Successful collaborations make a difference

- The Glass-Project Laboratory User Services (G+) Program facilitates glass industry access to the expertise and cutting-edge equipment and facilities of the national laboratories. Through the Glass Manufacturing Industry Council, glass companies are encouraged to establish short-term research collaborations that address the challenges identified in the industry’s technology roadmap.

- In response to the chemical industry’s Vision 2020, experts from industry, national laboratories, and academia have developed technology roadmaps that define the benefits, challenges, and needs for advanced computational technologies. Through a collaborative research effort, the Multiphase Fluid Dynamics Research Consortium (MFDRC) is seeking breakthroughs in the accurate modeling of gas-solid transport for industrial applications.

- Recent collaborative science and technology projects that have been applied to the Industries of the Future have resulted in significant recognition through Federal Laboratory Consortium, R&D 100, and Presidential Green Chemistry Challenge Awards. These awards celebrate the successful partnerships that engage DOE national laboratories with other technology providers.

- DOE investments have resulted in significant benefits to the U.S. economy and environment. The IMPACTS report cites numerous examples of emerging and commercially available technologies developed through OIT that involved one or more national laboratories in some stage of the technology-development cycle.

For more information, contact:

Pacific Northwest National Laboratory (PNNL)
Chair—Steven C. Weiner, sc.weiner@pnl.gov
Phone: 202.646.7870

Albany Research Center
William Riley, riley@alrc.doe.gov

Ames Laboratory
David Hoffman, hoffman@ameslab.gov

Argonne National Laboratory (ANL)
Past Chair—William Schertz, schertzww@anl.gov

Brookhaven National Laboratory (BNL)
Michael Sebastino, sebastino@bnl.gov

Idaho National Engineering and Environmental Laboratory (INEEL)
Marty Sorensen, sms2@inel.gov

Kansas City Plant
Jack Quint, jquint@kcp.com

Lawrence Berkeley National Laboratory (LBNL)
Don Grether, dfgrether@lbl.gov

Lawrence Livermore National Laboratory (LLNL)
Robert Glass, glass3@llnl.gov

Los Alamos National Laboratory (LANL)
Melissa Miller, mami@lanl.gov

National Energy Technology Laboratory (NETL)
Joseph Paladino, joseph_paladino@netl.doe.gov

National Renewable Energy Laboratory (NREL)
Past Chair—Helena Chum, helena_chum@nrel.gov

Oak Ridge National Laboratory (ORNL)
Pete Angelini, angelinip@ornl.gov

Sandia National Laboratories (SNL)
Bill McLean, bill_mclean@sandia.gov

Savannah River Technology Center
Ed Danko, edward.danko@srs.gov

Y-12 Plant
Bill Brosey, broseywd@ornl.gov

For more information, contact:

Office of Industrial Technologies
Energy Efficiency and Renewable Energy
U.S. Department of Energy
Washington, DC 20585

http://www.oit.doe.gov/LCC
The most waste- and energy-intensive industries in the U.S., the focus of the Office of Industrial Technologies’ (OIT) Industries of the Future initiative, include agriculture, aluminum, chemicals, forest products, glass, metalcasting, mining, petroleum, and steel.

The Industries of the Future have signed agreements of understanding and cooperation with DOE. With OIT acting as a catalyst, visions of the future that reflect industry-wide goals to achieve greater competitiveness, efficiency, waste reduction, and pollution prevention, have been published. Technology roadmaps spell out prioritized, specific action areas to meet the goals contained within the visions. This process has created a common understanding of industry’s R&D needs, which can then be addressed by the broad research community, focusing national talents on the most important priorities of U.S. industry as a whole. LCC teams work in tandem with industry to achieve targeted priorities within the R&D visions.

The Nation’s network of DOE laboratories and facilities holds an extensive store of research and development expertise and unique equipment developed for their various missions. How can U.S. industry unlock this treasure of knowledge and experience? The Laboratory Coordinating Council (LCC) has forged an important key.

