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SUMMARY

This report describes the application of distributed-memory parallel programming

techniques to a compositional simulator called UTCHEM. The University of Texas

Chemical Flooding reservoir simulator (UTCHEM) is a general-purpose vectorized

chemical flooding simulator that models the transport of chemical species in three-

dimensional, multiphase flow through permeable media. The parallel version of

UTCHEM addresses solving large-scale problems by reducing the amount of time that is

required to obtain the solution as well as providing a flexible and portable programming

environment.

In this work, the original parallel version of UTCHEM was modified and ported to

CRAY T3D and CRAY T3E, distributed-memory, multiprocessor computers using

CRAY-PVM as the interprocessor communication library. Also, the data communication

routines were modified such that the portability of the original code across different

computer architectures was made possible.

Several simulations were performed in order to assess the performance of the code

on the parallel computers. In this report, we present the performance results of the most

time-consuming subroutines in the simulator as well as the performance results of the

overall code.

The application of distributed-memory parallel programming on UTCHEM has

proven to be an

and enhancing

simulations.

achievable method for decreasing the turn-around time of the simulator

the computational capabilities of the code for large-scale reservoir



1.0 INTRODUCTION

Many problems of interest in the petroleum industry call for massive computing

power for the numerical simulation of oil recovery processes. The need for improved

accuracy of the numerical “schemes, however, leads to an inevitable overall refinement of

the discretizations. Unfortunately, the conventional small-scale computers are quickly

becoming inefficient for solving numerical modeling of these problems in terms of speed

and capacity (Pashapour et al., 1989). Although large-scale vector supercomputers, such

as CRAY YMP and CRAY Y-MPC90, could meet the requirements, their costs are still

unaffordable for many of the research institutions.

The growing availability of distributed parallel computing architectures provides a

solution to the petroleum engineering problems at a reasonable cost. In addition to the low

cost (compared to

organizations have

parallel programs.

the high-end super computers) multiprocessor computers, many

networks of workstations available for implementing large-scale

Parallel programming in clusters of multiprocessor environments

enables most of these companies to attack large-scale problems with little extra hardware

cost.

The University of Texas Chemical Flooding reservoir simulator (UTCHEM) is a

generaJ-purpose chemical flooding simulator that models the transport of multicomponent

chemical species in three-dimensional, multiphase flow through permeable media with

variable temperature. The first parallel version of UTCHEM was implemented by

researchers at Rice University (Ram6 et al., 1993; Ram6 and Delshad, 1995). It relies

upon the application of message-passing implementation of the parallel programming

practices by using the domain decomposition approach. It was designed to use a large

number of processors in the solution of a single problem by using the Single-Program

Multiple-Data (SPMD) programming model. Later, we ported the code to CRAY T3D

and T3E and IBM SP1 and SP2 multiprocessor environments and also to a heterogeneous



network of workstations using PVM and C-Linda. This report presents the results of

simulations on CRAY T3D and T3E systems only. Although the code was implemented

and tested on the other systems, those results will be the subject of our future reports.

Descriptions of CRAY T3D and T3E as well as their performance comparisons are also

summarized in this report.

2.0 PARALLEL COMPUTING

Parallel programming has emerged as an enabling technology in modern

computing, driven by the ever-increasing demand for higher performance, lower cost, and

sustained productivity in real-life computer applications. Concurrent events are taking

place in today’s high-performance computing because of the common practice of

multiprogramming, multiprocessing, or multicomputing (Hwang, 1993).

From the earliest days of reservoir simulation, numerical models have continued to

test the capacity of the existing computers. From both numerical and physical points of

view, large numbers of gridblocks with more physical phenomena included are required to

adequately model processes in reservoirs (Pashapour et al., 1989; Killough, 1993).

Beginning in the mid- 1970s the introduction of the large-scale vector super

computers completely changed the traditional approach that had been taken toward the

development of the numerical modeling of reservoir simulation. Although the

vectorization approach dramatically increased the efficiency of the reservoir simulators,

two important factors decreased its wide-scale applicability. First, the implementation of

vectorization led to significant reorganization and recoding of existing numerical models.

Second, the costs of the vector supercomputers were not affordable for the majority of

research institutions.

