MEASUREMENT OF NON-LINEARITIES USING SPECTRUM ANALYSIS OF DRIVEN BETATRON OSCILLATION.
PDF Version Also Available for Download.
Description
Resonance driving terms can be derived from the frequency analysis of turn-by-turn betatron oscillation data. This paper demonstrates that the same information can also be drawn from the spectral analysis of a driven oscillation adiabatically excited by an rf dipole. The advantage of this method is that a large betatron oscillation amplitude can be sustained without loosing the coherence signal. The frequency spectrum of the driven oscillation is composed of multiples of the rf dipole modulation frequency which can be interpreted as resonance driving terms. This analysis has been applied to the data taken at the Brookhaven AGS. The adiabatically ...
continued below
Publisher Info:
Brookhaven National Lab., Upton, NY (United States)
Place of Publication:
Upton, New York
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
Resonance driving terms can be derived from the frequency analysis of turn-by-turn betatron oscillation data. This paper demonstrates that the same information can also be drawn from the spectral analysis of a driven oscillation adiabatically excited by an rf dipole. The advantage of this method is that a large betatron oscillation amplitude can be sustained without loosing the coherence signal. The frequency spectrum of the driven oscillation is composed of multiples of the rf dipole modulation frequency which can be interpreted as resonance driving terms. This analysis has been applied to the data taken at the Brookhaven AGS. The adiabatically excited coherent oscillation is also very useful in measuring the betatron tune parasitically. The data taken during the AGS high intensity proton program is also presented.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
BAI,M.; BLASKIEWICZ,M.; LEHRACH,A.; ROSER,T.; SCHMIDT,F. & VAN ASSELT,W.MEASUREMENT OF NON-LINEARITIES USING SPECTRUM ANALYSIS OF DRIVEN BETATRON OSCILLATION.,
article,
June 18, 2001;
Upton, New York.
(digital.library.unt.edu/ark:/67531/metadc723392/:
accessed February 19, 2019),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.