The LCC gives U.S. industry access to a “virtual” laboratory that can be tailored to meet the specific requirements of almost any research project. Industry leaders no longer need to approach each laboratory separately to gauge suitability and work out agreements. The laboratories now function in a distributed manner to develop appropriate working relationships.

Because each laboratory and facility has specific areas of excellence, the LCC members have a matrix of competencies that can be assembled to meet the technological challenges of industry.

Established in 1995, the LCC responds to the major process industries’ R&D needs with the capabilities of 16 DOE laboratories and facilities.
The Nation’s network of DOE laboratories and facilities holds an extensive store of research and development expertise and unique equipment developed for their various missions. How can U.S. industry unlock this treasure of knowledge and experience? The Laboratory Coordinating Council (LCC) has forged an important key.

The LCC gives U.S. industry access to a “virtual” laboratory that can be tailored to meet the specific requirements of almost any research project. Industry leaders no longer need to approach each laboratory separately to gauge suitability and work out agreements. The laboratories now function in a distributed manner to develop appropriate working relationships.

Because each laboratory and facility has specific areas of excellence, the LCC members have a matrix of competencies that can be assembled to meet the technological challenges of industry.

Established in 1995, the LCC responds to the major process industries’ R&D needs with the capabilities of 16 DOE laboratories and facilities.

Industry can make the most of scarce R&D funds by accessing the specialized expertise of the Department of Energy’s (DOE) 16 laboratories. Technology roadmaps spell out prioritized, specific action areas to meet the goals contained within the visions. This process has created a common understanding of industry’s R&D needs, which can then be addressed by the broad research community, focusing national talents on the most important priorities of U.S. industry as a whole. LCC teams work in tandem with industry to achieve targeted priorities within the R&D visions.

Participating members of the Laboratory Coordinating Council are highlighted on the map at left. As can be seen, some of the finest government research facilities are available to help U.S. industry become more efficient and competitive in the global marketplace as we begin the next century.
Successful collaborations make a difference

• The Glass-Project Laboratory User Services (G+) Program facilitates glass industry access to the expertise and cutting-edge equipment and facilities of the national laboratories. Through the Glass Manufacturing Industry Council, glass companies are encouraged to establish short-term research collaborations that address the challenges identified in the industry’s technology roadmap.

• In response to the chemical industry’s Vision 2020, experts from industry, national laboratories, and academia have developed technology roadmaps that define the benefits, challenges, and needs for advanced computational technologies. Through a collaborative research effort, the Multiphase Fluid Dynamics Research Consortium (MFDRC) is seeking breakthroughs in the accurate modeling of gas-solid transport for industrial applications.

• Recent collaborative science and technology projects that have been applied to the Industries of the Future have resulted in significant recognition through Federal Laboratory Consortium, R&D 100, and Presidential Green Chemistry Challenge Awards. These awards celebrate the successful partnerships that engage DOE national laboratories with other technology providers.

• DOE investments have resulted in significant benefits to the U.S. economy and environment. The IMPACTS report cites numerous examples of emerging and commercially available technologies developed through OIT that involved one or more national laboratories in some stage of the technology-development cycle.

For more information, contact:

Pacific Northwest National Laboratory (PNNL)
Chair—Steven C. Weiner, sc.weiner@pnl.gov
Phone: 202.646.7870

Albany Research Center
William Riley, riley@alrc.doe.gov

Ames Laboratory
David Hoffman, hoffman@ameslab.gov

Argonne National Laboratory (ANL)
Past Chair—William Schertz, schertzww@anl.gov

Brookhaven National Laboratory (BNL)
Michael Sebastino, sebastino@bnl.gov

Idaho National Engineering and Environmental Laboratory (INEEL)
Marty Sorensen, sms2@inel.gov