The second approach for improved reservoir simulations was the utilization of

shared-memory parallel supercomputers. Several publications in the literature have dealt



. al

with the application of parallel computing to petroleum reservoir simulation in shared-

memory parallel environments. Scott et al. (1987) investigated the parallelization of linear

equation solvers and coefficient matrix routines. Chen et al. (1987) worked on

compositional modeling using parallel processing on a CRAY X-MP. Barua and Home

(1989) implemented a solver for solution of a system of nonlinear equations in a black-oil

simulator on an IBM-3090 parallel vector computer.

the original version of the UTCHEM simulator,

microtasking parallel processing techniques.

Pashapour et al. (1989) worked on

addressing the vectorization and

Another approach to the parallel processing is the application of distributed-

memory computers. This approach employs the application of the Multiple Instruction

Multiple Data (MIMD) parallel programming technique in which a number of independent

processors work on the solution of a single problem. This advancement in reservoir

simulation modeling, simulation on distributed-memory machines, has been performed by

many researchers. Several authors, including Bhogeswara and Killough (1993) and

Cowsar et al. (1991, 1992) worked on the parallel solution of linearized finite-difference

equations. Mayer (1989) solved the Buckley-Leverett problem on a Thinking-Machines

CM-2 machine and showed that the machine can handle large problems as well. Later,

Rutledge et al. (1991) ported a three-phase three-dimensional black-oil simulator to a

parallel architecture and successfully simulated a reservoir problem with two million

gridblocks. Killough and Bhogeswara (1991) ported a commercial n-component, three-

phase, equation-of-state simulator on an iPSC/860. Arbogast et al. (1994) developed a

simulator in three spatial dimensions for two-phase groundwater flow and transport with

biodegradation kinetics for massively parallel distributed-memory architectures. Ran-k and

Delshad (1995) ported a vectorized chemical flooding compositional simulator

(UTCHEM) to a distributed-memory massively parallel computer. In spite of the



extensive research in this area, the issue of efficient utilization of distributed computing in

the reservoir simulation area needs a lot of additional research.

The research that this report summarizes involves the application of distributed-

memory computing practices on CRAY T3D and CRAY T3E. Each processor in the

network exclusively owns its memory and computing power. The data and the amount of

work are distributed equally among the processors. If, during the calculations, the

processors need to share their data, they do it through message-passing methods, which

will be discussed later.

The performance gain that can be obtained by improving the parallelization of the

program can be calculated by using Amdahl’s law (Hennessy and Patterson, 1990).

Amdahl’s law states that the performance improvement to be gained from using parallel

execution is limited by the fraction of the time the parallel mode can be used. Assuming

that we can execute the entire algorithm in parallel and use message passing in

interprocessor communication, the amount of time, tp, necessary to compute the entire

algorithm in parallel is

~ + tmp‘P=N (1)

where ts is the time that it takes to run the scalar version of the program, N is the number

of processors, and tmp is the time spent on message passing. Then the speed-up for the

algorithm will be (Ranx$ and Delshad, 1995)

Speed – up =
N
tmp N (2)

l+—————
t~

Equation 2 indicates that the speed-up is theoretically limited by the amount of time

spent on interprocessor communications, tmp. The relative message passing overhead is

tmP/ts. The maximum speed-up can be attained when this ratio goes to zero. This is a

clear indication that for maximum efficiency, message-passing operations must be kept at
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a minimum. Therefore, the interprocess communication scheme was modified in

UTCHEM. Although the new interprocess communication scheme increased the

complexity of the implementation algorithm, it drastically reduced the number of data

exchange communications and thus improved the performance. Isolating the data

exchange from the rest of the calculations enabled the implementation of a portable code

across different computer architectures.

The simulator was also modified to use general interprocess communication

packages, including PVM and C-Linda. The code was ported to CRAY T3D and T3E,

IBM SP1 and SP2 architectures, and heterogeneous networks of workstations. Although

we have completed the porting of the code to above mentioned platforms, here we only

discuss the simulation results executed on CRAY T3D and T3E multiprocessor

computers.

