanup fluid. This work is in progress as of February, 1996.

Mercury Separation and Removal

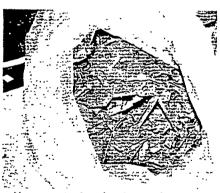
To broaden our program applicability, NFS has initiated development of a low-temperature (<80°C) process which extracts and concentrates mercury into a small volume for disposal or reuse, converts the resulting sludge or soil matrix to a stabilized non-RCRA waste form, and recovers chemical reagent for reuse. NFS believes that this process offers advantages compared to current treatment schemes which do not provide for a final non-RCRA waste form. This process also has applicability to extracting mercury from high level waste prior to vitrification.

High Efficiency, Regenerable Mercury Filter

NFS, as part of our Mercury Abatement Program, is evaluating new adsorbents for efficiently capturing flue gas mercury evolved from nuclear systems. These adsorbents appear to offer nearly maintenance-free operations and can be regenerated several times, greatly reducing the volume of residual waste due to filter discard. The substrate also appears to have a high efficiency under elevated temperature conditions.


Publications

NFS technology is proprietary, therefore technical publications and conference presentations have not been pursued. NFS-ARS technical personnel have presented a poster paper on mercury amalgamation and stabilization studies at the Waste Management 94 Conference in Tucson, Arizona.


Effective RCRA Metals Remedi

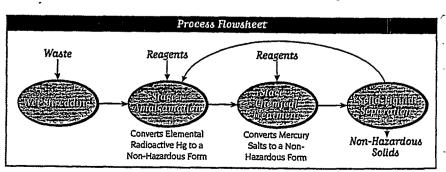
RCRA metals are a serious environmental concern to government and industry.

Mercury-contaminated equipment before treatment

Mercury-contaminated equipment after treatment

Treated elemental mercury

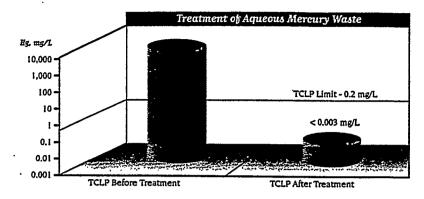
The remediation of mixed and other wastes containing hazardous metals is one of the most challenging problems in government and industry today. Until recently, remediation of wastes containing mercury, cadmium, lead and arsenic metals was limited to principally high-temperature desorption, a costly and equipment-intensive method. Today, a pioneer of the nuclear industry offers an effective, ambient-temperature solution to a host of RCRA-regulated metals.


A TRUE SOLUTION... FROM A TRUE PIONEER

Nuclear Fuel Services, Inc. (NFS) was a pioneer in the development and manufacture of specialty nuclear fuels for the U.S. Navy, Department of Energy and commercial power reactors business. Today, NFS remains as America's sole source of fuel for the U.S. Navy's nuclear fleet and as the source for innovative technologies in environmental remediation. The DeHgSM (pronounced de-merc) process was originally intended for the conversion of mercury-contaminated laboratory wastes which also contained highly enriched uranium. This proprietary technology has proven to be effective in permanently resolving a myriad of mercury-contaminated wastes in various forms. The process can render many RCRA-regulated metals non-hazardous.

SAFE, EFFECTIVE... THE RIGHT CHOICE FOR RCRA METALS

The DeHgSM process begins with the sorting and shredding of waste materials. The shredding increases the surface area of the waste to maximize contact with proprietary reagent chemicals. Shredded waste is slurried with water then mixed with reagents to immobilize the RCRA metal.


The slurry is later dewatered and packaged for shipment to a licensed landfill for disposal. TCLP concentrations for leachate metals, such as mercury, are typically < 0.05 mg/L, which is safely below the RCRA treatment standard of 0.2 mg/L. The filtrate from this process, which can be recycled, also achieves wastewater discharge criteria.

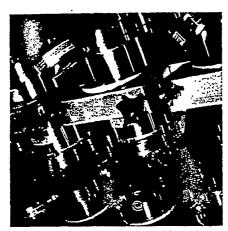
tion...Without Thermal Processing

DeHgsM also works well for complex forms of mercury as well as organic-bearing mercury wastes. DeHgSM treatment on actual organic-bearing mercury waste has produced filtrate typically <0.02 mg/L metals and solid residues with a TCLP concentration of < 0.003 mg/L.

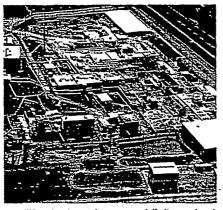
The process has been successfully applied to dry active wastes, metallic wastes, sludges, soils, pumps, switches,

thermometers, elemental mercury and other waste matrices with varying initial concentrations of mercury from elemental to a few ppm. The process runs at ambient temperature, is relatively easy to operate and generates no mercury vapors.

PROVEN...TIME AND TIME AGAIN


The value of the innovative DeHgSM process is especially clear in the remediation of mixed wastes containing both radioactive and hazardous metals. An example is in the use of the process in remediating nearly 2,000 cubic feet of mixed wastes stored in 249 drums. The wastes included: mercury-contaminated laboratory trash, solidified mercuric thiocyanate, elemental mercury, insulation and miscellaneous trash, all of which also contained small quantities of uranium.

Due to the wide range of waste forms, sorting was conducted prior to shredding, slurrying and treatment. The DeHgSM process reduced the number of hazardous mixed waste drums from the original 249 to 122, a 50% volume reduction. The process offered a final package which was one-half the original volume and was no longer


classified as hazardous
waste...providing substantial cost
savings for future handling and
burial. Additionally, the 249 drums
originally classified as mixed
waste were completely eliminated.

Waste Description	Hg Chemical Form	TCLP Initial	TCLI Final
		mg/L	mg/L
Liquid Mercury	Elemental	60	0.06
Aqueous Mercury	Ionic	3000	<0.01
Thiocyanate Waste	Complexed	1	< 0.02
Hoses	Elemental	N/A	<0.01
Trap Water/Oil	Elemental	N/A	<0.01
Trap Sludge	Elemental	N/A	<0.01
Sink Traps	Elemental	N/A	< 0.20
Plastic	Elemental	N/A	< 0.02
Spill Cleanup Solids	Elemental	N/A	< 0.04
Insulation	Elemental	N/A	< 0.02
Spent Carbon Filters	Elemental	N/A	<0.01
Fluorescent Tubes	Elemental	0.3	< 0.04
Scrap Saits	Elemental, Ionic	2 .	< 0.02
Floor Tile	Elemental	N/A	< 0.04
Soil	Elemental	0.9	<0.01
Metal Tubing	Elemental	N/A	<0.10
Oil	Organic, Elemental	0.9	< 0.04
Mercury Switches	Elemental	N/A	< 0.04
Broken Thermometers	Elemental	N/A	< 0.03
Misc. Treatment Waste	Elemental, Ionic	0.2-0.3	< 0.05

NFS Mercury MxW Treatment Projects using DeHg"			
• LMSC Pinellas	Hg(1) w/H-3	1993	
 LMSC Pinellas 	Hg(aq), w/Organic	1994	
• Thermal Desorp.	Hg(1), Hg Salts in Condensate	1994	
• FERMCO	Hg(1), Debris w/Elem., Hg Salts	1995	
• NFS	Debris, Hg Thiocyanate w/U	1995	
• LMUS/USEC	Hg(1), Debris w/Elem., Hg Salts	1996	

TCLP Rotary Extractors are part of the analytical equipment utilized by NFS to ensure compliance of regulatory standards.

NFS maintains and operates a fully licensed and permitted facility in Erwin, TN.

DeHgSM... THE POSSIBILITIES ARE ENDLESS

The remediation of mercury is just one of the many permanent solutions which the DeHgSM process offers. The process can stabilize and render non-hazardous a myriad of RCRA-regulated metals, including, but not limited to, lead, silver and cadmium.

NFS scientists can perform treatability studies of your waste to determine the applicability of the DeHgSM process.

FLEXIBLE TREATMENT OPTIONS

Whether you prefer that your RCRA metals be treated and shipped from your site, or shipped to our licensed and permitted TSD facility in Tennessee, the response to your waste challenge will be met with a fast and flexible response. NFS maintains a qualified and experienced staff of professionals to serve you with a safe, cost-effective solution which will permanently resolve your RCRA metals challenge.

FOR A FREE RCRA METALS CONSULTATION, CONTACT:

Mr. Stephen M. Schutt, Nuclear Fuel Services, Inc.

3945 Holcomb Bridge Road, Suite 202, Norcross, GA 30092

Tele: (770) 447-6956 • Fax: (770) 662-8415

Web: http://www.atnfs.com

Mr. David Wise, Nuclear Fuel Services, Inc.

1205 Banner Hill Road, Erwin, TN 37650

Tele: (423) 743-1795 • Fax: (423) 743-0140

Web: http://www.atnfs.com

March 17, 1997

Ms. Kathleen M. Gatens Lockheed Idaho Technologies Company P. O. Box 1625 Idaho Falls, ID 83415-3521

Reference:

- 1. Solicitation CBD 063, Treat and/or Dispose Of Mercury Contaminated Water
- 2. Solicitation CBD 064, Transportation of Mercury Contaminated Water

Dear Ms. Gatens:

Nuclear Fuel Services, Inc., (NFS), would like to express its interest in the referenced Solicitations. NFS operates a RCRA permitted treatment facility for D009 (mercury wastes) at its Erwin, Tennessee, facility. The facility is also licensed by the State of Tennessee and the Nuclear Regulatory Commission for a wide range of radiological materials. Our facility also incorporates a State of Tennessee permitted Wastewater Treatment Facility. Additionally, NFS operates two (2) NRC licensed tank trucks which have been previously used to safely transport a wide variety of radiologically contaminated solutions.

NFS has successfully performed mercury treatment and treatability work for many Lockheed Martin Companies, including LMSC Inc. (Pinellas) and LMUS Inc. at both Portsmouth, Ohio, and Paducah, Kentucky. We were also recently awarded a technology demonstration contract by LMER Inc. and the Mixed Waste Focus Area for our DeHgsm process for elemental mercury amalgamation. I am enclosing materials to demonstrate our capabilities in this area:

- 1. Information Package on NFS Mercury Capabilities,
- 2. State of Tennessee Radiological License,
- 3. Nuclear Regulatory Commission Category I License, and
- 4. Letter from State of Tennessee modifying NFS RCRA Part B Permit for D009 (Mercury Mixed Wastes).

Ms. Kathleen M. Gatens Page 2 March 17, 1997

NFS looks forward to assisting you with the transportation and treatment of this waste. Please call me at 1-423-743-1795 with any questions you may have.

Sincerely,

NUCLEAR FUEL SERVICES, INC.

R. David Wise

Director - Business Development

Enclosure

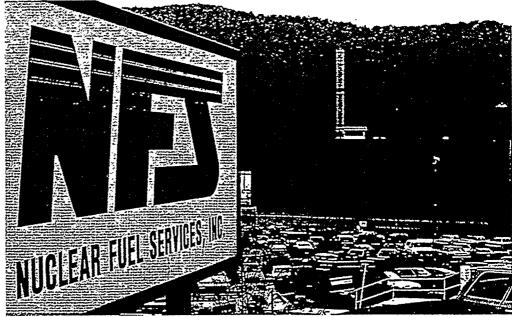
NNOVALON

Volume 5. Winter 1997

Proprietary
HEU downblending
technology receives
U.S. patent

Innovative process a key resource to DOE remediation effort

The last day of 1996 marked an important milestone that will offer cost savings to the Department of Energy for years to come.


December 31, 1996, marked the issuance of a U. S. Patent for NFS' proprietary high-enriched uranium (HEU) downblending process.

NFS has been a proponent of downblending as the solution for many of the DOE's current challenges. By converting stockpiles of HEU material into low-enriched uranium (LEU) materials for

continued on page 2 see Patent

NFS at work on landmark HEU recovery project for DOE

The project marks the restart of NFS' fuel-processing operations.

NRC approves start-up of NFS' HEU processing

The commercial recovery and processing of DOE-owned weapons-grade highly enriched uranium (HEU) is now under way. NFS, a subcontractor on the project, is converting the highly enriched material into a stable oxide at NFS' Erwin, Tennessee, facility.

The effort involves the removal and conversion of several thousand liters of highly enriched uranyl nitrate (HEUN) solution once used in critical experiments. By removing the HEUN from its site, the DOE will reduce the costs of facility maintenance and HEUN surveillance activities.

The HEUN material entered NFS' highly enriched fuel recovery facility (HEURF) on January 24 following a thorough review of safety and operational readiness by NFS and officials from the Nuclear Regulatory Commission.

The recovery and conversion project has been under way since the multi-million dollar project was awarded to NFS in April 1995. Prior and subsequent to the contact signing, NFS personnel helped to develop the engineering design package, work plan and procedures, nuclear materials safety limits, and other support work necessary for full project activation. In December 1995, refurbishment of NFS' HEURF began to allow input of the HEUN. In addition to equipment installation, the refurbishment effort included preparation of design documents describing the

work and quality assurance (QA) oversight of the procurement and installation

The conversion of material into a stable oxide is scheduled to be complete by mid-1997.

In its history, NFS has processed a variety of HEU materials.

Patent, continued from page 1

peaceful purposes, the high cost of safeguarding and storing HEU can be lifted from the responsibility of the DOE.

The patent involves the conversion or downblending of feed material to a blend product which contains fissionable components in such dilute conditions that self sustaining fission reactions cannot coccur." The technology offers a fail-safe system for the downblending of material (e.g., HEU, plutonium) which is not dependent on the functioning of electronic controls or structural devices.

The technology is the comerstone of NFS' efforts to offer the process to the DOE. More than 200,000 kilograms of HEU are currently the responsibility of the DOE. By downblending the HEU, a more stable and more useful LEU product can be offered as feed stock for commercial power reactor fuel.

As early as 1991, NFS and its partner AlliedSignal approached both U.S. and Russian government officials regarding the process. The U.S. Enrichment Corporation (USEC) later signed an agreement with the Russian government to purchase HEU and downblend the material in the U.S. The USEC would be the contracting agency for both U.S. and Russian HEU material downblending domestically.

NFS submitted the patent application in January 1995. The company will maintain exclusive rights to the technology for the next 18 years. NFS is currently utilizing the technology on several DOE projects.

HEU scrap aluminum project work to begin

NFS maintains an NRC Category 1 license for processing of HEU at its Erwin, Tennessee, facility.

Recycle project to generate purified material

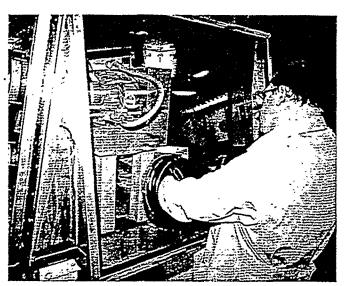
Preparations are under way to initiate processing of 400 kilograms for highly enriched uranium-aluminum scrap at Nuclear Fuel Services' Erwin, Tennessee, facility. The project will provide the Department of Energy (DOE) with oxide for feed stock material for low-enriched downblending or other department needs. NFS was the successful bidder on the contract offered by the DOE's Central Scrap Management Office (CSMO) in Oak Ridge.

"NFS is one of only two commercial facilities in the nation authorized by the DOE for this type of project by the CSMO," said Norm Brandon, NFS Director of HEU Programs. "NFS has been awarded a one-year contract by the CSMO for similar upcoming projects

with four one-year renewal options."

The scrap, primarily uranium-aluminum metal shavings and floor sweepings from fabrication activities at the DOE's Savannah River Plant, will undergo solvent extraction processing at NFS. The process will convert the material to an oxide, which will be returned to Oak Ridge for eventual sale or downblending of up to 2,000 kilograms of low-enriched materials for use in commercial nuclear reactors.

Processing is expected to begin during the first quarter of 1997 and requires about two months to complete.



Historic project involves USEC barter of HEU to NFS

Cylinder heel material to be recycled and sold as LEU

"...the government reduced the cost of processing-plus it will remove the cylinders as a safety, security and environmental concern."

> Norm Brandon NFS Director of **HEU Programs**

The current USEC agreement is two-phased and runs through 1998.

client for use in the manufacture of commercial nuclear reactor fuel.

The second phase of the contract, to begin in 1998, will involve 526 cylinders and is expected to yield 82 kilograms of HEU for downblending into over 2,000 kilograms of LEU. The UF6 cylinders from both phases of the contract will be cleaned, packaged and shipped to a lowlevel radioactive burial site for disposal.

NFS to provide blend stock to USEC

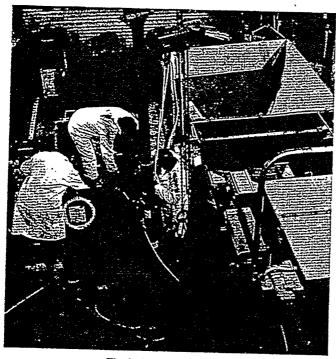
NFS has been contracted by the U.S. Energy Corporation's Portsmouth, Ohio facility to provide 42 drums of liquid blend stock urnyl nitrate. The material will be used by USEC in its own efforts toward downblending govemment HEU material into LEU.

The blend stock will be produced in NFS' Erwin, Tennessee, facility with delivery of the blend stock expected during second quarter 1997.

Quality control is maintained with the help of NFS' own laboratory personnel.

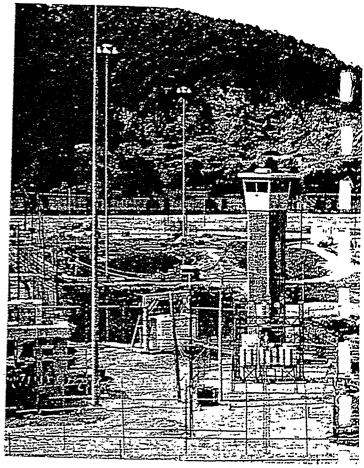
"To my knowledge, it's the first working example of the concept NFS has championed since the end of the Cold War," is how NFS Director of HEU Programs Norm Brandon sums up a new contract with Lockheed Martin Utility Services.

The agreement saw the transfer of title of HEU cylinder heels (the hold up UF6 material remaining in the cylinders) to NFS to help offset the costs of recovering and processing the material to LEU. Lockheed Martin Utility Services (LMUS) is the prime contractor for the U.S. Energy Corporation (USEC), an entity formed by the DOE to oversee domestic and Russian HEU management and processing.


NFS and Project Plows parmer AlliedSignal were the first to offer the concept of private industry purchase or barter of HEU material for downblending to LEU material for commercial reactor fuel. Project Plows foresaw the purhase of 500 metric tons of Russian HEU aterial from warheads and eventual sale on the world market as commercial reactor fuel. The USEC is now involved in projects similar to Plows with the Russian Federation.

"NFS sees the conversion of HEU material into a form ideal for commercial reactor fuel manufacturing as the best way to resolve the world's stockpile of nuclear arms," explained Brandon. "By bartering the title to the HEU to NFS, the government reduced the cost of processing - plus it will remove the cylinders as a safety, security and environmental concern."

The new contract between LMUS and NFS is a two-phased agreement running through 1998. Phase one involves HEU material inside 414 Model 5A and 5B UF cylinders. NFS will remove approximately 82 kilograms of residual HEU material inside the cylinders. The HEU will undergo NFS' solvent extraction process and will be blended with NFS' own stock of depleted uranium to produce about 1,600 kilograms of LEU. NFS has sold the LEU to another commercial

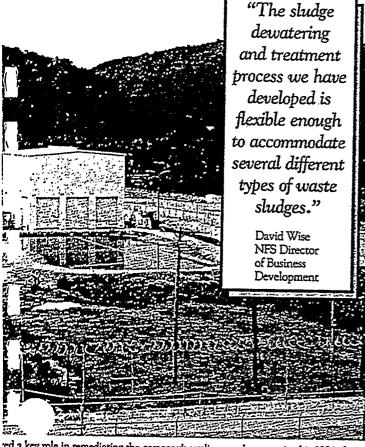

This unusual-looking dredge was utilized in initial characterization and in preparing sludge to be moved to the facility in the background.

The facility can process approximately 80 55-gallon drums of material per day.

One of the most unique waste treatment facilities in the U.S. is now available to commercial and government clients. The facility employs technology for processing sludges contaminated with special nuclear material (SNM), other radionuclides, and mixed and hazardous metals.

The facility was constructed in 1993 by Nuclear Fuel Services at its Erwin, Tennessee, plant to process sludges from its own settling ponds. After processing and stabilizing more than 90,000 cubic feet of metals-contaminated material dredged from the ponds, the facility's capacity is now being permitted to receive other client materials, or may also be moved to client facilities for on-site treatment and processing.

The NFS Sludge Dewater 21

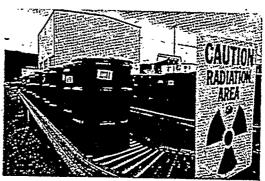

Sludge process facility to 1 e

Truly, innovation in action

The NFS sludges were contaminated with thorium, all isotopes of uranium and other radioactive materials deposited in the ponds during the early 1960s. Transferred to the facility and surveyed by a non-destructive assay system to ensure criticality safety, the sludge was pumped through a knock-out tank to separate out rocks, twigs and other debris.

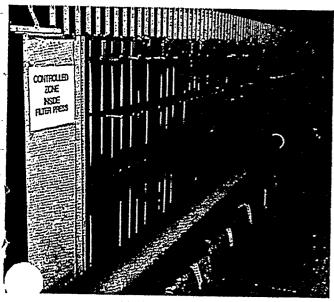
"Any sludges containing radionuclides and RCRA metal-contaminated mixed-waste sludges are ideally suited for this facility," explained David Wise, NFS' Director of Business Development. "Our employees have the materials-handling experience and technical expertise to process almost any kind of metals-bearing sludge. NFS has worked closely with interested clients to incorporate their radionuclides and hazardous constituents into our Part B permit application."

Mixed wastes (those containing radioactivity and Resource Conservation and Recovery Act metals, such as mercury, cadmium and nickel) can be treated at this point with NFS' own proprietary process (DeHg[™]). The treatment renders the RCRA metals non-hazardous allowing disposal in a regulated facility. Light organics and other



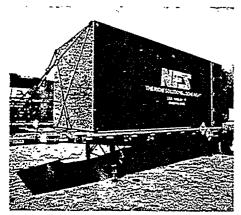
ed 3 key role in remediating the company's settling ponds as seen in this 1994 photo.

contaminants can also be treated within the process.


With batches of 100 cubic feet each, the facility can process approximately 80 55-gallon drums of material per day. The filter press removes excess liquids and yields a 70% solids press cake. Material control and accountability standards are followed throughout the process. An electronic tracking system is used to ensure safety and disposal criteria are met for each drum package for final shipment to a disposal site.

"The treatment and sludge dewatering process we have perfected is flexible enough to accommodate several

An innovative automated waste tracking system utilized bar coding to identify wastes ready for shipment and disposal.


ulable for mixed-waste sludge processing

The filter press enabled batches of 100 cubic feet to be processed.

different types of waste sludges," Wise explained. "We have received interest from several DOE facilities in regard to moving the process to their site for treatment of pond and process sludges."

For more information regarding sludge dewatering services, contact David Wise at NFS (423) 743-1751 or via e-mail at our web site (www.atnfs.com).

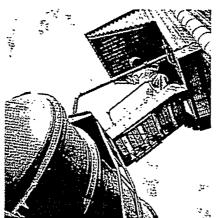
Three Super Tigers are available for rent or lease.

Super Tiger leasing draws interest from customers involved in D&D projects

NFS continues to draw interest from customers about its most recent addition to its D&D toolbox—Super Tigers. NFS owns three Model 6400 Type B (Super iger) Protective Overpacks. The Super Tigers have proven their rugged durability by transporting plutonium-contaminated wastes from two recent projects and continue to be a valuable asset for any D&D project involving transuranics. The Super Tigers are NRC-approved for shipment of fissile quantity materials of "hard waste" containing up to 200 grams of plutonium.

In addition to the Super Tigers, NFS can also provide reusable corrugated steel H-2 inner containers and two InstaPak™ Foam Insert Machines. Each Super Tiger has the loading capacity for 16 55-gallon drums or 24 40-gallon drums.

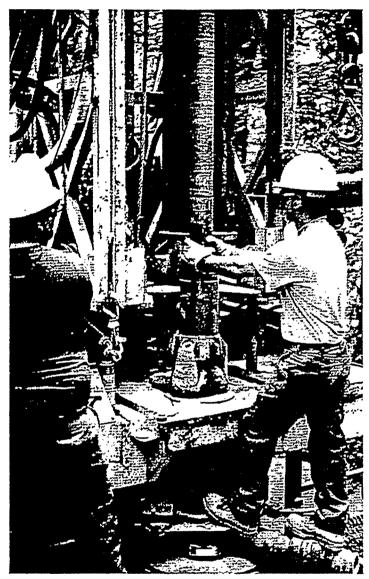
The Super Tigers stand ready to support NFS D&D clients or are available for lease. NFS can provide handling and training for facilities opting to prepare town shipments utilizing these upue transport overpacks. For more mation regarding NFS' D&D Services or leasing arrangements, call NFS today at (423) 743-1751.


NFS continues er ironmental remediation involving uranium-contaminated CaF₂

NFS has proven expertise in resolving CaF₂ waste issues.

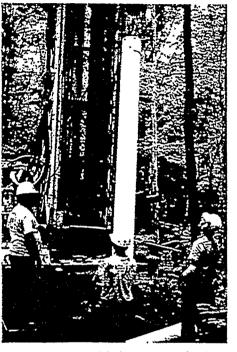
NFS awarded \$1.3 million in contracts

NFS has been awarded a follow-up contract to continue environmental remediation at a Fortune 50 corporation's manufacturing facility in the Southeast. The \$1.3 million contract will ensure that efforts to remediate low-level radioactive wastes will remain a priority through the year. NFS is the prime


NFS has proven that its process can separate uranium from CaF₂. Some clients may choose to sell the purified CaF₂ as a bulk material.

contractor in the project. Initially contracted to remove uranium contaminated CaF₂ from in-ground disposal pits and to relocate the material for stable storage, NFS will now focus on surface impoundments elsewhere at the client's facility. Additionally, NFS developed and now markers a proprietary process (DeCaF₂™) to separate heavy metals (such as uranium or rare earth metals) from CaF2. The process enables CaF₂ material to be sold as a bulk commodity or disposed of in a commercial landfill. The process has been successfully applied on a myriad of waste matrices for other clients, including sludges containing: tantalum, niobium and scandium. For more information regarding environment remediation involving CaF2, contact Stephen M. Schutt at NFS' Norcross, Georgia, office at (770) 447-6956.

Innovative work continues at university's radioactive landfill


Video camera verifies key information through boreholes

Workers operate a drill derrick to prepare a borehole.

NFS recently completed a new well installation program, including aquifer testing and borehole geophysics systems to support the remedial investigation for a Southern university's radioactive waste landfill.

According to NFS' Project Manager Richard Raione, well installation in bedrock can be tricky since the locations and orientation of water-bearing fractures can be difficult to locate correctly and precisely. Incorrect placement of a well screen essenally voids the primary objective for a monitoring well and

A casing is prepared for lowering into a borehole.


results in project delays and excess expenditures.

Unique to this activity was the successful utilization of a down hole video camera which ensured that the well screen intervals were correctly placed and were of the proper length. By lowering the video

camera into the boreholes while the wells are being pumped, the video and accompanying audio comments produced by the site geologist accurately preserve a record of vital information for regulators. Significant information recorded by the camera included: where water-bearing fractures were located and fracture-specific water yields, a visual record of where bedrock is located, the nature of the bedrock/overburden interface, vertical changes in rock types and weathering, fracture patterns, caves and total well yields. The video camera also provided an educational and training benefit.

NFS has been the environmental contractor for the university for several years. NFS has also completed characterization and remedial activities at radioactive landfills for three other major

universities. For more information regarding radiologically contaminated biological waste landfill remediation, contact NFS at (423) 743-1751.

A casing was used to protect video equipment during monitoring activities.

Lockheed Martin Utility Services awards NFS arsenic mixedwaste treatability work

NFS has been awarded a contract to perform treatability studies on United States Enrichment Corporation (USEC) arsenic mixed wastes. NFS began receiving the materials in February and will conduct the work over the next three months.

The material to be evaluated for treatment is especially challenging due to the concentrated form of the assenic contained in the waste stream.

The work will be performed by NFS' Advanced Recovery Systems (ARS) Group. ARS has developed an approach to render the waste non-hazardous. This scope of work will add another RCRA metal to NFS' inorganic chemical treatment technology, DeHg™. NFS has uccessfully treated cadmium and merury-contaminated mixed waste and continues to be recognized as an industry leader in cost-effective solutions to DOE's mixed waste dilemma.

The Internet


From Turkey, England and Canada they come. That is the beauty of the world's new information source—the Internet. In just the first few months, the response to NFS' web site has been exciting.

The NFS web site allows visitors to explore the innovative technologies and case histories of how NFS has resolved some of the toughest radwaste challenges. The site also offers web surfers the opportunity to test their knowledge of nuclear trivia. By answering five trivia questions correctly, they become finalists in a monthly drawing for a USS

ennessee submarine T-shirt.

Next time you're surfing, stop by and visit NFS, at www.atnfs.com.

New materials available regarding NFS technologies

technologies offered by NFS to resolve your waste challenge? NFS has just released new materials which help explain the company's approach and use of technologies in both D&D and RCRA metals treatment.

A new videotape reviewing two decontamination and decommissioning

projects (one at Argonne National Laboratory and the other at NFS) has just been completed. An accompanying 4-page brochure is also available.

The company's DeHgTM process for resolving RCRA metals and mixed wastes is outlined in another new brochure. All materials are now available for those interested in utilizing NFS technologies for their own waste challenge. Simply mark the technology you are interested in below on the order form, or leave a message at http://www.tony@cenergy.com.

RESERVES, MA INNOV	ATION
UCLEAR RUEL SERVICES, INC.	th action
Yes, please continue to send me the new NPS Innovation in action newsletter.	Name
	Company
Please have an NFS representative contact me with more information regarding:	Address
Environmental Remediation	
Decontamination & Decommissioning	
NFS Plant Site Opportunities	City
Treatability Studies	State/Zip
Return to: NFS Business Development Dept. 1205 Banner Hill Road Erwin, TN 37650 Or call: 423-743-1751 FAX 473-743-01	Phone
	FAX40 E-mail: http://www.tony@cenergy.com

McBride, Scott

From:

Jack D Law/JDLAW/CC01/INEEL/US [JDLAW@inel.gov]

Sent: To: Monday, April 10, 2000 13:42 scott.mcbride@anlw.anl.gov

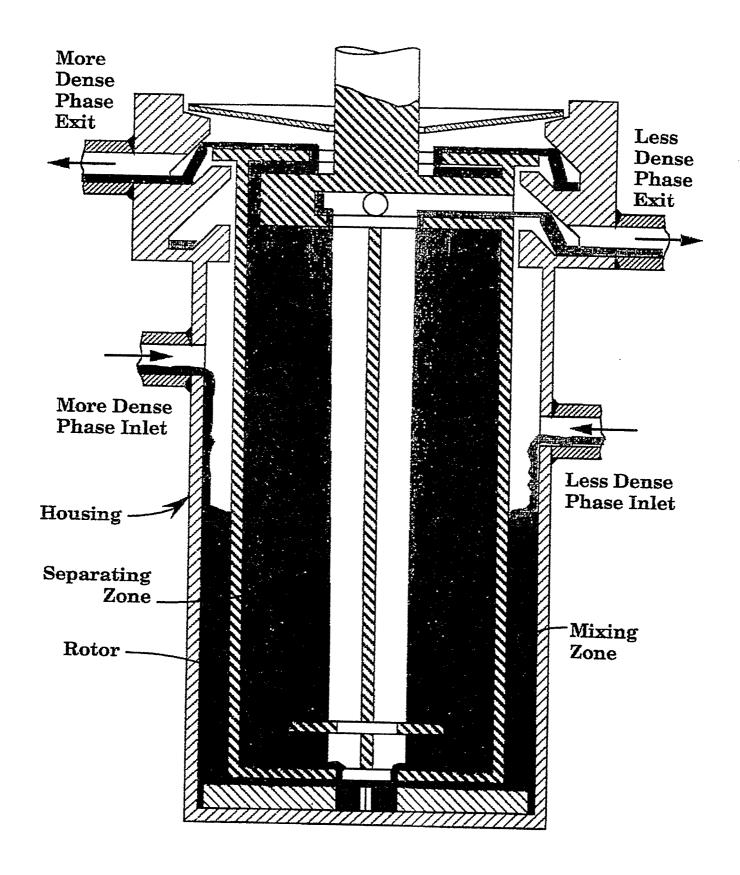
Cc:

leonard@cmt.anl.gov; Ronald S Herbst/HERBRS/CC01/INEEL/US; Terry A

Todd/TTODD/CC01/INEEL/US

Subject:

UNEX contactors


Scott,

The following calculations were performed to support the UNEX and modified UNEX process feasibility study. For 24 stages of 11.0 cm diameter centrifugal contactors 64.1 square feet of cell space is required. This is based upon arranging the contactors in a three foot wide row, 21.4 feet long. Cell space requirements were determined using the Generic TRUEX Model which was developed by ANL-E. I have forwarded this email on to Ralph Leonard at ANL-E so topefully he can give us an idea of the cost for 24 stages of 11.0 cm contactors. Let me know if you need any further information.

Jack Law

Additional Vendor

Operating ANL Centrifugal Contactor

Paper Number: 72

Title: CONTINUOUS LIQUID-LIQUID EXTRACTION VIA AN IMPROVED CENTRIFUGAL CONTACTOR

by: David Meikrantz, Director of Technology

Scott B. Meikrantz, Applications Chemist

Mitch St. George, Regional Manager

CINC

Prepared for presentation at the AlChE Spring National Meeting, March 8-12, 1998 Symposium on Extraction in Practice

Copyright © 1998 CINC

AIChE shall not be responsible for statements or opinion contained in papers or printed in its publication.

SUMMARY

An improved annular centrifugal contactor design is being commercially employed in numerous liquid-liquid extraction applications. It is mechanically driven by a directly coupled motor at relatively low rotor speeds. The combination of interchangeable heavy phase weirs and variab rotor drive makes this centrifuge applicable to a wide range of processes. Single stage efficiencies of 90% or higher are typical for chemical systems with rapid kinetics. Mixing and disengaging times range from 10 to 30 seconds each, dependent on the feed rate to the unit and the unit size. Efficient two phase mixing is achieved in the annulus between the spinning rotor and fixed housing. For versatility, a low mix sleeve can also be used to process shear sensitive liquids, often encountered in washing applications.

Annular centrifugal contactors with rotor diameters of 5 to 51 centimeters which range in throughput from 2 to 750 liters per minute are now readily available. The criteria used to select the proper size and operating parameters needed will be discussed. In addition, convenient methods of using this technology to convert batch to continuous processing will be given. Advantages in yield improvement and waste minimization will be discussed, and process equipment footprint will be given. Finally, some field examples which describe the versatility of this liquid-liquid centrifugal contactor will be presented.

INTRODUCTION

General Centrifuge

Clarification of process streams has been one of the niches in the process arena carved by liquid-liquid centrifuges, especially whenever emulsions or liquids close in density have been involved (Davies et. al., 1972). Difficulties that often arise in separation of immiscible liquids include: poor or slow phase separation, emulsion or rag layer formation, and poor process control in batch systems. Centrifuges accelerate separation processes by enhancing the specific gravity differences. Liquid-liquid dispersions requiring hours to separate at 1G will proceed much faster at 100 to 1000 G, with greatly improved efficiency and outflow quality. The efficiency of the physical separation of two phases can be several percent higher using centrifuges versus decanting from tanks.

Contactors as Extractors and Washers

Liquid-liquid centrifuges are valuable separation devices because of their small size and the rapid, yet efficient operation. However, they become even more valuable when employed as liquid-liquid contactors. The ability of a centrifuge to thoroughly mix two phases in the annular zone prior to separation in the rotor broadens its scope. Good mixing is very important to ensure optimal mass transfer and to minimize solvent or water usage. Chemical processes requiring extraction and washing (or neutralization) as well as separation can be performed in one step utilizing liquid-liquid centrifugal contactors. Better process control, low retained fluid volume during processing, and reduced plant space usage are realized when using these devices in place of traditional tanks, mixer settlers, and extraction columns.

ANNULAR CENTRIFUGAL CONTACTORS

History

Annular centrifugal contactor design and development has been pursued by various Departmen of Energy labs for more than 30 years. It has been employed in solvent extraction processes fo metals valuable to the nuclear industry. Commercialization of this technology began in 1990 when a patent was granted for continuous separation of hydrocarbons from water (*Meikrantz*, 1990). In the past four years the centrifuge design has been further improved and scaled up to flow rates of several hundred gallons per minute (*Meikrantz et. al., 1997*). In addition, a low mixing sleeve which enhances the washing and separation of shear sensitive liquids has been developed (*Meikrantz et. al., 1996*).

The annular centrifugal contactor possesses many unique design features that distinguish it from other centrifuges on the market today. It has an upright design in which the vertical rotor pumps, thereby feeding itself. A self-pumping rotor maintains separation equilibrium during intermittent feeding because a constant liquid volume is maintained in the rotor. Liquid-liquid separators that require direct feeding to the rotor are not as capable of handling processes where interruptions in flow often occur.

Another advantage of a self-pumping rotor is the method by which a process stream is fed to the centrifuge. Because the liquid need only be fed to the annulus, any low pressure pump or feed supply can be used. Other types of liquid-liquid contactors require high pressure to feed liquid the rotor. This poses a significant barrier to potential users processing liquids with specific gravity values of 0.8 or less. The only pumps capable of generating these high pressures are regenerative turbine pumps which are expensive, noisy, and high maintenance.

COMMERCIAL ANNULAR CENTRIFUGAL CONTACTOR

Principle of Operation

The annular centrifugal contactor operates as both separator and contactor which makes it a valuable tool in numerous types of processes. It's unique design provides mixing and separation in a single, compact unit. Figure 1. shows a cutaway view of the centrifuge housing and rotor and details the significant design features including the liquid flowpath.

Cutaway View

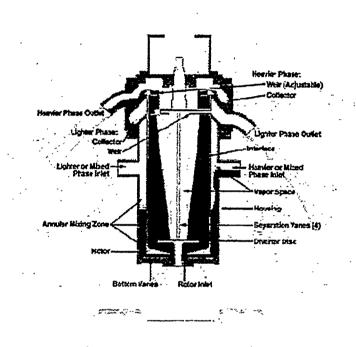
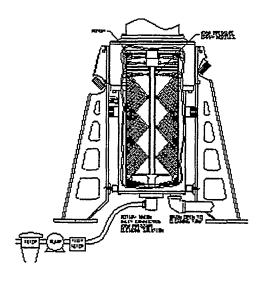


Figure 1

Two immiscible liquids of different densities are fed to the separate inlets and are rapidly mixed in the annular space between the spinning rotor and stationary housing. Please note that the areas above the liquid levels are vapor space. The mixed phases are directed toward the center of the rotor bottom by radial vanes in the housing base. As the liquids enter the central opening of the rotor, they are accelerated toward the wall. This self pumping rotor is divided in four vertical chambers which are dynamically balanced by the pumped liquids. The mixed phases are rapidly accelerated to rotor speed once trapped in a quadrant, and separation begins as the liquids are displaced upward by continued pumping. The separating zone extends from the diverter disk to the lighter phase weir, which provides a transit time for the liquid-liquid interface to form and sharpen. The interface should be positioned half way between the lighter phase weir and the heavier phase underflow at the top of the separating zone. This is done by selecting the proper heavy phase weir ring and then adjusting the rotor speed to fine tune position if necessary. Optimum performance is thus achieved despite changes in flow rate or liquid ratios because the interface position can shift a significant distance without loss of separation efficiency. Because the interface is free to adjust in position, it is important to keep the liquid discharges unrestricted in terms of liquid and vapor flow and pressure. Equilibration of pressure between the centrifuge housing, discharge pipes, and receiver tanks ensures troub free operation over a wide range of process conditions.

Low Mix Option

In process situations where only a two phase separation is being performed or shear sensitive fluids are employed, excess mixing in the annulus needs to be minimized. To accomplish this, a low mixing sleeve can be used, which is a cylinder slightly larger than the rotor. It is permanently attached to the bottom of the housing. By shrouding the rotor, liquids entering the annulus do not come in contact with a high shear surface, but instead enter a primarily static environment. The radial vanes in the bottom of the housing are still present so that the liquid flow path to the rotor is unchanged. Liquid-liquid shear is minimized yet the pumping action the rotor is not adversely affected. Mixing of the two phases occurs as the liquids are accelerated to rotor speed and pumped. This action is vigorous enough to provide an efficient washing step in many shear sensitive processes.


Take Apart Rotor/CGMP Design

Many process streams include small amounts of solids and particulates that build up on the internal surfaces of the rotor even though filtration is used. Eventually these solids will impair the separation efficiency of the centrifuge. Many pharmaceutical and chemical industrial applications require thorough cleaning between batches to ensure product purity. Cleaning of the annular centrifugal contactor can be accomplished in two ways. The two liters per minute laboratory scale model has a rotor which can be completely disassembled for cleaning and inspection of the internals. The rotor can be removed from the housing by the operator with simple tools. Removal of the vane package and heavy phase weir exposes all internal surfaces for cleaning. The frequency of cleaning is dependent on the percentage of particulates in the process stream. These features are also available on the next larger model which processess up to 20 liters per minute. Both units utilize a rotor suspended from the upper bearing housing to enhance disassembly and simplify the design. Good manufacturing practice requirements for these centrifuges are readily addressed by the use of castings to eliminate welds or crevices and by the ability to inspect all wetted areas.

Clean in Place Rotor

Large, high volume annular centrifugal contactors require a rotor bottom tail shaft to adjustability. These rotors are suspended between an upper and lower bearing and, coupled with the size and weight, makes frequent disassembly for cleaning impractical. Therefore clean-in-place (CIP) rotor (Figure 2) has been developed.