Kansas City Plant
Jack Quint, jquint@kcp.com

Lawrence Berkeley National Laboratory (LBNL)
Don Grether, dfgrether@lbl.gov

Lawrence Livermore National Laboratory (LLNL)
Robert Glass, glass3@llnl.gov

Los Alamos National Laboratory (LANL)
Melissa Miller, mami@lanl.gov

National Energy Technology Laboratory (NETL)
Joseph Paladino, joseph_paladino@netl.doe.gov

National Renewable Energy Laboratory (NREL)
Past Chair—Helena Chum, helena_chum@nrel.gov

Oak Ridge National Laboratory (ORNL)
Pete Angelini, angelini@ornl.gov

Sandia National Laboratories (SNL)
Bill McLean, bill_mclean@sandia.gov

Savannah River Technology Center
Ed Danko, edward.danko@srs.gov

Y-12 Plant
Bill Brosey, broseywd@ornl.gov

Office of Industrial Technologies
Energy Efficiency and Renewable Energy
U.S. Department of Energy
Washington, DC 20585

http://www.oit.doe.gov/LCC
Successful collaborations make a difference

- The Glass-Project Laboratory User Services (G+) Program facilitates glass industry access to the expertise and cutting-edge equipment and facilities of the national laboratories. Through the Glass Manufacturing Industry Council, glass companies are encouraged to establish short-term research collaborations that address the challenges identified in the industry's technology roadmap.

- In response to the chemical industry's Vision 2020, experts from industry, national laboratories, and academia have developed technology roadmaps that define the benefits, challenges, and needs for advanced computational technologies. Through a collaborative research effort, the Multiphase Fluid Dynamics Research Consortium (MFDRC) is seeking breakthroughs in the accurate modeling of gas-solid transport for industrial applications.

- Recent collaborative science and technology projects that have been applied to the Industries of the Future have resulted in significant recognition through Federal Laboratory Consortium, R&D 100, and Presidential Green Chemistry Challenge Awards. These awards celebrate the successful partnerships that engage DOE national laboratories with other technology providers.

- DOE investments have resulted in significant benefits to the U.S. economy and environment. The IMPACTS report cites numerous examples of emerging and commercially available technologies developed through OIT that involved one or more national laboratories in some stage of the technology-development cycle.

For more information, contact:

Pacific Northwest National Laboratory (PNNL)
Chair—Steven C. Weiner, sc.weiner@pnl.gov
Phone: 202.646.7870

Albany Research Center
William Riley, riley@alrc.doe.gov

Ames Laboratory
David Hoffman, hoffman@ameslab.gov

Argonne National Laboratory (ANL)
Past Chair—William Schertz, schertzww@anl.gov

Brookhaven National Laboratory (BNL)
Michael Sebastino, Sebastino@bnl.gov

Idaho National Engineering and Environmental Laboratory (INEEL)
Marty Sorensen, sms2@inel.gov

Kansas City Plant
Jack Quint, quint@kip.com

Lawrence Berkeley National Laboratory (LBNL)
Don Grether, dfgrether@lbl.gov

Lawrence Livermore National Laboratory (LLNL)
Robert Glass, glass3@llnl.gov

Los Alamos National Laboratory (LANL)
Melissa Miller, mami@lanl.gov

National Energy Technology Laboratory (NETL)
Joseph Paladino, joseph_paladino@netl.doe.gov

National Renewable Energy Laboratory (NREL)
Past Chair—Helena Chum, helena_chum@nrel.gov

Oak Ridge National Laboratory (ORNL)
Pete Angelini, angelini@ornl.gov

Sandia National Laboratories (SNL)
Bill McLean, bill_mclean@sandia.gov

Savannah River Technology Center
Ed Danko, edward.danko@srs.gov

Y-12 Plant
Bill Brosey, broseywd@ornl.gov

DOE/GO-102001-1189 January 2001
Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 20% postconsumer waste

Office of Industrial Technologies
Energy Efficiency
and Renewable Energy
U.S. Department of Energy
Washington, DC 20585

http://www.oit.doe.gov/LCC