2.1 CRAY T3D Architecture

The CRAY T3D system is a Massively Parallel Processing (MPP) architecture that

contains up to 2048 microprocessors, each accompanied by its own local memory (CRAY

T3D Hardware Review, 1993). Each microprocessor of the CRAY T3D system is a

DECchip 21064 (DEC Alpha EV4) from Digital Equipment Corporation capable of 150

MFLOPS peak performance. This reduced instruction set computing (RISC)

microprocessor is cache-based, has pipelined functional units, issues up to six instructions

per cycle, and supports IEEE standard 64-bit floating-point arithmetic. Each processor

has its own local DRAM memory with a capacity of 64 Mbytes. Each processing element
\

(PE) in the CRAY T3D system comprises the DEC Alpha microprocessor, local

memory, and Cray Research-designed support logic. A CRAY T3D system node consists

of two PEs sharing the Cray Research-designed switch and network support logic. The

system is designed to support different styles of MPP programming, such as data parallel,

work sharing, and message passing (Hennessy and Patterson, 1990).
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The uniqueness of the CRAY T3D system is the result of its design

implementation. With its current implementation, the CRAY T3D system connects to a

host computer system that provides support for applications running on the T3D; that is,

the T3D is not a self-sufficient system on which an application can be built and run.

Instead, all applications written for the T3D are compiled on the host system and run on

the T3D. The host system can be any Cray Research computer that has a special input-

output (1/0) system. These systems include the CRAY Y-MP, CRAY Y-MP M90, and

CRAY Y-MP C90 series computer systems.

2.2 CRAY T3E Architecture

The CRAY T3E system is an MPP architecture that contains up to 2048

microprocessors, each accompanied by its own local memory (CRAY T3E Hardware

Review, 1996). CRAY T3E parallel systems use theDECchip21164 (DEC Alpha EV5)

from Digital Equipment Corporation, capable of 600 MFLOPS peak performance. In

addition to the improvements on the microprocessor, Processing Elements (PEs) in the

CRAY T3E system are connected by a high-bandwidth, low-latency bidirectional 3-D

torus system interconnect network six times faster per PE than that used in the CRAY

T3D system. It incorporates an adaptive message-routing mechanism to allow messages

on the interconnect network to be rerouted around temporary “hot spots. ” InterProcessor

data payload communication rates are 480 Mbytes per second in every direction through

the torus; in a 512-PE CRAY T3E system, bisection bandwidth exceeds 122 Gbytes per

second.

The CRAY T3E system performs I/O through multiple ports onto one or more

scalable GigaRing channels. This dual-ring I/O channel, with data in the two rings

traveling in opposite directions, delivers high I/O data bandwidth and enhances reliability.

On the CRAY T3E system, each GigaRing channel has a maximum data payload

bandwidth of 1 Gbyte/s. The largest CRAY T3E system configurations are capable of up

7



to 128 Gbytes/s of 1/0 bandwidth. Multiple channels can be configured to provide

maximum disk throughput while maintaining the highest overall I/O bandwidth. Disk,

tape, network, and system nodes can be configured in any number of combinations on

multiple I/O channels.

2.3 Differences Between CRAY T3D and CRAY T3E

2.3.1 The operating system

To support the scalability of the CRAY T3E system, the operating system of

CRAY T3D, UNICOS, was redesigned into UNICOS/rnk. Unlike UNICOS in CRAY

T3D, UNICOS/mk is distributed among the CRAY T3E system’s PEs, not replicated on

each. This distribution of operating system functions provides a global view of the

computing environment - a single-system image - that allows administrators to manage a

systemwide suite of resources as a single entity. As a result, systemwide resource

management and utilization are greatly simplified compared to the previous versions of

UNICOS.

UNICOS/mk is divided into “servers,” which are distributed among the processors

of a CRAY T3E system. Local servers process operating-system requests specific to each

user PE. Global servers provide systemwide operating-system capabilities, such as

process management and file allocation. In addition to the user PEs that run applications

and commands, CRAY T3E systems include dedicated system PEs that run the global

UNICOS/mk servers. Because global services are provided by system PEs and not

replicated throughout the CRAY T3E system, UNICOS/mk efficiently scales, with full

functionality, to service from tens to thousands of PEs with minimal overhead.

2.3.2 The 1/0 channels

The CRAY T3E system performs I/O

scalable GigaRing channels. This dual-ring

through multiple ports onto one or more

I/O channel, with data in the two rings
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traveling in opposite directions, delivers high I/O data bandwidth and enhances reliability.

This multichannel architecture is different from what is implemented in CRAY T3D. In

CRAY T3D, all processors in the system direct their I/O requests to a single dedicated I/O

processor.

Regardless of size, all CRAY T3E systems may be configured with an I/O channel

for every eight PEs (air-cooled) or 16 PEs (liquid-cooled). All I/O channels are accessible

and controllable from all PEs. On the CRAY T3E system, each GigaRing channel has a

maximum data payload bandwidth of 1 Gbyte/s and provides high-speed access to

peripherals, networks, and other systems.

