Microbial Transport, Survival, and Succession in a Sequence of Buried Sediments

PDF Version Also Available for Download.

Description

Two chronosequence of unsaturated buried loess sediments ranging in age from <10,000 years to >1 million years were investigated to reconstruct patterns of microbial ecological succession that have occurred since sediment burial. The relative importance of microbial transport and survival to succession were inferred from sediment ages, porewater ages, patterns of abundance (measured by direct counts, counts of culturable cells, and total phospholipid fatty acids), activities (measured by radiotracer and enzyme assays), and community composition (measured by phospholipid fatty acid patterns and Biolog substrate usage). Samples were collected by coring at two sites 40 km apart in the Palouse region ... continued below

Physical Description

39 p.

Creation Information

Kieft, T.L.; Murphy, E.M.; Haldeman, D.L.; Amy, P.S.; Bjornstad, B.N.; McDonald, E.V. et al. January 5, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Two chronosequence of unsaturated buried loess sediments ranging in age from <10,000 years to >1 million years were investigated to reconstruct patterns of microbial ecological succession that have occurred since sediment burial. The relative importance of microbial transport and survival to succession were inferred from sediment ages, porewater ages, patterns of abundance (measured by direct counts, counts of culturable cells, and total phospholipid fatty acids), activities (measured by radiotracer and enzyme assays), and community composition (measured by phospholipid fatty acid patterns and Biolog substrate usage). Samples were collected by coring at two sites 40 km apart in the Palouse region of eastern Washington State near the towns of Washtucna and Winona. The Washtucna site was flooded multiple times during the Pleistocene by glacial outburst floods; the elevation of the Winona site is above flood stage. Sediments at the Washtucna site were collected from near surface to 14.9 m depth, where the sediment age was {approx}250 ka and the porewater age was 3700 years; sample intervals at the Winona site ranged from near surface to 38 m (sediment age: {approx}1 Ma; porewater age: 1200 years). Microbial abundance and activities declined with depth at both sites; however, even the deepest, oldest sediments showed evidence of viable microorganisms. Sediments of equivalent age had equal quantities of microorganisms, but differing community types. Differences in community make-up between the two sites can be attributed to differences in groundwater recharge and paleoflooding. Estimates of the ages of the microbial communities can be constrained by porewater and sediment ages. In the shallower sediments (<9 m at Washtucna, <12 m at Winona), the microbial communities are likely similar in age to the groundwater; thus, microbial succession has been influenced by recent transport of microorganisms from the surface. In the deeper sediments, the populations may be considerably older than the porewater ages, since microbial transport is severely restricted in unsaturated sediments. This is particularly true at the Winona site, which was never flooded.

Physical Description

39 p.

Notes

OSTI as DE00761981

Medium: P; Size: 39 pages

Source

  • Journal Name: Submitted to Microbial Ecology; Other Information: Preprint information submitted to Microbial Ecology

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: none
  • Grant Number: FG03-93ER61683
  • Office of Scientific & Technical Information Report Number: 761981
  • Archival Resource Key: ark:/67531/metadc723505

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 5, 1995

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 12, 2017, 2:44 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kieft, T.L.; Murphy, E.M.; Haldeman, D.L.; Amy, P.S.; Bjornstad, B.N.; McDonald, E.V. et al. Microbial Transport, Survival, and Succession in a Sequence of Buried Sediments, article, January 5, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc723505/: accessed May 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.