The biogeochemistry of carbon in continental slope sediments: The North Carolina margin

PDF Version Also Available for Download.

Description

The responses of the continental slope benthos to organic detritus deposition were studied with a multiple trace approach. Study sites were offshore of Cape Fear (I) and Cape Hatteras (III), N.C. (both 850 m water depth) and were characterized by different organic C deposition rates, macrofaunal densities (III>I in both cases) and taxa. Natural abundances of {sup 13}C and {sup 12}C in particulate organic carbon (POC), dissolved inorganic carbon (DIC) and macrofauna indicate that the reactive organic detritus is marine in origin. Natural abundance levels of {sup 14}C and uptake of {sup 13}C-labeled diatoms by benthic animals indicate that they ... continued below

Physical Description

44 p.

Creation Information

Blair, N.; Levin, L.; DeMaster, D.; Plaia, G.; Martin, C.; Fornes, W. et al. December 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsors

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The responses of the continental slope benthos to organic detritus deposition were studied with a multiple trace approach. Study sites were offshore of Cape Fear (I) and Cape Hatteras (III), N.C. (both 850 m water depth) and were characterized by different organic C deposition rates, macrofaunal densities (III>I in both cases) and taxa. Natural abundances of {sup 13}C and {sup 12}C in particulate organic carbon (POC), dissolved inorganic carbon (DIC) and macrofauna indicate that the reactive organic detritus is marine in origin. Natural abundance levels of {sup 14}C and uptake of {sup 13}C-labeled diatoms by benthic animals indicate that they incorporate a relatively young component of carbon into their biomass. {sup 13}C-labeled diatoms (Thalassiorsira pseudonana) tagged with {sup 210}Pb, slope sediment tagged with {sup 113}Sn and {sup 228}Th-labeled glass beads were emplaced in plots on the seafloor at both locations and the plots were sampled after 30 min., 1-1.5 d and 14 mo. At Site I, tracer diatom was intercepted at the surface primarily by protozoans and surface-feeding annelids. Little of the diatom C penetrated below 2 cm even after 14 months. Oxidation of organic carbon appeared to be largely aerobic. At Site III, annelids were primarily responsible for the initial uptake of tracer. On the time scale of days, diatom C was transported to a depth of 12 cm and was found in animals collected between 5-10 cm. The hoeing of tracer from the surface by the maldanid Praxillela sp. may have been responsible for some of the rapid nonlocal transport. Oxidation of the diatom organic carbon was evident to at least 10 cm depth. Anaerobic breakdown of organic matter is more important at Site III. Horizontal transport, which was probably biologically mediated, was an order of magnitude more rapid than vertical displacement over a year time scale. If the horizontal transport was associated with biochemical transformations of the organic matter, it may represent an important but nearly invisible diagenetic process.

Physical Description

44 p.

Notes

OSTI as DE00765318

Medium: P; Size: 44 pages

Source

  • 1998 Organism-Sediment Interactions Symposium/Workshop, Columbia, SC (US), No conference date provided

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NONE
  • Report No.: NSF Grant OCE 93-11711
  • Report No.: NSF Grant OCE 93-01793
  • Grant Number: FG02-95ER62082
  • Office of Scientific & Technical Information Report Number: 765318
  • Archival Resource Key: ark:/67531/metadc723470

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1999

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 12, 2017, 4:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 17

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Blair, N.; Levin, L.; DeMaster, D.; Plaia, G.; Martin, C.; Fornes, W. et al. The biogeochemistry of carbon in continental slope sediments: The North Carolina margin, article, December 1, 1999; Raleigh, North Carolina. (digital.library.unt.edu/ark:/67531/metadc723470/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.