2.3.3 Torus interconnect network

The interconnect network provides the communication paths among the processing

element nodes and the input/output gateways in CRAY T3D and T3E systems. The

interconnect network forms a three-dimensional matrix of paths that connects the nodes in

x, y, and z directions (Fig. 1), which enables the communication network to transfer data

and control information between processing element nodes.

The efficiency of this network configuration is the result of two unique architecture

design features. First, each communication link is composed of two different channels,

that is, each PE node has a unidirectional send and a unidirectional receive channel as

shown in Fig. 2.

These unidirectional communication links enable the two nodes to send and receive

data and control signals simultaneously. In addition to this efficient communication

scheme, communication links handle data send and receive operations through the usage of

two separate buffers, which enables the system to transmit data more efficiently. In

CRAY T3D each node consists of two microprocessors. As a result, each microprocessor

needs to arbitrate for the.interconnect network utilization with its pairing microprocessor.
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CRAY T3E architecture eliminates this extra arbitration time by implementing only one

microprocessor per node.

The second important feature of the interconnect network is its interleaving torus

topology design (Fig. 3). A torus contains communication links that connect the smallest

numbered node in a dimension directly to the largest numbered node in the same direction.

This type of connection forms a ring where information can transfer from one node

through all the nodes in the same dimension, and back to the original node.

In addition to the torus topology, the nodes in the interconnect network are

interleaved, which means the physical placement of nodes is arranged so that the

maximum wiring distance between nodes is minimized, resulting in faster communication

rates.

This configuration of the torus network offers several advantages for network

communications. One advantage is speed of information transfers. For example, in Fig.

3, Node 5 directly communicates with Node O instead of sending information through all

of the nodes in one direction.

Another advantage of the interconnect networking scheme is the ability to avoid

bad or busy communication links. For example, in Fig. 3, if Node O cannot transfer

information directly to Node 1, it can still communicate with Node 1 by sending the

information around the network through other nodes by using another direction.

In CRAY T3D the maximum data throughput on this interconnect network is 160

MB/see whereas in CRAY T3E, this number was improved to 480 MB/sec.

2.3.4 Data cache

In CRAY T3E, there are two enhancements to the original data cache architecture

of the CRAY T3D. The first change is the addition of a secondary cache (Scache). The

secondary cache is a unified data and instruction cache. It is a 96 KB, three-way set-

associative, write-allocate, write-back cache. The cache line size is 64 bytes. The Scache

10
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latency is 8cpsor26.6ns. The Scachebandwidth is4.8GB/sec. The Scache (and

therefore the Dcache as a proper subset) is hardware cache coherent with any remote

references from other T3E nodes. It will allow two outstanding off-chip memory

references without stalling. This means two cache misses to Scache can be taken without

stalling the processor.

The second difference between the CRAY T3D and T3E is the existence of a third

level of cache structure on the CRAY T3E. This is called the Stream Buffers. Stream

Buffers amount to a tertiary level of cache that lies between the CPU and the local DRAM

memory. There are six Stream Buffers, each with four 64-byte cache lines. The Stream

Buffers are used by the hardware to transparently prefetch cache lines of data from DRAM

asynchronously. Sustainable bandwidth to the Stream Buffers is approximately 600

MB/see. The Stream Buffers are currently not cache-coherent with the on-chip caches,

although there are some rather simple programming techniques that can be employed to

make an application STREAMS-SAFE. A PVM or MPI program is automatically

STREAMS-SAFE, which is ensured by the libraries automatically.

3.0 DESCRIPTION OF THE MODEL

UTCHEM is a multiphase, multicomponent, three-dimensional

simulator. It was originally developed to model surfactant enhanced

finite-difference

oil recovery but

modified for applications involving the use of surfactant for enhanced remediation of

aquifers contaminated by nonaqueous-phase liquids (NAPLs). The balance equations in

the parallel version are the mass-conservation equations and an overall balance that

determines the pressure for up to three liquid phases. The vectorized version of

UTCHEM, however, also solves an energy balance equation to determine the temperature

and also has the capability of modeling the gas phase. The number of components is

variable, depending on the application. When electrolytes, tracers, co-solvents, polymer,

and other commonly needed components are included, the number of components may be

11



on the order of 12 or more. When the geochemical option is used, a large number of

additional aqueous components and solid phases may be used. For the most recent

description of UTCHEM, the readers are referred to Delshad et al. (1996).