Clean-In-Place Rotor

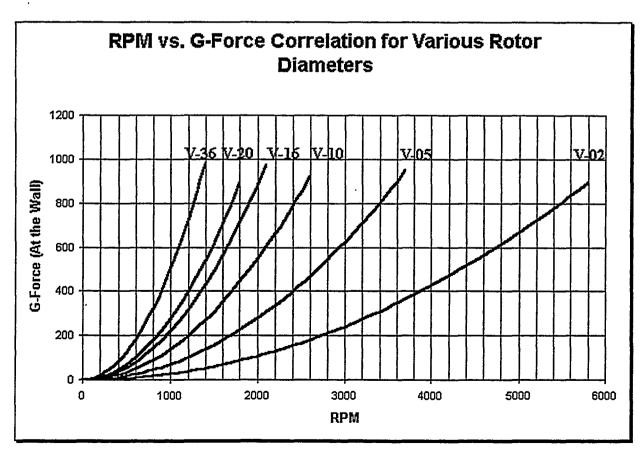


Figure 2

A hollow through-shaft is employed which starts below the bottom plate of the housing and extends into the upper rotor assembly. It is equipped with a series of high pressure spray nozzles for each quadrant. These nozzles provide complete coverage of the internal wall of the rotor, the aqueous underflow, and the upper rotor assembly. A rotary union that is permanently attached to the tail shaft provides the inlet for the desired cleaning solution and allows the cleaning process to be fully automated. The process steps for cleaning are quite simple. Product feed to the centrifuge is halted and the rotor is stopped, which drains the holdup volume into the annulus. Next, draining the process liquid from the centrifuge exposes all the internal rotor surfaces to the cleaning solution spray. Cleaning solution is then pumped to the centrifuge via the rotary union until the unit is clean. After sufficient cleaning, the process is reversed and the centrifuge is put back in service. The total operation is performed in minutes requiring no disassembly of the unit or connection and disconnection of supply lines. When multiple units are set up in parallel to handle a continuous process, sequential cleaning can be used to avoid flow interruptions. The extra centrifuge is the off-line unit and the cleaning process simply shifts from one to the next while the remaining units continue operation.

Processing Principles

The annular centrifugal contactors are low rpm, moderate gravity enhancing (100-1000 G) machines, and can therefore be powered by a direct drive, variable speed motor. The effectiveness of a centrifugal separation can be easily described as proportional to the produc of the force exerted in multiples of gravity (G) and the residence time in seconds or G-seconds Achieving a particular G-seconds value in a liquid-liquid centrifuge can be obtained in two ways increasing the multiples of gravity or increasing the residence time. Creating higher G force values for a specific rotor diameter is a function of rpm only, which is limited by direct drive motor capabilities.

Figure 3

Figure 3 shows a plot of RPM versus G-force for various rotor diameters. Normally 4000 to 12,000 G-seconds of force is adequate to efficiently separate two immiscible liquids in most processes. For separations where the specific gravity differences are slight, G-seconds as high as 50,000 can be obtained by merely slowing the feed rate to the contactor or by upgrading to the next larger size unit. Figure 4 is a plot showing the residence time versus flowrate for a 12. cm. diameter rotor. As a general rule, the residence time increases proportionately with rotor diameter. Therefore, a 25.4 cm. diameter rotor will provide twice the residence time of a 12.7 cm. diameter rotor at maximum operating flow.

Residence Time vs. Flowrate (V-05)

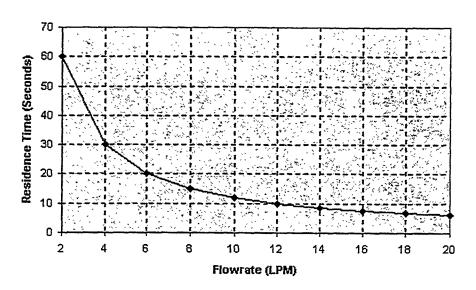


Figure 4

Extraction processes are based upon selective distribution. Transfer of a specie between phases must make allowance for intimate contacting and separation of the phases (Olive 1966). For extraction and washing purposes the ability of the contactor to efficiently mix two phases is vital. It is also important that over-mixing does not occur to avoid emulsification whick results in poor separation. Several variables for mixing control are available to the operator of the annular centrifugal contactor. Varying of the rotor speed changes the linear speed of the rotor surface thus effecting the mixing shear.

Rotor Linear Mixing Rate

Diameter.(centimeters)	m/sec.
5.0	7.01
12.7	11.6
25.4	16.5
40.6	20.1
50.8	21.6

Table 1

Table 1 shows a comparison of the linear mixing rates at 200 G for the various rotor sizes. Flow rate to the contactor also plays a role in the degree of mixing. A high flow rate results in a high annulus level providing more mixing between the phases and the spinning rotor. These variables can be used to process shear sensitive fluids while addressing cases where high energy mixing is required for optimum mass transfer. The kinetics of certain extraction systems may also dictate that more annular (mixing) residence time is necessary for maximum efficiency. Additional stages may be required to meet these requirements.

Conversely a low flow rate does not generate a high annulus level because the liquid is draw into the rotor almost immediately. Such a situation does not afford much mixing due to minim annulus residence time and rotor contact. This reduced mixing parameter can also be better attained through the use of the low mixing sleeve. With the surface of the rotor shrouded, the liquids are no longer subjected to the linear mixing shear, and the only annular mixing is due contact from fluid flow into the annulus. As mentioned previously, some mixing of the two phases occurs as the liquids are accelerated to rotor speed. In washing procedures where kinetics are not an issue, this phase contact is often sufficient. This approach should be taken when employing shear sensitive fluids for washing or extraction. The ability to vary the separating and mixing parameters makes the annular centrifugal contactor more versatile than many of its counterparts.

Sometimes chemical processes require more than just the separation of two liquids of a process stream. The annular contactor has two inlet ports for introduction of solvents and washing solutions, making it an excellent device for extraction applications. Efficient two phase mixing is achieved in the annulus between the spinning rotor and the fixed housing. Mixing and disengaging times range from 10 to 30 seconds each, depending on the feed rate to the unit and unit size. Single stage efficiencies of 90% or higher are typical for solvent extraction systems with rapid kinetics. The advantages of using centrifugal contactors versus columns with rapid kinetics. The advantages of using centrifugal contactors versus columns required for a specific process are much less than comparably scaled reactions performed tanks or other vessels. Rapid mixing and separation can enhance product recovery and quality. This is especially true in processes where product degradation occurs under separation conditions due to prolonged contact with either pH extreme solutions or reagents that continue to react with the product. Achieved separations are better than when normal decant methods are used; and this saves product, time, and minimizes waste.

Multistage processing

Continuous separation, washing, and extraction processes often require many steps or stages to achieve desired product quality or required extraction efficiencies. Centrifugal contactors can be readily interconnected to allow multistage processes (Figure 5). This is a three stage counter current washing process in which an organic solvent contaminated with 10,000 ppm salts washed with fresh water. We assume 90% efficiency at each stage.

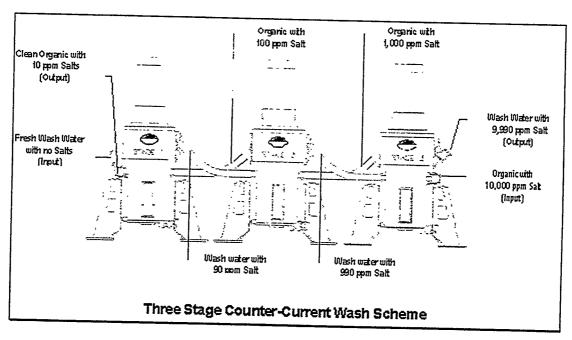


Figure 5

Because the discharge ports are at a higher elevation than the inlets, pumps are not required &c feed from stage to stage. For example, a multistage counter-current wash process would only require two feed pumps, one for each liquid phase. In this case, the barren wash water in stage 1 contacts the cleanest organic in order to remove the remaining small amount of salts, acting as a polishing step. In stage 3, semi-loaded wash water contacts the pregnant organic feed thereby maximizing the efficiency of the wash. Receiver tanks collect the washed organic product and the salted waste water exiting from stages 1 and 3, respectively. This feature eliminates numerous pumps, tanks, and level controls. Such a system occupies only a fraction of the operating floor space of a corresponding batch process.

Multi Stage Process

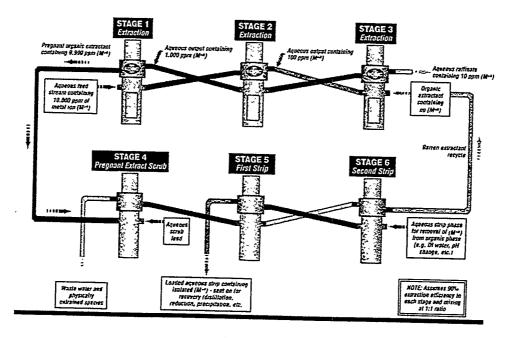


Figure 6

A further example of a multistage process is given in Figure 6. In this case, six inter-connected stages provide a continuous metal extraction, scrub, and strip process. No intermediate pumps or tanks are required for the continuous phase as it traverses the complete separation. A 90% efficiency is assumed and a 1:1 aqueous to organic ratio is used to quantify the interstage met concentrations in the 3 stage extraction part of this process. Counter current flow in both the extraction and strip stages is employed to gain maximum efficiency while minimizing reagent usage.

FIELD APPLICATIONS

Although employed by the Department of Energy for decades, this technology has only recent become commercially available. Therefore, a broad base of industry experience is lacking at this time. However, as more than 65 annular centrifugal contactors have been sold during the past two years, more data and experience is forthcoming. Numerous studies, especially with the laboratory scaled unit, are in progress in such industries as mining, metals recovery and purification, and chemical and pharmaceutical production. Conversion of separation, washing and extraction processes from batch to continuous is rapidly gaining importance due to highly efficiency goals and increased waste management costs.

A good example of a commercial installation took place in April, 1997 at Great Lakes Chemic at El Dorado, Arkansas. An annular centrifuge contactor was installed as the first step converting a batch process to a continuous operation following the reaction sequence. replaces a 4,000 gallon decant tank by efficiently separating the brominated polymer produ from the aqueous waste at the rate of 45 liters per minute. The increase in efficiency thus gaine has been measured as a 3% improvement in product recovery, which represents 136,00 kilograms of brominated polymer worth \$400,000 per year.

The contactor has been operating continuously without problems while being fed in batch mod from the multiple production reactors. In addition, off normal, emulsified product batches whic previously were processed off-line are no longer a concern. The enhanced separation power the annular centrifugal contactor operating at 300 times gravity processes all product rapidly an efficiently.

A second Hastelloy C-276 contactor has been purchased for the next process step, hydrochlor washing of the polymer phase. When installed, this unit will remove unreacted amine from th product and will enhance the recycling of this starting material. Coupling the second unit to th first will be simple and will make the process even more cost effective to operat

CONCLUSIONS

Annular centrifugal contactor designs of this type are a significant improvement over tradition methods of liquid-liquid processing. Increased productivity from continuous or simultaneou multiple step processes as well as improved finished product quality from better process contr is realized. Rapid and efficient separation prevents significant product loss at the liquid-liqu interface and from unwanted reactions resulting from prolonged contact times. Multistag separations and extractions utilizing annular centrifugal contactors not only minimize water an liquid reagent usage but also occupy a minimum of floor space compared to the alternative Low maintenance due to moderate operating speeds and ease of cleaning means downtime reduced thereby maintaining process efficiency.

ACKNOWLEDGEMENTS

The authors wish to thank Larry Macaluso, Bill Flim, Mary Manning, and Deana Ward for the contributions and assistance in the preparation of this manuscript.

REFERENCES

Davies, R; Kaiser, H.R.; and Todd, D.B., "Controlled Centrifugal Separations of Liquids". Presented at the 3rd Symposium on Hazardous Chemicals Handling and Disposal, Indianaopli IN, April 13, 1972.

Meikrantz, D.H., "Method for Separating Disparate Components in a fluid Stream", U.S. Patent 4,959,158, 1990.

Meikrantz, D.H., Macaluso, L.L., "Centrifugal Separator", U.S. Patent #5,591,340; 1997.

Meikrantz, D.H., Macaluso, L.L., "Rotor Sleeve for a Centrifugal Separator", U.S. Patent # 5,571,070; 1996.

Oliver, E.D., Diffusional Separation Processes, John Wiley & Sons, Inc., 1966, pg. 359.

[Home] [What's New] [Contacts] [How it Works] [Products] [Tech Support] [Applications] [Articles] [Press Releases] [About CINC] [Site Map]

Large, high volume annular centrifugal contactors require a rotor bottom tail shaft to a stability. These rotors are suspended between an upper and lower bearing and, coupled w the size and weight, makes frequent disassembly for cleaning impractical. Therefore clean-in-place (CIP) rotor (Figure 2) has been developed.

Clean-In-Place Rotor

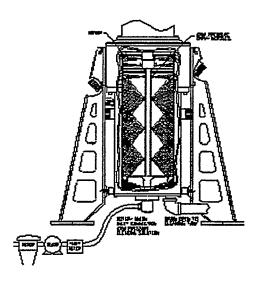
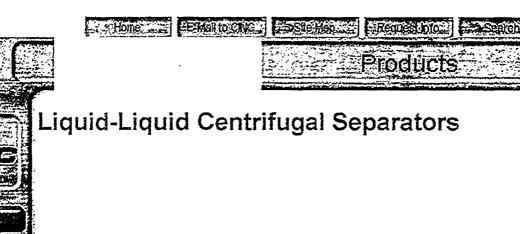
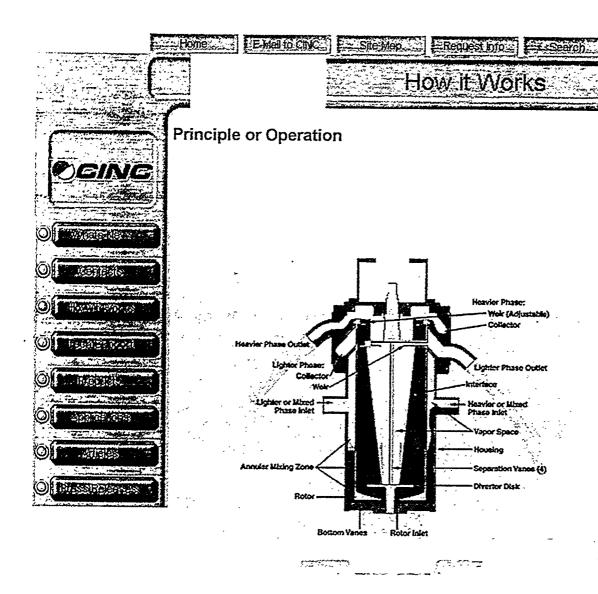



Figure 2

A hollow through-shaft is employed which starts below the bottom plate of the housing and extends into the upper rotor assembly. It is equipped with a series of high pressure spray nozzles for each quadrant. These nozzles provide complete coverage of the internal wall of th rotor, the aqueous underflow, and the upper rotor assembly. A rotary union that is permanentl attached to the tail shaft provides the inlet for the desired cleaning solution and allows the cleaning process to be fully automated. The process steps for cleaning are quite simple. Product feed to the centrifuge is halted and the rotor is stopped, which drains the holdup volun into the annulus. Next, draining the process liquid from the centrifuge exposes all the internal rotor surfaces to the cleaning solution spray. Cleaning solution is then pumped to the centrifug via the rotary union until the unit is clean. After sufficient cleaning, the process is reversed and the centrifuge is put back in service. The total operation is performed in minutes requiring no disassembly of the unit or connection and disconnection of supply lines. When multiple units are set up in parallel to handle a continuous process, sequential cleaning can be used to avoid flow interruptions. The extra centrifuge is the off-line unit and the cleaning process simply shiff from one to the next while the remaining units continue operation.

Processing Principles


The annular centrifugal contactors are low rpm, moderate gravity enhancing (100-1000 G) machines, and can therefore be powered by a direct drive, variable speed motor. The effectiveness of a centrifugal separation can be easily described as proportional to the product of the force exerted in multiples of gravity (G) and the residence time in seconds or G-seconds Achieving a particular G-seconds value in a liquid-liquid centrifuge can be obtained in two way increasing the multiples of gravity or increasing the residence time. Creating higher G force

The basis for the CINC centrifugal separator is a *process so* **unique** *t* our **unique** underflow and weir design, originally developed by the U. our systems are capable of separating a variety of liquids with ease a **unique** features include:

- Efficient, effective separation/extraction utilizing only 200-1000
- Low mixing option for shear sensitive fluids
- The ability to accommodate continuous changes in input ratios
- Automatically handle variable flow rates and flow interruptions
- Handle input temperatures from freezing to boiling
- Process flow rates as low as 2 liters per minute (1/2 gallons per liters per minute (200 gallons per minute)
- Clean in Place (CIP) rotor system for high reliability and low ma
- Rugged Stainless Steel Construction
- Simple direct drive with sealed bearings and only one moving position maintenance

About CINC

The CINC Liqui Centrifugal Seputilizes the forogenerated by roan object about central axis. By spinning two fludifferent densiti a rotating contarotor the heavie forced to the wainside of the rot the lighter fluid toward the cent rotor.

In the figure the fluid is shown in the lighter phas yellow and the I phase fluid in b can be seen the fluids enter alre mixed (separati process) or independently

(extraction process) through one or both inlets. The fluids mix in the annulu between the rotor and the inside of the housing in the mixing zone. The fluid then fed through an inlet or hole at the bottom of the rotor. A diverter plate c used to direct the fluid to the inside of the rotor sleeve (shown in gray).

As additional fluid is introduced to the rotor the fluid within the rotor is force upward to the rotor underflows and weirs. The light phase fluid having a low density flows toward the center of the rotor (shown in yellow) where it exits over the lighter phase weir through the lighter phase outlets. The heavy phase continues up the rotor (shown in blue) through the underflows, then exits over the lighter phase weir. Each fluid is collected in its own collector ring and then heavy phase weir through the heavy and light phase outlets.

[Home] [What's New] [Contacts] [How it Works] [Products] [Tech Support] [Applications] [Articles] [Press Releases] [About CINC] [Site Map]

SPECIFICATIONS	Model V-2	Model V-5	Model V-10
Rotor Size	2	5"	10"
Throughput	05 GPM 2 LPM	1 - 6 GPM 4 - 22 LPM	10 - 30 GPM 35 - 110 LPM
Footprint (Separator Only)	9" X 9"	1. X 1.	2 X 2
Height (Includes Motor)	17	3,	5
Fittings (NPT Male) Input/Output	3/8" / 3/8"	1"/1"	2.12.
Standard Power	Electric	Electric	Electric
Power Requirements	1/6 HP	2 HP	7.5 HP
	220 VAC	220 or 440 VAC	220 or 440 VAC
	Single-Phase	Single- or Three-Phase	Single- or Three-Pha
Weight - Approx. (In Stainless Steel)	25 lbs 11.4 kg	150 lbs 70 kg	750 lbs 340 kg

Back to top

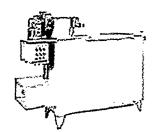
[Home] [What's New] [Contacts] [How it Works] [Products] [Tech Support] [Applicatio [Press Releases] [About CINC] [Site Map]

Copyright © 1999 Costner Industries Nevada Corp. All rights reserve Revised: November 06, 1999.

SEVERNI TRENT SKOS

SAMSCO

Medenator Medenator Gadenned & Sofyrede


Samsco Evaporators Veredever Experior Septembly Storesmore

S chalandar Successivence POOR

Evaporator Design / Solids and Oil Removal

S-meson i Sunj uri **o** Inton Equipment

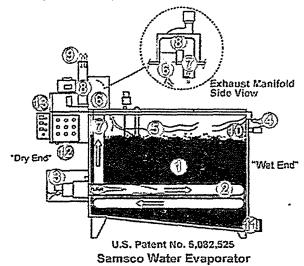
> Fayip<u>gre</u>n: **১** Design: Saljān 3_0.1 R**e**moyal

Samsco's evaporator design philosophy is to keep the system "elegantly simple" for the user, based upon Samsco's application experience and strong engineering expertise. Samsco's engineering practices are based upon real-world evaporator experiences, and they demonstrate practicality and depth of thought.

Samsco's philosophy has achieved time-proven evaporator performance, safety, simplicity of use, and minimal maintenance in its evaporation technology.

Air Handling & O Mist Elimination System

Heat Exchanger 0
System


Principles of Operation

Operational and O Safety features

Optional Add-Ons o and Systems

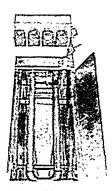
Contact Us O

O smoH

To view a full size schematic and text explanation in Adobe Acrobat

To download Adobe Acrobat Reader

- Solution is fed to the tank (1) in either a batch or continuous mode (automatic fill)
- Solution is heated in the tank to boiling (212°F) by a serpentine gas-fired heat exchanger (2)
- Blower (8) draws ambient air through both the burner (3) and a specially sized opening in the tank (4)
- Air is drawn across the surface (5) of the heated liquid, sweeping away


water vapor as it breaks the surface

- This moisture-saturated air and the flue gases leave the tank via separate passageways. The moisture saturated air passes through a coalescerstyle mist eliminator, which removes oil mist and droplets, allowing only the steam to pass through. The steam (6) and the flue gases (7) are joined together at the blower entrance
- The two air streams, environmentally safe, are mixed in the blower (8) and are released up the stack (9)
- Free oils and oils whose emulsions have been thermally broken float to the surface. They are then removed, either automatically or by simply pushing a button. These oils exit via an overflow trough (10) into an external waste receptacle
- Precipitated solids settle to a sloping trough and are easily removed via a convenient clean-out port (11)
- A full-function Control Panel (12) and System Process Control (SPC)
 (13) indicate and manage all operating and safety conditions

Evaporator General Tank Design

Equipment is compact and commands only small footprint on the factory floor

Tank's "Dry End" (electronics & burner) and its "Wet End" (oil & residue removal) are placed at opposite ends of the tank (practical, convenient and safe).

Convenient Solids and Oil Removal

Equipment design provides accessibility to tank interior and convenient sludge/solid removal.

- Serpentine heat-exchanger with open center area - allows easy access to sloped bottom No bulky immersed horizontal box, obstructing access to tank's bottom
- Tank's bottom slopes to a convenient
 4" Cleanout Port
- Large hinged lids give roomy access to tank interior/bottom (½ to ¾ of tank interior)

Simple oil decanting is handled via an oil overflow trough.

- Proper height for 55 gallon drum or holding tank
- Simple switch activation automatically shuts off burner and decants oil
- Automatic oil removal is available

表示1. 1. Ct. 1811年1871。

MICROPUMP, INC. . A unit of IDEX

1402 NE 136th Avenue Vancouver, WA 98684-0818

Phone: (360) 253-2008 Fax: (360) 253-8294

e-mail: info@micropump.com

FACSIMILE TRANSMISSION

To:

Scott

From

Mindi Walker

Fax:

208-533-7471

Phone ext. 229

Co:

ARGONNE

Pages:

11

Phone:

Date:

May 24, 2000

Re:

Technical Specs on 114,5500, 10K

CC:

Scott,

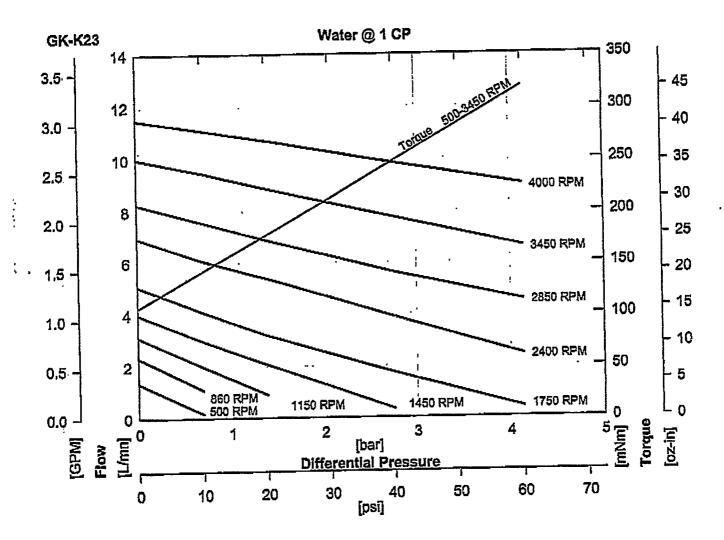
Here is the technical information you requested on our Models 114, 5500 and 10K. I included the 3 gear widths on the 5500, because I wasn't sure which one you needed. There is a formula on the "high performance viscosity" curves to figure out hp.

Hopefully these will help determine your motor needs.

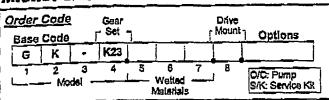
Please call us if you need further assistance!

Thank you,

Mindi Walker


Customer Service Manager

Order Code Drive Gesr Sal r Mounty Options Base Code G K **K23** 8 2 4 O/C: Pump S/K: Service Kit Watted Model Materials

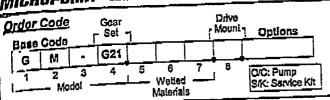

Pums Construction Magnetic Drive Gear Pump Cavity Style Two Halical, Shafted Gears/DP16 Sleeve Bushings O-Ring Seals (Qty 3)

Performance

GK100 Rev A

Pump Construction Magnello Drive Gear Pump Cavity Style Two Helical, Shafted Gears/DP16 Sleeve Bushings O-Ring Seals (Qty 3)

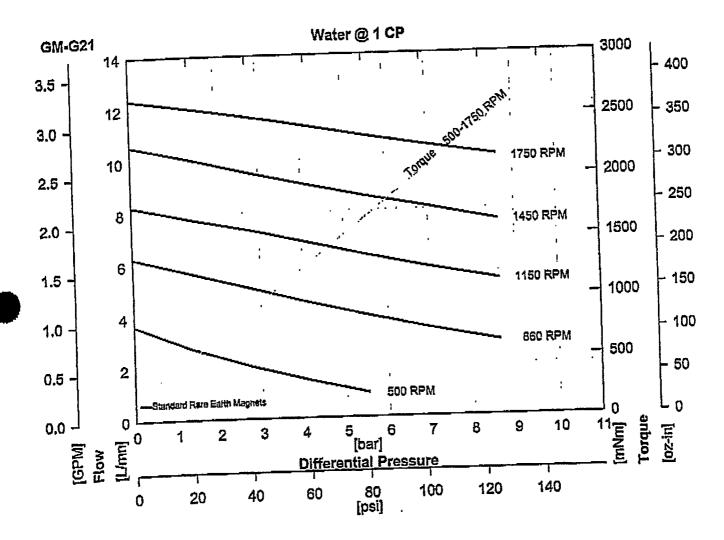
Performance-High Viscosity



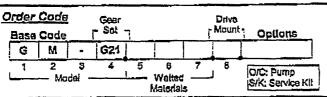
To establish torque, multiply correction factor by torque from viscosity curve above.

	O CRICOLED WARD! HISTORY			
Torque C	orrection Fac	tors: For Highe	r Viscosity i	<u>lquids</u>
	Viscosity [cp]	1	100	1500
	Speed [RPM]	3450_	3450	860
[Bar]	[psi]			
0,3	5	0.5		1.6
1,4	20	0.6	1	1.5
2.8	40	0.7	1	1.4
4.1	60	0.7	1	1.3

Magnet Decouple Torque				
Driven	Driving	Torque	Torque	
Magnet	Hub	[mNm]	(oz.in)	
Ferrite	Farrite	417	59	


ACTUAL PERFORMANCE MAY VARY - Specifications are subject to change without notice. When multiple space are noted, the most conservative value applies.

Pulmo Construction Magnetic Drive Gear Pump Cavity Style Two Helical, Shafted Gears/DP10 Sleeve Bushings O-Ring Seals (Qly 3)



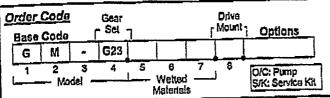
Performance

GM100 Rev A

Series 5500

Fump Construction
Magnetic Drive Gear Pump
Cavity Style
Two Helical, Shafted Gears/DP10
Sleeve Bushings
O-Ring Seals (Oty 3)

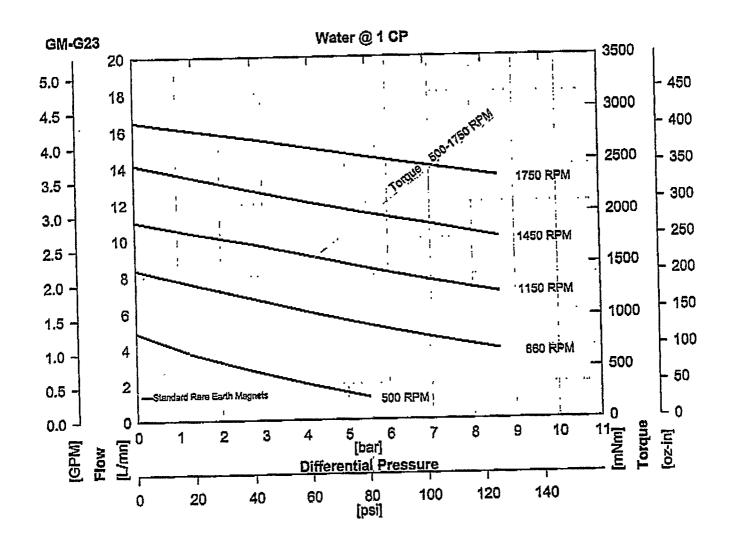
Performance-High Viscosity


To calculate torque, multiply correction factor by torque from viscosity curve above

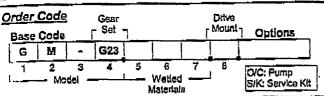
Torque C	orrection Fac	tors: For Highe	r Viscosity L	lquids
	Viscosity [cp]	1	100	2500
Max	Speed [RPM]	1750	1750	1750
[Bar]	[psl]			
0.3	5	0.1	1	3.8
1.4	20	0.4	1	3.2
2.8	40	0.5	1	2.6
4.1	60	0.7	1	2.3
5.5	80	0.8	1	2.3
6.9	100	0.8	1	,

10 4 G.					
Magnet Decouple Torque					
Driven	Driving	Torque	Torque		
Magnet	Hub	[mNm]	[oz.in]		
SmCo	SmCo	5650	800		

ACTUAL PERFORMANCE MAY VARY - Specifications are subject to change without notice. When multiple spees are noted, the most conservative value applies.

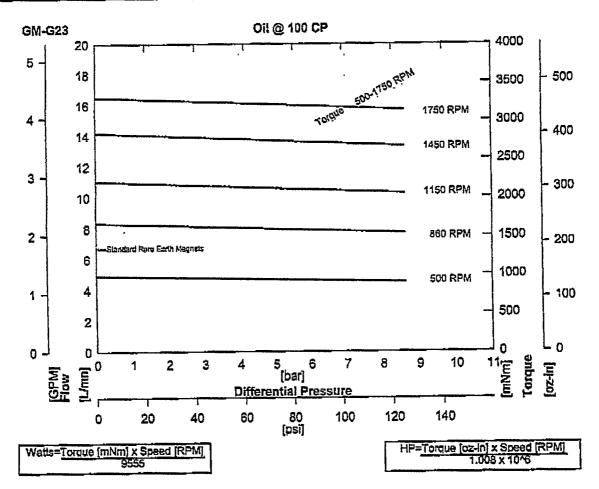

Series 5500

Pump Construction Magnetic Orive Gear Pump Cavity Style Two Helical, Shaffed Gears/DP10 Sleave Bushings O-Ring Seals (Qty 3)



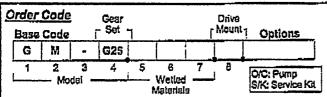
Performance

GM300 Rev A


Series 5500

Pump Construction
Magnetic Drive Gear Pump
Cavity Style
Two Helical, Shafted Gears/DP10
Sleeve Bushings
O-Ring Seals (Qty 3)

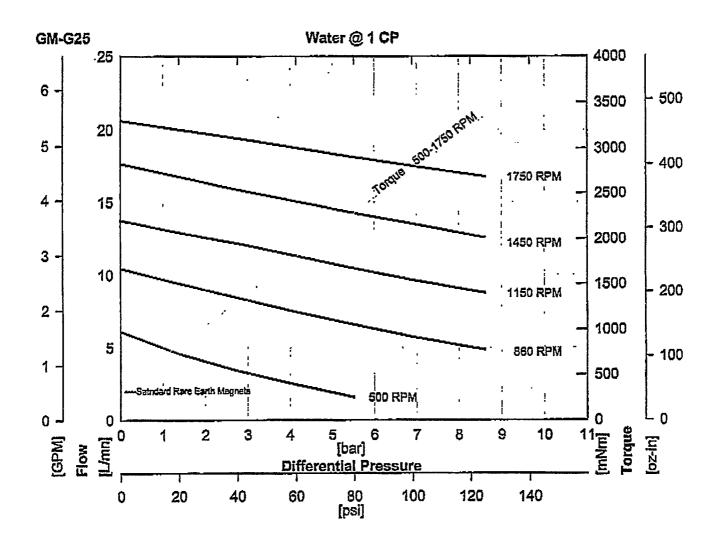
Performance-High Viscosity


To calculate torque, multiply correction factor by torque from viscosity curve above.

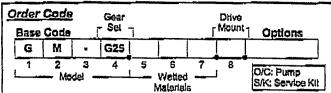
Torque C	Torque Correction Factors: For Higher Viscosity Liquids				
	Viscosity [cp]	1	100	2500	
Max	Speed [RPM]	<u> 1750</u>	1750	1750	
[Bar]	[ieq]				
0.3	5	0.2	1	3.4	
1.4	20	0.4	1	2.9	
2.8	40	0.6	1	2.5	
4.1	60	0.7	1	2.2	
5.5	80	0.8	1		
6.9	100	0,8	1		

Magnet Decouple Torque				
Driven	Driving	Torque	Torque	
Magnet	Hub	[mNm]	[oz.in]	
SmCo	SmCo	5650	800	

ACTUAL PERFORMANCE MAY VARY - Specifications are subject to change without notice. When multiple appear are noted, the most conservative value applies.

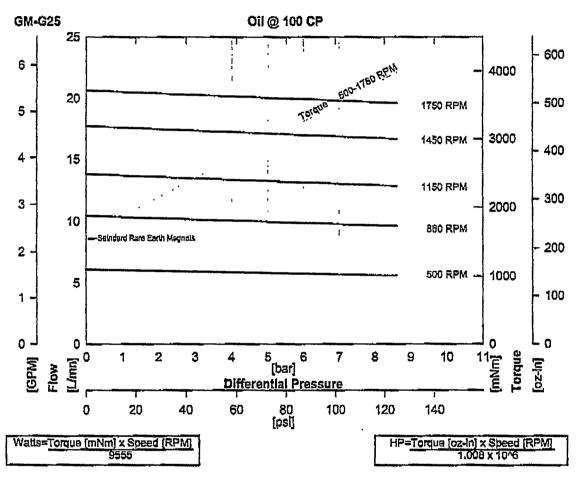

Series 5500

Pump Construction
Magnetic Drive Gear Pump Cavity Style Two Helical, Shafted Gears/DP10 Sieeve Bushings O-Ring Seals (Qty 3)


Performance

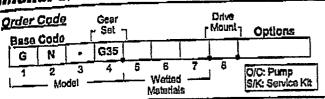
WICKOPUMP INC - SALE

GMS00 Ray A


Series 5500

Pump Construction
Magnetic Drive Gear Pump
Cavity Style
Two Hellcal, Shafted Gears/DP10
Sleeve Bushings
O-Ring Seals (Qty 3)

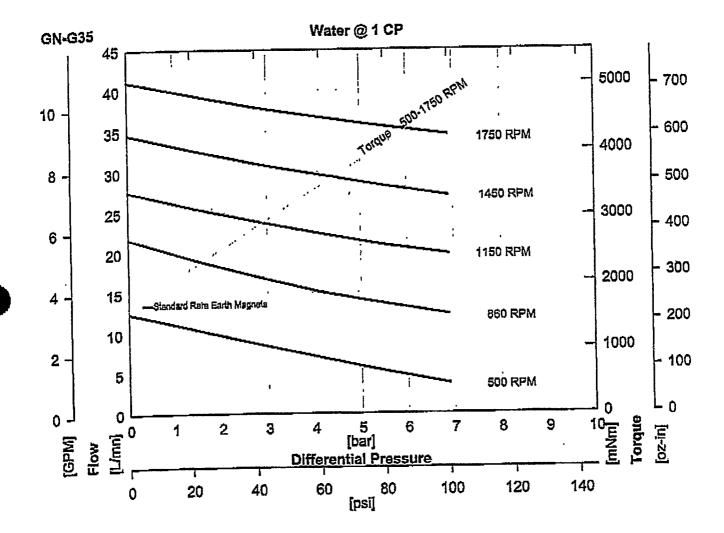
Performance-High Viscosity


To calculate torque, multiply correction factor by torque from viscosity curve above.

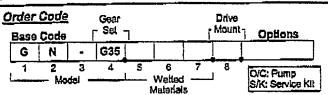
Torque C	Torque Correction Factors: For Higher Viscosity Liquids				
	Viscosity [cp]	1	100	2500	
Max	Speed [RPM]	1750	1750	1750	
[Bar]	psi				
0.3	5	0.2	1	3.0	
1.4	20	0.4	1	2.6	
2,8	40	0.6	. 1	2.2	
4.1	60	0.7	1		
5.5	80	0.8	1		
6.9	100	8.0	1		

Magnet Decouple Torque				
Driven	Driving	Torque	Torque	
Magnet	Hub	[mNm]	[oz.ln]	
SmCo	SmCo	5650	800	

エ・ムイデニ

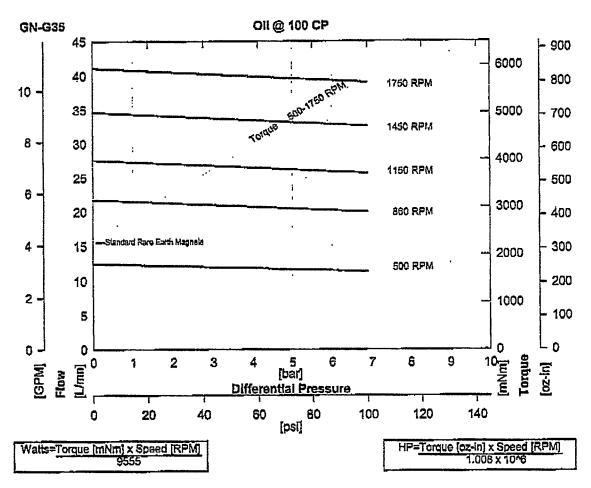

GM500 Rev A

Pump Comptuction
Magnetic Drive Gear Fump
Cavity Style
Three Helical, Shafted Gears/DP10
Sleeve Bushings
O-Ring Seals (Qty 3)


Performance

GN700 Rev A

Page 1


Series 10K

Pump Construction
Magnetic Driva Gear Pump
Cavity Style
Three Helical, Shafted Gears/DP10
Sleeve Bushings
O-Ring Seals (Qty 3)

Performance-High Viscosity

To calculate torque, multiply correction factor by torque from viscosity curve above.

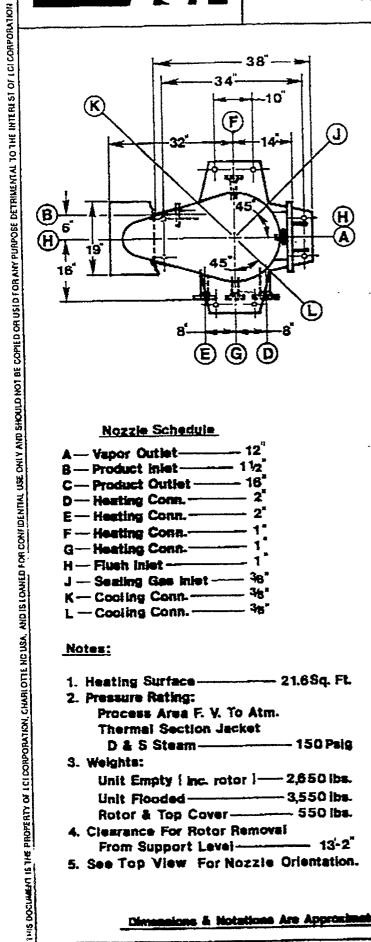
Torque C	Torque Correction Factors: For Higher Viscosity Liquids					
Max	Viscosity [cp] Speed [RPM]	1 1750	100 1750	2500 200		
(Bar)	[psi]					
0.3	5	0.7	1	1.6		
1.4	20	0.7	1	1.6		
2.8	40	0.8	1	1.6		
4.1	60	8.0	1			
5.5	80	0.8	1			
6.9	100	0.8	1			

701C.					
Magnet Decouple Torque					
Driven	Driving	Torque	Torque		
Magnet	Hub	[mNm]_	[oz.in]		
SmCo	SmCo	5650	800		

ACTUAL PERFORMANCE MAY VARY - Specifications are subject to change without notice. When institute appear are noted, the most conservative value applies.

I COLTELEFAX

fa: Steve Herrmann	From: Jamie Horton	LCI Corporation, Process Division
Argonne National Laboratories	Date: June 6, 2000	PO Box 16348, Charlotte, NC 28297-8804
	# Pages: 1 of 2	Switchboard: 704-394-8341
Fax #: (208)533-7996	Message #:	Direct phone: 704-398-7880
Ref: Your inquiry dated June 2, 2000		Telefax: 704-392-8507


Attached is a drawing of a 2 sq. m. dryer which might fit your application. This dryer has no bottom cone and the outlet diameter is 16". The overall height is 10'10".

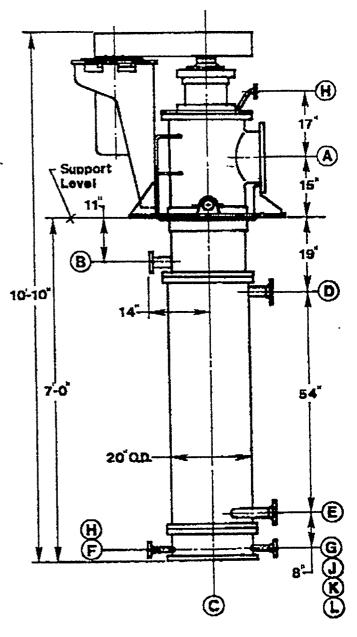
If I can be or further assistance please call me.