The resulting flow equations are solved using a block-centered finite-difference

scheme. The solution method is implicit in pressure’and explicit in concentration (IMPES

type). One- and two-point upstream and third-order spatial discretization are available as

options in the code. To increase the stability and robustness of the second- and third-order

methods, a flux limiter that is total-variation-diminishing (TVD) has been added (Liu,

1993). The third-order method gives the most accurate solution. A detailed description of

UTCHEM formulation and numerical solution scheme is given elsewhere (Datta Gupta et

al., 1986; Saad, 1989; Liu et al., 1994; Delshad et al., 1996).

4.0 PARALLEL UTCHEM

Parallel processing is a practical means to speed up the turn-around time of large-

scale computational problems. To achieve this goal, various parallel algorithms have been

proposed in the past and tested in several parallel-programming environments (Azencott,

1992). The basic idea is to solve a large-scale engineering problem in a reasonable amount

of time. The parallel version of the UTCHEM simulator addresses solving large-scale

problems by reducing the amount of time that is required to obtain the solution as well as

providing a flexible and a portable programming environment.

The first parallel version of UTCHEM was implemented by researchers at Rice

University (Rank et al., 1993; Ram& and Delshad, 1995). It relies upon the application of

message-passing implementation of the parallel programming practices. It was designed

to use a large number of processors in the solution of a single problem by using the

Single-Program Multiple-Data (SPMD) programming model.

12



The following sections explain the implementation of parallelization techniques in

UTCHEM. It is not our intention to show how the problem is numerically solved but to

show how the parallel implementation is performed in the parallel version of UTCHEM.

4.1 Program Initialization

Upon execution, the first copy of the program, generally referred as Node-O,

checks for the initialization of the program and starts the other nodes if necessary+. As

soon as the network initialization is complete, the parallel version of the code distributes the

spatial gridblocks among the processors. Each processor receives data for several

gridblocks of the reservoir for which the computations must be performed. This

distribution is controlled by the Node-O, whose prime responsibility at this point is to

ensure an even computational load distribution within the network.

4.2 Network Distribution

The two primary reasons for the implementation of a parallel program are to

decrease the time required to solve the problem and to overcome the computer memory

requirements of a large problem (Ouenes, 1993). As a solution to the second problem, the

original array size implementation in UTCHEM was modified so that each processor in

the network holds a subset of what is required in order to work on a subdomain of the

reservoir. As a result, each processor in the network holds a data array just large enough to

hold the subdomain plus a three-dimensional envelope around the subdomain, so that any

data required from the neighboring nodes can be stored.

The gridblock distribution scheme assigns consecutively numbered blocks to the

nodes of the virtual machine. Since the nearest nodes are frequently located in the same

+ If the program is compiled for the PVM CRAY T3D or T3E environments, thk step is unnecessary
since the MPP system automaticallystarts all the nodes. On the other hand, for all C-Linda and other
PVM versions, this step is essential.

13
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computing node, this distribution scheme results in a reasonable locality of computation

and a static load balance (Rank and Delshad, 1995).

Each node receives a number of gridblocks according to the following formula:

@UB = ‘BL(x>Y,z) + Nneighbor~
BL(x,y,z)

NcPu(x,y,z)
(3)

where N~~~x, Y,z) is the number of gridblocks in the subdomain, NBL(X,Y,Z) is the total

number of gridblocks in the problem, Ncpu(x,y,z) is the number of partitioning CPUS or

nodes in each direction, and Neighbors is the number of neighbors of a subdomain in a

given spatial direction.

An example of the subdomain storage (Fig. 4) can be demonstrated as follows.

For a given reservoir simulation, assume that a hypothetical reservoir discretization scheme

is 15x20x6 in x, y, and z directions, respectively. Furthermore, the available number of

processors is 12. A suitable subdomain configuration for the given problem would be

3x4x1 nodes in x, y, and z dimensions. As a result, the subdomain array dimensions for

each node will be 7x7x6. Figure 4 shows the relationship between the gridblock scheme

for the problem and the required number of gridblocks within each subdomain.

Remember that the parallelization of UTCHEM was implemented by a domain-

decomposition scheme. During the course of the simulation, each process shares some of

its data with the neighboring processes. The shaded areas represent the shared gridblocks

between the neighboring subdomains.

Once the subdomain decomposition is completed, the computations are performed

within each subdomain as a subset of the global problem. Since each subdomain requires

some data from its neighbors, the processors share the required data by using explicit

message-passing function calls.

14
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4.3 I/O Handling

In parallel implementation of UTCHEM, the I/O is handled by a serial

implementation through a designated node. During the initialization stage of the program,

the designated processor, Node-O, is responsible for the data input and the distribution to

the remaining nodes. Similarly, during the data output, Node-O collects the output, by

using simple message-passing function calls, from the other nodes in the network and

writes them to the appropriate output files.

Using a designated process approach for I/O handling, however, creates two major

problems. First, since Node-O is the only processor that handles data I/0, it has to read the

input data and distribute it through interprocess communication. This creates an

undesirable situation where all the processing nodes, except Node-O, are kept idle during

the data input process. Similarly, since the output data are sent through the message-

passing algorithms, the system might be faced with an insufficient memory problem in

case of an operation involving large amount of data output.

During a message-passing operation, PVM allocates a temporary memory buffer

for each incoming message. Assuming a 64-node simulation run, 63 nodes send data to

the Node-O. As a result, the message-passing environment creates 63 incoming message

buffers, which may cause an insufficient memory problem. It is these authors’ opinions

that in the future versions of the code, this problem must be handled more efficiently.

4.4 Vectorization Issue

The original implementation of UTCHEM was specifically designed for the vector

supercomputers (Pashapour, 1988), where the array components of the code were declared

as long vectors with each entry referring to a physical location in the reservoir by means of

a given gridblock numbering scheme. Unfortunately, this scheme is not particularly

suitable for parallel computing (Booth and Misegades, 1986).

15
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An implementation difficulty occurs during the optimization stage of do-loops in

the vectorized codes. The parallelization of UTCHEM was implemented by a domain-

decomposition scheme (Fig. 4). During the simulation, each process shares some of its

data with the neighboring processes. This intersubdomain data sharing creates a huge

computational overhead, since do-loops sweep over those padded regions where each

newly calculated values are incorrect and must be replaced with the correct values known

by the neighboring processes (Ram6 and Delshad, 1995). Thus, a full new approach for

the loops was implemented. Although the vectorized code was preserved, the coding

complexity of the program was increased by allowing a single-step data communication

resulting in less computational overhead.

4.5 Implementation of Message-Passing Functions

The message-passing algorithm was first implemented by Ram6 et d. (1993) for

Intel systems using NX library environment. In that version, the communications are

handled synchronously, meaning that no computations are being performed during the

interprocessor communications. The message-sending process w aits until the destination

process receives the data. This behavior was the default characteristic for the CM5

implementation of the next generation version of the program.

The PVM and C-Linda version of the code, however, do not rely on the

synchronous message-passing approach, since this degrades the efficiency of the code

where the network is composed of a cluster of workstations. The current implementation

includes a nonblocking message-passing algorithm in which each processing node sends

its data to a neighboring node and continues working on its subdomain. This will assure

the maximum CPU usage within the network.

In addition to the asynchronous communication scheme, the code collects all of its

communication-related functions into a single C-programming-language source-code file.

This approach enables a straightforward implementation of a superset of original
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communication functions for each new computer network. Using a compile time

argument, it is possible to configure the same source code for different architectures

without any modifications in the original FORTRAN source code.

5.0 SAMPLE DATA DESCRIPTION

The test cases were based on a polymer flooding pilot test in the Courtney sand of

Chateaurenard field in France. The performance of this field was first simulated by Takagi

et al. (1992) by using the sequential version of UTCHEM. Takagi used 25x25x3

gridblocks as the finest grid with gridblock sizes of 65 ft in length, 65 ft in width, and 3 ft

in depth.

The reservoir description used in this example was a layered one, and therefore the

discretization in both areal dimensions can easily be changed in order to test the code

performance versus changing the surface-to-volume ratios in the subdomains. The

configuration of the pilot was an inverted five-spot pattern with an average distance of 756

m between producing wells. The pilot operation consisted of multiple injection of a slug of

0.1 wt% hydrolyzed polyacrylamide tapered down to a concentration of 0.02 wt% in the

final slug and followed by chase water injection.