Regards/ Jamie Horton

VERTICAL DRYER

CP-0200

Nozzie Schedule


A — Vapor Outlet — 12	"
3 — Product inlet — 11/2	Ř_
C— Product Outlet ——— 16	×
— Heating Conn.———————————————————————————————————	: >*
E — Heating Conn. — 2 F — Heating Conn. — 1	•
G—Heating Conn.	•
H — Flush Injet ————————————————————————————————————	•
J — Seziing Gas inlet 3(3"
K— Cooling Conn.——— 3	3"
L — Cooling Conn. ——— 3	5

Notes:

1.	Heating Surface 21.6Sq. Ft.
2.	Pressure Rating:
	Process Area F. V. To Atm.
	Thermal Section Jacket
	D & S Steam 150 Paig
3.	Weights:
	Unit Empty Inc. rotor 2,650 lbs.
	Unit Flooded 3,550 lbs.
	Rotor & Top Cover-550 ibs.

4. Clearance For Rotor Removal From Support Level-

5. See Top View For Nozzle Orientation.

FROM-

TELEFAX

To:	Steve Herrmann	From: Jamie Horton	LCI Corporation, Process Division
	Argonne National Laboratories	Date: June 5, 2000	PO Box 16348, Charlotte, NC 28297-8804
-		# Pages: 1 of 1	Switchboard: 704-394-8341
Fax #	: (208)533-7996	Message #:	Direct phone: 704-398-7880
Ref:	Your inquiry dated June 2, 2000		Telefax: 704-392-8507
ł	•	•	

Thank you for your inquiry dated June 2, 1000. As you may know we have supplied a thin film dryer to the Hanford facility for handling low level radwaste. Their distillate rate requirement was very close to yours but the salt was ammonium sulfate. As we just discussed on the telephone we have no experience handling guanidine. The design evaporation rate for the Hanford system was 305 lb/hr and the design feed rate was 480 lb/hr. The cost was approximately \$1,000,000.

The dimensions of this system were 13' x 13' x 30'H. The lower half of this system was contained in a shielded cell.

In order to thoroughly evaluate your application we will need a quart sample to evaluate in glassware in our laboratory. If this test is positive we would suggest a pilot test in a 3 sq. ft. dryer in our test center.

The cost for the preliminary evaluation is \$500. A pilot test would likely cost from \$10,000 to \$15,000 and last 3 to 5 days. If you would like to proceed toward testing let me know and I will email you a product questionnaire.

If I can be or further assistance please call me.

Regards/ Jamie Horton

Argonne National Laboratory - West P.O. Box 2528 Idaho Falls, ID 83403-2528

Telecopy Number

(208)

533-7996

Verification Number

(208)

533-7859

Sender's Extension

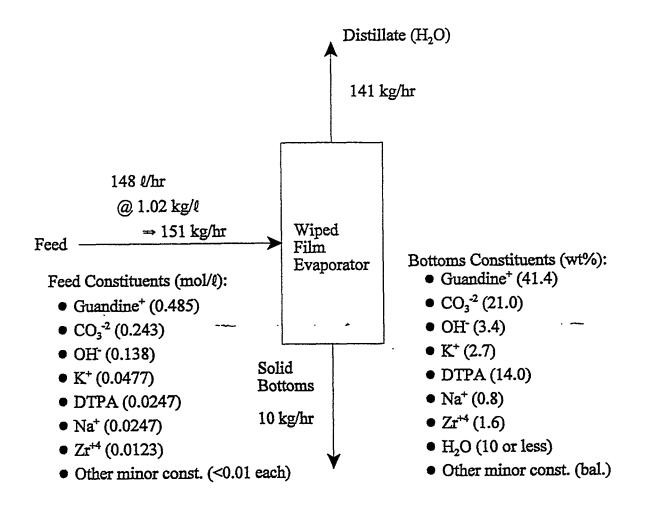
Date: June 2, 2000

To: Bill Glover

Fax No:

704-392-8507

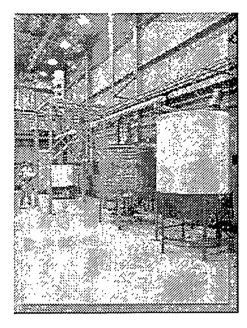
Phone No: <u>704-398-7878</u>


From: Steve Herrmann

Message:

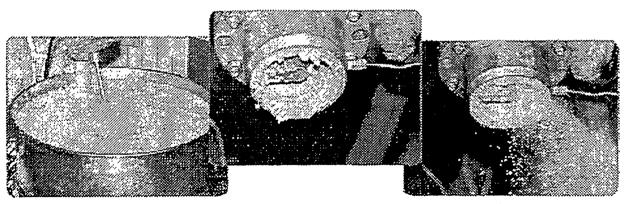
Bill,

Per our conversation I've attached a simple schematic of our estimated flow rates and compositions. It is possible that some portion of the hydroxide in these streams could actually be nitrates. Please provide a budgetary cost estimate and rough spacing dimensions for a wiped-film evaporator to accommodate such flow streams. The end product should be a powder with no free-standing liquid. The attached specifies a maximum 10% moisture content in the bottoms. This equipment would be used in a hot cell to treat a high-level radioactive waste stream. Thus, it would be desirable to keep space and maintenance to a minimum. Thank you for your assistance.


> Pages: _ (Excluding the Cover Page)

Utilization of Agitated Thin Film Evaporators (ATFEs) for Concentration of Transuranic Sodium Nitrate Based Sludges

J. F. Walker, Jr.


Ter William

ATFE with Support Equipment

Vertical Agitated Thin Film Evaporators (ATFE) contain a rotor designed to produce and agitate a thin film between the rotor and the heated wall of the evaporator. The agitation of the film on the heated surface promotes heat transfer and maintains precipitated or crystallized solids in a manageable suspensioin without fouling the heat transfer surface. This capability makes ATFEs particularly suited for volume reduction of radioactive wastes that contain suspended solids. The use of an ATFE for concentration of remote handled transuranic waste was evaluated at Oak Ridge National Laboratory. The tests were conducted with surrogates that contained no radionuclides. The results of the tests indicated that a variety of products could be produced with the ATFE. It was possible to vary the consistency from a highly concentrated liquid to a completely dry powder. Volume reductions ranged from ~20 to 68% and decontamination factors in the range of 10,000 to 100,000 were achieved.

Feed to and Products from Agitated Thin Film Evaporator

Surrogate Feed

Product Slurry

Transition: Slurry to Powder

Product Powder

Product Melt

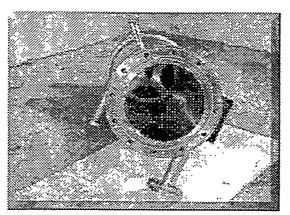
Product Melt

Preliminary Comparison with Savannah River Plant Model

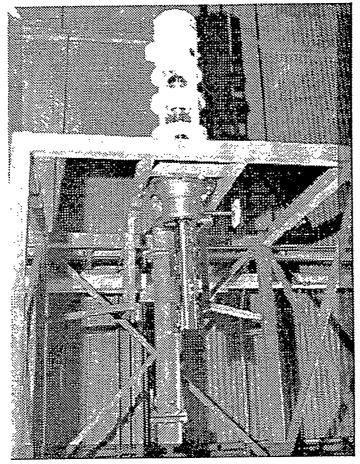
Table 1. Input Parameters from Tests Using a Cherry-Burrell Vertical Agitated Thin—Film Evaporator

Imput	Parameter Description
1 1 0.17-0.28 22-26 150.0 15 120.0 40	Parameter Description Verical Purex Feed Rate (gpm) Feed Temperature (*C) Product Temperature (*C) Temperature In crement (*C) Steam Pressure (psig) Inside Diameter (in.) Cladding Thickness (in.)
00 017 024 094 1798 0 00 00 00 00 00 00	Clading Thickness (in.) Wall Thickness (in.) Heat Transfer Area (if) Cladding Conductivity (Btu/hrit-F) Wall Conductivity (Btu/hrit-F) Robr Speed (ipm) Robr Wall Clearance (mils) Concentration, Na,SO ₄ (p-moVL) Concentration, NaNO ₄ (p-moVL) Concentration, NaNO ₄ (p-moVL) Concentration, NaNO ₄ (p-moVL) Concentration, NaOH (p-moVL) Concentration, NaOH (p-moVL)

Table 2. Comparison of Process Parameters from Vertical Agitated Thin-Film Evaporator with the Modified SRP Model


Run	न्द्रातालके र	Mes sured	Model	eonenett 🖸
1	Pilet Roting Point (**0) Bass Flow Rate, Feed Obin) Bass Flow Rate, Relikons Obin) Bass Flow Rate, Ownhead Obin) To 대 Gotts in Product (%) Oueral Real Wars of Coefficint (8 kb는 #**F)	102 157.5 7.5 32.5 63 503	104 164.1 29.2 94.3 56 433	79 +2 -69 1+3 -11.1
2	In the Rolling Point (***C) User's Flow Rate, Feed Spirity User's Flow Rate, Bolliches Spirity User's Flow Rate, Countriest Spirity To be Soles in Froduct (***X) Ouer'al Real Transfer Coentdent (**Elah- *****F)	102 6969 208 203 20 20 20	106 1•28 •9.7 933 67 •55	29 +3 -18 -18 5.1 -193 25
3	N 전 Bolling Robin(***) Nation Flow Rate, Feed Obths Nation Flow Rate, Bollions (birth) Nation Flow Rate, Outstread (birth) 한 점 중인보호 In Freduct(%) Outstall Real Transfer Coemicant (6kirth n ⁷⁻⁴ F)	102 120 +6 <i>5</i> 73 <i>5</i> 38 439	106 125.1 25.5 29.5 22.5 415	39 +3 -21.+ 21.8 -6.3 -15.1
•	ried Boling Point(PC) Hass Flow Rain, Feed Obliv Hass Flow Rain, Bolions Obliv Uses Flow Rain, Ownhead Only The Bolids In Product(M) Outher Real Trans to Contract(Bluth 12 기)	102 1013 •22 59.1 97 385	104 1054 252 203 92 455	79 4.1 -402 269 10 208

Link: Savannah River


Waste Handling and Packaging Plant Agitated Thin-Film Evaporation

Wiped-Film Evaporator Test Unit (Votator Turba-Film Processor <u>Cherry-Burrell</u> ANCO/Votator Division)

ATFE Outer Shell

ATFE Internals

Contact: J. F. Walker, Jr. phone: (423) 241-4858 fax: (423) 241-3817 email: wff@ornl.gov

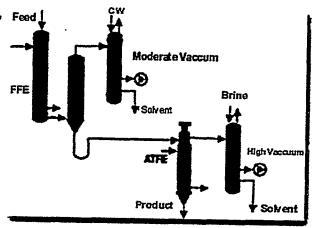
 Goals
 Mission
 Vision
 Capabilities

 Director
 Sections
 People

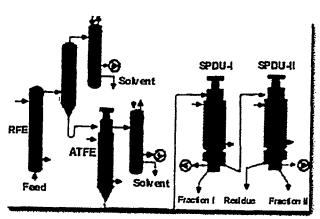
To feature your Chemical Technology group or project, contact $\underline{J}, \underline{Jernigan}$

Rising Film Evaporator / Falling Film Evaporator

Click here for the inquiry form

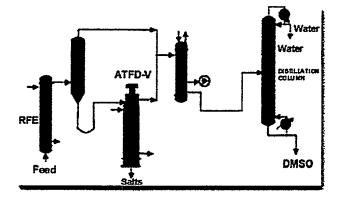

The Rising Film Evaporator or Falling Film Evaporators are used for pre-concentration wherever possible. These conventional evaporators help in reducing the size of Thin Film Evaporators and Dryers.

Optimum Solutions:


With our broad range of equipment, we offer the most optimum solutions to your process problems minimizing the initial investment and lowering the operating cost. Here are some examples:

Pesticide: Preconcentration and Final Stripping

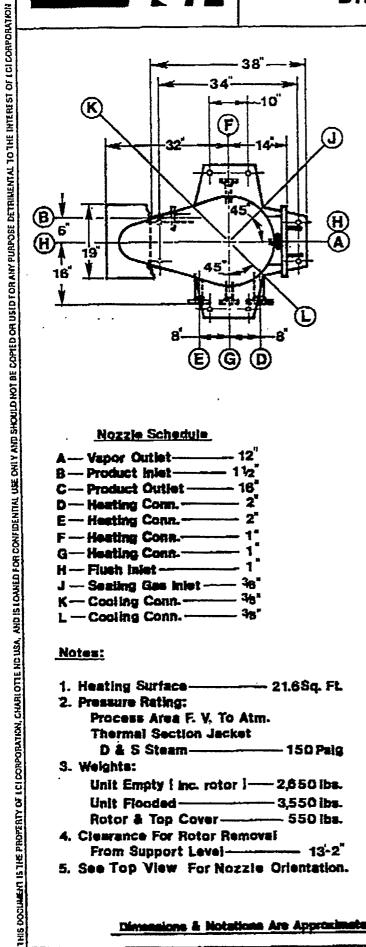
For clean feed streams and heat sensitive products, most of the solvent in recovered in falling film evaporator (FFE) and the final stripping of solvent and impurities is achieved in an agitated thin film evaporator (ATFE). FFE operates under moderate vacuum and the heat load is shifted to chilled water (CW) lowering the operating cost.


Bulk Drug: Solvent Recovery, Degassing and High Vacuum Distillation

Solvent is recovered at moderate vacuum in a rising film evaporator (RFE), and then an agitated thin film evaporator (ATFE) is used to further strip it. The first short path distillation unit (SPDU-I) achieves degassing while the final distillation is achieved in a second short path distillation unit (SPDU-II) at a very high vacuum. As each fraction is removed at an appropriate vacuum the load on high vacuum system is less and the equipment sizes are reduced.

DMSO Recovery from salts:

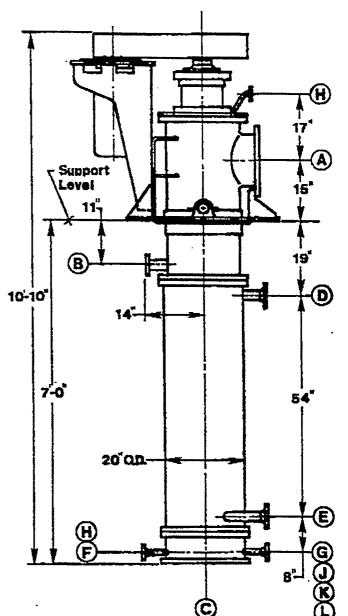
For contaminated feed streams, the rising film evaporator (RFE) preconcentrates the feed to saturation point and then an agitated thin film dryer (ATFD-V) achieves the desired dryness of salt.We recommend the use of RFE to reduce the agitated thin film dryer size.

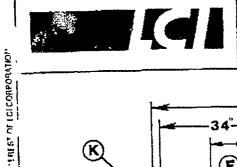

Click here for the inquiry form

2 of 2

VERTICAL DRYER

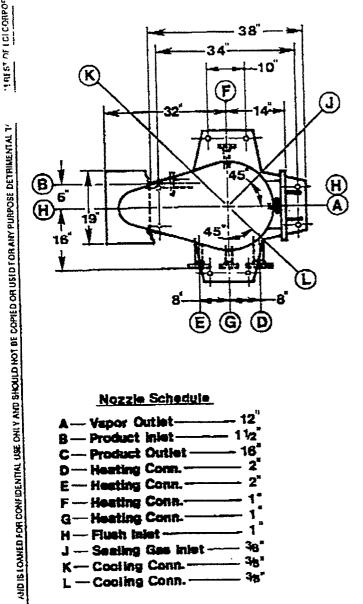
CP-0200


Nozzie Schedule


A Vapor Outlet 12"
B - Product Inlet 11/2"
C Product Outlet 16"
D — Heating Conn. — 2"
E — Hesting Conn. — 2"
F Heating Cons 1"
G-Heating Conn
H Flush Injet 1"
J - Sealing Gas Inlet 36"
K-Cooling Conn 36"
L — Cooling Conn. —— 38"

Notes:

1.	Heating Surface 21.6Sq. Ft.
2.	Pressure Rating:
	Process Area F. V. To Atm.
	Thermal Section Jacket
	D & S Steam 150 Paig
3.	Weights:
•	Unit Empty I inc. rotor 1-2,650 lbs.
	Unit Flooded 3,550 ibs.


- Rotor & Top Cover-- 550 lbs. 4. Clearance For Rotor Removal From Support Level
- 5. See Top View For Nozzie Orientation.

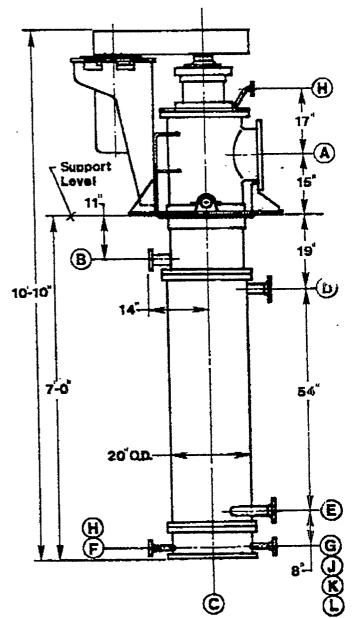
VERTICAL DRYER

CP-0200

Nozzie Schedule

45"
A Vapor Outlet 12
9 7 - d-ok ledok
B — Product inlet — 11/2
C— Product Outlet ———————————————————————————————————
C Moder contar
D— Heating Conn.—— 2
5 - Hearted ones
E — Hesting Conn. — 2"
E Hatting actual
F Heating Conn 1
Land Market Annual Contract Co
G-Heating Conn1
O transmit a - m.
H - Flush Inlet 1"
7, 1,000,000
J — Seating Gas injet —— 36"
361
K — Cooling Conn. —— 35"
L — Cooling Conn. —— 35"
L — Cocime Cons.

Notes:


THIS DOCUMENT IS THE PROPERTY OF LCI CORP.

1. Heating Surface-

2. Pressure Rating:
Process Area F. V. To Atm.
Thermal Section Jacket
D & S Steam 150 Paig
S. Weights:
Unit Empty Inc. rotor 2,650 lbs.
Unit Flooded 3,550 ibs.
Rotor & Top Cover 550 lbs.
4. Clearance For Rotor Removal

5. See Top View For Nozzle Orientation.

From Support Level-

Appendix G

Environmental Regulations and Waste Acceptance Criteria Evaluation

Environmental Regulations and Acceptance Criteria of Candidate Repositories for the Treatment and Disposal of UNEX and Modified UNEX Wastes

1. BACKGROUND

The Idaho Settlement Agreement,¹ together with the non-compliant SBW storage tanks conditions require that the HLW and SBW be processed into acceptable waste products that can be permanently disposed of. The HLW and SBW are considered mixed wastes² because they contain both radioactive and Resource Conservation and Recovery Act (RCRA) constituents.

To meet the commitments and the environmental requirements, DOE has been conducting several studies to identify a reasonable set of alternatives for management of the HLW and the SBW. As part of these studies, a Universal Extraction process (UNEX) and a Modified UNEX process have been considered for treatment of the liquid SBW plus any newly generated liquid waste (NGLW) produced before January 2003. It is assumed that the calciner at the New Waste Calcination Facility (NWCF) will not be operational.

This study identifies and presents existing regulatory requirements and other environmental issues for the treatment of the wastes of the UNEX and Modified UNEX processes. It also provides a survey of the waste acceptance criteria (WAC) of the potential candidate repositories for the final waste products resulting from these processes.

2. ENVIRONMENTAL REGULATIONS AND AGREEMENTS

The target wastes contain both RCRA hazardous contaminants and radionuclides. Therefore, the management of the wastes must be in compliance with the requirements of EPA RCRA Subtitle C for the hazardous wastes and of the Atomic Energy Act (AEA)-based requirements for the radioactive materials. The State of Idaho adopted the Federal RCRA regulations pursuant to the Idaho Hazardous Waste Management Act of 1983, and it has the authority to implement them in Idaho. The regulations are incorporated by reference as provided in the Federal requirements under 40 CFR into the Idaho "Rules and Standards for Hazardous Wastes," under administrative code known as Idaho Administrative Procedures Act (IDAPA) 16.01.05.

The AEA requirements are implemented and administered by DOE. The principal DOE requirement is compliance with DOE Order 435.1 on "Radioactive Waste Management," and by implication, compliance with DOE Order 460.1A on "Packaging and Transportation Safety," and DOE Order 460.2 on "Departmental Materials Transportation and Packaging Management," These, in turn, imply compliance with applicable U.S. Department of Transportation (DOT) and U.S. Nuclear Regulatory Commission (NRC) regulations. The wastes are also subject to all other applicable federal, state, and local laws and regulations.

The waste management activities and their schedules must also comply with the terms and conditions of the Idaho Settlement Agreement and of the Consent Orders,³ and other INEEL specific

^a Although these wastes are all considered mixed wastes, they are inadvertently referred to as HLW, SBW, and as NGLW in this report.

requirements. Also, the wastes must be managed in a way that meets the enforceable requirements and intent of the INEEL Site Treatment Plan[†] developed in accordance with the Federal Facilities Compliance Act (FFCA).^b

The UNEX and Modified UNEX treatment options under consideration will result in waste forms that must meet the applicable regulatory requirements and that satisfy the WAC of the repositories identified as most suitable for them.

3. WASTE OVERVIEW

Two types of waste are to be treated and converted into products that can be permanently disposed of. These include SBW and NGLW. The SBW and NGLW are considered mixed wastes. These are wastes that contain both radioactive and RCRA hazardous constituents. The wastes must be treated to meet the RCRA land disposal restriction (LDR) standards or alternative methods approved by EPA for land disposal. They must also meet the criteria of the respective repositories they are destined to be sent to.

The SBW feed carry a number of RCRA characteristic and listed components, as defined in 40 Code of Federal Regulations (CFR) Part 261, Subparts C and D. Because the waste is listed, the treated waste products would be listed and carry the same listed waste as those assigned to the SBW as a result of the RCRA "derived-from rule" (40 CFR 261.3 (c)(2)(i),(d). Without delisting, the treated waste products would continue to be regulated under RCRA even after LDR requirements are met, unless excluded from the RCRA Subtitle C regulations. "Delisting" is currently the only EPA approved mechanism for obtaining such an exclusion. The delisting requirements and other EPA proposed exclusion methods are discussed in Section 6. In this study, it is assumed that the wastes will be delisted. All of the wastes resulting from the UNEX or Modified UNEX process will be considered delisted prior to final interim storage and shipment to the disposal sites.

The waste processing activities would generate primary and secondary waste streams. The primary products are designated as high-activity waste (HAW) and low-activity waste (LAW). The HAW and LAW designation is based on the projected radionuclides and their concentrations in the wastes. The HAW will predominantly contain TRU nuclides that would meet the definition of TRU waste. The LAW will mainly contain cesium and strontium. The projected data indicate that the LAW meets the definition of LLW.

The treatment options considered under the UNEX or the Modified UNEX process would result in waste products that would be suitable for permanent disposal. The treatment options for the primary wastes will generate two distinct waste forms: grout and crystallite. The waste products of the UNEX process are CH-LLW grout (Class A) and RH-TRU crystallite, and of the Modified UNEX process are CH-TRU grout and RH-LLW crystallite (Class C). It is planned for the TRU waste to be disposed of at the Waste Isolation Pilot Plant (WIPP). The LLW will be shipped to a LLW disposal facility.

The secondary waste streams include the final process solvents remaining at the end of the treatment campaign, spent high efficiency particulate air (HEPA) filters, and personal protective equipment (PPE). All the secondary waste streams are considered listed mixed wastes and are subject to

^b Section 3021 (b) of the FFCA requires each DOE site to have an approved Site Treatment Plan for development of treatment capacity and technologies, and with schedules and plans for treating mixed wastes in order to meet LDR requirements. These plans identify how DOE will provide the necessary mixed waste treatment capacity and schedules for bringing new treatment facilities in operation.

the RCRA LDR Subtitle C requirements prior to disposition. In addition, the wastes must meet the criteria of the respective repositories they are destined to be shipped to. Section 9 of this study provides a description of the treatment options being considered for the secondary wastes.

The SBW feed to the UNEX or the Modified UNEX process meets the definition of TRU waste based on the type of isotopes and their activities. The SBW does not meet the statutory definition of HLW in the Nuclear Waste Policy Act (NWPA) and the NRC regulatory definition in 10 CFR 60. However, although by NRC definition, the SBW is not a HLW, it has historically been stored and managed the same way as the HLW. This is because some of its physical and chemical properties are similar to those of the HLW. The SBW is a mixture of decontamination solutions, miscellaneous laboratory wastes, and second- and third-cycle extraction waste from the SNF reprocessing. It primarily originated from processes that were incidental to the SNF processing. It follows that the SBW is not a HLW. However, the SBW would need a WIR determination using the "Evaluation" process established in DOE Manual 435.1 to be managed as non-HLW. The NRC assistance/concurrence should be sought for making the determination for evaluating and managing the waste incidental to the SNF reprocessing. An effort is currently being underway by the INEEL HLW Program Office to prepare a plan for making a WIR determination for the SBW. This determination is primarily based on statutes, regulations, DOE criteria, sources of the SBW, and INTEC operational records. Solid heels that have settled out at the bottom of the SBW tanks are not part of the liquid SBW WIR determination.

Based on the DOE-HQ and NRC assessments, it appears that the SBW as it sits today in the Tank Farm may be considered HLW.° If a "WIR ruling" is not established for the SBW and/or the SBW is legally classified as HLW, the resultant waste fractions (LAW and HAW) would need to receive an evaluation and redefinition of waste classification to be managed in accordance with requirements for LLW and TRU waste, as appropriate. The concurrence of the applicable government authorities would need to be sought in this evaluation and waste reclassification.

For the purpose of this study, it is assumed that the WIR ruling will be established and the SBW will not be considered HLW. Consequently, the waste products to be derived from the SBW processing will be considered LLW and TRU waste.

4. EPA TREATMENT AND DISPOSAL REQUIREMENTS APPLICABLE TO THE WASTES

EPA under RCRA has established LDR treatment standards for hazardous in 40 CFR 268 when the waste is land disposed. RCRA and AEA-based requirements are generally consistent and compatible. However, the provisions in Section 1006(a) of the RCRA Statute allow the AEA to take precedence in the event the two acts are found to be inconsistent.⁵

The treatment standards for hazardous waste, as designated by their hazardous waste codes or hazardous waste numbers (HWNs),^d and UHCs^c are identified in 40 CFR 268.40 and 40 CFR 268.48,

^c Communication with Clifford Olsen and Dennis Harrell on 5/15 and 5/18/2000.

^d Hazardous waste codes and hazardous waste numbers are interchangeable terms.

^e UHCs. Hazardous constituents present in the waste at the point of generation other than those that cause wastes to exhibit a characteristic are called underlying hazardous constituents (UHCs). These include any constituents listed in UTS Table 40 CFR 268.48, except for fluoride, vanadium, and zinc, which can be reasonably expected to be present at the point of hazardous waste generation in concentrations above the constituent-specific UTS treatment standards (40 CFR 268.2 (i)). Selenium and sulfides were recently added to the UTS table by Phase IV, Part 2 LDR Rule, however, these constituents are not considered UHCs.

respectively. The standards are expressed either as specified-technologies, or as waste concentration values that apply to leachate from the toxicity characteristic leaching procedure (TCLP). The standards are based on the performance of the best demonstrated available technology (BDAT) for each HWN. For wastes subject to a specified technology, the wastes may be land disposed after being treated using that specified technology or an alternative method approved by EPA.

The LDR applicability and treatment standards are determined based on RCRA hazardous chemical constituents, the sources of these constituents for listed wastes, and their concentrations in the waste at the point of generation. The SBW represents the point of generation. It contains RCRA characteristic and listed components and UHCs. The HWNs currently assigned to the SBW are D002, D004-D0011, other D-codes, and listed F001, F002, F005 and U134.7 Tables 1 and 2 provide a list of RCRA hazardous constituents identified in the Tank Farm, assigned HWNs, and their LDR treatment standards. The chemicals listed only for characteristic of ignitability (F or U) include acetone, cyclohexane, cylohexanone, ethyl acetate, methanol, methyl isobutyl ketone, and xylenes. These have not been assigned with any HWNs. This is because these chemicals, listed only for characteristic of ignitability, when mixed with water at the point of generation or with other wastes prior to being transferred to the Tank Farm for storage, lost the characteristic of ignitability. Therefore, based on the provisions of 40 CFR 261.3(a)(2)(iii), the constituents with the listing (either F or U) would no longer carry such listing. These chemicals are still required to meet the LDR requirements although they no longer exhibit characteristic of ignitability [40 CFR 261.3(a)(2)(iii)]. Other constituents representing the four listed HWNs in Table 1 are also subject to the LDR standards in 40 CFR 268.40 if their concentrations are found above their respective standard limits by sampling and testing.

The list of UHCs shown in Table 2 is preliminary at this time and is subject to change. Further process waste evaluation at the point of generation, and sampling and analysis are needed to identify any additional UHCs, to evaluate the preliminary list of UHCs, and to determine the final UHCs list.

Because of the HWNs and UHCs assigned to the waste feed, so many treatment standards apply that it could be impractical or inappropriate to meet all these treatment standards. The EPA must have foreseen this type of problem because the LDR regulations offer an alternative approach. When is impractical or technically inappropriate to treat a waste to the LDR concentration level or by the specified technology, an alternative treatment can be used. Under 40 CFR 268.42(b), a waste generator can petition EPA for a "determination of equivalent treatment" (DET) or a variance (40 CFR 268.44) from the LDR regulations. It will be necessary to contact the EPA Region 10 office early in the design process to determine the correct approach to LDR compliance and to eliminate the possibility of generating new waste for which no disposal outlet exists.

The SBW contains TC metals assigned with D004-D011 HWNs. For waste residues generated from the treatment of TC metals, RCRA has addressed specific requirements. These residuals may contain UHCs above the UTS limits due to their concentrations in treatment residuals. For such wastes, only UHCs present at the original point of generation must be treated to meet the UTS standards. However, if the waste residue is itself characteristically hazardous (above TC limits) and therefore, demonstrates a newly generated waste, the residue must be treated to remove the characteristic and to meet the UTS for the UHCs.⁸

^f Example: Acetone is considered to have been used for its solvent properties at the point of generation. However, when mixed with water or other wastes prior to being transferred to the Tank Farm for storage, it lost the characteristic of ignitability. Thus, the mixture is not considered to be RCRA-listed, due to acetone being F listed, based only on the characteristic of ignitability. Likewise, pure, unused acetone would also lose the characteristic of ignitability, and not carry the U002 RCRA-listed code. Although neither the F003 nor U002 code would apply, acetone is still subject to the treatment standards under the LDR.

EPA has decided that the point of generation must be used to determine if a waste is subject to the LDR. Therefore, a complete waste characterization and/or process knowledge are required to determine all the "regulated constituents" at the point of generation to determine LDR compliance, and the required treatment standards that must be met and disposal restrictions.

Table 1. Tank Farm RCRA chemicals and assigned listed HWNs, and applicable LDR treatment standards.⁷

Hazardous Waste Numbers	Chemical Name	LDR Non-Wastewater Standard
F005	Benzene	10 mg/kg
F005	Carbon disulfide	4.8 mg/L TCLP
F001	Carbon tetrachloride	6.0 mg/kg
F002		
U134	Hydrogen fluoride	ADGAS fb NEUTR or NEUTRa
F005	Pyridine	16 mg/kg
F002	Tetrachloroethylene	6.0 mg/kg
F005	Toluene	10 mg/kg
F001	1,1,1-trichloroethane	6.0 mg/kg
F002		
· F001	Trichloroethylene	6.0 mg/kg
F002		
N/Ab	Acetone	160 mg/kg
N/A	Cyclohexane	CMBST ^c
N/A	Cyclohexanone	CMBST (alternate standard: 0.75 mg/L TCLP)
N/A	Ethyl acetate	33 mg/kg
N/A	Methanol	CMBST
N/A	Methyl isobutyl ketone	33 mg/kg
N/A	Xylenes	30 mg/kg

a. ADGAS fb NEUTR: Venting of compressed gases into an absorbing or reacting media, followed by, neutralization.

b. Not Applicable

c. CMBST - High temperature organic destruction technologies such as combustion

Table 2. Tank Farm characteristics and preliminary UHCs, assigned HWNs, and applicable LDR treatment standards. 9-10

Hazardous Waste Numbers	Chemical Name	LDR Nonwastewater Standard
D002	Corrosivity (pH)	DEACT and meet UTS for UHC
D002- Mixed HLW		HLVIT for mixed HLW
N/A ^{a (underlying D002)}	Fluoride ^b	c
N/A (underlying D002)	Nickel	11 mg/L TCLP
D004	Arsenic	5.0 mg/L TCLP
D004-Mixed HLW		HLVIT⁴
D005	Barium	21 mg/L TCLP
D005-Mixed HLW		. HLVIT
D006	Cadmium	0.11 mg/L TCLP
D006-Mixed HLW		HLVIT
D007	Chromium	0.60 mg/L TCLP
D007-Mixed HLW		HLVIT
D008	Lead	0.75 mg/L TCLP
D008-Mixed HLW		HLVIT
D009	Mercury ^e	IMERC; or RMERCf
	Mercury ^g	0.20 mg/L TCLP
	Mercury ^h	0.025 mg/L TCLP
D009-Mixed HLW		HLVIT
D010	Selenium ^b	5.7 mg/L TCLP
D010-Mixed HLW		HLVIT
D011	Silver	0.14 mg/L TCLP
D0011-Mixed HLW		HLVIT
N/A	Antimony	1.15 mg/L TCLP
N/A	Beryllium	1.22 mg/L TCLP
N/A	Vanadium ^b	1.6 mg/L TCLP
N/A	Thallium	0.20 mg/L TCLP
N/A	Zinc ^b	4.3 mg/L TCLP
D019	Carbon tetrachloride	6.0 mg/kg and meet UTS for UHC
D021	Chlorobenzene	6.0 mg/kg and meet UTS for UHC
D022	Chloroform	6.0 mg/kg and meet UTS for UHC
D026	Cresol-mixed sorbers	11.2 mg/kg and meet UTS for UHC
D028	1,2-dichloroethane	6.0 mg/kg and meet UTS for UHC
D032	Hexahlorobenzene	10 mg/kg and meet UTS for UHC

Table 2. (continued).

Hazardous Waste Numbers	Chemical Name	LDR Nonwastewater Standard
D034	Hexachloroethane	30 mg/kg and meet UTS for UHC
D035	Methy ethy ketone	36 mg/kg and meet UTS for UHC
D036	Nitobenzene	14 mg/kg and meet UTS for UHC
D038	Pyridine	16 mg/kg and meet UTS for UHC
D039	Tetrachloroethylene	6.0 mg/kg and meet UTS for UHC
D040	Trichloroethylene	6.0 mg/kg and meet UTS for UHC
N/A	Phenol	6.2 mg/kg
N/A	Ethyl benzene	10 mg/kg
N/A	Chloroform	6 mg/kg
N/A	Methylene chloride	30 mg/kg
N/A	Isobutyl alcohol	170 mg/kg
N/A	Naphthalene	5.6 mg/kg
N/A	o-Nitrophenol	13 mg/kg
	p-Nitrophenol	29 mg/kg

a. Not applicable - These are UHCs, except for those with superscript b.

b. Not an UHC in characteristic wastes.

c. No specific treatment standard finalized for this constituent.

d. HLVIT - Vitrification of mixed HLW.

e. High-mercury (\geq 260 mg/kg total mercury) that also contains organics. DOE has been conducting research to address treatment and stabilization alternatives for mercury-bearing mixed waste. This includes development of new technologies to stabilize waste with \geq 260 PPM mercury and working with the EPA to develop waste test protocols that may replace the TCLP. DET will need to be sought from EPA for successfully demonstrated processes other than those currently specified by RCRA. The RCRA specified treatment for waste with \geq 260 PPM mercury that also contains organics is incineration or retorting).

f. IMERC or RMERC – IMERC: Incineration of wastes containing mercury and organics; or RMERC: Retorting or roasting in a thermal processing unit.

g. Low-mercury (<260 mg/kg total mercury) and residues from RMERC.

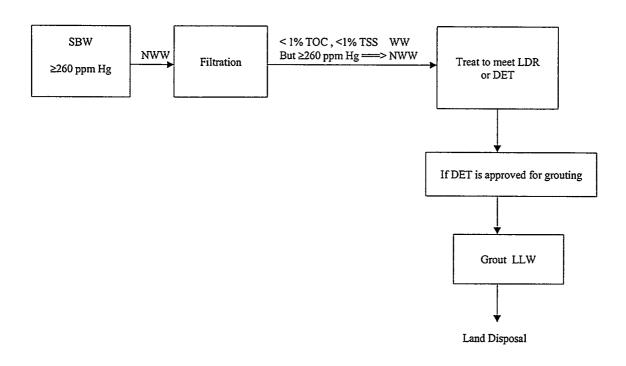
h. Low mercury (<260 mg/kg total mercury) that are not residues from RMERC.

Mercury Removal routes and Regulatory Issues

There are regulatory concerns over the fate of heavy toxic metals, in particular mercury for partitioning in the UNEX process and its disposition. Some of the tanks with SBW feed to the UNEX process contain a relatively large amount of mercury. The regulatory issues and treatment options surrounding the mercury waste are discussed below.

As specified in 40 CFR 268.40, waste containing mercury have been divided into a single wastewaters subcategory and several nonwastewater subcategories with different treatment standards. There are two subcategories for nonwastewater mercury: high-mercury subcategory and low-mercury subcategory. For high-mercury subcategory (≥ 260 mg/kg total mercury) that also contain organics, he LDR treatment standard is IMERC or RMERC. For high-mercury subcategory (≥ 260 mg/kg total mercury) that are inorganic, including residues from retorting and incineration, the treatment standard is RMERC. For low-mercury subcategory that contains <260 mg/kg total mercury and that are residue from retorting only, the waste must be at or below 0.2 mg/l TCLP and meet the UTS treatment standards in 40 CFR 268.48 for UHCs before disposal. The low mercury (<260 mg/kg total mercury) that are not residues from RMERC (retorting) must be at or below 0.025 mg/l TCLP before disposal. For all wastewaters that exhibit the characteristic of toxicity for mercury, the waste must be at or below 0.15 mg/l TCLP and also it must meet the UTS limits in 40 CFR 268.48 for UHCs. The LDR treatment method for elemental mercury is amalgamation (AMLGM). Th amalgamated mercury can be land disposed if mercury is below the characteristic level (0.2 mg/l TCLP). It should be noted that any waste that contains ≥ 260 mg/kg total mercury, but otherwise appears to meet the definition wastewater is classified as nonwastewater.11

The SBW currently stored in the tank is considered a nonwastewater due to its high solids contents. The SBW feed to the UNEX process is expected to be filtered prior to further processing. The filtered SBW would meet the definition of RCRA wastewater. However, according to EPA, any wastewater that contains ≥ 260 mg/kg total mercury is classified as nonwastewater. The LDR treatment standard for the waste with high-mercury organic subcategory is IMERC or RMERC and for high-mercury inorganic subcategory is RMERC. Due to nature and composition of the SBW, this waste is not amenable to either treatment option. For DOE mixed waste in high mercury subcategory, DOE has been conducting research to address treatment and stabilization alternatives. This includes development of new technologies to stabilize waste and working with the EPA to develop waste test protocols that may replace the TCLP. DET will need to be sought from EPA for successfully demonstrated processes other than those currently specified by EPA. If an equivalent treatment is approved, the alternative grouting treatment option can be used to stabilize the waste for disposal. It is assumed that the DET petition will approved by EPA for using grouting to dispose of the waste.


If mercury is not removed, a large percentage of mercury in the SBW feed will end up in the LLW grout. Due to concerns over the mercury leach from the grout, a mercury removal system was initially considered but later eliminated. It was originally suggested that an electrochemical reduction system (ECR) be used to capture mercury upstream of the grouting to keep the mercury concentration in the grout to a limit that would be acceptable for land disposal. The treatment standard includes: 1) precipitation of the mercury, 2) RMERC of precipitate, 3) AMLGM of the radioactively contaminated elemental mercury recovered by RMERC, 4) treatment of the residue from RMERC to < 0.2 mg/l TCLP,

^g Per 40 CFR 268.2(f), wastewaters are wastes that contain less than 1% by weight total organic carbon (TOC) and less than 1% by weight total suspended solids (TSS). Nonwastewaters are wastes that do not meet the criteria for wastewaters (40 CFR 268.2(d).

and 5) treatment of the wastewater left over after precipitation of the mercury to \leq 0.15 mg/l TCLP and to the UTS standards prior to disposal.

Other alternative options proposed for the mercury removal included sorption with potassium copper hexacyanoferrate resin and the other known as Sachtleben-Lurgi process. In the first option, the waste would be a mercury-loaded resin which would need retorting per RCRA LDR requirements. In the Sachtleben-Lurgi process, the resulting waste form is a mercuric sulfide precipitate (a form of mercury amalgam) that may not require retorting. Since the RMERC treatment would result in a radioactively-contaminated elemental mercury waste that requires amalgamation, it would be desirable to bypass the retorting step (avoid volatizing mercury). If the waste is not retorted, an equivalency petition is needed for using the Sachtleben-Lurgi process to accomplish amalgamation and bypassing the retorting step.

The possible management schemes for the SBW treatment with and without mercury removal using ECR option are shown in Figure 1.

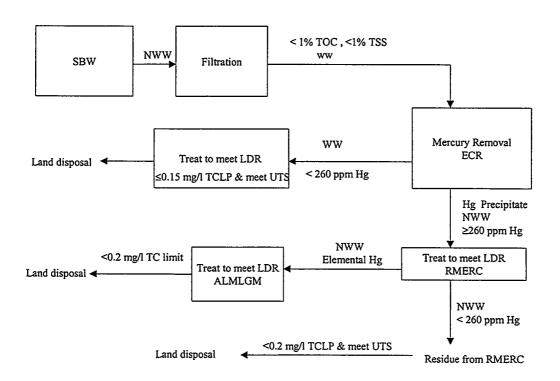


Figure 1. Management schemes for the SBW and mercury removal option.

5. SAMPLING REQUIREMENTS

Various types of verification sampling of the feed streams, additives, etc. and analytical data are required for monitoring the processes (eg., monitoring certain parameters such as temperature and pressure) and for the compliance purposes. 40 CFR 264.13 contain the requirements for performing general waste analysis.

For the compliance purposes to certify that waste is acceptable for disposal, the use of process qualification versus verification sampling is encouraged. For example, EPA requires either a Totals Analysis Test or the TCLP for waste extract from the final treatment product to be performed to determine the concentration of RCRA constituents for LDR compliance, and to demonstrate that the process qualification standards have been achieved. However, due to the radiological exposure risk considerations, it could be impractical to perform the required sampling and analysis using the conventional methods. Process qualification standards that reduce or eliminate radiological exposure risk should be established. Also, surrogate waste should be used to determine the operating and performance conditions and process qualification standards under which the required concentration levels for hazardous constituents would be achieved. This would demonstrate that wastes produced under these operating conditions would be considered to achieve the required performance and concentration levels.

6. MIXED WASTES EXCLUSION FROM RCRA REGULATIONS

Presently, some of the candidate disposal locations evaluated in this study are not RCRA-regulated hazardous waste Subtitle C facilities. Consequently, these facilities do not accept any RCRA-regulated or listed hazardous waste (i.e., mixed waste) for disposal. Others accept only certain LDR treated listed waste. The final products resulting from processing of the SBW must not be assigned with any RCRA HWNs unacceptable for disposal at these facilities. This section describes the avenues for allowing the disposal of the subject mixed wastes as non-hazardous wastes once they meet the RCRA LDR requirements. These avenues include EPA delisting, and the use of EPA proposed Hazardous Waste Identification Rule (HWIR) and the EPA proposed Mixed Waste Storage and Disposal Rule if the latter two are approved.

6.1 Delisting Approach

Delisting is a method by which a waste bearing a listed HWN can be excluded from the hazardous waste regulations under the RCRA Subtitle C program. To exclude, or delist, a listed waste, a delisting petition must be submitted to the authorized delisting agency. Then, the agency determines if the waste is eligible for delisting. There are three types of delisting or exclusion: a standard exclusion, a conditional exclusion, and an upfront exclusion. Procedures and guidance for petitioning to delist a listed waste can be found in 40CFR 260.20 and 260.22 and references 12 and 13. The intricate details about delisting and related requirements governing the process of requesting and awarding delisting petitions are provided in reference 14.

Currently, some of the potential target repositories under consideration in this study are not permitted to receive any RCRA-characteristic or listed hazardous waste for disposal. WIPP has received a license to dispose of radioactive waste with certain RCRA chemicals. Others such as the Nevada Test Site (NTS) accepts mixed LLW for disposal, however, it does not accept such waste from the off-site generators at the present time. Nevertheless, per DOE's record of decision (ROD) issued in February 2000, for mixed LLW disposal, the NTS and Hanford site will be used for off-site waste. Presently, the Hanford site accepts certain LDR treated listed LLW.

Currently, the Envirocare of Utah mixed LLW facility is the only commercial facility permitted to dispose of DOE and commercial mixed LLW wastes from off-site generators. Any LLW bearing listed and characteristic HWNs must meet the applicable LDR standards prior to disposal at the mixed waste facilities. In such cases, delisting will not be required unless a particular listed HWN is not authorized for disposal.

Before shipment, delisting petitions for the target waste must be granted for both Idaho and the receiving state. If the target waste were transported through other states on its way to the receiving state, it would have to be accompanied by a manifest. Potentially, notification of transitory states may be performed before shipment as a courtesy.

Delisting can be granted by the individual states authorized to administer delisting and EPA regional offices. It could also be granted through EPA rulings between regions or on a national level. Delisting on a national level would require at least a federal rulemaking and amendment to the definition of hazardous waste in 40 CFR 261. State with authorized delisting programs (authorized to administer delisting) must also adopt the EPA rule making into their program for the delisting to be in effect. EPA rule making does not automatically allow waste to be disposed of as a non-hazardous waste in an authorized state.

In this study, it is assumed that the EPA delisting will be granted for the petitioned wastes to delist the RCRA listed hazardous waste codes. All of the wastes resulting from the UNEX or Modified UNEX option will be considered delisted prior to final interim storage for shipment to the disposal sites. An upfront exclusion could be an option for delisting the target wastes. This is a type of conditional exclusion that can be used for wastes and/or wastes from treatment that have not been generated, but will be generated in the future. The upfront exclusion is based on evaluation of the characteristics of the untreated waste, process description, and data from bench scale or pilot scale treatment system. The treated wastes will no longer be considered RCRA hazardous wastes if the petition is granted. Once the full-scale treatment process is on-line, verification testing would be required to demonstrate that the system is operating as described in the petition and that the treated wastes achieve the delisting levels described in the petition.

6.2 Hazardous Waste Identification Rule

EPA proposed the HWIR to amend the RCRA hazardous waste regulations. ¹⁶ This rule would allow mixed waste containing listed hazardous constituents below the HWIR exit levels to become eligible for self-implementing exemption from the RCRA Subtitle C regulations. Such wastes would be disposed as radioactive wastes only. Application of the self-implementing exemption would require notifying the state regulatory agency, complying with sampling and analysis requirements, and meeting administrative requirements. The self-implementing nature of the proposed HWIR proposal would enable some listed wastes to leave the RCRA regulatory management system without having to be formally "delisted." The proposed HWIR is scheduled to be finalized on April 30, 2001.

6.3 Mixed Waste Storage and Disposal Rule

EPA issued the proposed Mixed Waste Storage and Disposal Rule that aims to reduce dual regulations of mixed LLW, which is subject to RCRA and AEA. The proposal would exempt certain mixed LLW from RCRA storage, manifesting, and disposal requirements if specific conditions are

h Personal communication with David Bartus, EPA Region 10, on 04/14/99.

met.¹⁷ The exemption does not apply to RCRA hazardous waste mixed with HLW or TRU waste. The conditions for exemption are to ensure the waste meet the applicable LDR requirements, to notify the disposal facility of the exempt status of the waste before shipment to the disposal facility, and to comply with the NRC transportation requirements 10 CFR 71. In addition to these, for RCRA-exempted mixed wastes, DOE facilities must comply with the DOT and 10 CFR 20 requirements to claim the exemption. The exempt waste must be disposed of at facilities licensed by NRC or Agreement State.

7. REQUIREMENTS FOR THE INTERIM STORAGE AND SBW PROCESSING FACILITIES

The design and operation of the interim storage facility that would be used for the final waste products do not require compliance with the RCRA requirements. This is based on the assumption that the delisting petitions for the target waste products would be granted prior to interim storage. However, since the SBW also contains characteristic constituents, the facilities used for processing the liquid SBW (prior to interim storage) must be designed, constructed, and operated in accordance with the RCRA requirements. These requirements are defined in 40 CFR 264 (IDAPA 16.01.05.008) and in 40 CFR 270 (IDAPA 16.01.05.012). 40 CFR 264 contains the minimum national standards for owners and operators of hazardous waste facilities, and 40 CFR 270 establishes the permit requirements.

The planning, design, and construction of the interim storage and SBW processing facilities must be performed in a manner that will satisfy all applicable DOE criteria, and State and local environmental, safety and health laws and regulations.

40 CFR 264 sets regulatory requirements such as quality assurance program, testing and maintenance of the equipment, air emission standards, groundwater protection standards, security, inspection, personnel training, contingency plan and emergency procedures, manifest system and record keeping, closure and post-closure, financial requirements, and use and management of containers. For example, for the new storage tanks, 40 CFR 264, Subpart J (Parts 264.192 through 264.200) contains the specific standards that apply to the design, installation, containment, response to leaks and spills, operation, inspection, air emissions, and closure of a new tank system. RCRA requires that new storage tanks or components be equipped with secondary containment in order to prevent the releases of any hazardous wastes to the environment. The secondary containment must be designed and operated in accordance with the standards in Part 264.193

Any existing hazardous waste facilities used for the future hazardous waste management activities can continue operations while meeting the requirements in 40 CFR 265 (16.01.05.009), "Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities". This will allow the existing facilities to continue operations while meeting minimum operational requirements defined in 40 CFR 265. To be qualified for interim status, the existing facility must have been in operation or under construction on November 19, 1980 or have been in operation when the facility became subject to the RCRA requirements.

8. CRITERIA OF THE POTENTIAL CANDIDATE REPOSITORIES

Wastes resulting from the proposed processes are analyzed here in the context of their evaluation against the disposal facilities WAC. The UNEX and Modified UNEX process would generate wastes that would be classified as TRU waste and LLW from the radiological standpoint. Currently, WIPP is the only facility authorized to accept TRU and mixed TRU waste for disposal. Several facilities are considered as potential candidates for the disposal of the LLW. These include DOE and commercial sites. A detailed description of the criteria of these facilities is provided below.

8.1 Waste Isolation Pilot Plant

8.1.1 Waste Acceptance Criteria

8.1.1.1 Background

In October 1999, WIPP received a RCRA Permit from the State of New Mexico Environment Department (NMED) to receive CH-mixed TRU waste for disposal. The WIPP WAC document revised in November 1999 (Revision 7) to reflect the NMED permit requirements. The revised WAC identify criteria that must be met for the safe handling, transportation, and disposal of CH-TRU and CH-mixed TRU waste. The RH-TRU waste criteria are deleted in the revised WIPP WAC document because the WIPP is currently not permitted to dispose of RH-TRU. The RH-TRU criteria are being developed by the WIPP office and will be issued as a separate document.

This study provides the criteria for both CH- and RH-TRU and mixed TRU waste. However, the RH criteria are based on the previous version (Rev. 5) of the WIPP-WAC document.¹⁸ These criteria are preliminary at this time and are provided here as technical guidance to proceed with the waste acceptance issues.

In addition to the NMED Permit, the acceptance criteria for CH-TRU and CH-mixed TRU are derived from several sources. These include WIPP Safety Analysis Report (SAR), WIPP Safety Analysis Report for the Transuranic Package Transporter (TRUPACT-II) Shipping Package (TRUPACT-II SARP), the TRUPACT-II Certificate of Compliance (COC), the site compliance certification, and the land withdrawal Act (LWA) and its amendments (LWAA).

The WIPP SAR addresses handling operations for CH-TRU wastes and safety bases necessary to ensure the safety of the workers, the public, and the environment. The acceptable methods for payload compliance are specified in the TRUPACT-II SARP, Appendix 1.3.7 (TRUPACT-II Authorized Methods for Payload Control (TRAMPAC)). The SARP addresses the NRC safety requirements in 10 CFR 71, Subpart H for the TRUPACT-II. A site-specific TRAMPAC and a QA program must be prepared describing compliance methodology with payload requirements (TRUPACT-II COC) and the QA activities that apply to the use of NRC-approved packaging.

The site compliance certification is a documented declaration by each site to demonstrate that the waste has been characterized and meets the requirements for transportation to and disposal at WIPP.

The LWA specifies that waste destined for disposal at the WIPP meet the definition of TRU waste, not contain HLW or SNF, and be generated from atomic energy defense-related activities. The LWAA exempts WIPP from the LDR treatment standards for the RCRA chemicals acceptable at WIPP.

8.1.1.2 NMED Permit Requirements

The NMED Permit contains a Waste Analysis Plan (WAP) that defines the requirements for waste characterization activities that generators are required to implement for waste disposal. Based on the Permit, only CH-TRU wastes that have been characterized in accordance with the WAP (contained in the Attachment B of the Permit) are acceptable for disposal at WIPP. The characterization requirements are

ⁱ According to Tawnya Goddard of the WIPP document control, the draft RH-TRU WIPP WAC document has not been issued yet (personal communication, August 22, 2000).

specified on a waste stream basis. A waste stream is defined as waste materials generated from a single process or from an activity that is similar in material, physical form, and hazardous constituents. In the Permit, all waste streams that can be accepted at WIPP are categorized into three Summary Category groups/codes based on the physical and chemical properties of the wastes: Homogenous Solids, Soil/Gravel, and Debris Waste (each of the three groups is described in the footnote, below). Waste destined for disposal at WIPP must be assigned to one of these there categories for further characterization. Acceptable knowledge is used for the purpose of grouping waste. The INTEC mixed TRU waste that would be destined for disposal at WIPP can be grouped as a Homogeneous Solids category (Code: S-3000) based on its projected physical and chemical properties. The WAP specifies characterization methods for each of the three categories. The characterization methods include: 1) acceptable knowledge, which incorporates confirmation by headspace-gas sampling and analysis, 2) homogeneous waste sampling and analysis, and 3) radiography and visual examination. Generators are required to develop and implement a Quality Assurance Project Plan (QAPjP) that addresses the requirements specified in the WAP. The QAPjP must include the qualitative or quantitative criteria for making a hazardous waste determination. The QAPjP will require the approval of the WIPP CAO.

Under the LWAA, the WIPP is exempt from the LDR requirements. However, the WIPP WAC specify that only selected RCRA HWNs are acceptable for disposal (see Table 6). The LDR exemption applies only to the list of HWNs acceptable for disposal at WIPP. For TRU waste bearing other HWNs that are not in the WIPP WAC, a request must be submitted to the WIPP DOE Carlsbad Area Office (CAO) to modify the WIPP RCRA Permit to allow disposal of that waste at WIPP, thus bringing it within the envelope of waste to which the LDR exemption applies. Such waste will be prohibited for disposal at WIPP until the permit modification is approved by the NMED for these HWNs.

The RCRA chemicals that are expected to be present in the wastes resulting form the UNEX processes would exhibit characteristics of corrosivity (D002) and toxicity (toxic metals). The waste would also carry other RCRA listed HWNs. Based on the WIPP WAC, TRU waste exhibiting ignitable (D001), corrosive (D002), or reactive (D003) characteristic must be treated to remove the hazardous characteristic. From the RCRA HWNs currently assigned to the wastes, D002 (corrosive) and U134 (hydrogen fluoride – listed waste) are currently not accepted at the WIPP. The waste must be treated to remove the characteristic of corrosivity and be delisted for U134. A potential alternative to delisting could be obtaining permission from the WIPP management or addition of U134 to the WIPP RCRA Permit to dispose of U134.¹⁹

All the RCRA HWNs in the TRU waste, regardless of the WIPP waste acceptability status, must be reported to the WIPP prior to the waste shipment. The determination of hazardous contaminants shall be based on acceptable knowledge and/or sampling and analysis data indicating that the waste is hazardous

^j S-3000 - Homogeneous Solids - Homogeneous solids, or solid process residues, are defined as solid materials, excluding soil, that do not meet the NMED criteria for classification as debris (40 CFR 268.2[g] and [h])). Included in the series of solid process residues are inorganic process residues, inorganic sludges, salt waste, and pyrochemical salt waste. Other waste streams are included in this Summary Category Group based on the specific waste stream types and final waste form. This Summary Category Group is expected to contain toxic metals and spent solvents. This category includes wastes that are at least 50 percent by volume solid process residues.

<u>S-4000 - Soils/Gravel</u> - This Summary Category Group includes waste streams that are at least 50 percent by volume soil/gravel. This Summary Category Group is expected to contain toxic metals. Soils/gravel are further categorized by the amount of debris included in the matrix.

<u>S-5000 - Debris Wastes</u> - This Summary Category Group includes heterogeneous waste that is at least 50 percent by volume materials that meet the criteria specified in (40 CFR 268.2 (g)). Debris means solid material exceeding a 2.36 inch (in.) (60 millimeter) particle size that is intended for disposal and that is: a manufactured object, or plant or animal matter, or natural geologic material.

as defined in 40 CFR 261, subparts C and D. It is also required that an LDR notification be transmitted to the WIPP for each shipment of mixed waste. The notification must contain hazardous waste characterization records and records showing types and quantities of all hazardous constituents that require LDR treatments in accordance with 40 CFR 268.

The following contains the criteria for both CH- and RH- TRU and mixed TRU waste. The criteria are provided under the following categories: container requirements, nuclear properties, chemical properties, gas generation, and data package. These criteria are summarized in Tables 10 and 11. The TRU waste sites must certify all TRU waste packages to the criteria identified in the WIPP-WAC.

8.1.1.3 WIPP Criteria for CH-TRU Waste

8.1.1.3.1 Container Requirements

A TRU waste payload container must be one of the following and meet all applicable DOT requirements in 49 CFR 173.412:

- DOT Type A 55-gallon drums
- Pipe overpack in 55-gallon drums
- Standard Waste Boxes (SWBs)
- Ten Drum Overpack (TDOP)

These containers are authorized for shipment of CH-TRU waste in the TRUPACT-II. The maximum number of containers per TRUPACT-II and the authorized packaging configurations are provided in Table 3.

Only DOT Type A 55-gallon drums and TRUPACT-II SWBs shall be unloaded at the WIPP as payload containers. The Type A requirements for payload containers used for newly generated CH-TRU waste may be verified by procurement or fabrication documentation. Specification UN1A2 55-gallon drums are considered adequate to meet Type A requirements if the requirements of the TRUPACT-II SARP are also met.

Table 3. Maximum number of containers per TRUPACT-II and authorized configurations.

Max.#	Authorized Packaging Configurations
14	55-gallon drums
14	Pipe overpacks in 55-gallon drums
2	SWBs
2	SWBs, each containing one bin
2	SWBs, each containing four 55-gallon drums
1	TDOP, containing ten 55-gallon drums
1	TDOP, containing one SBW
1	TDOP, containing one bin within a SWB
1	TDOP, containing four 55-gallon drums within a SWB

8.1.1.3.1.1 Container/Assembly Weight limits

Individual container weights shall be limited to the weight capacities that meet the DOT Type A requirements. The weight limits that apply to CH-TRU waste payload containers, loaded TRUPACT-IIs, and TRUPACT-II shipments are specified in Table 4.

As all weight criteria must be met, different payload configurations are restricted by different requirements. For example, a payload assembly of fourteen 55-gallon drums may not weigh more than 7,265 lb even though the maximum weight of a single 55-gallon drum may be 1,000 lb. Although the maximum weight of the payload assembly must not exceed 7,265 lb, the weight available for the CH-TRU waste payload assembly will be less, depending on the as-built (i.e., empty) weight of the TRUPACT-II to be used (the average as-built weight of production TRUPACT-IIs is 12,705 pounds). The weight available for the CH-TRU waste payload assembly is obtained by subtracting the as-built weight of a TRUPACT-II from the maximum gross weight of 19,250 lb.

The maximum gross weight per TRUPACT-II is specified based on an approximate as-built weight of 13,050 lb and an average payload weight of 6,200 lb; this is usually the limiting weight for two TRUPACT-IIs per shipment. DOT's limit of 80,000 lb gross vehicle weight rating must also be met; this is the limiting weight for three TRUPACT-IIs per shipment.

Documented evidence shall exist that each CH-TRU waste payload container has been weighed, and that the weight of the payload container and container assembly meets the requirements. The weight of the payload container cannot exceed the weight for which the payload container has been certified in accordance with DOT Type A requirements.

Table 4. Container/Assembly Weight Criteria.

Components	Max. Weight (lb)
Individual Payload Conta	iner
55-gallon steel drum (DOT Specification 17 C)	≤ 1000
55-gallon steel drum (DOT Specification 17 H)	≤ 1000
55-gallon steel drum (UN/1A2/X320/S)	≤ 700
55-gallon steel drum (UN/1A2/X325/S)	≤716
55-gallon steel drum (UN/1A2/X400/S)	≤ 882
55-gallon steel drum (UN/1A2/X320/S)	≤ 937
55-gallon steel drum (UN/1A2/X425/S)	≤948
55-gallon steel drum (UN/1A2/X430/S)	≤ 959
55 gallon drum overpacked in SWB	≤ 1450

SWB	≤ 4000
TDOV	≤ 6700
Pipe Overpack Payload	l Container
Pipe overpack 6" diameter	≤ 328
Pipe overpack 12" diameter	≤ 547
Payload Container A	Assembly
Payload container assembly of two SWBs	≤ 7265
TRUPAT-II	≤ 19250
Truck (tractor/trailer)	≤ 80000

8.1.1.3.1.2 Removable Surface Contamination

Removable surface contamination on CH-TRU waste payload containers or container assemblies to be disposed at the WIPP shall not be greater than 20 dpm/100 cm 2 for alpha-emitting radionuclides and 200 dpm/100 cm 2 for beta-gamma emitting radionuclides. Beta-gamma contamination may be \leq 1000 dpm/100 cm 2 if it meets the requirements of the DOE RADCON Manual, Table 2-2. The fixing of surface contamination to meet the above criterion is not permitted.

The Sites/generators must measure the degree of removable surface contamination for each CH-TRU waste payload container or payload container assembly prior to its shipment. The sampling methods are described in 10 CFR 835. The results of these surveys must be documented.

8.1.1.3.1.3 Container Marking

Each CH-TRU waste payload container shall be labeled with a unique container identification number consisting of Site and container identification. The shipping category shall be labeled conspicuously on each payload container.

8.1.1.3.1.4 Dunnage

Dunnage must complete one of the configurations specified in Table 3 if too few payload containers are available that meet all payload container and transportation requirements. An empty, 55-gallon metal drum or an empty SWB may be used as dunnage as specified in Section 13.4 of Appendix 1.3.7 of the TRUPACT-II SARP. If an empty drum is used as dunnage to complete a seven-pack in a shipment to the WIPP, the drum shall be labeled "EMPTY" or "DUNNAGE" and have a container marking.

8.1.1.3.1.5 Filter Vents

All payload containers shall be vented. All CH-TRU waste payload containers, including overpacks, shall be vented with filters to control gas concentration and pressure. Filters must meet the specifications described in Appendix 1.3.5 of the TRUPACT-II SARP. The installation of filter vents shall be documented and verified by visual inspection.

8.1.1.3.1.6 Liquids

Liquid waste is not acceptable at the WIPP. CH-TRU waste shall contain as little residual liquid as is reasonably achievable through pouring, pumping, and/or aspirating. Internal containers (e.g., bottles, cans, etc.) shall contain less than 1 in. or 2.5 cm of liquid in the bottom of the container. In no case shall the total liquid volume (i.e., the sum of all internal or payload container volumes) exceed 2 L in a 55-gallon drum or 8 L in a SWB. The total volume of residual liquid in a payload container shall be less than 1 volume percent of the payload container.

Radiography or visual examination shall be used to determine the presence of liquids and to estimate the quantity of liquid in retrievably-stored waste. Radiography or visual records shall include a description of the location of any liquid detected (e.g., between the rigid liner and the 55-gallon poly bag liner or in a one-gallon poly bottle) and an estimate of its volume.

For newly generated waste, visual examination and documentation of container content at the time of waste packaging, or verification (random sampling) and documentation may be used to demonstrate compliance. Sites shall have policies and procedures in place that prohibit free liquids being placed in newly generated CH-TRU waste.

8.1.1.3.2 Nuclear Properties Requirements

8.1.1.3.2.1 Nuclear Criticality (Pu-239 FGE)

The fissile or fissionable radionuclide content, in terms of Pu-239 fissile-gram equivalent (FGE), of CH-TRU waste payload containers shall be no greater than 200 g per 55-gallon drum (including Pipe overpacks) or 325 g per SWB and per TDOP maximum. The Pu-239 FGE shall be calculated using the methods detailed in Appendix 1.3.7 of the TRUPACT-II SARP. Table 3-1 of Appendix 1.3.7 of the TRUPACT-II SARP contains Pu-239-FGE for a number of radionuclides. Table 5 below defines the maximum allowable quantity of fissile material, expressed as Pu-239 FGE, for CH-TRU waste in the TRUPACT-II.

Table 5. Nuclear criticality criteria.

Component	Pu-239 FGE (g)	
55-gallon drum	≤ 200	
SWB	≤ 325	
TDOP	≤ 325	
Pipe component overpacked in 55-gallon drum	≤ 200	
TRUPACT-II	≤ 325	
TRUPACT-II (14 Pipe overpacks)	≤ 2800	

Records of calculations converting the specific activity of selected radionuclides to FGE using the methods detailed in Appendix 1.3.7 of the TRUPACT-II SARP shall be maintained.

8.1.1.3.2.2 Pu-239 Equivalent Activity

Untreated CH-TRU waste shall not exceed 80 plutonium equivalent curies (PE-Ci) of activity per 55-gallon drum, or 130 PE-Ci of activity per SWB, or 130 PE-Ci of activity per TDOP. Untreated CH-TRU waste in 55-gallon drums containing a pipe component may be up to 1800 PE-Ci, or 1100 PE-Ci of

activity per 55-gallon drum if overpacked in a 85-gallon drum or TDOP. The PE-Ci limit for SWBs overpacked in a TDOP is up to 1100. 55-gallon drums containing solidified/vitrified CH-TRU waste shall not exceed 1800 PE-Ci of activity per drum.

8.1.1.3.2.3 Contact Dose Rate

CH-TRU waste payload containers shall have a maximum contact dose rate (beta + gamma + neutron) at any point at no greater than 200 mrem/hr. Neutron contributions to the total payload container dose rate shall be reported separately in the data package.

The external dose rate of individual CH-TRU waste payload containers is limited to 200 mrem/hr at contact. The external dose rate of the loaded TRUPACT-II to be transported is limited to 200 mrem/hr contact dose rate and 10 mrem/hr at 2-m distance. Shielding only is allowed for as low as reasonably achievable (ALARA) purposes.

Documented procedures shall be used to measure dose rates on each type of payload container. The instrumentation used must be properly calibrated using sources traceable to the National Institute of Science and Technology or other nationally recognized organization. The results of these measurements shall be documented for each CH-TRU waste payload container.

8.1.1.3.2.4 Thermal Power

Individual CH-TRU waste payload containers in which the average thermal power density exceeds 0.1 watt/ft³ (3.5 watts/m³) shall have the thermal power recorded in the data package. Based on the materials of construction, 40 watts is the thermal limit for total decay heat from all CH-TRU waste payload containers in a TRUPACT-II. Records of calculations converting the specific activity of selected radionuclides to decay heat using the methods detailed in Appendix 1.3.7 of the TRUPACT-II SARP shall be maintained. Table 3-1 of Appendix 1.3.7 of the TRUPACT-II SARP presents the decay heat for a number of radionuclides.

8.1.1.3.2.5 TRU Alpha-Activity Concentration

Documented evidence shall exist to show that the concentration of alpha-emitting TRU isotopes with half-lives greater than 20 years is more 100 nCi/g in the waste. The weight of added external shielding and the payload containers (including any rigid liners) shall be subtracted prior to performing the nCi/g calculation.

8.1.1.3.3 Chemical Properties Requirements

8.1.1.3.3.1 Pyrophoric Materials

Pyrophoric materials, other than radionuclides, shall be rendered safe by mixing them with chemically stable materials (i.e., concrete, glass) or shall be processed to remove their hazardous properties. Not more than 1 wt% of the CH-TRU waste payload in each payload container may be pyrophoric forms of radionuclides, and these shall be generally dispersed in the payload.

CH-TRU waste for shipment in TRUPACT-II shall contain less than 1 wt% of the payload container as pyrophoric radioactive materials as specified in Appendix 1.3.7 of the TRUPACT-II SARP. Nonradioactive pyrophorics shall be rendered nonreactive prior to placement in the CH-TRU waste payload container.

Documented procedures or evidence shall exist to show that the CH-TRU waste payload container contains no nonradionuclide pyrophorics and no significant quantities of radionuclide pyrophorics (i.e., <1% by weight) or other materials that could become pyrophoric compounds because of mixing. The 1% limitation on radionuclides is to allow any minor residues of uranium or plutonium that may remain in an unoxidized state in the payload.

CH-TRU wastes expected to contain any metallic radionuclides shall be treated (oxidized) to eliminate as much of the potential pyrophorics as possible, prior to placement in payload containers. A validated process (i.e., one that has been proven by test or analysis) that converts pyrophoric compounds to a nonpyrophoric form may be used to meet this requirement. This process may either change the chemical form of the pyrophoric material or mix and bind it within an inert matrix.

8.1.1.3.3.2 Mixed Waste

Hazardous wastes not occurring as co-contaminants with TRU wastes (non-mixed hazardous wastes) are not acceptable for disposal at WIPP. Both TRU waste and mixed TRU wastes are acceptable for disposal at the WIPP. However, only TRU waste bearing RCRA HWNs shown in Table 6 is designated for disposal at the WIPP. Such waste is exempt from the LDR treatment standards. Wastes with HWNs not listed in Table 6 are not entitled to this exemption, and are consequently subject to the LDR treatment requirements. To be exempt from the LDR requirements, a request must be submitted to the CAO to modify the RCRA Permit to allow disposal of such wastes at WIPP.

Regardless of the LDR exemption, the RCRA hazardous components in the TRU waste must be determined and recorded. The determination shall be based on acceptable knowledge and/or sampling and analysis data that indicates that the waste is hazardous as defined in 40 CFR Part 261, Subparts C and D.

Table 6	List of RCRA	hazardous waste codes acceptable at the WIPP.
I able v.	1.151.01.10.10.70	HAZARUUUS WASIE COUES ACCEDIADIE AL HIE WIEF

F001	D008	D030	
F002	D009	D032	
F003	D010	D034	
F004	D011	D035	
F005	D018	D036	
F006	D019	D037	
F007	D021	D038	
F009	D022	D039	
D004	D026	D040	
D005	D027	D043	
D006	D028	P015	
D007	D029		· · · · · · · · · · · · · · · · · · ·

All TRU mixed waste exhibiting corrosive, reactive, or ignitable characteristics shall be treated to remove the hazardous characteristic. Ignitable, corrosive, and reactive wastes are defined in 40 CFR 261.21, 261.22, and 261.23, respectively.

8.1.1.3.3.3 Chemical Compatibility

CH-TRU mixed waste shall contain no chemicals which would cause adverse reactions with other payload containers during handling or disposal. To comply with environmental requirements, waste must be evaluated to ensure that no adverse reactions could take place during transport, and that the chemical/material or any products of reaction are compatible with its container and packaging as well as other chemicals in the waste. Documentation must show compliance with chemical compatibility requirements.

8.1.1.3.3.4 Hazardous Constituents

For compliance with 40 CFR Part 268, the type and quantity of hazardous constituents on the target Analyte list (TAL), as defined in the QAPP, and tentatively identified compounds (TICs) must be reported. TICs are those not in the TAL that are detected via Gas Chromatography/Mass Spectrometry (GC/MS). Hazardous constituents included in the TAL and TICs must be recorded in the Site's data package and reported in the WIPP Waste Information System (WWIS) database.

8.1.1.3.3.5 Explosives, Corrosives, and Compressed Gases

The CH-TRU waste and TRUPACT-II payload shall contain no explosives, corrosives or compressed gases. 49 CFR 173.50 defines explosives; 40 CFR 261.22 defines corrosives; and 49 CFR 173.115 defines compressed gases. Explosive or corrosive chemical constituents are prohibited, and pressurized containers are not allowed in a TRUPACT-II payload.

Documented procedures, radiography, or visual examination shall be used to ensure that individual CH-TRU waste payload containers contain no pressurized vessels. For newly generated waste, documented procedures shall be used to exclude explosive or corrosive items, compounds, or combinations of materials that could form explosive or corrosive constituents within the payload container. If explosive materials are present, they must be treated or diluted such that a detonation is not possible. Corrosive materials, if present, must be treated to render them noncorrosive.

8.1.1.3.4 Gas Generation Requirements

8.1.1.3.4.1 Decay Heat

The decay heat must be less than the wattage limits shown in the TRUPACT-II SARP, Section 1.2.3.3.8 for the specified payload shipping category. If individual payload containers exceed the limit, these containers must be tested in accordance with Appendix 1.3.7 of the TRUPACT-II SARP, Attachment 2.0, "Gas Generation Test Plan to Qualify Test Category Waste for Shipment in the TRUPACT-II."

8.1.1.3.4.2 Flammable VOCs

The total concentration of potentially flammable VOCs is limited to 500 ppm in the headspace of a CH-TRU waste payload container. Documented procedures shall be used to ensure that the total concentration of potentially flammable VOCs is less than or equal to 500 ppm in the headspace of a CH-TRU waste payload container. Content codes that do not identify any of the flammable VOCs in the chemical lists do not have to implement additional controls to meet this requirement.

8.1.1.3.4.3 VOC Concentrations

Waste managed at the WIPP must not contain headspace-gas VOC concentrations resulting in emissions that are not protective of human health and the environment. The results of VOC headspace

gas sampling for each TRU waste payload container must be reported using the WWIS. Reported VOC concentrations levels will then be evaluated by the WIPP management to ensure that VOC averages for each repository room do not exceed the limits defined in Table 7. A container reported to have higher VOC concentrations than the average limits may be approved for disposal by the WIPP contractor on a case-by-case basis.

Table 7. VOCs and their concentration limits.

Compound	Max. Headspace Concentration (PPM)
carbon tetrachloride	7,510
Chlorobenzene	17,600
Chloroform	6,325
1,2-dichloroethylene ^a	28,750
1,2-dichloroethane ^a	9,100
methylene chloride	100,000
1,1,2,2-tetrachloroethane	7,924
Tolulene	41,135
1,1,1-trichloroethane	100,000

a. These compounds are also restricted to 500 ppm total per payload container by the TRUPACT-II SARP.

8.1.1.3.4.4 Aspiration

Sites that add filters to unvented payload containers of CH-TRU waste shall aspirate the payload containers for a sufficient period of time prior to transport to ensure equilibration of any potentially flammable gases that may have accumulated in the closed containers. Options for determining aspiration time include determination based on the date of drum closure and headspace gas sampling at the time of venting or during aspiration.

Documented procedures shall be used to ensure that an unvented CH-TRU waste payload container has had a filter installed and been aspirated for a sufficient period of time to ensure equilibration of any potentially flammable gases prior to transport.

8.1.1.3.4.5 Shipping Category

All CH-TRU waste payload containers in a single TRUPACT-II shall belong to the same shipping category as defined in the TRUPACT-II SARP. Each payload container shall belong to one of the content codes defined in the CH-TRUCON. Documented procedures shall be used to ensure that all CH-TRU waste payload containers to be transported in a single TRUPACT-II belong to one of the content codes defined in the CH-TRUCON and to the same shipping category.

8.1.1.3.4.6 Confinement Layers in TRUPACT-II Containers

The requirements applicable to the layers of confinement in TRUPACT-II containers are defined in Section 8.0 of Appendix 1.3.7 of the TRUPACT-II SARP, as follows:

- Rigid 55-gallon drum liners, if present, shall be punctured or have a filter vent
- Maximum number of confinement layers for the waste shall be known and must comply with the CH-TRUCON

- Bags shall be closed by one of the following methods:
 - Twist-and-tape closure—the use of wire or plastic ties to aid twist and tape closure is allowable.
 - Fold-and tape closure—the use of wire or plastic ties to aid fold and tape closure is allowable.
 - Heat-seal closure with a vented bag—heat-sealed unvented bags are prohibited.

Documented procedures shall be used to ensure that the requirements specified in Section 8.0 of Appendix 1.3.7 of the TRUPACT-II SARP are met. The number of layers and bag closure shall be visually verified for newly generated waste; for stored waste, acceptable knowledge or sampling may be used.

8.1.1.3.5 Data Package Requirements

8.1.1.3.5.1 Acceptance Data

An auditable package of data, with a signed certification statement indicating that the CH-TRU waste meets the requirements of the current WAC, shall be maintained at the Site. Required WWIS data must be entered and approved by the WIPP prior to shipping waste to the WIPP.

8.1.1.3.5.2 RCRA Data

Sites shall prepare and transmit a "Waste Stream Profile Form" to the WIPP for each waste stream. Sites shall also prepare a "Uniform Hazardous Waste Manifest" in accordance with 40 CFR 262.23 and an "LDR Notification" in accordance with 40 CFR 268 for each shipment of CH-TRU mixed waste.

8.1.1.3.5.3 Shipping Data

Sites shall prepare a "TRUPACT-II Payload Container Transportation Certification Document," have procedures in place for certifying a TRUPACT-II payload, and shall prepare a "Bill of Lading" for CH-TRU waste shipments in accordance with 49 CFR Part 172, Subpart C; or a "Uniform Hazardous Waste Manifest" in accordance with 40 CFR 262.23.

Table 8. Summary of WIPP CH-TRU waste acceptance criteria.

Criteria	Limits	
Container And Physical Properties		
Container Description	DOT Type A 55-gallon drums & Standard Waste Boxes (SWBs), and	
	Ten-drum overpacks (TDOP)	
Container Weight	≤ 1000 lb/55-gallon drum ≤ 4000 lb/SWB ≤ 6700 lb/TDOP ≤ Transuranic Package Transporter-II (TRUPACT-II) Weight (limits shown in Table 4)	
Removable Surface Contamination	20 dpm/100 cm ² Alpha 200 dpm/100 cm ² Beta-Gamma	
Container Marking	Bar Code Shipping Category	
Dunnage	Empty 55-gallon drums or empty SWBs	
Filter Vents	Payload containers vented using filters the WIPP RCRA Permit and TRUPAT-II SARP	
Liquids	Free liquid < 1% volume of external container < 1 in. (2.5 cm) in the bottom of internal container	
Nuclear Properties		
Radionuclide Composition	Assay measurements Quantification of Am-241, Pu-238, Pu-239, Pu-240, Pu-242, U-233, U-234, U-238, Sr-90, and Cs-137	
Nuclear Critically Pu-239 FGE	≤ 200 g/55-gallon drum ≤ 325 g/SWB ≤ 325 g/TDOP < 325 g/TRUPAT-II ≤ 2,800 g/TRUPACT-II (14 55-gallon drums each containing one pipe component)	
Pu-239 Equivalent Activity (PE-Ci)	Untreated Waste ≤ 80 PE-Ci/55-gallon drum ≤ 130 PE-Ci/SWB ≤ 130 PE-Ci/TDOP ≤ 1,100 PE-Ci/55-gallon drum overpacked in a 85-gallon drum, or SWB, or TDOP ≤ 1,100 PE-Ci/SWB in a TDOP ≤ 1,800 PE-Ci/55-gallon drum containing a pip component Solidified/Vitrified Waste ≤ 1800 PE-Ci/55-gallon drum	
Radiation Dose Rate	\leq 200 mrem/hr @ the surface of the payload container and the TRUPACT-II	
	≤ 10 mrem/hr @ 2 m	
Thermal Power	Report if > 0.1 watts/ft3 (3.5 watts/m³) < 40 watts per TRUPACT-II	
TRU Alpha Activity	> 100 nCi of alpha-emitting TRU isotopes per gram of waste	

Criteria	Limits	
Chemical Properties		
Pyrophoric Materials	< 1% radionuclide pyrophorics No nonradionuclide pyrophorics	
Hazardous Waste	Characterization per QAPjP Limited to EPA HWNs listed in Table 6	
Chemical Compatibility	No chemicals or materials that are incompatible	
###Hazardous Constituents	Target analytes and TICs must be reported per QAPP	
Explosives, Corrosives and Compressed Gases	No compressed gases No ignitable, reactive, or corrosive waste	
Gas Generation		
Decay Heat ^(a)	≤ wattage limit for the authorized shipping category	
	< 40 watts per TRUPACT-II	
Flammable VOCs	≤ 500 ppm in any payload container's headspace	
VOC Concentration	≤ the values shown below:	
	Carbon Tetrachloride 7,510 Chlorobenzene 17,600 Chloroform 6,325 1,2-Dichloroethylene 28,750 1,2-Dichloroethane 9,100 Methylene Chloride 100,000 1,1,2,2-Tetrachloroethane 7,924 Toluene 41,135 1,1,1-Trichloroethane 100,000	
Aspiration ^(a)	≥ Times shown in TRUPACT-II SARP	
Shipping Category ^(a)	All payload containers in a TRUPACT-II shall belong to the same shipping category.	
Test Category Waste	Hydrogen gas release ≤ rate specified in TRUPACT-II SARP, Appendix 1.3.7,	
Data		
Characterization and Certification Data	Waste Stream Profile Form and accompanying characterization data	
	Waste container data imported to the WIPP Waste Information System	
Shipping Data	Payload Container/Assembly Transportation Certification Documents Bill of Lading (A Uniform Hazardous Waste Manifest may be substituted.)	
	Uniform Hazardous Waste Manifest ^(b)	
	LDR notification	

8.1.1.4 WIPP Criteria for RH-TRU Waste

The RH-TRU acceptance criteria and compliance requirements are not finalized yet. Final requirements will not be available until the RH-TRU 72-B Cask SARP is approved by the NRC, the WIPP Safety Analysis Report (SAR) is updated, and C of C is issued. The RH-TRU 72-B Cask is intended to be used for transportation of RH-TRU waste canisters to the WIPP. The criteria and requirements provided here are to assist in preparing site-specific plans and detailed procedures as required by WIPP for certifying TRU waste for transport to and disposal at WIPP.

8.1.1.4.1 Container Requirements

8.1.1.4.1.1 Container Description

Canisters shall be noncombustible and as a minimum, meet the structural requirements and design conditions for Type A packaging as contained in 49 CFR 173.412. In addition, all RH-TRU canisters shall be certified in accordance with DOT Specification 7A, Type A, and shall meet the Type A packaging specification from the time of RH-TRU waste certification to disposal at the WIPP.

RH-TRU canisters shall be no larger than a nominal 0.66 m (26-in) diameter with a maximum length of 3.1 m (10 ft, 1 in), including the pintle, per Rockwell International Drawing RI-H-2-91273. For RH-TRU 72-B cask, the RH canister configured with the axial lifting pintle shall be used.

8.1.1.4.1.2 Canister Gross Weight

RH-TRU canisters shall weigh no more than 8,000 lb when loaded. For RH-TRU waste, the canister weight may be calculated based on the weight of the empty canister plus the weight of RH-TRU waste that will be placed in the canister. The weight of the canister cannot exceed the weight for which the canister has been certified in accordance with 49 CFR 173.463.