To investigate large-sized problems in the parallel environment, the number of

gridblocks was first increased from 25x25x3 to 50x100x6 while keeping the gridblock

sizes the same. The simulations were executed for only 20 days where the original full

simulation was 1540 days. The number of components for which the conservation

equation is solved for is five in this example.

6.0 PARALLEL SIMULATOR PERFORMANCE

The above-mentioned pilot was discretized by using seven different numbers of

gridblocks. The first case, 5OX1OOX6gridblocks, was chosen with the intent of comparing

the efficiency of the CRAY T3D and T3E systems with that of other systems given in the
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publication of Ram4 and Delshad (1995). The later runs were conducted by increasing the

number of gridblocks in the reservoir while keeping the gridblock sizes and the timestep

constant. Although these new data sets do not represent the same reservoir given in Takagi

et al. (1992), they were intended to keep the changes in the reservoir description to

investigate the effects of number of gridblocks in the simulations.

The simulations were executed for 20 days because of the limited availability of

computing time on parallel systems. Even in this limited amount of simulation time, the

total initialization and data input took less than 1% of the total time in all cases. The results

we present in this report can be linearly extrapolated for longer simulation times, since only

a small percentage of the total time is consumed by initialization.

Figures 5 through 10 present the elapsed time for the most time-consuming

subroutines as well as the total elapsed time for the entire simulation (less the output time)

by using the Jacobi conjugate-gradient (JCG) as the linear solver. These results were

obtained on a CRAY T3E system composed of 256 processors where each processor is

equipped with 128 or 256 MB of memory. These results can be grouped into two

categories: subdomain local calculations, where no interprocess communication is

required, and stencil computations, where each subdomain requires data sharing with its

neighboring subdomains.

The first group of routines involves the calculation of local physical properties such

as viscos and trap. The block-property calculations involve the local properties. Therefore,

no interprocess data exchange is necessary. Nevertheless, increasing the number of

processors decreases the efficiency of these calculations because of the limited size of the

processor cache. However, this decrease in the efficiency of the calculations remains low,

as expected.

The second group, on the other hand, calculates the explicit timestepping of the

mass-conservation equations (e.g. coneq) and the pressure-distribution calculations for the
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entire system for each timestep (e.g., solmat). Performance degradation because of

increasing number of processors in this group shows different characteristics depending on

the number of gridblocks in the simulation. The general trend is that the performance of

these calculations improves as the number of gridblocks increases. This is because of the

fact that with the increasing number of gridblocks, each processor spends more time in

calculations rather than message passing. This increases the efficiency of the total code

(refer to Eq. 2). On the other hand, increasing the number of processors decreases the

performance of each simulation since each processor needs to work on fewer and fewer

gridblocks while the total number of communications increases. In the cases with small

number of gridblocks this effect is so obvious that increasing number of processors does

not improve the performance at all.

On CRAY T3E, all the sample cases showed an acceptable speed-up up to 32

processors. However, for the small-sized simulations, the performance started to degrade

after 32 processors. Regardless of the number of gridblocks simulated, the above-

mentioned two groups of subroutines are distinguishable. Subroutines using the local data

(e.g., viscos and trap) continuously show a good scale-up regardless of the number of

gridblocks, whereas the second group of subroutines (e.g., sobnat and coneq) showed

different characteristics for different number of gridblocks. Figures 11 through 16 show

the speed-up for the simulations normalized to the minimum number of processors that

can handle the memory requirements of each run. Since the subroutine sohzut includes the

JCG solver, which relies heavily on a dot product and matrix vector multiplication and

takes a significant number of iterations to converge, of the given subroutines, solmat

shows the worst speed-up among all subroutines. As expected, the speed-up gets closer to

the ideal line as the problem size becomes larger (Fig. 16).

It is difficult to compare the speed-ups given in Figures 11 through 16 because

each group of runs was normalized to a different number of processors depending on the
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size of the problem. This was inevitable, since the increasing number of gridblocks

requires a proportionally increasing memory size on each processor. Because of the

memory limitations, we were forced to use an increasing number of processors just to be

able to fit the code on each processor.

Figures 17 summarize the speed-ups observed when changing from one number

of processors to another. For a relatively small number of processors, speed-up gets very

close to the ideal speed-up as the number of gridblocks increases. This speed-up

diminishes, as expected, as the number of processors increases. This does not always

follow a certain trend. The reason for the small anomalies in the speed-up curves are due

to the changing effects of the system data cache. Increasing the number of processors

makes the system data cache more effective. However, if the number of gridblocks in

each subdomain gets too small, the system starts consuming most of its time on

interprocessor communications, which effectively diminishes the simulation performance.