8.1.1.4.1.3 Removable Surface Contamination

Removable surface contamination on RH-TRU canisters to be disposed at the WIPP shall not be greater than 20 dpm/100 cm² for alpha-emitting radionuclides and 200 dpm/100 cm² for beta-gamma emitting radionuclides. Beta-gamma contamination may be ≤1000 dpm/100 cm² if it meets the requirements of the DOE RADCON Manual, Table 2-2. Fixing surface contamination to meet the above criterion is not permitted.

The site must measure the degree of removable surface contamination for each RH-TRU canister prior to its shipment. The sampling methods are described in DOE-EH-0256T, DOE RADCON Manual. The results of these surveys must be documented.

8.1.1.4.1.4 Container Marking

RH canisters shall be uniquely identified by means of an identification number consisting of a Site and package identification permanently attached to the canister in a conspicuous location using characters at least 2 inches high.

For RH-TRU 72-B Casks, there shall be an identification number consisting of 2-in. high characters, raised or indented into the surface by forging, die-stamping, or welding on the top closure and on the outside surface of the top crush ring. The identification number shall begin with the Site's two-letter identifier code and a four-digit sequential number (e.g., IN0001 or LA0003).

8.1.1.4.1.5 Dunnage

Dunnage may be used to fill voids inside the RH-TRU canister placed inside a RH-TRU 72-B Cask. Dunnage shall be reported as part of the waste volume.

8.1.1.4.1.6 Filter Vents

All canisters shall be vented with filters to control gas concentration and pressure. Filters must meet the specifications described in Appendix 1.3.5 of the SARP. The placement of filter vents shall be documented and verified by visual inspection.

8.1.1.4.1.7 Liquids

Liquid waste is not acceptable at the WIPP. RH-TRU waste shall contain as little residual liquid as is reasonably achievable through pouring, pumping, and/or aspirating. Internal containers (e.g., bottles, cans, etc.) should contain less than 1 in. or 2.5 cm of liquid in the bottom of the container. In no case shall the total liquid volume (i.e., sum of all internal or payload container volumes) exceed 6 L in a canister. The total volume of residual liquid in a canister placed inside a RH-TRU 72-B Cask shall be not greater than 1 volume percent of the canister.

Radiography (when feasible), visual examination, or acceptable knowledge shall be used to determine the presence and quantity of liquid. Inspection records shall include a description of the location of any liquid detected and an estimate of its volume. Sites shall have in place policies and procedures that prohibit free liquids being placed in newly generated RH-TRU waste.

8.1.1.4.2 Nuclear Properties Requirements

8.1.1.4.2.1 Nuclear Criticality (Pu-239 FGE)

The fissile or fissionable radionuclide content of RH-TRU canister shall not exceed 600 g total of Pu-239 FGE. The fissile or fissionable radionuclide content of RH-TRU waste in an RH-TRU 72-B Cask, including two times the measurement error, shall be less than 325 grams of Pu-239 FGE.

Assay data shall be presented to show that the FGE content complies with the limits for both a canister and a cask. For newly generated RH-TRU waste, documented procedures controlling the loading of contents into the canister's inner containers may be substituted for assay data.

8.1.1.4.2.2 Pu-239 Equivalent Activity

RH-TRU waste canisters shall not exceed 1,000 PE-Ci of activity. Documented analyses shall be available to show that each RH-TRU canister is within the limit.

8.1.1.4.2.3 Canister/Cask Contact Dose Rates

The RH-TRU canister limit is based on the total RH-TRU waste volume at the WIPP, not on the Site's number of RH-TRU canisters. No more than 5% of the RH canisters received at the WIPP are allowed to have dose rates >100 rem/hr. Prior approval by the WIPP is required before RH-TRU canisters having dose rates >100 rem/hr but ≤1000 rem/hr may be shipped to the WIPP. All RH-TRU canisters shall have a maximum contact dose rate at any point no greater than 1,000 rem/hr. Neutron contributions are limited to 270 mrem/hr. Neutron contributions of greater than 20 mrem/hr to the total canister dose rate shall be reported in the data package.

The external dose rate on the loaded RH-TRU 72-B Cask is limited to 200 mrem/hr at the surface of the cask and 10 mrem/hr at 2 m distance from the cask.

8.1.1.4.2.4 Thermal Power

The thermal power generated by RH-TRU waste materials in any RH-TRU canister shall not exceed 300 watts. The thermal power shall be recorded in the RH-TRU waste data package. Documented evidence shall be presented that each RH-TRU canister meets the indicated limits based on the radionuclide distribution and quantity of radioactive material present.

8.1.1.4.2.5 TRU Alpha Activity Concentration

For purposes of RH-TRU waste certification, the lower limit of >100 nCi/g of TRU radionuclides in the waste shall be interpreted as >100 nCi/g of waste matrix. The weight of internal containers (including any rigid liners) shall be subtracted prior to performing the nCi/g calculation. A propagated measurement error may be included in the calculation of the lower limit of activity concentration (e.g., measurement plus error >100 nCi/g). The maximum activity concentration for a RH-TRU canister shall not exceed 23 Ci/L. The concentration may be averaged over the canister.

Documented evidence shall exist to show that the TRU alpha activity concentration of any RH-TRU canister is greater than 100 nCi/g of waste matrix and that the activity of RH-TRU waste does not exceed 23 Ci/L.

8.1.1.4.3 Chemical Properties Requirements

8.1.1.4.3.1 Pyrophoric Materials

Pyrophoric materials, other than radionuclides, shall be rendered inert by mixing them with chemically stable materials (e.g., concrete, glass) or shall be processed to remove their hazardous properties. Not more than 1 wt% of the payload in each RH-TRU canister may be pyrophoric forms of radionuclides, and these shall be generally dispersed in the payload.

Documented procedures or evidence shall exist to show that the RH-TRU canister contains no nonradionuclide pyrophorics and no significant quantities of radionuclide pyrophorics (i.e., <1 wt%) or other materials that could become pyrophoric compounds because of mixing. The 1% limitation on radionuclides is to allow any minor residues of uranium or plutonium that may remain in an unoxidized state in the payload. RH-TRU wastes expected to contain metallic radionuclides are to be treated prior to placement in canisters (oxidized) to eliminate as much of the potential pyrophorics as possible. A validated process (i.e., one that has been proven by test or analysis) that converts pyrophoric compounds to a nonpyrophoric form may be used to meet this requirement. This process may either change the chemical form of the pyrophoric material or mix and bind it within an inert matrix.

8.1.1.4.3.2 Mixed Waste

The mixed waste requirements for RH-TRU wastes are the same as those described for CH-TRU wastes.

8.1.1.4.3.3 Chemical Compatibility

Like CH-TRU mixed waste, RH-TRU mixed waste shall contain no chemicals that would cause adverse reactions with the canisters during handling or disposal. Any chemical/material in the RH-TRU

waste in excess of 1 wt% shall conform to the allowable chemicals in each "waste material type" as defined in the RH-TRUCON. Waste must be evaluated to ensure that no adverse reactions could take place during transport and that the chemical/material or any products of reaction are compatible with the RH-TRU 72-B Cask construction materials.

RH-TRU mixed waste must be compatible with its container and packaging materials as well as other waste. They must be listed in the RH-TRUCON and be limited to the chemical amounts shown in the RH-TRUCON Chemical List for the applicable Content Code.

8.1.1.4.3.4 Hazardous Constituents

The hazardous constituents requirements for the RH-TRU waste are the same as those described for the CH-TRU waste.

8.1.1.4.3.5 Explosives, Corrosives, and Compressed Gases

The requirements for the RH-TRU waste are the same as those described for the CH-TRU waste.

8.1.1.4.4 Gas Generation Requirements

8.1.1.4.4.1 Decay Heat

The decay heat limits for canisters in each shipping category are presented in the RH-TRU 72-B Cask SARP, Table 1.2-7. Calculations must be performed as specified in Section 10.0 of Appendix 1.3.7 of the RH-TRU 72-B Cask SARP. Documented evidence shall exist to show that the RH-TRU canister and payload assembly to be transported meet the decay heat limits specified.

8.1.1.4.4.2 Flammable VOCs

The total concentration of potentially flammable VOCs is limited to 500 ppm in the headspace of a RH-TRU canister in the RH-TRU 72-B Cask. Content Codes that do not identify any of the flammable VOCs in the chemical lists do not have to implement additional controls to meet this requirement.

Documented procedures shall be used to ensure that the total concentration of potentially flammable VOCs is less than or equal to 500 ppm in the headspace of a RH-TRU waste canister.

8.1.1.4.4.3 VOC Concentrations

The requirements are the same as those identified for the CH-TRU waste.

8.1.1.4.4.4 Aspiration, Shipping Category, Confinement Layers

8.1.1.4.5 Data Package Requirements

The data package requirements identified for the CH-TRU waste are applicable to the RH-TRU waste canisters and the RH-TRU 72-B Cask.

Table 9. Summary of WIPP preliminary RH-TRU waste acceptance criteria.

Criteria	Limits
Container and Physical Properties	
Container Description	DOT Type A RH canister
Canister gross Weight	≤ 8000 lb/loaded canister
Removable Surface Contamination	≤ 20 dpm/100 cm ² Alpha ≤ 200 dpm/100 cm ² Beta-Gamma
Container Marking	Canister ID
Dunnage	Limited to inside canister
Filter Vents	Canisters vented
Liquids	No Liquid waste < 6 Liters total residual liquid per canister < 2.5 cm (1 in.) in the bottom of any canister
Nuclear Properties	
Nuclear Critically Pu-239 FGE	< 325 g/cask < 600 g/canister (may get waiver)
Pu-239 PE-Ci	≤ 1000 PE-Ci/canister
Contact Dose Rate	≤ 1000 rem/hr per canister Preapproval required if > 1000 rem/hr per canister ≤ 200 mrem/hr per cask Neutron ≤ 270 mrem/hr per canister
Thermal Power	< 300 watts per canister
TRU Alpha Activity	> 100 nCi/g of waste matrix ≤ 23 Ci/Liter
Chemical Properties	
Pyrophoric Materials	< 1% Radionuclide pyrophorics No nonradionuclide pyrophorics
Mixed Waste Hazardous Constituents	Characterization per Quality Assurance Project Plan (QAPP) Limited to EPA HWNs listed in Table 6
Chemical Compatibility	All chemicals must be allowable per the remote-handled TRUPACT-II Authorized Methods for Payload Control (RH-TRAMPAC)
Hazardous Constituents	Target analytes and TICs must be reported per QAPP
Explosives, Corrosives and Compressed Gases	No compressed gases No ignitable, reactive or corrosive waste
Gas Generation	
Decay Heat ^(a)	≤ wattage listed in RH TRU-72-B Cask SARP, Table 1.2-7
Flammable VOCs	≤ 500 ppm in canister headspace
Criteria	Limits

Table 9. (continued).

Criteria	Limits
VOC Concentration	≤ the values shown below:
	Carbon Tetrachloride 7,510
	Chlorobenzene 17,600
	Chloroform 6,325
	1,2-Dichloroethylene 28,750
	1,2-Dichloroethane 9,100
	Methylene Chloride 100,000
	1,1,2,2-Tetrachloroethane 7,924
	Tolulene 41,135
	1,1,1-Trichloroethane 100,000
Aspiration ^(a)	None currently identified
Shipping Category ^(a)	None currently identified
Confinement Layers ^(a)	None currently identified
Data	
Acceptance Data	Auditable package of data with signed Certification Statement on file WWIS data transmitted
RCRA Data	Waste Stream Profile Form Uniform Hazardous Waste Manifest ^(b) Land Disposal Restriction notification ^(b)
Shipping Data	RH-TRU 72-B cask payload Container Transportation Certification Documents Bill of Lading ^(c)

a. Applies to RH-TRU 72-B Cask payload control only.

b. Applies to mixed waste only.

c. Uniform Hazardous Waste Manifest may be substituted.

8.2 Low-Level Waste^k Disposal sites

The proposed plan is to convert the LLW either into a grout or a crystalline form that can be ultimately disposed of. This section identifies and evaluates the DOE and commercial facilities that could potentially be used for disposal of the LLW. Also, it provides the criteria of these facilities for waste acceptance. The potential DOE sites are a new INEEL LLW disposal facility, the Hanford Site, and the NTS. The operating commercial sites include the Barnwell Waste Management Facility in South Carolina; US Ecology Richland Disposal Facility in Washington; and the Envirocare Facility in Utah. Another commercial site including Waste Control Specialist (WCS) in Texas is exploring the potential of obtaining a permit to expand its services to include the disposal of DOE LLW and mixed LLW. However, it is not clear if and when this permit will be issued. The candidate sites and their key WAC are described below.

8.2.1.1 Commercial LLW Disposal Facilities

8.2.1.1.1 Background

Per DOE Manual 435.1,²⁰ it is the policy of DOE to dispose of its LLW and mixed LLW at the site where these wastes are generated, if practical, or if onsite disposal is not available, at another DOE disposal facility. The Order and the Manual contain provisions for exemptions to this requirement. The exemptions allow DOE to use commercial (non-DOE) disposal facilities when these wastes cannot be disposed of at the site where they are generated and use of other DOE disposal sites is not practical.^{20,21},²² DOE's current policy is to rely on its own facilities for the disposal of its wastes, and by exemption where necessary, make limited use of commercial facilities that have been licensed by the NRC or an Agreement State.^{1,21,22}

Commercial LLW disposal facilities must be licensed by either NRC or Agreement States in accordance with health and safety requirements. The NRC or Agreement States licenses are issued to commercial LLW disposal facilities that are not controlled or owned by DOE. NRC LLW activities associated with the disposal of waste are subject to the requirements under the 1980 Low-Level Radioactive Waste Policy Act (LLRWPA) and its 1985 amendments (Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA)). NRC requirements place restrictions on the types of waste that can be disposed of. Under the federal laws (LLRWPA and LLRWPAA), states are responsible for the disposal of commercial LLW generated within the state's borders. The Acts recommend states to enter into regional "Compacts" in order to share waste disposal responsibilities. "Compact" is defined as an agreement entered into by two or more states pursuant to the LLRWPA. Since these laws were passed by congress, many states have formed Compact regions, with one or more of the member states selected to host regional disposal facilities. Others (Texas, Main, and Vermont) have planned to join pending congressional approval.

Under the LLRWPA, the Compact States are not responsible for providing disposal capacity for LLW: 1) generated by DOE, 2) Navy; 3) generated by any research, development, and testing or

^k Per NWPA, LLW means radioactive material that: "(A) is not spent nuclear fuel, high-level radioactive waste, transuranic waste, or byproduct material as defined in section 11 e.(2) of the Atomic Energy Act of 1954 (42 U.S.C. 2014(e)(2)); and(B) the Commission, consistent with existing law, classifies as low-level radioactive waste." The term "Commission" stands for Nuclear Regulatory Commission.

¹ An Agreement State has signed a formal agreement with the NRC under a provision of the AEA allowing the State to regulate certain radioactive materials within the State.

production of nuclear weapons; or 4) identified under the Formerly Utilized Sites Remedial action program. Commercial disposal facilities licensed by NRC or an Agreement State may accept waste from DOE and other federal or private sources. If the commercial facility is a Compact facility under the LLRWPA, it can refuse wastes from state(s) that is not a member of the Compact States. In addition, the Compact states may prohibit the facility from disposing of LLW for which the federal government is responsible. This includes LLW generated by DOE.

8.2.1.1.2 Barnwell Waste Management Facility

The Barnwell Waste Management Facility was one of the original "Compact" facilities under the Low-Level Radioactive Waste Policy Act (LLRWPA). One of the incentives established under this Act was that the Barnwell, a member of the "Southeast Compact" could close its facility to wastes from states that were not a member of the "Southeast Compact." Up to July 1, 1995, the Barnwell facility disposed of wastes from the "Southeast Compact" only. On July 1, 1995, South Carolina withdrew from the "Southeast Compact" and allowed Barnwell to accept LLW from other states outside the "Southeast Compact." The Barnwell facility can dispose of LLW with higher levels of radioactivity than the Envirocare can. The Barnwell is currently not authorized to accept any mixed LLW for disposal. ²¹

The Barnwell Facility WAC²³ require that waste shipments to its site be in compliance with the South Carolina Department of Health and Environmental Control (DHEC) Radioactive Materials License, and the DOE and NRC requirements. These requirements are summarized below.

Class A, B, and C LLW are accepted for disposal at the Barnwell Waste Management Facility. A mixture of radioactive waste and waste regulated under 40 CFR 261 and South Carolina Hazardous Waste Management Regulations is not accepted for disposal. Radioactive waste with hazardous components regulated under RCRA solely because it exhibited hazardous characteristics as defined in 40 CFR 261, Subpart C, but it has been treated in a manner that no longer exhibits RCRA characteristics, will be reviewed for acceptance on a case-by-case basis. A description of the treatment process and results of the analytical tests of the final waste shall be submitted to the Barnwell Facility for evaluation prior to shipment.

The Barnwell facility requires waste shipments to have supporting documentation certifying the wastes meet the Barnwell WAC. Shipments containing wastes with activities totaling 40,000 Ci or more must have prior to shipment approval for the Barnwell Licensing Department. Class C shipments requires additional documentation which must be received by the Barnwell Licensing Department to obtain approval from the South Carolina DHEC prior to departure. Waste greater than Class C limit is not acceptable for disposal without prior written approval from the DHEC.

For Class A, B, and C waste, the concentration of a radionuclide or radionuclide mixture may be averaged over the volume of the waste and, if used, the solidification agent or matrix if the waste form is a homogenous mixture. The concentration of radionuclides in filters/sealed sources encapsulated with a solidification agent or matrix shall be averaged over the volume of the filter/sealed source not the solidification agent. The volume of packaging, containers, liners, or overpacks shall not be included in this calculation, nor shall the volume of the waste mixture be artificially increased with the addition of non-dispersible solids or objects even if considered as waste. If expressed in units of nCi/g, concentration

^m In early June 2000, the Atlantic Low-Level Radioactive Waste Compact was created to include South Carolina, New Jersey, and Connecticut. With the formation of the new Compact, the Barnwell, South. Carolina, LLW disposal site will gradually restrict access to its facility by out-of Compact generators. The sit will completely close to non-Compact waste generators in 2008 (reference: Radwaste Solutions, July/August 2000, page 9).

may be averaged over the weight of the waste and, if used, the solidification agent if homogenous, except in the case of encapsulation of filters which shall be over the weight of the filter. The weight of packaging, containers, liners, or overpacks shall not be included in this calculation, nor shall the weight of the waste mixture be artificially increased by the addition of heavy, non-dispersible solids or objects even if considered as waste.

In addition to the nuclides listed in Tables 12.a and 12.b, waste containing radium (Ra-226), a South Carolina State regulated radionuclide, is acceptable for disposal in specific cases authorized by the South Carolina DHEC. In all the cases, Ra-226 concentration limits must be ≤ 10 nCi/g (for Class A) and ≤ 100 nCi/g (for Class C). Unless authorized by the DHEC, radium containing waste acceptance is limited to: 1) radium contained in solid homogeneous waste forms in which the radium activity is incidental (incidental is defined as not more that one percent of the total activity), and the concentration of radium has not been technologically enhanced; or 2) radium contained in devices such as self-luminous dials; or 3) radium contained in biological research waste.

No liquid waste or solid waste containing liquids can be received at the Barnwell Site. All free liquids must be sorbed or stabilized, or otherwise removed from the waste. Liquid waste must be solidified or packaged in sufficient absorbent material to absorb twice the volume of the liquid. The amount of liquid cannot exceed 1% of the volume of the waste or 0.5% of waste processed to a stable form. Liquid waste containing isotopes with half-lives greater than 5 years having a total specific activity of ≥ 1 Ci/m³ require stabilization. Hazardous organic solutions, solidified or otherwise, are not acceptable for disposal at the Barnwell Site.

Solidified or dewatered radioactive waste shall have no detectable free-standing liquids in excess of 0.5% by waste volume of non-corrosive liquids per container. In lieu of these requirements, solidified or dewatered waste containing non-corrosive liquids in excess of 0.5% by waste volume, and less than 1% non-corrosive liquids by waste volume, may be received and disposed of in High Integrity Containers (HIC) approved by the DHEC. The HIC approved for use at the Barnwell facility are:

C of C Number	Manufacturer
DHEC-HIC-PL-001	Chem-Nuclear Systems
DHEC-HIC-FRP0003	Chem-Nuclear Systems
DHEC-HIC-PO-006	Chem-Nuclear Systems
DHEC-HIC-PL-002	Philadelphia Electric Company
DHEC-HIC-PL-017	Scientific Ecology Group, Inc. (SEG)
DHEC-HIC-PL-004	Allied Technology Group, Inc.
DHEC-HIC-PL-005	Allied Technology Group, Inc.
DHEC-HIC-PL-007	Allied Technology Group, Inc.
DHEC-HIC-PL-008	Allied Technology Group, Inc.
DHEC-HIC-PL-012	Allied Technology Group, Inc.
DHEC-HIC-ML-013	Allied Technology Group, Inc.
DHEC-HIC-PL-014	Allied Technology Group, Inc.
DHEC-HIC-ML-016	Allied Technology Group, Inc.
DHEC-HIC-ML-018	Allied Technology Group, Inc.

DHEC-HIC-PL-009	Vermont Yankee Nuclear Power Station
DHEC-HIC-PL-010	NUKEM Nuclear Technologies Corporation
DHEC-HIC-CL-015	Chichibu Cement Co., Ltd.
DHEC-HIC-PL-011	Adwin

The Barnwell facility WAC require the solidification agents to include one of the following media: Vinyl ester styrene, cement, Bitumen, vinyl chloride, Aqua set I-H (Class A waste only), MetalPlex III (Class A waste only), and Petroset H (Class A waste only). The solidification media and processes to be used to stabilize Class A, B, or C LLW must be evaluated in accordance with the NRC waste form technical position document²⁴ or other methods for which approval has been granted by the DHEC. The NRC technical position document provides guidance to generators for implementing the 10 CFR 61 waste stability requirements. This document contains test methods and results acceptable to NRC for demonstrating long-term (300-year) structural stability that is required by 10 CFR 61.56. The requirements are intended to ensure that the waste does not structurally degrade and affect overall stability of the site through slumping, collapse, or other failure of the disposal unit and thereby lead to water infiltration. The section below under the heading "Acceptable Conditions for Disposal," contains additional discussion on the NRC 10 CFR 61 stability requirements. The NRC technical position document²⁴ focuses on cement stabilization of LLW and use of generic testing data (compressive strength and leach index) to demonstrate waste form stability, as follows:

- Solidified waste specimen should have compressive strength of at least 60 psi when tested in accordance with ASTM C 39. Compressive strength test should be performed in accordance with ASTM D1074. May solidification agent such as cement will be easily capable of meeting the 60 psi limit.
- Leach testing should be performed for a minimum of 90 days in accordance with the procedures in ANS 16.1. The leachability index, as calculated in accordance with ANS 16.1, should be greater than 6.0.

Containers of ion exchange resins or filter media (dewatered or solidified) are accepted for disposal if records of complete radiological analyses (quantitative and qualitative) are provided. The records must specify the specific activity of each radionuclide expressed in μ Ci/cm³ and TRU nuclides in nCi/g. Ion exchange resins and filter media containing isotopes with half-lives greater than 5 years having a specific activity of all these isotopes of 1 Ci/m or greater must be stabilized by solidification in accordance with the NRC requirements and the free standing liquid requirements described above. However, in lieu of solidification, the DHEC will authorize disposal of these waste forms meeting the free standing liquid requirements in approved HIC or other approved methods of stabilization.

Waste capable of generating, toxic gases, vapors, or fumes during transportation, handling, or disposal will not be accepted. Pyrophoric or flammable solid material contained in waste shall be made inert to prevent self-ignition during transport and disposal. No material that might react violently with water or moisture is accepted for disposal at the Barnwell Site.

Waste containing TRU radionuclides are acceptable for disposal, provided that the following conditions are met:

• The TRU concentrations are within the limits specified in Tables 12.a and 12.b. Waste not meeting the limits will require specific approval by the DHEC.

- Each TRU nuclides is identified on the waste manifest.
- The TRU nuclides are evenly distributed within a homogeneous waste form.
- The TRU content is incidental to the total activity. Incidental is defined as up to 1% of the total activity.n

All shipments received at the Barnwell Site shall be properly classified and marked in accordance with the DHEC. The waste Class A-U (unstable), Class A-S (stable), Class B or C must be durably and legibly marked on top of the disposal container. Stable waste is waste that is inherently stable (i.e., metal reactor components), has been rendered stable by placement in a HIC, or has been rendered stable with an approved solidification media. An approved solidification media is one for which specific approval has been granted by the DHEC. Any such processing must eliminate void spaces in containers to the extent practical. Unstable waste is all other waste that complies with all other license requirements except those listed for stable waste. Barnwell Facility requires all waste containers to be filled to no less tan 85% except for waste packaged in approved HIC or waste comprised of irradiated metal.

8.2.1.1.3 US Ecology Richland Disposal Facility

The US Ecology Richland Disposal Facility is a "Compact facility" which serves the "Northwest Compact" and the "Rocky Mountain Compact." The "Northwest Compact" includes Washington, Oregon, Wyoming, Idaho, Montana, Utah, Alaska, and Hawaii; and the "Rocky Mountain Compact" consists of Nevada, Colorado, and New Mexico. Since the US Ecology at Richland is a Compact facility, the Compact States must approve the disposal of DOE waste at the facility. Under the LLRWPA, the State of Washington and the others relevant Compact States can prohibit the disposal of the DOE waste at the US Ecology. 1

The US Ecology Richland Disposal Facility WAC²⁵ require waste shipment and disposal requirements to be in accordance with the applicable federal, state, and local laws and regulations. These include Washington State Department of Health, Washington State Rules and Regulations for Radiation Protection, Washington Radioactive Materials License, Washington State Dangerous Waste Regulations, and DOT and NRC regulations. These requirements are briefly described below.

The US Ecology facility accepts Class A, B, and C LLW for disposal. Mixed waste is not accepted for disposal at the facility. The US Ecology defines mixed waste as:

"any radioactive material which is no longer of use or value, and contains waste that either (A) is listed as dangerous waste in the State of Washington's Dangerous Waste Regulations, (B) causes the waste to exhibit any of the dangerous waste characteristics identified in the State of Washington's Dangerous Waste Regulations, (C) fulfills any of the "dangerous waste criteria" identified in the State of Washington's Dangerous Waste Regulations, (D) listed as hazardous waste in Subpart D, 40 CFR Part 261, or (E) causes the waste to exhibit any of the hazardous waste characteristics identified in Subpart C, 40 CFR Part 261."

Waste capable of generating, toxic gases, vapors, or fumes during transportation, handling, or disposal will not be accepted at the US Ecology facility. No pyrophoric, hazardous, dangerous, or

ⁿ Pu-241 is exempted from the 1% Incidental TRU waste activity criteria provided it is not the only TRU in the waste. However, it must be considered when classifying the waste. Wastes containing only TRU or Pu-241 are not acceptable for disposal unless specifically approved by the DHEC.

chemically explosive materials or materials which could react violently with water or moisture or when subject to agitation shall be accepted for disposal.

Untreated liquids are not allowed for disposal. Liquids shall be rendered non-corrosive ($4 \le pH \le 11$) prior to treatment. Acceptable treatments are solidification or stabilization. Liquids treated by solidification must be processed in accordance with a process control program using an approved solidification media. The resulting waste for must not contain detectable free-standing liquid. Liquids, ion exchange resins, or filter media treated by stabilization shall be processed in accordance with a process control program using an approved stabilization media. The resulting waste form shall contain no detectable free-standing liquid and shall meet the NRC stability requirements. Class A ion exchange and filter media containing radionuclides with half-lives greater than 5 years, the total concentration of which is 1 Ci/m³ or greater, except Co-60 having a concentration of 50 Ci/m³ or greater (subject to sum of fractions less than 1) shall be stabilized and contain no detectable free-standing liquid.

The US Ecology requires waste to be stabilized, when required, in accordance with the NRC stability requirements. As in the Barnwell facility, the US Ecology has also adopted the NRC requirements²⁴ for demonstrating compliance with 10 CFR 61. Only those stabilization media or HIC approved by Washington State Department of Health and listed in the State of Washington Radioactive Materials License may be used. The approved stabilization media include:

- Concrete When used as encapsulation media around a small volume of radioactive material; e.g, sealed source centered in a 55-gal drum containing concrete, shall have a formulated compressive strength ≥ 2500 psi.
- Dow media (vinyl ester styrene)
- Veri solidification process
- Aztech
- Oxidized Bitumen
- Other stabilization media and processes that have been reviewed and approved by the NRC and by the Washington State Department of Health as meeting the waste form stability criteria.

Only the following approved HIC that have been used in accordance with the C of C may be used. Other HIC that have been specifically approved by the Washington State Department of Health can also be used.

C of C Number	Manufacturer
WN-HIC-01	Pacific Nuclear
WN-HIC-02	Nuclear Packaging
WN-HIC-03	Chichibu Cement Co., Ltd.
WN-HIC-04	Chichibu Cement Co., Ltd.
WN-HIC-05	Nuclear Packaging
WN-HIC-06	Nuclear Packaging

WN-HIC-07	Nuclear Packaging
WN-HIC-08	Nuclear Packaging
WN-HIC-09	Nuclear Packaging
WN-HIC-10	Nuclear Packaging
WN-HIC-11	Nuclear Packaging
WN-HIC-12	Nuclear Packaging
WN-HIC-13	Nuclear Packaging
WN-HIC-14	Nuclear Packaging
WN-HIC-15	(SEG) LN Technologies
WN-HIC-16	(SEG) LN Technologies
WN-HIC-17	(SEG) LN Technologies
WN-HIC-18	(SEG) LN Technologies

Radioactive waste containing Ra-226 and/or TRU radionuclides is acceptable provided that the Ra-226 and TRU nuclides are essentially evenly distributed within a homogeneous waste form. In all the cases, Ra-226 concentration limits must be ≤ 10 nCi/g (for Class A) and ≤ 100 nCi/g (for Class C) LLW. The disposal of waste in which the radium or TRU radionuclides are not evenly distributed or in excess of Class A limits requires the specific approval of the Washington State Department of Health.

Waste packages must be marked as either Class A-U (unstable), Class A-S (stable), B, or C. Void spaces within the waste and between the waste and its package shall be reduced to the maximum extent practicable. Unless specifically approved by the US Ecology, void spaces in Class A stable, Class B, and Class C waste packages shall be less than 15% of the total volume of the disposal package, provided the disposal package is not a HIC nor contains activated metals that are too large to put into HIC. For Class B and Class C waste packages containing activated metals, voids shall be reduced to the extent practicable and shall be demonstrated to be structurally stable. The waste shipments must be accompanied by the following:

- Properly completed waste shipment documentation, certification by a representative of the shipper/generator of the waste in accordance with the Washington State rules and Regulations for Radiation Protection, and any other documentation or permits required under the state or federal laws and regulations.
- Washington State Patrol or Washington State Utilities and Transportation Commission vehicle inspection certificate, or a current visible Washington State 90-day vehicle inspection seal.

8.2.1.1.4 Envirocare Facility

The Envirocare Facility is licensed by the State of Utah under the State Agreement with NRC to dispose of LLW and mixed LLW with very low level of radioactivity (less than Class B and C). The Envirocare license prohibits disposal of waste classified as Class B or C. Based on a press release, on November 3, 1999, the Envirocare announced that it had requested an amendment to its license. The amendment is to allow the facility to dispose of Class B and C wastes which will either be stabilized on concrete or packaged in HIC.

The following table shows the radionuclide activity limits currently imposed for disposal at the Envirocare. ²⁶

Table 11. Envirocare nuclide activity limits for disposal.

Nuclide	Average concentration per container on receipt (pCi/g)
Am-241	1.0E04
Am-243	1.0E04
Sb-124	4.4E08
Sb-125	4.4E08
Ba-133	1.0E05
Be-7	4.4E08
Bi-207	5.0E04
Cd-109	4.4E08 ^a
Ca-45	4.4E08
C-14	5.0E05
Ce-139	4.4E08
Ce-141	4.4E08
Ce-144	4.4E08 ^a
Cs-134	4.4E08
Cs-135	4.4E08
Cs-137	$6.0\mathrm{E}04^{\mathrm{a}}$
Cr-51	4.4E08
Co-56	4.4E08
Co-57	4.4E08
Co-58	4.4E08
Co-60	3.0E04
Cu-67	4.4E08
Cm-242	2.0E06
Cm-243	1.0E04
Cm-244	1.0E04
Eu-152	2.0E04
Eu-154	3.0E04
Eu-155	4.4E08
Gd-153	4.4E08
Ge-68	$4.4E08^a$
Au-195	4.4E08
Hf-181	4.4E08
Au-195	4.4E08

Table 11. (continued).

Nuclide	Average concentration per container on receipt (pCi/g)		
H-3	2.5E07		
I-125	4.4E08		
I-129	3.3E03		
Ir-192	4.4E08		
Fe-55	4.4E08		
Fe-59	4.4E08		
Pb-210	$2.0\mathrm{E}06^{\mathrm{a}}$		
Mn-54	4.4E08		
Hg-203	4.4E08		
Np-237	1.0E04 ^b		
Ni-59	1.4E07		
Ni-63	2.2E06		
Nb-94	1.3E04		
Pu-238	1.0E04		
Pu-239	1.0E04		
Pu-240	1.0E04		
Pu-241	3.5E05		
Pu-242	1.0E04		
Po-210	4.4E08		
K-40	1.0E04		
Pm-147	4.4E08 ^a		
Ra-226	1.0E08 ^a		
Ra-228	1.0E08°		
Rb-83	4.4E08		
Ru-106	4.4E08 ^a		
Sm-151	4.0E06		
Sc-46	4.4E08		
Se-75	4.4E08		
Ag-108m	5.0E04		
Ag-110m	4.4E08		
Na-22	4.4E08		
Sr-85	4.4E08		
Sr-89	4.4E08		

Table 11. (continued).

Nuclide	Average concentration per container on receipt (pCi/g)		
Sr-90	2.5E04 ^a		
S-35	4.4E08		
Ta-182	4.4E08		
Tc-99	1.9E05		
Tl-204	4.4E08		
Th-230	1.5E05		
Th-232	$1.0\mathrm{E}04^{\mathrm{a}}$		
Sn-113	4.4E08		
U-233	5.0E02		
U-234	3.7E05		
· U-235	1.7E03		
U-238	3.3E05 ^b		
U-natural	6.8E05 ^b		
U-depleted	3.7E05 ^b		
Y-88	4.4E08		
Y-91	4.4E08		
Zn-65	4.4E08		
Zr-95	4.4E08 ^a		

a. Decay products are assumed in concentrations equal to parent.

b. Short-lived decay products of U-239 (Th-234 and Pa-234) and of Np-237 (Pa-233) are assumed to be present in concentrations equal to parent.

c. Ra-228 with its decay products at the times indicated after separation as pure Ra-228.

When a mixture of radionuclides are present in the waste, then the concentration in the waste must be limited so that the following relationship exists:

$$\frac{Ca}{avgCa} + \frac{Cb}{avgCb} + \frac{Cc}{avgCc} \le 1$$

a, b, and c are radionuclides with concentrations C_a , C_b , and C_c , and with the average concentrations $avgC_a$, $avgC_b$, and $avgC_c$, respectively. The average concentration limits must all be taken from Table 11.

The Envirocare is not a "compact facility" under the LLRWPA, and therefore can accept waste from sites throughout the country. It is the only facility currently permitted to dispose of treated mixed LLW (commercial and DOE) from other states. Envirocare accepts a number of listed wastes with F, P, and U codes that are treated to LDR specifications. Delisting would not be required for the listed HWNs currently assigned to the INTEC wastes.

8.2.1.2 DOE LLW Disposal Facilities

8.2.1.2.1 Background

It is the DOE's policy that DOE-generated LLW and mixed LLW be disposed at the site where it is generated, to the extent practical, or if onsite disposal is not available, at another DOE disposal facility. DOE has undertaken a review of the LLW management program across the nuclear weapons complex. This includes a review of the regulatory structure for the program as well as an assessment of current operating facilities for the treatment and disposal of LLW and mixed LLW. As part of this effort, DOE issued a ROD to allow Hanford Site and NTS to be used for disposal of LLW from DOE sites with no disposal capacity. For mixed LLW disposal, DOE will use NTS and Hanford for off-site waste. However, this decision does not preclude DOE's use of commercial treatment facilities.

DOE provides a set of general criteria for treatment and disposal of LLW and mixed LLW in DOE Manual 435.1. The requirements address waste form acceptability, waste characterization, packaging and transportation, and waste certification for shipment. In addition to these general criteria, each DOE Site has developed specific waste acceptance and disposal criteria. The disposal sites evaluated in this study include a New INEEL LLW facility, the Hanford Site, and the NTS. It is assumed that the criteria for accepting waste at a new INEEL facility would be comparable to or the same as those currently established for the INEEL Radioactive Waste Management Complex (RWMC). Therefor, the RWMC criteria are used here as a basis to proceed with the waste acceptance issues for a future INEEL LLW disposal facility.

8.2.1.2.2 DOE LLW General Disposal Criteria

DOE has established a set of general criteria in DOE Order 435.1 for LLW disposal. In addition to the general criteria, each DOE Site has developed specific waste acceptance and disposal criteria. A detailed description of the acceptance criteria of the RWMC, the NTS, and the Hanford Site are provided below.

8.2.1.2.3 RWMC, NTS, and Hanford Waste Acceptance Criteria

The following criteria are based on the current DOE LLW management policies and practices EPA, and DOT requirements. Any waste streams that do not meet these basic requirements must be evaluated

on a case-by-case basis and must not compromise the performance objectives for the disposal site or violate any permit requirements.

8.2.1.2.3.1 RWMC Waste Acceptance Criteria

The document titled "INEEL Reusable Property, Recyclable Materials, and Waste Acceptance Criteria" contains the criteria that apply to CH and RH LLW for shipping to and disposal at the RWMC. As required by DOE Order 435.1, waste acceptance package certification documenting the waste characteristics must be submitted to the RWMC for advance approval to ship a waste package, and shall certify, prior to shipment, that the waste meets the receiving WAC for disposal. In addition to meeting all the other general DOE criteria established in the DOE Order 435.1, the following acceptance criteria must be met before shipping waste to the RWMC for disposal:

8.2.1.2.3.1.1 Criteria for CH-LLW

The criteria for CH-LLW are listed as follows:

- LLW resulting from treated mixed waste must meet all the applicable LDR treatment requirements and must not exhibit any characteristic hazard. LDR treated waste must not bear any listed HWNs. In addition, the waste must have all the necessary LDR notification and certifications documentation.
- Radionuclides concentration limits for the waste volume in each waste package must meet the values listed in Table 12 (sum of the fractions is < 1). Waste exceeding the limits will require a case-by-case evaluation and approval from the RWMC prior to disposition.
- Radionuclides in the waste volume must not exceed the concentration limits for LLW Class C as defined in Tables 1 and 2 of 10 CFR 61.55. These tables correspond to Tables 12.a and 12.b of this report, respectively. Waste exceeding the limits will require a case-by-case evaluation (Performance Assessment) and approval from the DOE-HQ prior to disposition as LLW, TRU, or special case waste (SCW).
- Nuclide reporting requirements for waste being sent to the RWMC for disposal are as follows:
 - Radionuclides listed in Table 12 are reported when values meet or exceed the lower reporting limits.
 - Radionuclides with half-lives of less than 5 years, except for Cm-242, are reported when their concentrations are greater than 7 μCi/cm³ of waste.
 - Radionuclides not identified above are reported when their concentrations are greater than 1% of the total activity in the waste form.
 - For the waste packages containing a mixture of radionuclides listed in Table 12, sum of the fractions discussed for NRC LLW classification determination applies. Waste packages with sum of the fractions < 1 are disposed.
 - Daughter products in secular equilibrium with the parent radionuclides do not require reporting. Only the curie value of the parent radionuclides must be reported.

Daughter products in secular equilibrium include only those radionuclides with halflives ≤ 10 days and \leq their parent radionuclides.

- Absorbents and stabilizing agents used to eliminate free liquids have undergone the generator's bench-scale testing which demonstrates that:
 - Performance is as specified by the vendor, or an improved specific-use methodology has been developed [best management practice (BMP)].
 - Liquids do not separate from the absorbents or stabilizing agents due to ambient temperature cycles ranging from -50°F to 110°F.
- Dry-loaded waste packages such as drums, boxes, or inserts having a potential for free liquid have:
 - An optimum absorbent or stabilizing agent used to ensure immobilization of free liquid (BMP)
 - An absorbent or stabilizing agent placed inside the innermost waste bag or container where the free liquid is suspect (BMP)
 - Absorbents and stabilizing agents placed as close as practical to inaccessible liquid (BMP).
- Tritium waste has been prepared for disposal to prevent exceeding an equivalent package release rate of 40 Ci/m³/y.
- Packages are painted or coated with material that enhances the package lifetime and decontamination ability (BMP).
- Fissile material concentration does not exceed the fissile material threshold value concentrations listed in Table 13. Waste exceeding the limits stated in Table 13 will require a case-by-case evaluation and approval from the RWMC facility manager prior to disposition.
- Packages for LLW pass the requirements in 49 CFR 173.475, "Quality Control Inspection Requirements to Qualify for Shipment."
- Applicable standard containers for LLW are any of the following: (BMP)
 - DOT authorized drums:
 - 55-gallon drum
 - 30-gallon drum
 - 71-gallon square drum
 - DOT 6M Shipping Packages (ES-51526), (see 49 CFR 178.354 and 173.403 for the description of 6M packages)

- DOT 7A Type A Steel Bin used by Argonne National Laboratory East (ANL-E)
- M-III Bin [comparable to an Industrial Package (IP)° (see 49 CFR 173.403 and 173.411 for the description of IP]
- Mark III DOT 7A Type A Concrete Box
- DOT 7A Type A Steel Boxes
- DOT and DOE-ID Surface Contaminated Objects (SCO)/Low Specific Activity (LSA) non-accident resistant packages (see 49 CFR 173.403 for the definition of SCO and LSA)
- Waste packages comply with requirements of Table 14.

^{°.} Personal communication with Dale J. Wells, Consulting Technical Specialist with LMITCO, September 1, 1999.

Table 12. Performance assessment waste volume concentration limits for CH-LLW disposal.

	Waste Volume Concentration Limit Ci/m ³				
Nuclide	Vault	Pit	Lower Reporting Limit		
Be-10	14	14	0.014		
C-14	8	8	0.0008		
C-14 (in activated metals)	80	80	0.008		
Cm-242	3,700 nCi/g	3,700 nCi/g	20 nCi/g		
Co-60	166,000	83,000	7		
Cs-137	16	8	0.01		
H-3	40ª	40ª	0.4		
I-129	0.08	0.08	0.00008		
Nb-94 (in activated metals)	0.2	0.2	0.0002		
Ni-59 (in activated metals)	220 ^a	180	0.18		
Ni-63	3,300	3,300	0.035		
Ni-63 (in activated metals)	3,300	3,300	0.035		
Pu-241	250 nCi/g	250 nCi/g	0.25 nCi/g		
Sr-90	24	12	0.0004		
Tc-99	3	3	0.0003		
TRU (except Pu-241 and Cm-242)	10 nCi/g	10 nCi/g	0.1 nCi/g		
U-233	0.015	0.015	0.00015		
U-234	0.035	0.035	0.00035		
U-235	0.015	0.015	0.00015		
U-238	0.04	0.04	0.0004		

a. Limits listed in the NRC Class A limit. Requests for increased concentration levels will be considered in a case-by-case basis.

b. Otherwise, radionuclides should be listed on shipment manifests and data bases in compliance with 49 CFR 173.433.

Table 13. Fissile material waste matrix groups.

Group	TV	C ^{a,b,c}	TVC°	U-233
	g/lb	g/kg	g/lb	g/kg
Polyethylene	3.10	6.82	4.98	11.0
Cellulose	1.30	2.86	2.16	4.75
Metal (Al) ^d	0.82	1.8	0.38	0.84
Concrete	0.38	0.84	0.62	1.36
Brick	0.23	0.51	0.34	0.75
Glass/Slag	0.09	0.20	0.15	0.33
Graphite	0.02	0.04	0.03	0.07
Salt	5.53	12.17	4.27	9.39

Waste matrix group assignments are determined by the RWMC. Contact a generator interface (GI) for assistance.

a. Threshold value concentration (TVC).

b. For all fissile radioisotopes except U-233.

c. Fissile limit for each waste package is 380 grams.

d. To be conservative the threshold value for metal is calculated on aluminum.

Table 14. CH-LLW disposal criteria at the RWMC.

Characteristic	DOT Steel Drum	INEEL Wooden Boxes ^a	Criterion Basis
Gross weight	DOT limit or ≤ 20-lb/gallon ^b	≤ 12,000 lb/box	(BMP)
Dimension	5-gallon minimum	4 x 4 x 4 ft	(BMP)
	55-gallon (1,000 lb max.)	2 x 4 x 8 ft	
	71-gallon preferred	4 x 4 x 8 ft	
Radiation Limit	< 500 mrem/h at 1 m	< 500 mrem/h at 1 m	(BMP)
Fissionable material ^c	See Table 13	See Table 13	(RWMC SAR)
Liner (minimum) ^d	N/A	3-ply reinforced plastic	(BMP)
Lid gasket	Secured	Secured	(49 CFR 173.24)
Characteristic	DOT 7A Type A Steel Box	M-III Bin	Criterion Basis
Gross weight	≤ 12,000 lb	≤ 8,000 lb/bin	(Design)
Dimensions	$4 \times 4 \times 6$, 7, or 8 ft	$4 \times 5 \times 6$ ft	(Design)
Radiation limit	< 500 mrem/h at 1 m	< 500 mrem/h at 1 m	(BMP)
Fissionable material ^c	See Table 13	See Table 13	(RWMC SAR)
Liner (minimum) ^d	Liner (minimum) ^d N/A		(BMP)
Lid gasket	Mfg. Installed	Neoprene gasket	(49 CFR 173.24)
		DOT or DOE-ID Non-	
	Mark III DOT 7A Type A	accident Resistant	
Characteristic	Concrete Box ^e	Package	Criterion Basis
Gross weight	≤ 21,800 lb/box	TBD^{f}	(Design)
Dimensions	$4 \times 4 \times 8$ ft	TBD ^f	(Design)
Radiation limit	< 500 mrem/h at 1 m	< 500 mrem/h at 1 m	(BMP)
Fissionable material ^c	See Table 13	See Table 13	(RWMC SAR)
Liner (minimum) ^d	N/A	N/A	(BMP)
Lid gasket	By design	N/A	(49 CFR 173.24)

a. These boxes are banded with ¾-in. steel banding material. As a minimum, five bands are used. Three horizontal bands are used and during closure two vertical bands are applied, 1/3 the length of the box from each end. The generator provides sufficient blocking to keep heavy items in place and to distribute the load uniformly within the container. The waste material is LSA/SCO and is ≤ DOT A2 quantity.

b. DOT limit for a UN 1A2 55-gallon drum is 1,000 lb, and for a UN 1A2 71-gallon square drum is 1,300 lb. The 20-lb/gallon limit for the 55- and 71-gallon drums qualifies for a DOT strong, tight container. This limit is permitted because the drums passed the DOT 7A drop test at that loaded weight.

c. Fissionable material limits are based on assumed low-density waste contaminated with small amounts of volumetric average fissionable material. Low-density waste is waste containing of materials such as paper, polyethylene wrap, tape, glass, rags, blotting paper, scrap metal, and piping. Volumetric average is defined as concentration obtained by dividing the total fissionable material content of a container by its volume.

d. Wrapping of individual waste items in one 8-mil yellow polyethylene is equivalent to liner. Liner is 3-ply linear low density polyethylene copolymer and nylon yarn laminate.

e. This container is specifically designed for underwater loading.

f. TBD – It means as long as the package is in compliance with the DOT or DOE-ID accident resistant requirements, it will be evaluated/considered, on a case-by-case basis, for disposal.

8.2.1.2.3.1.2 Criteria for RH-LLW

In addition to meeting the criteria described above, except for radiation limits and authorized containers, the following acceptance criteria shall also be met before shipping RH-LLW to the RWMC for disposal:

- RH-waste container labels are permanently affixed, the container identification number is located on the container top and visible and legible through remote visual verification equipment. This number is directly traceable to INEEL Form L-0435.20, "Stored, Disposed, or Processed Radioactive Waste and database record (BMP)."
- Standard containers for RH-LLW are any of the following: (BMP)
 - RWMC 55-ton insert
 - Test Reactor Area (TRA) resin system (commercial)
 - Mark III DOT 7A Type A Concrete Box
 - ANL-W Hot Fuel Examination Facility (HFEF)-5 Waste Canister
 - Other:
 - Argonne National Laboratory-West (ANL-W) 55-gallon crimp-head drum
 - Nuclear Reactor Facility (NRF) and TRA concrete vaults
 - NRF-A1W sealed resin columns waste package
 - NRF Expended Core Facility Water Pit Demineralizer Type V Tank Assembly
 - Remote Analytical Laboratory (RAL) 30-gallon insert
 - 6M Shipping Packages (ES-51526).
- Waste packages comply with requirements of Table 15.

Table 15. RH-LLW disposal criteria at the RWMC.

Radiation limit^a

Characteristic	55-ton Insert	TRA Resin System	Criterion Basis
Gross weight	≤ 12,000 lb/insert	≤ 20,000 lb/package	(Design/NRC License)
Dimension	4 ft dia × 8 ft	6 ft dia \times 7 ft	(Design)
Radiation limit ^a	> 500 mrem/h at 1 m	> 500 mrem/h at 1 m	(RWMC)
Fissionable material ^b	See Table 13	See Table 13	(RWMC SAR)
Characteristic	Mark III Concrete Box	HFEF-5 Canister	Criterion Basis
Gross weight	≤ 21,800 lb/box	≤ 1,000 lb/canister	(Design)
Dimension	$4 \times 4 \times 8$ ft	_	(BMP)
Radiation limit ^a	> 500 mrem/h at 1 m	> 500 mrem/h at 1 m	(BMP)
Fissionable material ^b	See Table 13	See Table 13	(RWMC SAR)
Lid gasket	By design	Seal welded or bolted with Viton TM seal, no leakage	(RWMC EDF)
Characteristic	Oth	Criterion Basis	
Gross weight	Package de	esign limit	(Design)

Fissionable material^b See Table 13 (RWMC SAR)

Lid gasket Container design (Design)

> 500 mrem/h at 1 m

(BMP)

a. The radiation level of the package is \geq 500 mrem/h at 1 meter to qualify as remote-handled waste. An upper limit has not been defined.

b. Fissionable material limits are based on assumed low-density waste contaminated with small amounts of volumetric averaged fissionable material. Low-density waste is waste consisting of materials such as paper, polyethylene wrap, tape, glass, rags, blotting paper, scrap metal, and piping. Volumetric average is defined as concentrations obtained by dividing the total fissionable material content of a container by its volume.

8.2.1.2.3.2 NTS Waste Acceptance Criteria

The waste acceptance criteria provided here are based on the current version (Revision 1) of the NTS WAC document.²⁸ This document is currently being revised to include clarifications on some of the waste acceptance issues. The new revision (Revision 2) will be available sometime this year. According to Gary Pyles, the DOE-Nevada Operations Office (DOE-NV) Radioactive Waste Acceptance Program Technical Lead (personal communication on 05/26/99), the changes will be minor and will not affect the current acceptance criteria.

NTS accepts LLW (Class A, B, or C, as defined in 10 CFR 61.55)^p and mixed LLW for disposal from generators who are designated by DOE Headquarters (DOE-HQ) and subsequently approved by the DOE-NV. Presently, the INEEL is neither a designated nor an approved generator (personal communication with Mr. Pyles on 05/26/99). The approval process is a number of steps the generator and the DOE-NV follow resulting in receiving approval to sent waste to the NTS. The generator must have DOE-HQ approval before initiating the approval process with DOE-NV. All official interactions and coordinating activities relating to the approval process between the generator and the DOE-NV should take place through the generator's oversight office.

DOE-NV requires that the generator develop an NTS WAC compliant program for obtaining the DOE-NV approval. The WAC compliant program includes development and/or completion of certain waste acceptance documentation demonstrating waste characterization plan and QA requirements for waste certification. Prior to the compliant program development, the DOE-NV Waste Management Division (WMD) must be contacted to verify that waste is acceptable at NTS.

DOE-NV has established criteria for LLW and mixed LLW disposal at the NTS. However, the acceptance criteria for disposal of mixed LLW generated outside the State of Nevada have not been defined at this time because this waste type is currently not accepted from the off-site generators (personal communication with Mr. Pyles on 05/26/99). The LLW criteria are based on DOE management policies and practices defined in DOE Order 435.1 and other regulations established by EPA, State of Nevada, and DOT. The applicable criteria for waste shipment to and disposal at the NTS are provided below under the following categories: waste acceptance documentation, physical/chemical waste form criteria, packaging criteria, and radiological criteria.

8.2.1.2.3.2.1 Waste Acceptance Documentation

The waste documentation includes waste acceptance package (WAP) which consists of waste profile(s) (WP) and a waste certification program plan (WCPP), and a list of authorized certification personnel. Waste characterization and WAC compliance must be summarized on the WP.

8.2.1.2.3.2.2 Physical/Chemical Waste Form Criteria

The LLW form physical/chemical criteria are the same as those identified above for the RWMC. In addition, DOE-NV has adopted the following waste packaging criteria from DOE Order 435.1 and implied DOT and NRC requirements (10 CFR and 49 CFR):

• Closure—The package closure shall be sturdy enough that it will not come open under normal handling conditions.

^p Greater than Class C LLW is not accepted for disposal at the NTS.

- Strength—The disposal package (packaging and content) shall be capable of supporting a uniformly distributed load of 1,644 kg/m² (3,375 lb/ft²). This is required to support other waste packages and earth cover without crushing during stacking and covering operations. These requirements do not apply to waste packaged in steel drums.
- Handling—All waste packages shall be provided with permanently attached or removable skids, cleats, offsets, rings, handles, or other auxiliary lifting devices to allow handling by means of forklifts, cranes, or similar handling equipment. Removable skids are preferred to assist in meeting NTS performance objectives for reducing disposal cell subsidence. Lifting rings and other auxiliary lifting devices on the package are, permissible, provided they are recessed, offset, or hinged in a manner that does not inhibit stacking the packages. The lifting devices must be designed to a 5:1 safety factor based on the ultimate strength of the material.
- Size— $1.2 \times 1.2 \times 2.1$ -m ($4 \times 4 \times 7$ -ft) or $1.2 \times 0.6 \times 2.1$ -m ($4 \times 2 \times 7$ -ft) boxes (width x height x length, $\pm 1/2$ in) or 208-liter (55-gallon) drums should be used. Innovative alternative packages (i.e., supersacks, burrito wraps) will be considered by NTS, however, the NTS operating personnel must be consulted to ensure equipment compatibility.
- Weight—In addition to the weight limits set for specific packaging designs, the NTS imposes limits of 4,082 kg (9,000 pounds) per box and 544 kg (1,200 pounds) per drum.
- Loading—Waste packages must be loaded to ensure that the interior volume is as efficiently and compactly loaded as practical to avoid void space. High density loading will allow efficient disposal space utilization and provide a more stable waste form that will reduce subsidence and enhance the long-term performance of the disposal site.
- **Package protection**—The pre-shipment storage environment should prevent package deterioration and intrusion.
- Marking, labeling, and coding—Each waste package must be marked, labeled, and bar coded according to the requirements given below:
 - Code 39.
 - Low to medium density; low density preferred.
 - 1.0" high bar code.
 - Human Readable Interpretation (HRI) 0.5" high printed, below the bar code.
 - Spacing between bar code and HRI will be 0.10".
 - Minimum left and right margin will be at least 0.25".
 - Bar codes and HRI will be stacked with a minimum separation of 0.5" and in the following order: shipment number, container number.
 - A total of two bar code labels must be placed on each package or drum.

8.2.1.2.3.2.3 Radiological Criteria

The DOE-NV expects that generators identify those radionuclides known or reasonably expected to be present in the final waste form. These radionuclides shall be reported if they meet the following criteria:

- The activity concentration in the final waste exceeds 1% of the Action Level shown in Table 16. These radionuclides should require the greatest level of characterization and verification.
- The activity concentration in the final waste exceeds 1% of the total activity concentration. The total activity concentration includes the activity of all reporting radionuclides. Process knowledge is sufficient for characterization of these radionuclides and those present at a level less than the detection limit, or occurring at concentration less than 1% of the Action Level.

Table 16. Radionuclide Action Levels for waste characterization and reporting.

Nuclide	Action Level (Bq ^a /m ³)	Nuclide	Action Level (Bq/m³)
Unlisted nuclide with a half life < 5 years	No limit	Ac-227	1.0 x 10 ¹²
H-3	5.6×10^{15}	Th-227	4.1×10^9
C-14	2.3×10^8	Th-229	3.1×10^9
Cl16-	1.1×10^{10}	Th-230	8.1×10^8
Ni-59	8.1×10^{12}	Pa-231	1.4×10^9
Ni-63	2.6×10^{14}	U-232	9.3 x 10 ⁹
Co-60	No limit	U-233	3.1×10^{10}
Sr-90	1.5×10^{12}	U-234	3.7×10^{10}
Zr-93	1.4×10^{13}	U-235	1.2×10^{10}
Tc-99	1.1×10^{11}	U-236	1.2×10^{11}
Pd-107	1.3×10^{14}	U-238	5.9×10^{10}
Sn-126	5.9 x 10 ⁸	Np-237	7.0×10^{8}
I-129	3.0×10^9	Pu-236	2.3 x 10 ¹¹
Ba-133	No limit	Pu-238	1.2×10^{11}
Cs-135	2.8×10^{12}	Pu-239	2.3×10^{10}
Cs-137	3.4×10^{11}	Pu-240	2.3×10^{10}
Sm-151	1.2×10^{15}	Pu-241	5.2×10^{11}
Eu-152	4.8×10^{13}	Pu-242	2.4×10^{10}
Eu-154	1.2×10^{16}	Am-241	1.8×10^{10}
Pb-210	1.3×10^{13}	Am-243	7.0×10^9
Bi-207	1.1×10^{11}	Cm-242	2.4×10^{13}
Ra-226	1.3×10^9	Cm-244	8.1×10^{12}
Ra-228	No limit	Cm-248	6.3 x 10 ⁹

a. Bq: Stands for Becquerel that is an SI unit of radioactivity. $1 \text{ Bq} = 1 \text{ disintegration/sec} = 2.7 \times 10^{-11} \text{ Ci. } 1 \text{ Ci} = 3.7 \times 10^{10} \text{/sec}$

8.2.1.2.3.3 Hanford Waste Acceptance Criteria

This section contains the criteria for waste disposal at the Hanford Site, as specified in the Hanford Site WAC document.²⁹ Based on the existing Hanford Site WAC, all non-Hanford Site waste generators must receive approval from the DOE Richland Operations Office (DOE-RL) before acceptance by and shipment of waste to Hanford Site. It is required that the customer requesting approval contact its DOE Operations or Field Office Interface and request that the Field Office approach DOE-RL regarding the possible shipment of waste to the Hanford Site. Currently, the DOE-RL interface for this activity is Mr. Rudolph Guercia, Hanford Solid Waste Program Manager, and for the DOE-ID is Ms. Lori Fritz. If DOE-RL determines that management of the waste stream is in compliant and consistent with the Hanford Site criteria and long-term waste management strategies, the customer will be approved. Approval from DOE-HQ may also be required.

Once the customer is approved by DOE-RL, prior to shipping waste to the Hanford Site, the customer must prepare and submit the required waste certification documents for evaluation. The customer must provide specific data for each waste container, the annual waste forecast and funding arrangements for the forecasted waste volumes, and certify that the waste meets the Hanford acceptance criteria. The waste stream information is reviewed against the Hanford Site WAC and if the waste stream data are sufficient and meet the applicable acceptance criteria, the shipment is approved. The Hanford criteria for LLW and mixed LLW acceptance and disposal at Hanford site are described below.

Hanford Site accepts LLW for disposal at its LLW disposal unit known as "unlined portion of the Low-level Burial Grounds" (LLBG). This area is designated for disposal of LLW not regulated as hazardous waste under 40 CFR 261, the State of Washington dangerous waste (defined in WAC 173-303), or Toxic Substances Control Act (TSCA) PCB waste under 40 CFR 761. The lined portion of the LLBG, identified as trenches 31 and 34, is a RCRA-permitted disposal unit for certain mixed LLW that meets federal and the State of Washington LDR requirements.

The State of Washington Department of Ecology has established the term "dangerous waste" and defined regulations for management of such wastes in Chapter 173-303 WAC.^{q,30} "Dangerous waste" is referred to waste designated as hazardous, extremely hazardous, or mixed waste. The department has assigned dangerous waste numbers to a variety of discarded chemical products, chemicals with dangerous waste sources, and others. The numbers are the same as those used by the EPA for designating the RCRA hazardous waste constituents, and they include certain F, P, U, K, and W waste codes.

Section 173-303-070 of Chapter 173-303 WAC, contains procedures for designation of dangerous waste. To determine whether or not a waste is designated "dangerous," the waste must be checked against the procedures established for the following items and in the following order:

- Discarded chemical products
 - Acutely (P and U waste codes) and moderately (U codes) dangerous chemicals
- Dangerous waste sources

^q According to Mr. John Brueck, a compliance officer at the DEQ (personal communication on 06/01/99), the Sate of Idaho does not use the term "dangerous waste" and has no specific or separate regulations for management of dangerous waste. The wastes designated as "dangerous" by the State of Washington are managed in Idaho under the Idaho Hazardous Waste Management Act of 1983. Pursuant to this Act, such wastes are subject to the federal RCRA regulations, adopted by the State of Idaho for management of hazardous waste. The RCRA requirements are administered and implemented by the Idaho DEO.

- From non-specific sources: certain F codes,
- From specific sources: certain K and W001 waste codes
- Dangerous waste characteristics (corrosive, reactive, ignitable)
- Dangerous waste criteria toxic dangerous waste, persistent dangerous waste, and carcinogenic dangerous waste

Testing and process knowledge can be used to determine if a solid waste is considered dangerous. The tests must be conducted in accordance with the procedures contained in Chapter 173-303 WAC. Once a material has been determined to be a dangerous waste, then any solid waste generated from treatment, storage, and disposal of such waste is a dangerous waste unless and until proven other wise. For example, if a generator can prove through demonstration samples that a material is no longer considered dangerous or a listed waste is granted exemption, in such cases, a generator is not required to comply with the regulations in Chapter 173-303 WAC. Wastes designated as dangerous are managed in accordance with the federal LDR regulations in 40 CFR 268 as adopted by reference in WAC 173-3030-140, "Land disposal restrictions of dangerous wastes."

Based on the existing data, the INTEC wastes associated with the Tank Farm contain a number of chemicals that are considered "dangerous" by the State of Washington. The State of Washington requires that dangerous wastes be sent only to the TSD facilities that operate under the permits issued in accordance with the requirements of Chapter 173-303 WAC.

In addition to compliance with the dangerous waste regulations, acceptance of waste at the Hanford Site is contingent upon effective implementation of the requirements defined in Hanford WAC document. These requirements are described below.

A waiver for one or more of the Hanford requirements may be requested in writing and granted in certain cases. The process to obtain approval of an exception is determined by the source and type of the requirements from which the specific acceptance criterion is derived. The request for waiver will need evaluation and approval of DOE-RL or Waste Management Federal Services of Hanford, Inc. (WMH) for approval.

8.2.1.2.3.3.1 Waste Acceptance Documentation

Waste generators are required to supply the receiving units with certain waste documentation and certification information to ensure that the waste received meets the acceptance criteria of the disposal unit. The documentation must contain information about the physical, chemical, and radiological, and packaging characteristics of the waste.

8.2.1.2.3.3.2 Physical/Chemical Criteria

Liquid waste and Liquid-Containing Waste

All free liquids must be sorbed or stabilized, or otherwise removed from the waste. Liquid waste must be solidified or packaged in sufficient absorbent material to absorb twice the volume of the liquid. The amount of liquid cannot exceed 1% of the volume of the waste or 0.5% of waste processed to a stable form. Organic liquids and chelating compounds exceeding 1% of the waste by weight must be solidified or stabilized to a form that immobilizes the organic and chelating compounds.

Sorbents and stabilizing products must be non-hazardous, compatible with the waste being sorbed or stabilized, and non-biodegradable as defined in 40 CFR 264.314 (e). The general classes of sorbents and stabilizing materials allowed by Hanford Site to meet the free liquid requirements or to provide a safer waste form for handling include the following:

- Inorganic mineral sorbents including, aluminosilicates; clays; vermiculite; zeolites; lime; silica; diatomaceous earth; perlite; and fly ash and other inorganic materials used for absorption.
- High molecular weight synthetic polymers including, polyethylene; high density
 polyethylene (HDPE); polypropylene; polyacrylate; and other synthetic polymers. This
 excludes polymers derived from biological material (e.g., cellulose-based materials), and
 polymers specifically designed to be degradable.
- Stabilizing materials include concrete, portland cement, lime/pozzolans, and a variety of other inorganic materials.
- Specialty stabilization agents for organic liquids include certain products that stabilize organic liquids. These products chemically react with organic liquids to prevent their release in the disposal environment.

Selection of specific products must be from the Hanford "Approved Sorbents/Stabilizing Materials List." The list of approved materials and their manufacturers or vendors are available on the Hanford Site Solid Waste Acceptance Program Internet web page at the following address: http://www.hanford.gov/wastemgt/wac/index.htm. For using the products not on the approved list, information could be obtained from the manufacturer, submitted to WMH acceptance organization for approval, and added to the list.

Hanford requires that twice the minimum amount of sorbent be used, based on the minimum ratio of sorbent to liquid data provided by the manufacturer or testing. The sorbed waste for disposal must not release liquid under 20 pounds per square inch (138 kPa) pressure. A determination whether the waste will release liquids at 20 pounds per square inch (138 kPa) can be made from manufacturer's data or by testing. The EPA Liquid Release Test Procedure, SW-846 Method 9090, can be modified to test at 20 pounds per square inch (138 kPa). Other test methods can be approved by the WMH acceptance organization.

Land Disposal Restrictions

Waste that was originally designated only with HWNs D001 through D043 can be disposed at the unlined portions of LLBG provided that it meets all of the applicable LDR treatment standards in 40 CFR 268, and that it is no longer hazardous.

The lined portions of the LLBG (known as Trenches 31 and 34) are RCRA-compliant units used for disposal of certain mixed LLW. Currently, only LLW originally designated with RCRA HWNs D001 through D043, certain listed waste numbers (F001 through F005, and F039 derived from F001 through F005 waste), and Washington state-only dangerous waste (except waste number WSC2) are accepted in trenches 31 and 34. All waste accepted at trenches 31 and 34 must meet the applicable LDR treatment

WMH acceptance organization. The organization within WMH that is responsible for waste acceptance, including approval of waste stream documentation and approval of individual waste packages and shipments, and for coordinating the approval of case-by-case evaluations for specific criteria and exceptions to the acceptance criteria.

standards of 40 CFR 268 and WAC 173-303 (Washington's dangerous waste regulations). Waste designated with any RCRA U, P, or K waste numbers, any F-listed waste other than those mentioned above are prohibited for disposal at the trenches 31 and 34 of the LLBG.

A copy of the applicable notification to the EPA Regional Administrator, as specified in 40 CFR 268.7, and data supporting this notification must be provided to the WMH acceptance organization.

Heat Generation

Waste containers, packaging, and shipping must meet the DOT requirements. The thermal limitation on a waste container is 3.5 watts/m³ (0.1 watts/ft³). Waste materials that generate heat in excess of the limit may require special packaging and disposal requirements to prevent excessive temperatures in the buried waste. Such waste materials must be evaluated to ensure that the heat does not affect the integrity of the container or surrounding containers in the LLBG. This evaluation must be approved by the WMH acceptance organization.

Gas Generation

Gas generation must be controlled to prevent pressurization exceeding 1.5 atmospheres (152 kPa absolute pressure). If gas generation exceeds the limit, the following mitigating measures (or alternative measures approved by the WMH acceptance organization) must be used. For control of hydrogen from radiolytic decomposition, a Nucfil 013TM filter or equivalent should be used. All container liners and inner bags must be closed in a manner that allows gas to reach the vent filter (e.g., twist and tape method for bags). In addition to filtering, palladium or platinum catalyst packs could be used to control hydrogen concentrations in the container.

8.2.1.2.3.3.3 Radiological Criteria

Radiological Characterization

The radiological characteristics of a waste must be determined with sufficient accuracy and details to properly designate or categorize the waste for disposal at the LLBG. This requires that the radionuclide inventory of the waste be established using a method or combination of methods capable of identifying and quantifying the major radionuclides present. The methods chosen must ensure that the waste is correctly categorized to be acceptable for disposal at the LLBG. The following characterization methods can be used individually or in combination to establish the radionuclide inventory of the waste.

- Process knowledge Process knowledge includes documented knowledge of the radioactive constituents and the processes contributing to the radiological content of the waste. This method is generally not sufficient to quantify the radionuclide inventory of a waste.
- Radionuclide material accountability The content of a given radionuclide can be
 determined by documented logs detailing the mass or activity of that radionuclide added to
 and leaving the waste in a controlled process. Data on the total inventory of a radionuclide
 in a process or facility can also be used to establish the radionuclide inventory, but must be
 corroborated periodically with direct measurement methods.
- Direct measurement methods Methods such as nondestructive assay (NDA) and
 radiochemical analysis must be selected to detect and quantify the major radionuclides.

 Analysis methods that measure gross activity (i.e., not radionuclide-specific) must be used in
 conjunction with other methods to determine the relative concentration (scaling factors) of

each suspected radionuclide, and must be corroborated periodically with radionuclidespecific analysis.

- Computer modeling Computer modeling could be used in conjunction with other methods, but must be corroborated periodically with direct measurement methods.
- Scaling factorss Scaling factors can be used to relate the concentration of a readilymeasured radionuclide to more difficult to measure radionuclides. Scaling factors must be developed from one of the previous methods, and must be corroborated periodically with radionuclide-specific analysis.

Other methods could be used, but must be clearly documented and approved by the WMH acceptance organization. The documentation must include a detailed description of the method, the radionuclides identifiable by the method, and a discussion of precision, accuracy, quality assurance, and quality control methods.

The major radionuclides are defined as those that meet any of the following conditions:

- Any fissionable radionuclide present in the waste in a quantity exceeding 0.1 FGE per container.
- Any radionuclide that accounts for more than 1% of the total radiological activity of the waste.
- Any radionuclide present in concentration exceeding 1% of its respective Category 1 limit in Table 17.
- Any mobile radionuclide present in concentration that exceeds its reporting limit (Table 17).
- Any TRU nuclide in concentration greater than 1nCi/g.
- For waste that has no detectable radiological activity but cannot be radiologically released, major radionuclides are those radionuclides believed to contribute more than 1% each of the radiological activity based on available process knowledge. The estimated concentration of the radionuclides should be based on the limit of detection of the analysis method used.

The list of major radionuclides and the category limits for these radionuclides identified in the Hanford Site WAC are shown in Table 17. The Hanford methodology for determining category of the radionuclide content of waste is shown in reference 14, Appendix D. Appendix D of reference 14 also contains other radiological calculation methods such as those for calculating NRC LLW Class C, thermal power of the waste, etc.

Acceptable Conditions for Disposal

⁵ Scaling factors. Radionuclides may be roughly organized into two groups. (1) those which are amenable to direct measurement by the generator (e.g., gamma energy analysis or assay equipment), and (2) those which require more costly and time consuming analysis generally beyond the capability of the generator (e.g., chemical separation and alpha/beta analysis). To simplify the determination of group 2 isotope activities, activity ratios may be established for a given waste stream which relate the concentration of readily-measured group 1 radionuclides to group 2 radionuclides. These activity ratios are known as scaling factors.

A waste must meet all of the following conditions to be acceptable for disposal at the LLBG:

- Waste category shall not exceed Category 3, except with an analysis coordinated by the WMH acceptance organization demonstrating that the LLBG Performance Assessment conditions are met.t
- Category 3 waste can be disposed of only if the waste meets one of the following waste form stability criteria:
 - Packaging in a Hanford HIC that meets the testing requirements of the HIC, 300 Year specification."
 - Packaging in a HIC approved by the WMH acceptance organization. A list of approved HICs is provided below.
 - Stabilization in concrete or other stabilization agents. The stabilized waste must meet the compression strength and leach index criteria of the NRC Technical Position Paper on Waste Form. The NRC Paper provides guidance and information for demonstrating long-term (300-year) structural stability that is required by 10 CFR 61.56 for Class B and C wastes. The paper focuses on cement stabilization of LLW. It requires a generic testing data to be used to demonstrate waste form stability:
 - Solidified waste specimen should have compressive strength of at least 60 psi when tested in accordance with ASTM C 39.³¹ Compressive strength test should be performed in accordance with ASTM D1074.³² May solidification agent such as cement will be easily capable of meeting the 60 psi limit.
 - Leach testing should be performed for a minimum of 90 days in accordance with the procedures in ANS 16.1.³³. The leachability index, as calculated in accordance with ANS 16.1, should be greater than 6.0.
 - Inherently stable waste that meets the NRC stability requirements in 10 CFR 61 and the NRC Technical Position Paper on Waste Form. The requirements are intended to ensure that the waste does not structurally degrade and affect overall stability of the site through slumping, collapse, or other failure of the disposal unit and thereby lead to water infiltration. To comply with the NRC stability requirements:
 - Waste must have structural stability. A structurally stable waste form will
 generally maintain its physical dimensions and its form, under the expected
 disposal conditions such as weight of overburden and compaction equipment,

¹ According to Mark Ellefson with the Hanford Site Waste acceptance Program (personal communication on 7/8/99), when waste exceeds Category 3, these are some flexibility to encapsulate and/or average the concentration of the radioisotopes over a larger portion of the disposal trench. Mr. Ellefson suggested that in such specific cases the Hanford Site performance assessment team be contacted for information and waste evaluation.

[&]quot; HIC with 300 year specification. A type of container that holds its corrosion integrity for 300 years after burial. An alternative to such type of container is a polyethylene container placed in a concrete vault structure that can provide corrosion resistant environment for 300 year after burial. According to Mark Ellefson, the Hanford Site Waste acceptance Program (personal communication on 7/8/99), there are construction specifications for the Hanford concrete vault and generators can pay the Category 3 disposal rate, and use of this vault is included in the price.

the presence of moisture, thermal degradation, microbial activity, and internal factors such as radiation effects and chemical changes. Structural stability can be provided by the waste form itself, processing the waste to a stable form, or placing the waste in a disposal container or structure that provides stability after disposal.

- Liquid waste or waste containing liquid must be converted into a form that
 contains as little free standing liquid as is reasonably achievable, but in no case
 the amount of liquid can exceed 1% of the volume of the waste or 0.5% of
 waste processed to a stable form.
- Void spaces within the waste and between the waste and its package must be reduced to the extent practicable.
- TRU content shall not exceed 100 nCi/g of waste.
- Waste shall not exceed the NRC Class C limits.
- If the concentration of any mobile radionuclide exceeds the limit shown in Table 17, stabilization could be required. This will be determined on case-by-case evaluation by the WMH. Stabilization would normally consist of waste placement in a HIC, but additional stabilization might be required based on factors such as waste form and radionuclide content.
- Waste must meet the interim safety basis (ISB) limit (as calculated in Appendix D of reference 14), with the following exception: if a combustible waste exceeds the combustible waste limit, but does not exceed the limit for noncombustible, an evaluation will be performed by the WMH acceptance organization to determine proper mitigation measures (stabilization or segregation).

The definition of combustible and noncombustible for use in defining the limits given in Table 17 is as follows: "Noncombustible waste forms are waste forms which will not burn even on prolonged exposure to open flame and moderately intense heat. These consist of waste forms that experience no evidence of combustion or decomposition upon exposure to 538°C (1,000°F) for ten minutes." All other forms are combustible.²⁹ Waste packages that exceed the limits indicated in Table 17 will require additional safety analysis before they can be accepted. Any additional requirements for a waste that exceeds the limits will be identified as part of the waste acceptance process.

Hanford Site Approved HICs

The approved HICs include those available at the Hanford Site, commercial HICs, and special HICs. Waste generators can also provide their own HICs. The WMH acceptance organization performs an evaluation of the loading of all HICs to ensure that they will withstand the soil overburden in the LLBG. The following is a list of approved configurations of HICs available at the Hanford Site, approved commercial containers, and of packages approved as special HICs:

^v Based on my phone conversation with Mark Ellefson of Hanford on 4/6/00, in the next revision of Hanford WAC (HNF-EP-0063), there will no longer be any reference to the Class C limits. DOE-RL has removed that requirement based on the transition from DOE O 5820.2A to 435.1. There will be no changes to the Category 3 limits. They are based on the LLB Performance Assessment, which has been approved by DOE and has not been revised; nor are there immediate plans for revision.

HIC configurations available at the Hanford Site

- Culvert Type I Concrete HIC (6 ft. diameter by 6 ft. high)
- Culvert Type II Concrete HIC (8 ft. diameter by 7 ft. high)
- Vault type concrete HIC (10.5 ft. long by 7 ft. wide by 9.5 ft. high)

Commercially available HICs

- Arrow Pak High Density Polyethylene (HDPE) HIC
- SEG Enduro Pak HDPE HIC
- SEG SQ113 Concrete HIC .
- Any NRC-approved HIC

Special HICs

- Hanford IXM unit (Hanford Specification H-1-46279)
- Vectra 95 drum capacity HIC

Table 17. Radiological content limits for disposal at the Hanford LLBG.