On the other hand, if the number of gridblocks in each subdomain is too large, the

effectiveness of the data cache diminishes. These effects generate irregularities in the

speed-up diagrams.

Because of the limited availability of system time, we were able to simulate only

two of the sample cases on the CRAY T3D system. Figures 18 through 21 present the

performance of each run conducted on CRAY T3D with up to 64 processors. Because of

the limited memory size of each processor (64 MB per processor), we were not able to run

one- and two-processor configurations for the 30,000 gridblocks case. Similarly, it was

impossible to run the one-, two-, and four-processor cases for 60,000 gridblocks.

In the CRAY T3D, the general trend in timing of individual routines observed in

the T3E was also observed. The only difference is that the performance gains were about

300 to 600 % better in the CRAY T3E. The main reasons for these were explained in
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Section 2.3 of this report, namely secondary cache effects, changes in the Torus Network,

better I/O channels, and the changes in the Operating System itself.

One important observation in the runs executed on the CRAY T3D is that some of

the subroutines demonstrated a behavior called Hyper-Linear Speed-ups. The hyper-linear

speed-up is the condition in which a given subroutine scales up more than twice when the

number of processors is doubled. We see this behavior especially in the small number of

processors and in routines that take very little time to execute. This can be explained by

two factors. First, the timing routines involve a small randomness in their implementation.

Second, on the CRAY T3D, each processor has a very small system cache. As the

computational load of a particular subroutine increases, these effects begin to disappear.

In order to give a better perspective of distributed-memory machines, we outlined

the performance of the distributed memory machines given in Ram6 and Delshad ( 1995),

the performance of CRAY T3D and CRAYT3E, as well as the results of the performance

run on a vector computer CRAY YMP. Table 1 summarizes these results.

7.0 SUMMARY AND CONCLUSIONS

Our experience with the UTCHEM compositional simulator and distributed-

memory massively parallel machines suggests that the implementation of a parallel

program with high levels of portability is an achievable objective while taking advantage of

different computer architectures. In doing this, using a standard message-passing library

enabled us to incorporate the vendor-specific implementations of parallel communication

packages, such as CRAY-PVM, without changing the program implementation. Using a

system-specific parallel programming technique may increase the performance of the

overall code. This, however, may require a complete modification of the existing code,

increasing the implementation time, and also results in a nonportable code. Although our

implementation was a portable code and did not include any system-specific instructions,
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we have shown that a good degree of speed-up is still achievable by distributing a single

problem among several processors.

Based on our experience in this work, we emphasize the importance of the

interprocess communication overhead. Maintaining a high degree of parallel efficiency is

closely related to the amount of data that each process uses and exchanges with the others.

As the surface-to-volume ratio decreases in each subdomain (an increased number of

gridblocks), the amount of data that each process needs to share with its neighbor

decreases, resulting in better performance. In this regard, the amount of memory, RAM,

in each processor plays an important role, since a larger subdomain problem can be loaded

on each processor.

An asynchronous communication scheme enables the code to overlap

communications and computations, resulting in a better performance. However, this

approach involves a careful redesign of the existing implementation.

The improved algorithms and increased performance of the processors enables us

to implement distributed-memory parallel programs in which the performance of the code

can be better than that of specialized vector processors.
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Tablel. Acompmison of theelapsed times forthe30,000-gridblock polymer
flooding simulation on different computers.

Run

No. of Processors

Elapsed Time, sec

CRAY
Y-MP

1

188

CM5

64

1920

T3D

64

365

26

T3E

16

165

T3E

32

99

T3E

64

66



Figurel. CRAYT3D and T3E interconnect network (CRAYT3D Hardware Review,
1993).

Figure 2. A communication link channel in T3D system.

Node 5 Node 2 Node 4 Node 3

QI%QIJ \

Figure 3. One-dimensional, interleaving Torus Interconnect Topology of T3D and T3E.

Figure 4. A sample reservoir gridblock scheme.
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Figure 13. Speed-ups for polymer flooding with 120,000 gridblocks on CRAY T3E.
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Figure 14. Speed-ups for polymer flooding with 150,000 gridblocks on CRAY T3E.
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Figure 17. Comparison of speed-ups for different processors on CRAY T3E.
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