Nuclide	Mobile Radionuclide Reporting Limit	Category 1 Waste Limit	Category 3 Waste Limit	ISB Noncombustible Waste Limit	ISB Combustible Waste Limit
H-3	4.4 E+00	9.9 E+04	NL	4.0 E+07	5.0 E+02
Be-7	NL	NL	NL	2.6 E+07	6.6 E+05
Be-10	NL	1.1 E+00	2.4 E+02	1.0 E+04	2.5 E+02
C-14	1.3 E-04	9.1 E-02	2.1 E+01	1.8E+06	4.4 E+04
C-14 ^a	1.3 E-04	9.1 E-01	2.1 E+02	1.8 E+06	4.4 E+04
Na-22	NL	NL	NL	4.3 E+05	1.1 E+04
P-32	NL	NL	NL	2.3 E+05	5.8 E+03
S-35	NL	NL	NL	1.5 E+06	3.7 E+04
Cl-36	3.1 E-05	6.4 E-05	1.4 E-01	1.7 E+05	4.2 E+03
K-40	NL	1.8 E-03	3.8 E-01	3.0 E+05	7.5 E+03
Ca-45	NL	NL	NL	5.5 E+05	1.4 E+04
Sc-46	NL	NL	NL	1.2 E+05	3.6 E+03
. V-49	NL	NL	NL	1.1 E+07	2.6 E+05
Cr-51	NL	NL	NL	1.0 E+07	2.5 E+05
Mn-54	NL	NL	NL	5.2 E+05	1.3 E+04
Fe-55	NL	NL	NL	1.3 E+06	3.3 E+04
Co-56	NL	NL	NL	9.2 E+04	2.3 E+03
Co-57	NL	NL	NL	4.3 E+05	1.1 E+04
Co-58	NL	NL	NL	3.2 E+05	8.1 E+03
Fe-59	NL	NL	NL	2.4 E+05	5.9 E+03
Ni-59	NL	3.9 E+00	8.5 E+02	2.9 E+06	7.1 E+04
Ni-59ª	NL	3.9 E+01	8.5 E+03	2.9 E+06	7.1 E+04
Co-60	NL	7.5 E+01	NL	1.8 E+04	4.6 E+02
Co-60 ^a	NL	7.5 E+02	NL	1.8 E+04	4.6 E+02
Ni-63	NL	5.9 E+00	2.0 E+04	1.2 E+06	3.0 E+04
Ni-63ª	NL	5.9 E+01	2.0 E+05	1.2 E+06	3.0 E+04
Zn-65	NL	NL	NL	2.0 E+05	4.9 E+03
Ge-68	NL	NL	NL	7.0 E+04	1.8 E+03
Se-75	NL	NL	NL	4.3 E+05	1.1 E+04
Se-79	3.4 E-05	5.1 E-01	1.1 E+02	3.9 E+05	9.7 E+03
Sr-82	NL	NL	NL	5.9 E+04	1.5 E+03

	Activity Limits (Ci/m³)					
Nuclide	Mobile Radionuclide Reporting Limit	Category 1 Waste Limit	Category 3 Waste Limit	ISB Noncombustible Waste Limit	ISB Combustible Waste Limit	
Kr-85	NL	NL	NL	2.1 E+09	2.6 E+04	
Sr-85	NL	NL	NL	2.0 E+06	4.9 E+04	
Rb-86	NL	NL	NL	5.5 E+05	1.4 E+04	
Y-88	NL	NL	NL	1.3 E+05	3.2 E+03	
Sr-89	NL	NL	NL	6.7 E+05	1.7 E+04	
Sr-90Y-90	NL	1.6 E-02	5.4 E+04	1.5 E+04	3.8 E+02	
Mo-93	2.1 E-04	8.7 E-01	2.0 E+02	1.3 E+05	3.2 E+03	
Nb-93m	NL	NL	NL	1.2 E+05	3.0 E+03	
Zr-93	NL	2.5 E+00	5.4 E+02	4.6 E+03	1.2 E+02	
Nb-94	NL	2.2 E-04	4.8 E-02	9.2 E+03	2.3 E+02	
Nb-94ª	NL	2.2 E-03	4.8 E-01	9.2 E+03	2.3 E+02	
Nb-95	NL	NL	NL	5.7 E+05	1.4 E+04	
Zr-95Nb-95m	NL	NL	NL	9.2 E+04	2.3 E+03	
Tc-99	2.1 E-04	2.3 E-02	5.0 E+00	4.0 E+05	1.0 E+04	
Ru-103Rh-103m	NL	NL	NL	3.9 E+05	9.7 E+03	
Ru-106Rh-106	. NL	NL	NL	8.0 E+03	2.0 E+02	
Pd-107	NL	1.5 E+01	3.3 E+03	2.9 E+05	7.1 E+03	
Ag-108m	NL	NL	NL	2.2 E+04	5.4 E+02	
Cd-109	NL	NL	NL	2.5 E+04	6.1 E+02	
Ag-110mAg-110	NL	NL	NL	1.0 E+04	2.5 E+02	
Cd-113m	NL	7.6 E-01	NL	1.8 E+03	4.5 E+01	
Sn-113	NL	NL	NL	3.2 E+05	8.1 E+03	
Sn-119m	NL	NL	NL	6.0 E+05	1.5 E+04	
Sn-121m	NL	6.7 E-01	2.2 E+04	3.1 E+05	7.7 E+03	
Te-121	NL	NL	NL	1.9 E+06	4.8 E+04	
Te-123	NL	NL	NL	1.4 E+05	3.4 E+03	
Sb-124	NL	NL	NL	1.4 E+05	3.5 E+03	
I-125	NL	NL	NL	5.0 E+04	1.3 E+00	
Sn-126Sb-126m	NL	1.6 E-04	3.4 E-02	3.6 E+04	9.1 E+02	
Te-125m	NL	NL	NL	2.2 E+06	5.5 E+04	
Sb-125	NL	NL	NL	2.8 E+05	7.0 E+03	
Te-127mTe-127	NL	NL	NL	1.7 E+05	4.2 E+03	

-	· Activity Limits (Ci/m³)						
Nuclide	Mobile Radionuclide Reporting Limit	Category 1 Waste Limit	Category 3 Waste Limit	ISB Noncombustible Waste Limit	ISB Combustible Waste Limit		
I-129	1.0 E-06	8.5 E-03	1.8 E+00	7.1 E+03	1.8 E-01		
Te-129m	NL	NL	NL	1.6 E+05	3.9 E+03		
Xe-131m	NL	NL	NL	7.5 E+08	9.4 E+03		
Ba-133	NL	7.1 E-01	NL	4.6 E+05	1.2 E+04		
Cs-134	NL	NL	NL	8.6 E+04	2.1 E+03		
Cs-135	NL	1.6 E-01	3.5 E+01	8.0 E+05	2.0 E+04		
Cs-137Ba-137m	NL	5.5 E-03	1.2 E+04	1.2 E+05	3.0 E+03		
Ba-140	NL	NL	NL	3.9 E+05	9.7 E+03		
Ce-141	NL	NL	NL	4.1 E+05	1.0 E+04		
Ce-144Pr-144	NL	NL	NL	1.0 E+04	2.5 E+02		
Nd-147	NL	NL	NL	5.5 E+05	1.4 E+04		
Pm-147	NL	NL	NL	9.2 E+04	2.3 E+03		
Sm-147	NL	1.7 E-02	3.7 E+00	2.9 E+01	7.1 E-01		
Eu-150	NL	1.4 E-03	6.7 E+02	1.4 E+04	3.5 E+02		
Sm-151	NL	4.6 E+01	2.1 E+05	7.1 E+04	1.8 E+03		
Eu-152	NL	4.8 E-02	NL	1.7 E+04	4.4 E+02		
Gd-152	NL	6.4 E-03	1.4 E+00	3.6 E+00	9.1 E-02		
Gd-153	NL	NL	NL	1.1 E+05	2.7 E+03		
Eu-154	NL	7.5 E-01	NL	1.3 E+04	3.3 E+02		
Eu-155	NL	NL	NL	6.7 E+04	1.7 E+03		
Tm-170	NL	NL	NL	1.4 E+05	3.5 E+03		
Hf-175	NL	NL	NL	6.5 E+05	1.6 E+04		
Hf-181	NL	NL	NL	1.2 E+05	3.1 E+03		
Ta-182	NL	NL	NL	8.0 E+04	2.0 E+03		
W-185	NL	NL	NL	4.6 E+06	1.2 E+05		
Re-187	3.3 E-02	3.6 E+01	7.8 E+03	6.3 E+07	1.6 E+06		
Au-195	NL	NL	NL	2.8 E+05	7.0 E+03		
Hg-203	NL	NL	NL	5.0 E+05	1.3 E+04		
T1-204	NL	NL	NL	1.5 E+06	3.8 E+04		
Bi-207	NL	TBD	TBD	1.8 E+05	4.5 E+03		
Pb-210	NL	3.7 E-02	2.1 E+06	1.8 E+02	4.6 E+00		
Po-210	NL	NL	NL	1.8 E+02	4.6 E+00		

			Activity Limit	s (Ci/m³)		
Nuclide	Mobile Radionuclide Reporting Limit	Category 1 Waste Limit	Category 3 Waste Limit	ISB Noncombustible Waste Limit	ISB Combustible Waste Limit	
Ra-226	NL	1.7 E-04	4.3 E-02	4.4 E+02	1.1 E+01	
Ac-227	NL	4.2 E-03	3.0 E+05	3.1 E-01	7.7 E-03	
Ra-228	NL	1.7 E+01	NL	8.6 E+02	2.1 E+01	
Th-228	NL	NL	NL	7.1 E+00	1.8 E-01	
Th-229	NL	4.4 E-04	9.8 E-02	7.1 E-01	1.8 E-02	
Th-230	NL	2.1 E-03	1.5 E-01	4.6 E+00	1.2 E-01	
Pa-231	NL	1.4 E-04	3.0 E-02	1.1 E+00	2.7 E-02	
Th-232	NL	1.1 E-04	2.3 E-02	8.6 E-01	2.1 E-02	
Total U	1.4 E-05	NL	NL	NL	NL	
U-232	See Total U	4.6 E-04	4.6 E+00	5.5 E+00	1.4 E-01	
U-233	See Total U	7.4 E-03	9.7 E-01	2.7 E+01	6.67 E-01	
Th-234	NL	NL	NL	1.0 E+05	2.5 E+03	
U-234	See Total U	8.9 E-03	1.9 E+00	2.7 E+01	6.8 E-01	
U-235	See Total U	2.8 E-03	5.0 E-01	2.9 E+01	7.3 E-01	
Pu-236	NL	NL	NL	1.4 E+01	3.5 E-01	
U-236	See Total U	9.5 E-03	2.0 E+00	2.9 E+01	7.1 E-01	
Np-237 ^b	1.1 E-05	6.8 E-04	1.5 E-01	2.6 E+00	6.4 E-02	
Pu-238 ^b	NL	4.7 E-03	2.4 E+01	5.2 E+00	1.3 E-01	
U-238	See Total U	5.7 E-03	1.2 E+00	3.1 E+01	7.7 E-01	
Pu-239 ^b	NL	1.9 E-03	4.2 E-01	4.6 E+00	1.2 E-01	
Pu-240 ^b	NL	1.9 E-03	4.3 E-01	4.6 E+00	1.2 E-01	
Am-241 ^b	NL	2.1 E-03	8.5 E-01	4.4 E+00	1.1 E-01	
Pu-241	NL	6.1 E-02	2.5 E+01	2.4 E+02	5.9 E+00	
Am-242m ^b	NL	1.9 E-03	1.6 E+00	4.6 E+00	1.2 E-01	
Cm-242	NL	NL	NL	2.0 E+02	5.1 E+00	
Pu-242 ^b	NL	2.0 E-03	4.3 E-01	5.0 E+00	1.3 E-01	
Am-243 ^b	NL	1.0 E-03	2.3 E-01	4.4 E+00	1.1 E-01	
Cm-243 ^b	NL	1.8 E-02	3.4 E+02	6.7 E+00	1.7 E-01	
Cm-244	NL	1.4 E-01	1.6 E+02	8.6 E+00	2.1 E-01	
Pu-244 ^b	NL	6.1 E-04	1.3 E-01	5.0 E+00	1.3 E-01	
Cm-245 ^b	NL	1.3 E-03	2.2 E-01	4.4 E+00	1.1 E-01	
Cm-246 ^b	NL	1.8 E-03	4.2 E-01	4.3 E+00	1.1 E-01	

			Activity Limit	s (Ci/m³)		
Nuclide	Mobile Radionuclide Reporting Limit	Category 1 Waste Limit	Category 3 Waste Limit	ISB Noncombustible Waste Limit	ISB Combustible Waste Limit	
Bk-247 ^b	NL	TBD	TBD	3.0 E+00	7.4 E-02	
Cm-247 ^b	NL	5.6 E-04	1.2 E-01	4.8 E+00	1.2 E-01	
Cm-248 ^b	NL	5.1 E-04	1.1 E-01	1.2 E+00	3.0 E-02	
Cf-249 ^b	NL	TBD	TBD	3.0 E+00	7.4 E-02	
Cf-250	NL	TBD	TBD	6.7 E+00	1.7 E-01	
Cm-250 ^b	NL	TBD	TBD	2.1 E-01	5.3 E-03	
Cf-251 ^b	NL	TBD	TBD	2.9 E+00	7.3 E-02	
Cf-252	NL	NL	NL	1.4 E+01	3.6-01	
Es-254	NL	NL	NL	5.2 E+01	1.3 E+00	

NL. Means that there is no applicable limit for this isotope.

TBD. Means that a limit is under development

a. Limit for isotope in activated metal.

b. TRU isotope (half-life > 20 years)

Criticality Safety

Criticality safety requirements depend on the type of waste in the waste packages. These requirements must be developed on a case-specific basis. Table 18 provides the limits for fissionable material content for certain waste containers. The fissionable material limits must be expressed in Pu-239 FGE. Table 19 is used to determine the total quantity of fissionable material in a waste container. This value (i.e., total Pu-239-FGE) can be obtained by multiplying the gram quantity of each isotope listed in Table 19 by its respective FGE correction factor and summing the results.

Table 18. Fissionable material content limits for certain standard containers.

Container Type	Fissionable Material Content
208-liter (55-gallon) or larger steel drum, where fissile material is contained in 20% or more of the container volume.	177 FGE ^a
208-liter (55-gallon) or larger steel drum, where fissile material is contained in less than 20% of the container volume.	100 FGE ^a
208-liter (55-gallon) lead-lined steel drum	100 FGE ^a
DOT or NRC Approved Containers	Maximum fissile content may not exceed that which is acceptable for transportation as specified in the DOT regulations or the NRC C of C.
Steel box containing flushed and drained equipment	• 325 FGE per piece of equipment
and/or HEPA filters	 353 FGE per cubic meter (10 FGE per cubic foot) on HEPA filters
	 15 FGE in waste other than equipment or HEPA filters
	 250 FGE total in box larger than 0.76 x 0.76 x 0.7 meters (2.5 x 2.5 x 2.5 feet)
	 325 FGE total in box larger than 0.9 x 1.4 x 1.5 meters (3 x 4 x 5 feet)
	 1,000 FGE total in box larger than 1.2 x 1.2 x 2.1 meters (4 x 4 x 7 feet)

a. This limit assumes that the steel drum weighs a minimum of 23 kilograms (50.7 pounds) excluding the liner. Any drum that weighs less than 23 kilograms (50.7 pounds) requires overpacking or completion of a criticality safety evaluation.

Table 19. Pu-239 FGE correction factors.

Isotope	Correction factor	Isotope	Correction factor
U-233ª	1.0 E+00	Am-242m	3.46 E+01
U-235 ^b	1.0 E+00	Am-243	1.29 E-02
Np-237	1.5 E-02	Cm-243	5.0 E+00
Pu-238°	1.13 E-01	Cm-244	9.00 E-02
Pu-239°	1.0 E+00	Cm-245	1.50 E+01
Pu-240°	2.25 E-02	Cm-247	5.00 E-01
Pu-241°	2.25 E+00	Cf-249	4.50 E+01
Pu-242°	7.50 E-03	Cf-251	· 9.00 E+01
Am-241	1.87 E-02		

a. U-233 is normally negligible unless the materials have been enriched in U-233.

b. U-235 is not included in calculating FGE unless it is enriched (greater than or equal to 0.72 wt % U-235 in U).

c. For conservatism, all Pu is normally considered to be Pu-239 unless the isotopic composition is known.

Package Dose Rate Limits

The radiation limit for CH-LLW is ≤ 200 mm. Ar at any point on the surface and ≤ 100 mrem/hr at 30 cm from the waste container. However, a container larger than 208 liters may have a marked point with surface dose rate up to 1,000 mrem/hr on the bottom or side as long as the 30 cm dose rate is not exceeded. Such points shall be marked with large red painted dots. For RH-LLW, the limit is ≥ 200 mrem/hr at any point on the surface.

8.2.1.2.3.3.4 Packaging criteria

Waste packages that meet the applicable DOT requirements in 49 CFR or have been evaluated through an approved packaging safety analysis are acceptable for disposal. Drums or boxes not exceeding 2.74 meters long by 1.6 meters wide by 1.7 meters high (9 feet x 5.25 feet wide x 5.5 feet high) should be used whenever possible to facilitate receipt verification. Larger containers require the approval of the WMH acceptance organization.

All packages must be configured for safe unloading by forklift or crane. Alternate means of unloading could be allowed with prior approval. All waste shall be packaged in a form that minimizes settling and subsidence of the LLBG to the maximum extent feasible. The following forms will be considered to meet these criteria:

- Inherently stable waste that will not subside in the disposal environment.
- Waste stabilized by grouting or packaging in a HIC.
- Containerized waste that fills at least 90% of the internal volume of the container. To calculate the volume of void spaces in the waste, only voids exceeding 5.1 centimeters (2 inches) in all dimensions need be considered.

Waste containers shall be labeled in accordance with the regulations established by DOT. Hanford requires that each container be labeled with a bar code showing the unique container identification number (CIN#). For off-site generators, a bar code will be attached when the container is received on the Hanford Site. The CIN# will be provided by the waste generator. The WMH acceptance organization should be contacted for guidance on assigning a CIN#.

9. SECONDARY WASTES

The secondary waste streams include the final process solvents, HEPA filters, and PPE. All the secondary waste streams would be considered mixed wastes as a result of the RCRA mixture rule and would be subject to the RCRA LDR Subtitle C requirements prior to disposition. In addition, the wastes must meet the criteria of the respective repositories they are destined to be shipped to. The secondary waste streams are listed wastes and would require delisting to be managed as radioactive wastes only after applicable LDR treatment requirements are met. The specific final waste forms would depend on the treatment options selected. The determination of the treatment options relies on the nature and chemical composition of these wastes. The wastes must be characterized using both process knowledge and analytical testing to determine the appropriate treatment method and disposal path.

The secondary wastes can be considered for onsite processing or sent to offsite treatment facilities. The applicable treatment methods would include those currently being used at the INEEL and commercial facilities. The current treatment and disposal plan for the secondary wastes is described below.

Process Solvents

Several hundred gallons of process solvents would remain at the end of the treatment campaign. It is suggested that these solvents be stripped of actinides and other radioactive elements so that it can be classified as CH-LLW from radiological standpoint. The waste solvents, at a minimum, would require solidification in preparation for disposal. The solvent constituents alone are not hazardous per RCRA, however, when they get mixed with the listed SBW they would become listed mixed wastes as a result of the RCRA mixture rule. The only way to remove this type of waste mixture from RCRA regulation is to have it delisted after the LDR treatment requirements are met. The SBW is also a characteristic waste. Based on the RCRA mixture rule, when a characteristic waste is mixed with a solid waste, the resulting mixture is only hazardous if it continues to exhibit a characteristic. Testing is required to determine if the resulting mixture exhibits a characteristic, it would have to meet the applicable LDR treatment for characteristic waste prior to disposal.

Spent HEPA Filters

The spent HEPA filters would be treated using the processes presently used at INTEC. These include HEPA filter leaching to remove the RCRA hazardous constituents and to reduce the radioactivity content. After leaching, the filters should be ready for disposal as LLW at a facility such as Hanford or as TRU waste at WIPP. The leachate generated by HEPA filter leaching will be managed in INTEC liquid radioactive wastewater treatment system [process equipment waste (PEW), liquid effluent treatment and disposal (LET&D), and INTEC Tank Farm]. The decontamination solutions can also be processed through the PEW evaporator and LET&D systems. These systems perform volume reduction of the liquid waste rather than LDR treatment. The resulting waste would be included in the Tank Farm liquid waste streams.

Used PPE

The PPE would require treatment (e.g. incineration) followed by stabilization of the ash, if necessary, for disposal as LLW at a LLW disposal facility such as Hanford. If the PPE is determined to be TRU waste (CH-TRU), they would be packaged for disposal at WIPP.

10. REFERENCES

- 1. The State of Idaho Settlement Agreement, October 16, 1995.
- DOE Order 435.1, Radioactive Waste Management, U.S. Department of Energy, July 1999.
- 3. Consent Order, November 1995.
- 4. INEEL Site Treatment Plan.
- 5. RCRA Statute 1006(a) It corresponds to US Code (USC) Section 6905.
- 6. 55 Federal Register 22627, June 1, 1990.
- Gilbert, K. L. and T. E. Venneman, A Regulatory Analysis and Reassessment of U.S. Environmental Protection Agency Listed Hazardous Waste Numbers for Applicability to the INTEC Liquid Waste System," INEEL-EXT-98-01213, Rev. 1, February 1999.
- 8 RCRA Land Disposal Restrictions Compliance Guide, 1999.
- Wichmann, T. L., N. Brooks, M. B. Heiser, Regulatory Analysis and Proposed Path Forward for the Idaho National Engineering Laboratory High-Level Waste Program, Revision 0, DOE/ID-10544, July 1996.

- 10 Carlos L. Tellez Letter to Ms. L. A Green, CLT-14-99, Initial List of Underlying Hazardous Constituents (UHCs) for the INTEC Liquid Waste Treatment System, February 2, 1999.
- 11 RCRA Land Disposal Restrictions Compliance Guide. P. 5.21 (1999).
- 12. EPA, "Petitions to Delist Hazardous Wastes: A Guidance Manual," 2nd Ed., PB93-169365 (March 1993).
- 13. Petitions, Delistings, and Variances, EPA-530-R-97-063 (November 1997).
- J. Banaee, J. B. Bosley, R. R. Kimmitt, and A. P. Poloski, "INTEC Final Waste Form Requirements Study," INEEL/INT-99-01384 (December 1999).
- 15 65 FR 10061, February 25, 2000.
- 16. 60 Federal Register 66344, December 21, 1995.
- 17. 64 Federal Register 63463, November 19, 1999.
- 18. U.S. Department of Energy, "Waste Acceptance Criteria for the Waste Isolation Pilot Plant, DOE/WIPP-069," Rev. 5, April 1996.
- 19. Personal conversation with Ross Kirkes and Peter Carson with the WIPP Technology Training Center, March 16, 1999.
- DOE Manual 435.1, Radioactive Waste Management Manual, U.S. Department of Energy, July 1999.
- 21. Department of Energy, Office of Environmental Management, Commercial Disposal Policy Analysis for Low-Level Wastes, March 9, 1999.
- 22. 64 FR 12161, March 11, 1999.
- 23. Barnwell Waste Management Facility Site Disposal Criteria, Revision 17, S20-AD-010, February 1999.
- 24. NRC, 1991, Technical Position Paper on Waste Form, Rev. 1, U.S. Nuclear Regulatory Commission Office of Nuclear Material Safety and Safeguards, Washington, D.C.
- 25. US Ecology Inc. Richland Disposal Facility Waste Acceptance Criteria, Revision 0, March 1999.
- 26. Envirocare of Utah, Inc. Waste Acceptance Criteria.
- 27. U.S. Department of Energy, LMITCO, INEEL Reusable Property, Recyclable Materials, and Waste Acceptance Criteria, DOE/ID-10381.
- 28. Nevada Test Site Waste Acceptance Criteria, NTSWAC, Rev. 1, DOE/NV-325, August 1997.
- 29. Hanford Solid Waste Acceptance Criteria, HNF-EP-0063, Revision 5, June 1998.
- 30. The State of Washington Dangerous Waste Regulations, Chapter 173-303, January 1998.
- 31. ASTM C 39, Compressive Strength of Cylindrical Concrete Specimens, American Society for Testing and Materials, 1979.
- 32. ASTM D1074, Compression Strength of Bituminous Mixtures, American Society for Testing and Materials, 1980.
- 33. ANS 16.1, Measurement of the Leachability of Solidified Low-Level Radioactive wastes, American Nuclear Society Draft Standard, April 1981.

Appendix H

Facility Personnel Estimate

In order to process the sodium bearing waste using the UNEX and modified UNEX processes, an estimate of the number of personnel required to staff the operations need to be determined. This estimate allows for administrative space considerations to be taken into account. The major operations involved in the UNEX process are solids removal, centrifugal extraction, evaporation of CH-LLW and RH-LLW streams, acid fractionation, crystallization of RH-LLW, neutralization, and grouting. Due to the number of drums required to complete total solidification, the grouting activity will be the most labor intensive.

Assumptions:

- The number of staff needed for start-up is equal to the number of staff for on-going operations.
- The number of years for start-up is estimated as three total years.
- The UNEX process facility will be in operation for approximately 3 years from January 2008 to December 2010.
- Shipment of CH TRU drums to WIPP is independent of the process (Modified-UNEX), in that this activity will be performed from the interim storage facilities location, and is anticipated to occur from January 2008 through December 2021.
- Shipment of RH TRU drums to WIPP is independent of the process (UNEX).
- Process operations are based on twenty-four hours per day, 7 days a week, with up-time of 200 days per year. The 200 days is rounded from 205 and based on previously used HLW program drivers stating that operations will be based on a 75% up-time at 75% efficiency (0.75x0.75x365=205).
- Four rotating shifts of personnel will be required to support the schedule for main process and drum output to handling/transfer to storage. Included in the 4 rotating shifts are personnel for process maintenance, QA, Safety, and Rad Con.
- New facility space will be required for final drum analysis to meet WIPP requirements (Modified UNEX).
- Activities related to WIPP validation occur only during the day shift (Modified UNEX).
- All personnel listed will be included for estimating Life Cycle Costs.
- Office space is available in existing nearby facilities, therefore new administrative facility space is not
 included in the study. Personnel not housed in the process facility include the facility administration,
 engineering support, and training staffs. Operating costs for the facilities they use are a cost incurred
 by the project.
- A single day shift will include personnel for administration, administrative support, technical support, general building maintenance, and activities related to drum videography, drum head space gas analysis, and CH-TRU drum shipments to WIPP (Modified UNEX).
- Management for support functions QA, Safety, RadCon, Training, Engineering, Drafting, and Maintenance – is supplied from the existing INTEC infrastructure. Proportional costs for this management and their space are a cost incurred by the project.
- Ancillary and support functions critical to the process will be housed within the same physical facility.
- INTEC will have infrastructure services and capabilities to accommodate some tasks not unique to this project such as additional engineering and drafting support, common warehouse and storage, and major support areas such as machine, weld, sheetmetal, fitter, electrician, and electronics/instrument shops, common warehouse and storage, mock-up area(s), and laydown area(s).
- No special personnel requirements are requirements are required for the interim storage facilities that can not be handled by day shift and rotating shift personnel.
- Space needs are based on an average 150 ft² allowance for office personnel and 500 ft² for a single shift of operations personnel. The office space allowance is slightly above the current 130 ft² used at INTEC to be conservative, considering the space is related to an operating facility and not typical office space.

OPERATION SUMMARY

The following processes are involved in UNEX extraction:

- Solids Removal
- Centrifugal Extractors
- CH-LLW Evaporation
- Acid Fractionation
- RH-LLW Evaporation
- RH-LLW Crystallization
- Neutralization
- Grouting

Among these processes, grouting will require the most personnel. This is because:

- 1. The grouting process is designed for 55-gallon drums (6 grouting stations). With the amount of CH-LLW projected, between 5000 to 6000 grouts would be needed per one years amount of SBW processed.
- 2. The drums of grouted material need to be bagged out and this activity is labor intensive (3 men per bag-out).

ADMINISTRATION AND SUPPORT REQUIREMENTS (Total = 12)

	Day Shift
ADMIN/ADMIN SUPPORT (Total = 6)	
Operations Managers	2
Administrative Support	2 1
Secretarial/Clerical	
 Budget Cost/Control 	
• Schedule	_
Waste Tracking/Data Acquisition Tech	2
Receipt, Examination	
Sampling, Repack Standard (Nicolaire of Controls)	
 Storage/Shipping (Manifest, Chain-of-Custody) Document Control Personnel 	1
Document Condoi i Cisomei	•
TECHNICAL SUPPORT (Total = 3)	
Engineers	2
Drafters	1
TRAINING (Total = 2)	
Trainers	2
ADMIN FACILITY MAINTENANCE (Total = 1)	
Janitor (admin areas)	1

PROCESS FACILITY/OPERATIONS (Total = 97)

	Dav Shift	Rotating
OPERATIONS ADMINISTRATION (Total = 11)	Day Omit	Rotating
01:0.0	•	4
Shift Supervisors	2	4
Operations Technicians Process Coordinator	0 1	4 0
Process Coordinator	1	U
PROCESS OPERATORS (Total = 54)		
Material Receipt	1	0
SBW retrieval from tank farm to feed tanks	_	•
Feed sampling and related activities		
Raw material receipt – cement, slag, flyash, drums, etc.		•
Solids Removal Process	0	8
Solvent Extraction Process	Ö	4
Evaporation Process (CH LLW)	Ö	4
Evaporation Process (RH LLW)	Ō	4
Crystallization	-	•
Placement into cask	•	
Grouting Process	0	24
Monitor process		
Drum movements and Bag-out		
Movement of drums to interim storage		
Waste Validation	9	0
TCLP sampling (CH LLW)		
Shipping from interim storage		
Filled drum videography (RH/CH TRU)		
Drum head space gas analysis (RH/CH TRU)		
Diminicad space gas analysis (RIBCII IRO)		
QA, SAFETY, RADCON (Total = 14)		
QA	1	4
Safety	Ō	4
RadCon	1	4
	_	·
Physical requirements – Equipment storage (surveillance, analyzers, e	tc.)	
PROCESS MAINTENANCE (Total = 12)		
Electrical	0	4
Mechanical	Ö	4
I&C	0	4

PROCESS FACILITY MAINTENANCE (Total = 6)

Electrical	1	0
Mechanical	1	0
I&C Technicians	1	0
Maintenance Planner/PMs/Work Orders	1	0
Attendant	1	0
Janitor	1	0

SPACE REQUIREMENTS

- Small Lunch Room
- Toilet Rooms
- Janitor Room
- Storage
- Circulation
- Electrical
- Communications
- Mechanical
- Equipment (surveillance, analyzers, etc.)
- Anti-C Issue Rooms
- Change Rooms/Shower Rooms
- Personnel Decon Area
- Ready Room (Break Room)
- Contaminated, Hot Maintenance Area
- Drum Handling Systems (i.e., carts) Survey, Decon and Maintenance areas
- Tool Room Storage of Issue Tools
- Long Term Storage Clean Containers
- Short Term Storage Lag/Lead for drums

Total estimated number of personnel is 109, 83 of whom are considered radiation workers. New office space for 9 and operating space for 14 individuals is required. For initial start-up, it is assumed that 109 workers would be required over a three year period.

	Day Shift	Rotating Shifts (4)	Radiation Workers	New Facility Office Space	New Facility Ops/Maint
Facility Admin	6	0	0	0	0
Engineering Support	3	0	0	0	0
Training	2	0	0	0	0
Operations Admin	3	8	0	3	0
Process Operators	19	44	54	2	11
QA, Safety, RadCon	2	12	14	3	0
Process Maintenance	0	12	12	0	3
Facility Maintenance	7	0	3	1	0
Total	42	76	83	9	14

Appendix I Radionuclide Dose Rate Calculations

Appendix I

Dose Rate Calculations

The dose rate calculations for the UNEX and Modified UNEX processes were based on analytical equations that used a cylindrical volume source with finite height. Figure I.1 shows the relationship of the point of calculation (detector response at point 'P') to the cylinder of interest.

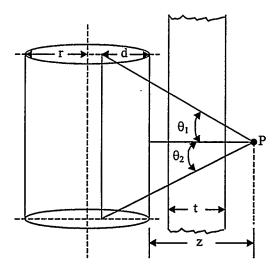


Figure I.1. Geometry used for calculating the detector response at 'P'.

The variables in the above figure are as follows:

r = radius of the cylinder

d = perpendicular distance from the cylinder wall to a point within the cylinder

 θ_1 , θ_2 = angles based on the distance of point P from the cylinder wall and the cylinder height

t = thickness of the shield

z = perpendicular distance from P to the cylinder wall.

Assuming that the source is distributed evenly throughout the volume, the following equation can be used to calculate the detector response (in units of particles/cm²/sec):

$$\phi_{cyl}(z,t) = \frac{S_{v}r^{2}}{4(z+d)} \left[F(\theta_{1}, \mu t + \mu_{v}d) + F(\theta_{2}, \mu t + \mu_{v}d) \right]$$

where S_{ν} is the volumetric source rate or strength; μ and μ_{ν} are the attenuation coefficients for the shield and volumetric source, respectively; $F(\theta, x)$ is the secant integral¹; and the remaining variables were previously defined.

¹ The secant integral, sometimes called the Sievert integral, is defined as $F(\theta, x) \equiv \int_{0}^{x} e^{-x \sec \theta} d\theta$

The volumetric source rate was given by the mass balance sheets for each specific stream; the attenuation coefficients were found from the literature; and the remaining variables were assumed from the spreadsheets for the 2x10 caniste (UNEX, stream 320) and the 55 gallon drums (Modified UNEX, stream 530). In particular was set equal to r, z was set equal to t, and θ_1 was equal to θ_2 . The resulting equation for a determinant of a cylinder is:

$$\phi_{cyl}(t) = \frac{S_{v}r^{2}}{2(t+r)} \left[F(\theta, \mu t + \mu_{v}r) \right]$$

which gives a particle flux, and can then be converted to a dose rate based on the particle energy and corresponding buildup factor. Conversion tables can be found in the literature to convert the energy and nuclide dependent flux to a dose rate, as well as the plutonium equivalent activity and equivalent fissile components. A sample of the data sheets used for calculating the dose rates are attached to the end of this appendix, and include various shield materials and thicknesses.

In calculating the appropriate wall thickness for the hot cell, the same methodology was used, where the highest activity tank and canister were placed against the cell wall, and the dose rate at the outside of the wall was calculated. Note that the beta-particle emissions (including the Sr-Y nuclides) do not contribute significantly to the dose rate due to the canister/tank wall and the high gamma component for the UNEX process, and were not considered. However, in the case of breaching a canister or tank, this would not be the case, and the dose contribution of these nuclides would become important. Also, the beta dose is a significant contributor in the case of the modified UNEX process.

As a quality check, the UNEX (stream 320) 2x10 canister dose rates were calculated using the code Microshield. The differences between the calculated and code results were less than 10%. Typically the errors associated with dose rate calculations are on the order of ± 20 %. Therefore, for the purposes of this study, the calculated results are considered to be sufficient.

References

- S. Glasstone and A. Sesonske, 1981. <u>Nuclear Reactor Engineering (3rd Edition)</u>, Krieger Publishing Co., Malabar, Florida.
- J. Lamarsh, 1983. <u>Introduction to Nuclear Engineering (2nd Edition)</u>, Addison-Wesley Publishing Co., Reading, Massachusetts.
- C. M. Lederer et al., 1978. <u>Table of Isotopes (7th Edition)</u>, John Wiley & Sons, New York, New York.
- N. Tsoulfanidis, 1995. <u>Measurement and Detection of Radiation (2nd Edition)</u>, Taylor & Francis, Washington DC.

2x10 Canister, UNEX Stream 320

Radionuclides CV/kg Am-243 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.03E-05 9.03E-05 9.03E-05 9.03E-05 9.03E-05 9.03E-05 9.040E-03 9.40E-03 1.22E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 9.21E-07 9.21E-07 9.21E-07 9.21E-07 9.21E-07 9.21E-07 9.21E-07 9.21E-07 9.21E-08 9.42E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-04 9.22E-07 9.	Dens kg/m	sity= 580	Canister Volume≖ 0.8896 m^3	Total Volumetric Source Rate	Branching Ratio	Photon Volumetric Source Rate	Photon Energy		Secant Integral, F(theta.x)			Particle Flux	Flux-to-Dose Rate Conversion (rem/hr)/(part	Estimated Dose
Am-243 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 Cm-242 8.18E-07 Cm-244 5.96E-05 Np-237 9.03E-05 Pu-238 1.56E-02 Pu-238 1.56E-02 Pu-239 1.96E-03 9.03E-05 Pu-240 4.51E-04 Pu-241 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 0.232 5.68E-08 U-232 5.68E-08 U-232 5.68E-08 U-232 5.68E-08 U-233 1.52E-09 C-244 2.41E-05 C-25E-07 C-26E-07 C-2	Cl/m²	,A3	ci	sec		/sec	MeV			1	m	m^2/sec		rem/hr
9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.23E-05 9.0		5.35E-04	4.76E-04	1.98E+07	0.8096	1.60E+07	7.47E-02	3.2303	2.38E-02	20.34		1.17E+02	8.28E-08	
9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 9.22E-07 Cm-244 9.96E-03 9.03E-05 9.03E-05 9.03E-05 9.03E-05 9.03E-05 9.03E-05 9.03E-05 9.03E-05 9.03E-05 9.03E-05 9.03E-05 9.03E-05 9.03E-03 9.06E-03 9.40E		5.35E-04	4.76E-04	1.98E+07	0.0704	1.39E+06		3.7686	1.31E-02	13.01	0.3048	3.58E+00	5.95E-08	
9.2ZE-07 Cm-242 8.18E-07 Cm-244 5.96E-05 Np-237 9.03E-05 Pu-238 9.03E-05 Pu-238 1.56E-02 Pu-238 1.56E-02 Pu-239 1.96E-03 Pu-240 4.51E-04 Pu-241 9.40E-03 9.4		5.35E-04	4.76E-04	1.98E+07	0.0704	1,39E+06	3.11E-02	4.5245	5.71E-03	5.70		6.85E-01		
Cm-244 5.96E-05 Np-237 9.03E-05 9.03E-05 9.03E-05 9.03E-05 9.03E-05 9.03E-05 Pu-238 1.56E-02 Pu-239 1.96E-03 1.96E-03 9.40E-03 9.40E-03		5.35E-04	4.76E-04	1.98E+07	0.106		1.18E-01	2.8279	3.75E-02	20.18		2.39E+01		2.90E-06
NP-237 9.03E-05 9.03E-05 9.03E-05 9.03E-05 Pu-238 1.56E-02 Pu-239 1.96E-03 1.96E-03 1.96E-03 1.96E-03 9.40E-03 6.76E-07	7 4	4.74E-04	4.22E-04	1.75E+07	0.26	4.56E+06	4.41E-02	3.7531	1.33E-02	13.39		1.23E+01	6.00E-08	7.37E-07
9.03E-05 Pu-238 1.56E-02 Pu-239 1.96E-03 Pu-240 4.51E-04 Pu-241 9.40E-03 6.76E-07 6.		3.45E-02	3.07E-02	1.28E+09	0.233	2.98E+08	4.28E-02	3.7885	1.28E-02	12.51		7.20E+02		
Pu-238 1.56E-02 Pu-239 1.96E-03 Pu-240 4.51E-04 Pu-241 9.40E-03 1.52E-09 6.76E-07 6.		5.24E-02	4.66E-02	1.94E+09	0.2209	4.28E+08	8.65E-02	3.1141	2.71E-02	20.82		3.65E+03		
Pu-238 1.56E-02 Pu-239 1.96E-03 1.96E-03 1.96E-03 1.96E-03 1.96E-03 1.96E-03 1.96E-03 1.96E-03 9.40E-03 6.76E-07 6.76E-0		5.24E-02	4.66E-02	1.94E+09	0.2491	4.83E+08	2.94E-02	4.8117	4.18E-03	4.95		1.51E+02		
Pu-239 1.96E-03 Pu-240 4.51E-04 Pu-241 9.40E-03 6.76E-07		5.24E-02	4.66E-02	1.94E+09	0.2741	5.31E+08	5.72E-02	3.4581	1.85E-02	21.09		3.12E+03		
1.96E-03		.05E+00	8.05E+00	3.35E+11	0.28			3.7697	1.31E-02	12.98		2.40E+05		
Pu-240 4.51E-04 Pu-241 9.40E-03 1.22E-09 0.234 2.41E-05 0.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 0.76E-07	.14E+00	1.01E+00	4.21E+10	0.151	6.36E+09		3,5636	1.64E-02	37.80		5.96E+04			
Pu-241 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 Pu-242 5.43E-07 Pu-242 5.43E-07 Pu-233 1.52E-08 U-233 1.52E-08 U-235 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 0.76E-07 0.76E-07 0.78E-07		.14E+00	1.01E+00	4.21E+10	0.73	3.08E+10		101.0843	1.56E-45	0.48	0.3048			
9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 1.52E-09 0.232 5.68E-08 0.233 1.52E-09 0.234 2.41E-05 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 0.76E-07	2.62E-01 3.45E+00	2.33E-01 4.85E+00	9.69E+09 2.02E+11	0.266 0.0166	2.58E+09 3.35E+09	4.52E-02 1.60E-01	3.7206 2.6412	1.38E-02 4.63E-02	14.20 15.70	0.3048			4.65E-04 6.12E-03	
9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 1.222 5.68E-08 U-232 5.68E-08 U-233 1.52E-09 U-234 2.41E-05 U-235 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 0.76E-07		.45E+00	4.85E+00	2.02E+11	0.0166	9.88E+10		2.6943	4.83E-02	16.72		1.09E+06		
9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 9.40E-03 1.52E-09 0.234 2.41E-05 0.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 1.236 1.26E-06 1.228 4.15E-07 1.236 1.26E-06 1.238 4.15E-07 2.321E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 5.21E-07		.45E+00	4.85E+00	2.02E+11	0.2656	5.36E+10		2.9824	3.15E-02	22.74		5.79E+05	1.07E-07	6.18E-02
9.405-03 9.405-03 9.405-03 9.405-03 9.405-03 9.405-03 9.405-03 9.405-03 1.525-09 1.232 5.685-08 1.233 1.525-09 1.234 2.415-05 6.765-07 6.765-07 6.765-07 6.765-07 6.765-07 6.765-07 1.236 1.265-06 1.238 4.155-07 1.236 1.265-06 1.244 3.215-07 3.215-07 3.215-07 3.215-07 3.215-07 3.215-07 1.265-06 1.265-		.45E+00	4.85E+00	2.02E+11	0.06142			3,2023	2.46E-02	20.03		9.21E+04	8.47E-08	
Pu-242 5.40E-03 Pu-242 5.43E-07 Th-230 3.26E-08 U-232 5.68E-08 U-233 1.52E-09 U-234 2.41E-05 U-235 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 0.76E-07 7 0.76E-07 0		.45E+00	4.85E+00	2.02E+11	0.02057	4.15E+09		2.8700	3.57E-02	20.28		4.54E+04		
Pu-242 5.43E-07 Th-230 3.26E-08 U-232 5.68E-08 U-233 1.52E-09 U-234 2.41E-05 U-235 6.76E-07 C-0-144 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 5.21E-07		.45E+00	4.85E+00	2.02E+11	0.10043	2.03E+10		3.7498	1.34E-02	13.48		5.51E+04		
U-232 5.68E-08 U-233 1.52E-09 U-234 2.41E-05 U-235 6.76E-07 6.76E-	7 3	3.15E-04	2.80E-04	1.16E+07	0.26	3.03E+06	4.49E-02	3.7299	1.37E-02	13.97	0.3048	8.72E+00	6.07E-08	5.29E-07
U-232 5.685-08 U-233 1.52E-09 U-234 2.41E-05 U-235 6.76E-07 6.76E-	3 1.	1.89E-05	1.68E-05	6.99E+05	0.234	1.64E+05	6.77E-02	3.3138	2.17E-02	21.33	0.3048	1.14E+00	7.75E-08	8.85E-08
U-234 2.41E-05 U-235 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 0.76E-07 0.76E-07 0.76E-07 0.76E-07 0.76E-07 0.76E-07 0.76E-07 0.76E-07 0.726E-07 0.726E-07 0.726E-07 0.726E-07 0.721E-07	3 3	3.30E-05	2.93E-05	1.22E+06	0.32	3.90E+05	5.78E-02	3.4464	1.87E-02	21.41	0.3048	2.36E+00	7.05E-08	1.66E-07
U-235 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 6.76E-07 0.7236 1.26E-06 U-238 4.15E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 6.76E-09 8.67E-09 8.67E-09 6.67E-09	8.81E-07	7.84E-07	3.26E+04	0.132		4.24E-02	3.7991	1.27E-02	12.25		1.01E-02			
6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 1,226 1,26E-06 1,26E-06 1,26E-06 1,26E-06 1,26E-06 1,26E-06 1,26E-06 1,26E-06 1,26E-06 1,26E-06 1,26E-07 1,21E-07		1.40E-02	1.24E-02	5.17E+08	0.28			3.5288	1.71E-02	19.14		7.15E+02		
6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 1,2286 4,15E-07 82,115-07 3,21E-07 3,21E-07 3,21E-07 6,67E-09 8,67E-09 8,67E-09 8,67E-09 6,45E-05 6,45		3,92E-04	3.49E-04	1.45E+07	0.2451	3.56E+06	2.05E-01	2.4478	5.78E-02	12.34		3.83E+01		8.55E-06
6.76E-07 6.7		3.92E-04	3.49E-04	1.45E+07	0.2451			2.6264	4.71E-02	15.42		3.90E+01		
6,76E-07 6,76E-07 6,76E-07 6,76E-07 6,76E-07 1,236 1,26E-06 1,238 4,15E-07 8-137m 1,02E+00 3,21E-07 3,21E-07 3,21E-07 3,21E-07 3,21E-07 3,21E-07 3,21E-07 3,21E-07 3,21E-07 3,21E-07 3,21E-07 3,21E-07 5,21E-07 5,21E-07 6,45E-05 6,		3.92E-04	3.49E-04	1.45E+07	0.0798	1.16E+06	1.09E-01	2.9473	3.27E-02	21.95		1,26E+01		1.41E-06
6,76E-07 6,7		3.92E-04	3.49E-04	1.45E+07	0.117	1.70E+06	1.95E-01	2.4872	5.52E-02	12.97		1.84E+01		3.87E-06
6,76E-07 6,76E-07 U-236 1,26E-06 U-238 4,15E-07 Ba-137m 1,02E+00 Co-144 3,21E-07 3,21E-07 3,21E-07 3,21E-07 3,21E-07 3,21E-07 3,21E-07 4,28E-04 4,28E-04 4,28E-04 4,28E-04 4,28E-04 4,28E-04 4,28E-04 5-137 1,09E+00 Eu-152 6,45E-05 6,45E-05 Eu-154 3,83E-03 Eu-155 1,86E-03 1,86E-03 Sb-125 2,17E-09		3.92E-04	3.49E-04	1.45E+07	0.0432		1.41E-01 7.50E-02	2.7443 3.2268	4.12E-02 2.39E-02	17.69 20.30		6.90E+00	1.45E-07	9.97E-07
Color		3.92E-04 3.92E-04	3.49E-04 3.49E-04	1.45E+07 1.45E+07	0.0126 0.0036		7.50E-02 5.13E-02	3.2268	2.39E-02 1.64E-02	18.17		1.34E+00 2.35E-01		1.11E-07 1.55E-08
U-236 1.26E-06 U-238 4.15E-07 Ba-137m 1.02E+00 Co-144 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 8.67E-09 8.67E-09 8.67E-09 8.67E-09 8.67E-09 8.67E-09 8.67E-09 8.67E-09 8.67E-09 8.67E-09 1.98E-03 1.86E-03 3.83E-03 5.88E-03 1.86E-03 Sb-125 2.17E-09 2.17E-09		3.92E-04	3.49E-04	1.45E+07	0.0036		3.15E-02	4.4978	5.88E-03	5.91		2.74E-02		
U-238		7.29E-04	6,49E-04	2.70E+07	0.0036		4.94E-01	1,7579	1.29E-01	5.04		6.90E+01	5.84E-07	4.03E-05
Ba-137m 1.02E+00 Co-144 3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 Co-60 8.67E-09 8.67E-09 8.67E-09 4.28E-04 4.28E-04 4.28E-04 4.28E-04 5.45E-05 6.45E-05 6.45E-05 6.45E-05 6.45E-05 1.86E-03 3.83E-03 5.86E-03 5.86E-03 5.12E-09 5.17E-09		2.41E-04	2.14E-04	8.91E+06	0.23	2.05E+06		3,6011	1.58E-02	17.18		8.37E+00		
Ce-144 3.21E-07 3.21E-07 3.21E-07 3.21E-07 Co-60 8.67E-09 8.67E-09 Cs-134 4.28E-04 4.28E-04 4.28E-04 5.2137 1.098E+00 Eu-152 6.45E-05 Eu-154 3.83E-03 Eu-155 1.86E-03 1.86E-03 1.86E-03 Sb-125 2.17E-09		.94E+02	5.29E+02	2.20E+13	1	2.20E+13		1,5461	1.67E-01	3.91		2.16E+08		
3.21E-07 3.21E-07 3.21E-07 3.21E-07 3.21E-07 Co-60 8.67E-09 8.67E-09 4.28E-04 4.28E-04 4.28E-04 4.28E-05 6.45E-05 6.45E-05 6.45E-05 6.45E-05 1.86E-03 1.86E-03 5b-125 2.17E-09 2.17E-09		1.86E-04	1.65E-04	6.88E+06	0.18624	1.28E+06	1.34E-01	2,7908	3,91E-02	18.63		1.41E+01	1.37E-07	1.93E-06
3.21E-07 Co-60 8.67E-09 8.67E-09 8.67E-09 Cs-134 4.28E-04 4.28E-04 4.28E-05 Eu-152 6.45E-05 Eu-154 3.83E-03 Eu-155 1.86E-03 Eu-155 1.86E-03 5.86E-03 5.18E-03 5.12E-09 2.17E-09	1	1.86E-04	1.65E-04	6.88E+06	0.0016128	1.11E+04	5.35E-02	3.5234	1.72E-02	19.28	0.3048	5.55E-02	6.75E-08	3.74E-09
Co-60 8.67E-09 8.67E-09 Cs-134 4.28E-04 4.28E-04 4.28E-04 4.28E-05 6.45E-05 6.45E-05 6.45E-05 6.45E-05 1.86E-03 1.86E-03 Sb-125 2.17E-09 2.17E-09	7 1	1.86E-04	1.65E-04	6.88E+06	0.003648	2.51E+04	3.36E-02	4.3444	6.96E-03	7.13	0.3048	1.88E-02	5.10E-08	9.58E-10
8.67E-09		1.86E-04	1.65E-04	6.88E+06	0.045			3.1653	2.56E-02	19,65		2.35E+00	8.72E-08	
Cs-134 4.28E-04 4.20E-04 4.20E-04 4.20E-04 4.20E-05 4.20E-05 6.45E-05 6.45E-05 6.45E-05 6.45E-05 6.45E-05 6.45E-05 6.45E-05 6.45E-03 6.80E-03 6.80E-03 6.80E-03 6.80E-03 6.80E-03 6.80E-03 6.217E-09 2.17E-09		5.03E-06	4,47E-06	1.86E+05	0.9975	1.86E+05		1.1189	2,82E-01	2.29		1.81E+00	1.51E-06	
### 4.28E-04 Eu-152		5.03E-06	4,47E-06	1.86E+05	0.9988	1.86E+05		1,2210	2.48E-01	2.58		1.80E+00	1.29E-06	
Cs-137 1.09E+00 Eu-152 6.45E-05 6.45E-05 Eu-154 3.83E-03 3.83E-03 1.86E-03 1.86E-03 5.5E-125 2.17E-09 2.17E-09		2.48E-01	2.21E-01	9.19E+09	0.7	6.43E+09	6.05E-01	1.6126	1.54E-01	4.19		6.25E+04	7.21E-07	
Eu-152 6.45E-05 6.45E-05 Eu-154 3.83E-03 3.83E-03 Eu-155 1.86E-03 1.86E-03 Sb-125 2.17E-09 2.17E-09		2.48E-01	2.21E-01	9.19E+09	0.7 0.946	6.43E+09	7.96E-01 6.62E-01	1,4248 1,5461	1,93E-01 1,67E-01	3.32		6.23E+04 2.17E+08	9.46E-07 7.89E-07	
6.45E-05 Eu-154 3.83E-03 Eu-155 1.86E-03 1.86E-03 1.86E-03 5b-125 2.17E-09 2.17E-09		.30E+02	5.60E+02 3.33E-02	2.33E+13 1.38E+09	0.946	2.20E+13 2.08E+07	3.44E-01	2.0418	9.25E-02	7.24		2.1/E+08 2.10E+02		1.71E+02 8.33E-05
Eu-154 3.83E-03 3.83E-03 Eu-155 1.86E-03 1.86E-03 1.86E-03 5b-125 2.17E-09 2.17E-09		3.74E-02 3.74E-02	3.33E-02	1.38E+09	0.015	1.38E+07	1.22E-01	2.8662	3.59E-02	20.20		1.51E+02	1.25E-07	1.90E-05
3.83E-03 Eu-155 1.86E-03 1.86E-03 1.86E-03 Sb-125 2.17E-09 2.17E-09		.22E+00	1.97E+00	8.21E+10	0.143	1.17E+10		2.8580	3.62E-02	20.02		1.29E+05	1.27E-07	1.63E-02
Eu-155 1.86E-03 1.86E-03 1.86E-03 5b-125 2.17E-09 2.17E-09		.22E+00	1.97E+00	8.21E+10	0.33368	2.74E+10		1.1467	2.72E-01	2.37		2.67E+05	1.45E-06	
1.86E-03 1.86E-03 Sb-125 2.17E-09 2.17E-09		.08E+00	9.60E-01	3,99E+10	0.2574			3,1138	2.71E-02	20,83		8.76E+04		
1.86E-03 Sb-125 2.17E-09 2.17E-09		.08E+00	9.60€-01	3.99E+10	0.4606	1.84E+10		2.9719	3.18E-02	22.50		1.99E+05	1.08E-07	
Sb-125 2.17E-09 2.17E-09		.08E+00	9.60E-01	3.99E+10	0.09	3.59E+09	6.00E-02	3.4067	1.96E-02	22.49		2.39E+04		
		1.26E-06	1.12E-06	4.65E+04	0.296	1.38E+04	4.28E-01	1.8673	1.14E-01	5.81	0.3048	1.37E-01	5.02E-07	6.88E-08
2.17E-09		1.26E-06	1.12E-06	4.65E+04	0.17919		6.01E-01	1.6164	1.53E-01	4.21	0.3048			5.80E-08
		1.26E-06	1.12E-06	4.65E+04	0.11475		6.36E-01	1.5817	1,60E-01	4.04	0.3048			
2.17E-09		1.26E-06	1.12E-06	4.65E+04	0.104	4.83E+03	4.64E-01	1.8081	1.22E-01	5.38	0.3048			2.61E-08
Sm-151 1.86E-07		1.08E-04	9.58E-05	3.99E+06	0.009			7.2877	2.95E-04	3.02	0.3048			
I-129 1.59E-10		9.24E-08	8.22E-08	3.42E+03	1	3.42E+03	3.96E-02	3.8995	1.13E-02	10.35	0.3048	6.05E-03	5.61E-08	3.40E-10
	1 otal	I Activity	2.17E+03	-									Total % Cs	343 99.76%

Stream 320,			Secant				Flux-to-Dose	
using thicker	Cannister	F(theta,x)	Integral,	Buildup	Cannister	Particle	Rate	Estimated
cannister	Thickness	Variable	F(theta,x)	Factor	Radius	Flux	Conversion	Dose
						particles/c	(rem/hr)/(part	
Radionuclides	m				m	m^2/sec	./cm^2/sec)	rem/hr
Ba-137m	0.02	2.44	5.86E-02	3.71	0.2848	6.36E+07	7.89E-07	50.17
Cs-137	0.02	2.44	5.86E-02	3.71	0.2848	6.37E+07	7.89E-07	50.27
							Total	100

2x10 Canister, UNEX Stream 320 (cont.)

	Heat Generation		Heat		We							Weighting	
Stream 320	Conversion	Activity	Generation		Fac.	PE-Ci	1	Atomic Wt.	Avogadro's	Half-life	Weight	Factor	Pu-239 FGE
Radionuclides	Watts/Ci	lCi	Watts			1		lg/mol		sec	q	1	
Am-241	3.28E-02	1.15E+00	3.78E-02			1 1	1531	241	6.02E+23	1.36E+10	3.36E-01	1.87E-02	6.29E-03
Am-243	3.16E-02	4.76E-04	1.50E-05			1 0	0005	243	6.02E+23				
Cm-242	3.62E-02					30 0	0000		 				
Cm-244	3.44E-02				1	.9] 0	0162	244	6.02E+23	5.71E+08	3.79E-04	9.00E-02	3,41E-05
Np-237	2.85E-02					11 0	0466	237	6.02E+23	6.75E+13	6 61E+01	1.50E-02	9,91E-01
Pu-238	3.26E-02				1	.1 7	3218	238	6.02E+23	2.77E+09	4.70E-01	1.13E-01	5 31E-02
Pu-239	3.05E-02	1.01E+00	3.09E-02			1 1	0129	239	6.02E+23	7.60E+11		1	1.63E+01
Pu-240	3 06E-02					1 0	2329	240	6 02E - 23	2.07E+11	1.03E+00	2.25E-02	
Pu-241	3.18E-05	4 85E+00	1.54E-04			0	0951	241			4.71E-02		
Pu-242	2.90E-02	2.80E+04	8.12E-06		1	.1 0	0003	242	6.025+23	1.18E+13	7.10E-02	7.50E-03	5.33E-04
Th-230	2.77E-02												
U-232	3.15E-02	2.93E-05	9.23E-07			T.							i
U-233	2.86E-02	7.84E-07	2.24E-08		3	9 2.0	E-07	233	6.02E+23	5.02E+12	8.13E-05	1	8.13E-05
U-234	2.82E-02	1.24E-02	3 51E-04									i	
U-235	2.70E-02	3.49E-04	9 43E-06					235	6.02E+23	2.22E+16	1.61E+02	1	1.61E+02
U-236	2.67E-02	6.49E-04	1.73E-05										
U-238	2.48E-02	2.14E-04	5.32E-06							i			i
	T				Tot	all	9.9					Total	178.9
Ba-137m	3.54E-03	5.29E+02	1.87E+00						·				
Ce-144	6.10E-04	1.65E-04	1.01E-07									i	
Co-60	1.54E-02	4.47E-06	6.89E-08								i		
Cs-134	1.01E-02	2.21E-01	2.24E-03						·				
Cs-135_	3.99E-04	1.12E-02	4.45E-06									i	
Cs-137	1.11E-03	5.60E+02	6.21E-01									i — —	
Eu-152	7.39E-03	3.33E-02	2.46E-04									i	i
Eu-154	8.72E-03	1.97E+00	1.72E-02									i	i
Eu-155	6.49E-04	9.60E-01	6.23E-04			\neg							
Pm-147	3.67E-04	1.41E-05	5.16E-09										
Pr-144	7.35E-03												
Ni-63	1.02E-04	9.04E-06	9.17E-10										
Ru-106	5.95E-05	9.27E-09	5,51E-13										
Sb-125	3.09E-03	1,12E-06	3,45E-09										
Sm-151	1.17E-04	9,58E-05	1.12E-08										i
Sr-90	1.16E-03	5.15E+02				7		<u> </u>	· · · · · ·			· · · · · ·	
Tc-99	6.00E-04	2.11E-03				T							
Y-90	5.54E-03	5.15E+02	2.85E+00										
H-3	3.37E-05	6.71E-06	2.26E-10			1			-		i	i	
I-129	4.72E-04	8.22E-08				1							
	1	Total				$\overline{}$	1						

ŭ

55 Gallon Drum, Modified UNEX Stream 530

Stream 530		Density= 1400 kg/m^3	Canister Volume= 0.2315 m^3	Total Volumetric Source Rate	Branching Ratio	Photon Volumetric Source Rate	Photon Energy	Buildup Factor	Cannister Radius	F(theta,x) Variable	Secant Integral, F(theta,x)	Particle Flux	Flux-to- Dose Rate Conversion	
Radionuclides	Ci/kg	Ci/m*3	Ci	particles/m^3/ sec		photons/m^3 /sec	MeV		m			particles/c m^2/sec	(mrem/hr)/(part/cm^2/ sec)	rem/hr
Am-243	2.23E-08	3,13E-05	7.24E-06	1.16E+06	0.8096	9.36E+05	7.47E-02	122.73		6.9726		9.16E-01	8.28E-08	
	2.23E-08	3.13E-05		1.16E+06	0.0704			86.39		8.1344				
	2.23E-08	3.13E-05		1.16E+06	0.0704			21.93		9.7662				
0 0 . 0	2.23E-08	3.13E-05	C 445 00	1.16E+06	0.106			268.06 90.90	0.2921	6.1039				
Cm-242	1.98E-08 1.44E-06	2.77E-05 2.02E-03	6.41E-06 4.67E-04	1.03E+06 7.47E+07	0.26	2.67E+05 1.74E+07		80.75		8.1011 8,1774				
Cm-244 Np-237	2.41E-06	3.37E-03	7.81E-04	1.25E+08	0.2209			146.42		6,7218		3.14E+01		
110-231	2.41E-06	3.37E-03	7.012-04	1.25E+08	0.2491	3.11E+07		17.25	0.2921	10.3860	1.14E-05			
	2.41E-06	3,37E-03		1,25E+08	0.2741	3,42E+07		213.75		7,4643		2.59E+01		
Pu-238	3.82E-04	5.34E-01	1.24E-01	1.98E+10	0.28	5.53E+09	4.35E-02	86.06	0.2921	8.1369	1.20E-04			
Pu-239	4.80E-05	6.71E-02	1.55E-02	2.48E+09				606.55		7.6919		6.32E+02		
	4.80E-05	6.71E-02		2.48E+09	0.73			1.00		218.1903	1.47E-96			3.86E-112
Pu-240	1.11E-05	1.55E-02	3.59E-03	5.73E+08	0.266	1.52E+08		100.86		8.0309		2.99E+01		
Pu-241	2.30E-04	3,23E-01	7.47E-02	1.19E+10	0.0166	1.98E+08		194.24		5.7010		8.90E+02		
	2.30E-04	3.23E-01	ļ	1.19E+10		5.85E+09		214.30 318.13	0.2921	5.8155		2.56E+04		
	2.30E-04	3.23E-01	 	1.19E+10		3.17E+09 7.33E+08	7.70E-02	110.68	0.2921	6.4375 6.9121		1.06E+04 5.15E+02		
	2.30E-04 2.30E-04	3.23E-01 3.23E-01		1.19E+10 1.19E+10	0.00142	2.46E+08		274.66	0.2921	6,1948	4.39E-04 9.42E-04			
	2.30E-04	3.23E-01		1.19E+10		1.20E+09		91.90		8.0939		2.00E+02		
Pu-242	1.32E-08	1,85E-05	4.29E-06	6.86E+05	0.26	1.78E+05		97,96		8,0509	1,32E-04			
Th-230	7.88E-10	1.10E-06	2.55E-07	4.08E+04	0.234	9.55E+03		168.57		7.1527	3.40E-04			
U-232	1.38E-09	1,93E-06	4.46E-07	7.13E+04	0.32			220.46		7.4390	2.51E-04			
U-233	3.68E-11	5.15E-08	1.19E-08	1.90E+03	0.132	2.51E+02		77.83	0.2921	8.2005				
U-234	5.84E-07	8.18E-04	1.89E-04	3.03E+07	0.28	8.47E+06		175.91	0.2921	7.6169				
U-235	1.64E-08	2.29E-05	5.31E-06	8.49E+05	0.2451	2.08E+05		131.95		5.2836	2.50E-03			
	1.64E-08	2.29E-05		8.49E+05	0.2451	2.08E+05		188.76		5.6691	1.65E-03			
	1.64E-08	2.29E-05	ļ	8.49E+05	0.0798			304.15						
	1.64E-08	2.29E-05		8.49E+05 8.49E+05	0.117 0.0432	9.93E+04 3.67E+04		143,46 230,56	0.2921	5.3685 5.9235	2.29E-03 1.26E-03			
	1.64E-08 1.64E-08	2.29E-05 2.29E-05		8.49E+05	0.0432	1.07E+04		121.15		6,9651				
	1.64E-08	2.29E-05		8.49E+05	0.0036			158.90			1.92E-04			
	1.64E-08	2.29E-05		8.49E+05	0.0036			23.24		9.7086	2.31E-05			
U-236	3.04E-08	4.26E-05		1.58E+06	0.26	4.10E+05	4.94E-01	28.52	0.2921	3.7945	1.26E-02	2.14E+00	5.84E-07	1.25E-06
U-238	1.00E-08	1.41E-05	3.26E-06	5.20E+05	0.23			142.60		7.7729				
Ba-137m	5.87E-05	8.22E-02		3.04E+09	1	3.04E+09		18.40		3.3173				
Ce-144	7.76E-09	1.09E-05	2.51E-06	4.02E+05	0.18624	7.48E+04		245.35	0.2921	6.0240				
	7.76E-09	1.09E-05		4.02E+05				178.65 31.27	0.2921	7.6052 9.3773				
	7.76E-09 7.76E-09	1.09E-05 1.09E-05		4.02E+05 4.02E+05		1.47E+03 1.81E+04					3.26E-05 4.78E-04			
Co-60	1.50E-05	2.09E-02		7.75E+08	0.9975	7.73E+08						4.94E+03		
	1.50E-05	2.09E-02		7.75E+08	0.9988					2,6356		4.77E+03		
Cs-134	1.72E-08	2.41E-05		8,91E+05	0.7	6.24E+05		20,97	0.2921	3,4807	1.79E-02			
	1.72E-08	2.41E-05		8.91E+05	0.7	6.24E+05	7.96E-01	14.22	0.2921			3.58E+00		3.39E-06
Cs-137	6.22E-05	8.70E-02	2.01E-02	3.22E+09	0.946			18.70			2.04E-02	1.68E+04		1.33E-02
Eu-152	1.56E-06	2.19E-03	5.06E-04	8.09E+07	0.015	1.21E+06		52.62	0.2921					
	1.56E-06	2.19E-03		8.09E+07	0.01	8.09E+05		273.28		6.1868				
Eu-154	9.29E-05	1.30E-01	3.01E-02	4.81E+09	0.143 0.33368	6.89E+08		270.25 8.00		6.1689 2.4752	9.69E-04 5.47E-02			
Eu-155	9.29E-05 4.50E-05	1.30E-01 6.31E-02	1.46E-02	4.81E+09 2.33E+09		1.61E+09 6.01E+08		146.83		6.7210				
EG-100	4.50E-05	6.31E-02		2.33E+09	0.4606			313.90		6,4148				
	4.50E-05	6.31E-02		2.33E+09	0.00	2.10E+08				7.3534		2.04E+02		
Sb-125	3.80E-06	5.32E-03	1.23E-03	1.97E+08		5.83E+07		36.16		4.0305				
	3.80E-06	5.32E-03		1.97E+08	0.17919	3.53E+07	6.01E-01	21.13						
	3.80E-06	5.32E-03		1,97E+08	0.11475			19.69	0.2921					
	3.80E-06	5.32E-03		1.97E+08				31.82		3.9028				5.78E-05
Sm-151	3.21E-04	4.49E-01	1.04E-01	1.66E+10				5.86	0.2921	15.7305				
1-129	4.62E-07	6.47E-04	1.50E-04 4.82E-01	2.39E+07	1	2.39E+07	3.96E-02	58.40	0.2921	8.4170	8.95E-05		5.61E-08 amma Total	1.01E-07 0.062
		Total Activity	4.025-01				 				<u> </u>		mma + Beta	

55 Gallon Drum, Modified UNEX Stream 530 (cont.)

	Heat Generation	1	Heat	Weighting								Γ
Stream 530	Conversion	Activity.	Generation	Factor	PE-Ci		Atomic Wt.		11-416-	147-7-L4	Weighting	
Radionuclides			Watts	Factor	PEACI		g/mol			Weight	Factor	Pu-239 FGE
Am-241	3.28E-02	1.75E-02			1.75E-02		241				1.87E-02	9.56E-05
Am-243	3.16E-02	7.24E-06				<u> </u>	243			3 62E-05	1.29E-02	4.67E-07
Cm-242	3.62E-02			30			270	0.022.20	2.02.2.11	0 021-03	1.232-02	4.07E-07
Cm-244	3.44E-02			1.9			244	6.02E+23	5.71E+08	5.77E-06	9.00E-02	5.19E-07
Np-237	2.85E-02	7.81E-04	2.23E-05	1	7.81E-04		237	6.02E+23		1.11E+00		
Pu-238	3.26E-02	1.24E-01	4.03E-03	1.1			238			7.22E-03		8.15E-04
Pu-239	3.05E-02			1			239			2.50E-01	1	2.50E-01
Pu-240	3.06E-02	3.59E-03	1,10E-041	1	3.59E-03		240			1.58E-02	2.25E-02	
Pu-241	3.18E-05	7.47E-02	2.37E-06	51	1.46E-03		241			7.25E-04	2.25	
Pu-242	2.90E-02		1.25E-07	1,1			242			1.09E-03	7.50E-03	
Th-230	2.77E-02	2.55E-07	7.08E-09									
U-232	3.15E-02	4.46E-07	1.40E-08						i			
U-233	2.86E-02	1.19E-08	3.40E-10	3.9	3.06E-09		233	6.02E+23	5.02E+12	1.24E-06	1	1.24E-06
U-234	2.82E-02	1.89E-04	5.35E-06									
U-235	2.70E-02	5.31E-06					235	6,02E+23	2.22E+16	2.46E+00	1	2.46E+00
U-236	2.67E-02											
U-238	2.48E-02	3.26E-06	8.09E-08									
				Total	0.152						Total	2.7
Ba-137m	3.54E-03		6.73E-05									
Ce-144	6.10E-04											
Co-60	1.54E-02		7.48E-05									
Cs-134	1.01E-02		5.66E-08									
Cs-135	3.99E-04	2.60E-07	1.04E-10									
Cs-137	1.11E-03		2.23E-05									L
Eu-152	7.39E-03		3.74E-06									
Eu-154	8.72E-03	3.01E-02	2.63E-04									
Eu-155	6.49E-04	1.46E-02	9.48E-06									
Pm-147	3.67E-04	1.52E-02	5.60E-06									
Pr-144	7.35E-03											
Ni-63	1.02E-04	9.80E-03	9.95E-07									
Ru-106	5.95E-05		5.98E-10									
Sb-125	3.09E-03	1,23E-03	3.81E-06									!
Sm-151	1.17E-04	1.04E-01	1.21E-05									
Sr-90	1.16E-03		8.76E-06									
Tc-99	6.00E-04	3.57E-03	2.15E-06									
Y-90	5.54E-03	7.55E-03	4.18E-05					ļ <u>. </u>				
H-3	3.37E-05	7.27E-03	2.45E-07					<u> </u>				
1-129	4.72E-04		7.07E-08					<u> </u>				L
L	<u> </u>	Total	5.75E-03		<u></u>			L				

Tank T-202-14, UNEX Stream 210

		Total Volumetric		Photon Volumetric				Secant				Flux-to-	
Stream 210	Density= 1.02 g/cc	Source Rate	Branching Ratio	Source Rate	Photon Energy	Cannister Thickness	F(theta,x) Variable	Integral, F(theta,x)	Buildup Factor	Cannister Radius	Particle Flux	Dose Rate Conversion	Estimated Dose
		particles/m		photons/cc							particles/c	(rem/hr)/(p art./cm^2/s	
Radionuclides	Ci/liter	^3/sec		/sec	MeV	m				m	m^2/sec	ec)	rem/hr
Am-243	7.12E-08	2.63E+06	0.8096	2.13E+06	7.47E-02	0.003	12.9095	1.00E-06	114.45		4.64E-03		
	7.12E-08		0.0704	1.85E+05	4.35E-02	0.003	15.0606	1.00E-06	79.96	0.762		5.95E-08	1.68E-11
	7.12E-08	2.63E+06	0.0704	1.85E+05	3.11E-02	0.003	18.0818	1.00E-06	20.94	0.762			3.62E-12
	7.12E-08	2.63E+06	0.106	2.79E+05	1.18E-01	0.003	11.3012	1.00E-06	237.67	0.762	1.26E-03	1.21E-07	1.53E-10
Cm-242	6.31E-08	2.34E+06	0.26	6.07E+05	4.41E-02	0.003	14.9990	1.00E-06	84.03	0.762			5.82E-11
Cm-244	4.60E-06	1.70E+08	0.233	3.96E+07	4.28E-02	0.003	15.1402	1.00E-06	74.88	0.762	5.64E-02	5.89E-08	3.32E-09
Np-237	6.97E-06	2.58E+08	0.2209	5.70E+07	8.65E-02	0.003	12.4452	1.00E-06	135.22	0.762		9.22E-08	1.35E-08
	6.97E-06		0,2491		2.94E-02	0.003	19,2294		16.56	0.762	2.02E-02	4.70E-08	9.52E-10
	6.97E-06		0.2741	7.07E+07	5.72E-02	0.003	13.8199		192.84	0.762		7.00E-08	1.82E-08
Pu-238	1.21E-03		0.28		4.35E-02	0.003	15.0651	1.00E-06	79.67	0.762		5.95E-08	1.12E-06
Pu-239	1.52E-04		0.151		1.30E-02	0.003	14.2413		531.98	0.762			1.32E-07
	1.52E-04		0.73		7.50E-05	0.003	403.9712		1.00	0.762		1.00E-20	7.78E-22
Pu-240	3.48E-05	1.29E+09	0.266		4.52E-02	0.003	14.8689		92.98	0.762	6.06E-01	6.10E-08	3.70E-08
Pu-241	7.26E-04	2.69E+10	0.0166		1,60E-01	0,003	10.5552	1.00E-06	172.88	0.762		1.67E-07	2.44E-07
	7.26E-04	2.69E+10	0.4897	1.32E+10	1.49E-01	0,003	10.7673	1.00E-06	190.34	0.762	4.76E+01	1.53E-07	7.26E-06
J	7.26E-04	2.69E+10	0.2656	7.13E+09	1.04E-01	0.003	11.9187	1.00E-06	281.21	0.762	3.81E+01	1.07E-07	4.07E-06
<u> </u>	7.26E-04	2.69E+10	0.06142	1.65E+09	7.70E-02	0.003	12.7976	1.00E-06	103.79	0.762	3.26E+00	8.47E-08	2.76E-07
<u> </u>	7.26E-04	2.69E+10	0.02057	5.53E+08	1.21E-01	0.003	11.4695	1.00E-06	243.22	0.762	2.56E+00	1.25E-07	3.18E-07
	7.26E-04	2.69E+10	0.10043	2.70E+09	4.42E-02	0.003	14.9855	1.00E-06	84.93	0.762	4.36E+00		2.62E-07
Pu-242	4.19E-08		0.26	4.03E+05	4.49E-02	0.003	14.9059	1.00E-06	90.39	0.762	6.92E-04	6.07E-08	4.20E-11
Th-230	2.51E-09		0.234	2.18E+04	6.77E-02	0.003	13.2430	1.00E-06	154.52	0.762	6.39E-05	7.75E-08	4.96E-12
U-232	4.39E-09	1.62E+05	0.32	5.20E+04	5.78E-02	0.003	13.7730	1.00E-06	198.69	0.762	1.96E-04	7.05E-08	1.38E-11
U-233	1.17E-10		0.132	5.73E+02	4.24E-02	0.003	· 15.1828		72.23	0.762	7.87E-07	5.86E-08	4.61E-14
U-234	1.86E-06	6.89E+07	0.28	1.93E+07	5.32E-02	0.003	14.1024	1.00E-06	159.66	0.762	5.85E-02	6.73E-08	3.94E-09
U-235	5.22E-08 5.22E-08	1.93E+06	0.2451	4.74E+05 4.74E+05	2.05E-01	0.003	9.7824 10.4962	1.00E-06	118.43 168.11	0.762	1.07E-03	2.23E-07 1.71E-07	2.38E-10
	5.22E-08	1.93E+06 1.93E+06	0.2451 0.0798		1.63E-01 1.09E-01	0.003	11.7785		269.00	0.762 0.762	1.51E-03 7.89E-04	1.71E-07 1.12E-07	2.59E-10 8.86E-11
	5.22E-08	1.93E+06	0.117	2.26E+05	1.95E-01	0.003	9.9396	1.00E-06	128.51	0.762	5.52E-04	2.11E-07	1.16E-10
	5.22E-08	1.93E+06	0.0432	8.35E+04	1.41E-01	0.003	10.9672	1.00E-06	204.60	0.762	3.25E-04	1.45E-07	4.70E-11
	5.22E-08	1.93E+06	0.0126	2.43E+04	7.50E-02	0.003	12.8956		113.05	0.762	5.23E-05		4.35E-12
	5.22E-08		0.0036		5.13E-02	0.003	14.2415		144.66	0.762	1.91E-05		1.26E-12
	5.22E-08		0.0036	6.96E+03	3.15E-02	0.003	17.9751	1.00E-06	22.17	0.762	2.93E-06		1.44E-13
U-236	9.70E-08		0.26	9.34E+05	4.94E-01	0.003	7.0253	1.00E-06	26.52	0.762	4.71E-04		2.75E-10
U-238	3.20E-08		0.23	2.73E+05	4.95E-02	0.003	14.3913		130.23	0.762	6.75E-04		4.39E-11
Ba-137m	7.91E-02	2.93E+12	1	2.93E+12	6.62E-01	0.003	6.2209		17.53	0.762	9.76E+06	7.89E-07	7.70E+00
Ce-144	2.48E-08		0.18624	1.71E+05	1.34E-01	0.003	11.1532	1.00E-06	218.43	0.762	7.08E-04	1.37E-07	9.72E-11
	2.48E-08	9.16E+05	0.001613	1.48E+03	5.35E-02	0.003	14.0808	1.00E-06	162.07	0.762	4.55E-06	6.75E-08	3.07E-13
	2.48E-08	9.16E+05	0.003648	3.34E+03	3.36E-02	0.003	17.3617	1.00E-06	29.65	0.762	1.88E-06	5.10E-08	9.61E-14
	2.48E-08		0.045	4.12E+04	8.01E-02	0.003	12.6499	1.00E-06	92.34	0.762	7.23E-05	8.72E-08	6.31E-12
Co-60	6.69E-10		0.9975	2.47E+04	1.33E+00	0.003	4.4716	1.00E-02	7.19	0.762	3.37E-02	1.51E-06	5.09E-08
	6.69E-10		0.9988	2.47E+04	1.12E+00	0.003	4.8797	1.00E-02	8.84	0.762	4.16E-02	1.29E-06	5.36E-08
Cs-134	3.30E-05		0.7	8.56E+08	6.05E-01	0.003	6.4444	1.00E-02	19.62	0.762	3.19E+03	7.21E-07	2.30E-03
<u> </u>	3.30E-05		0.7	8.56E+08	7.96E-01	0.003	5,6941	1.00E-02	13.40	0.762	2.18E+03	9.46E-07	2.06E-03
Cs-137	8.38E-02		0,946	2.93E+12	6.62E-01	0.003	6.2209		17.53	0.762		7.89E-07	7.71E+00
Eu-152	4.98E-06	1.84E+08	0.015	2.76E+06	3.44E-01	0.003	8.1599		48.29	0.762	2.54E+01	3.97E-07	1.01E-05
5: 454	4.98E-06	1.84E+08	0.01	1.84E+06	1.22E-01	0.003	11.4546	1.00E-02	242.01	0.762	8.48E+01	1.25E-07	1.06E-05
Eu-154	2.95E-04	1.09E+10	0.143	1.56E+09	1.23E-01 1.27E+00	0.003	11.4215	1.00E-02 1.00E-02	239.36	0.762 0.762		1.27E-07	9.00E-03
Eu-155	2.95E-04 1.44E-04	1.09E+10 5.31E+09	0.33368 0.2574	3.65E+09 1.37E+09	8.65E-02	0.003	4.5828 12.4438	1.00E-02	7.61 135.57	0.762		1.45E-06 9.23E-08	7.65E-03 3.25E-03
Eu-199	1.44E-04 1.44E-04	5.31E+09	0.4606	2.45E+09	1.05E-02	0.003	11.8767	1.00E-02	277.52	0.762		1.08E-07	1.40E-02
 	1.44E-04		0.4608	4.78E+08	6.00E-02	0.003	13.6145	1.00E-02	219.25	0.762	1.99E+04	7.21E-08	1.44E-03
Sb-125	1.67E-10		0.296	1.83E+03	4.28E-01	0.003	7.4623		33.45	0.762	1.16E-02	5.02E-07	5.85E-09
22-120	1.67E-10		0.17919	1.11E+03	6.01E-01	0.003	6.4597	1.00E-02	19.77	0.762	4.17E-03	7.16E-07	2.98E-09
	1.67E-10		0.11475	7.10E+02	6.36E-01	0.003	6.3210	1.00E-02	18.44	0.762	2.49E-03	7.58E-07	1.89E-09
	1.67E-10		0.104	6.44E+02	4.64E-01	0.003	7.2260	1.00E-02	29.52	0.762	3.61E-03	5.47E-07	1.97E-09
Sm-151	1.43E-08		0.009	4.77E+03	2.15E-02	0.003	29.1244	1.00E-02	5.81	0.762	5.27E-03	3.52E-08	1.86E-10
I-129	1.23E-11	4.55E+02	1	4.55E+02		0.003	15.5838		54.57	0.762	4.72E-03	5.61E-08	2.65E-10
j												Total	15
<u> </u>	····	1	L	L					·		'		<u>'</u>

Tank T-202-14, UNEX Stream 210 (cont.)

Calculation for	1	Total	i	Photon				l					
Hot Cell		Volumetric		Volumetric				Secant		ĺ		Flux-to-	
Thickness,	Density=	Source	Branching	Source	Photon	Concrete	F(theta,x)	Integral,	Buildup	Cannister	Particle	Dose Rate	Estimated
Stream 210	1.02 g/cc	Rate	Ratio	Rate	Energy	Thickness	Variable	F(theta,x)	Factor	Radius	Flux	Conversion	Dose
					1	ĺ						(rem/hr)/(p	
	1	particles/m		photons/cc		1					particles/c	art./cm^2/s	
Radionuclides	Ci/liter	^3/sec		/sec	MeV	m				m	m^2/sec	ec)	rem/hr
Ba-137m	7.91E-02	2.93E+12	1	2.93E+12	6.62E-01	0.6096	18.0179	4.30E-09	17.53	0.762	3.00E+00	7.89E-07	2.37E-06
Cs-137	8.38E-02	3.10E+12	0.946	2.93E+12	6.62E-01	0.6096	18.0179	4.30E-09	17.53	0.762	3.01E+00	7.89E-07	2.37E-06
	ļ												4.74E-06

Appendix J Hydrogen Generation Analysis

By SM	Date 6/8/00	Subject Evaluation for gas generation compliance for Idaho SI	heet No. <u>1 o</u>	<u>f 3</u>
•		RH waste containing Guanidine Carbonate		
Chkd. By SMD	Date 6/12/00	P1	roj. No. <u>8021</u>	188.03

Purpose

To determine compliance with gas generation and other transportation requirements for INEEL RH-TRU waste consisting of a column of 500 kg of guanidine carbonate which will be directly loaded in an RH-TRU canister.

Parameters Evaluated

- ⇒ Hydrogen gas generation rate
- ⇒ Decay Heat
- ⇒ Fissile Requirements
- ⇒ Shielding Requirements

Assumptions

It is assumed that the waste would have met the following requirements prior to transportation:

- ⇒ Restrictions on physical and chemical form of the RH-TRU waste as defined in Appendix 1.3.7 of the SAR
- ⇒ Restrictions on chemicals to ensure chemical compatibility as defined in Appendix 1.3.7 of the SAR

Based on the description provided for the waste form it is evident that the following requirements have been met:

- ⇒ Weight
- ⇒ Fissile Requirements as per restrictions provided in Section 9.3 of Appendix 1.3.7 of the SAR (See Attached Excel Spreadsheet)
- ⇒ Shielding Requirements as per curie limits provided in Section 12.0 of Appendix 1.3.7 of the SAR

 Revised 6/12/2000 10:44

By SM	Date	6/8/00	Subject	Evaluation for gas generation compliance for Idaho	Sheet No	. 2 of 3
			RH waste	containing Guanidine Carbonate		
Chkd. By SMD	Date	6/12/00			Proj. No.	802188.03

Evaluation of Compliance with Gas Generation Requirements

Two options are available to evaluate compliance of RH-TRU waste with the gas generation requirements:

- ⇒ Option 1 Convert 5% restriction on hydrogen concentration to a limit on the allowable hydrogen generation rate and evaluate for compliance with the rate requirements
- ⇒ Option 2 Convert 5% restriction on hydrogen concentration into a limit on the allowable decay heat per waste container and evaluate for compliance with the decay heat requirements

Based on the data provided, the maximum allowable gas generation rates as per Option 1 and the maximum allowable decay heat limits as per Option 2 were calculated to be 3.5421E-07 moles/second/canister and 0.566 watts/canister respectively. These calculations were based on the following assumptions:

- ⇒ Volume of column is 31.4 cubic feet (889 liters)
- ⇒ Bulk density of waste (based on 500 kg of column and its volume of 889 liters) is 0.562 g/cc
- ⇒ Solid density for guanidine carbonate is 1240 kg/cubic meter
- ⇒ Void Volume within the canister calculated as void volume within the waste matrix (porosity times total volume = 486 liters) plus void volume in the canister (volume of canister volume of column assumed to be negligible) is 486 liters
- ⇒ G value conservatively assumed to be 6.35 based on the worst case value for organic nitrogen compounds (pyrollidine) as Guanidine carbonate currently does not have a G value
- ⇒ Waste contains 10% moisture
- ⇒ The effective G value is based on 90% of guanidine carbonate and 10% of water (1.6) and is equal to 5.875

By SM	Date	6/8/00	Subject Evaluation for gas generation compliance for Idaho	Sheet No	. 3 of 3
			RH waste containing Guanidine Carbonate		
Chkd. By SMD	Date	6/12/00		Proj. No.	802188.03

The decay heat value for the waste form based on the isotopic data provided was calculated to be 1.86 watts, which fails the decay heat limit and therefore, the waste form will need to be subjected to gas generation testing as per Option 1. This being a homogenous waste matrix, a small sample of the waste may be subjected to testing methodology as described in Attachment 2 of Appendix 1.3.7 of the SAR for evaluating compliance with the gas generation rate requirements.

Conclusion

The waste form fails the decay heat limit requirements based on assumptions described earlier and shall be subjected to gas generation testing for evaluating compliance with the gas generation requirements.

Radionuclide	Ci/kg	Total curies, assuming	Specific Activity, ci/g	grams of fissile rads	Pu239FGE	Sum FGE
²⁴¹ Am	6.58E-04		3.47E+00		1.87E-02	1.77E-03
243Am	2.72E-07		2.02E-01	6.73E-04	1.29E-02	8.69E-06
242Cm	2.41E-07		3.35E+03		0	0.00E+00
244Cm	1.75E-05		8.18E+01	1.07E-04	9.00E-02	9.63E-06
237Np	2.66E-05		7.13E-04		1.50E-02	2.80E-01
238Pu	4.60E-03			1.33E-01	1.13E-01	1.50E-02
239Pu	5.78E-04	2.89E-01	6.29E-02	4.59E+00	1	4.59E+00
240Pu	1.33E-04	6.65E-02	2.30E-01	2.89E-01	2.25E-02	6.51E-03
241Pu	2.77E-03		1.04E+02			3.00E-02
242Pu	1.60E-07		3.97E-03		7.50E-03	1.51E-04
230Th	9.59E-09	4.80E-06	2.04E-02	2.35E-04	0	0.00E+00
232U	1.67E-08	8.35E-06	2.16E+01	3.87E-07	0	0.00E+00
233U	4.47E-10		9.76E-03		1	2.29E-05
234U	7.10E-06	3.55E-03	6.32E-03	5.62E-01	0	0.00E+00
235U	1.99E-07	9.95E-05	2.19E-06	4.54E+01	1	4.54E+01
236U	3.70E-07	1.85E-04			0	0.00E+00
238U	1.22E-07	6.10E-05		•	0	0.00E+00
137Ba	0.302	1.51E+02			0	0.00E+00
144Ce	9.44E-08	4.72E-05			0	0.00E+00
60Co	2.55E-09	1.28E-06			0	0.00E+00
134Cs	1.26E-04	6.30E-02			0	0.00E+00
135Cs	6.37E-06	3.19E-03		•	0	0.00E+00
137Cs	0.32			•	. 0	0.00E+00
152Eu	1.90E-05	9.50E-03			0	0.00E+00
154Eu	1.13E-03		•		0	0.00E+00
155Eu	5.48E-04				0	0.00E+00
147Pm	8.03E-09	4.02E-06			. 0	0.00E+00
63Ni	5.16E-09				0	0.00E+00
106Ru	5.29E-12	2.65E-09			. 0	0.00E+00
125Sb	6.38E-10				0	0.00E+00
151Sm	5.47E-08				0	0.00E+00
90Sr	0.294				0	0.00E+00
99Tc	1.21E-06				0	0.00E+00
90Y	0.294				0	0.00E+00
3H	3.83E-09				. 0	0.00E+00
1291	4.69E-11				0	0.00E+00
		6.10E+02				5.04E+01