An object-oriented approach to site characterization decision support

PDF Version Also Available for Download.

Description

Effective decision support for site characterization is key to determining the nature and extent of contamination and the associated human and environmental risks. Site characterization data, however, present particular problems to technical analysts and decision-makers. Such data are four dimensional, incorporating temporal and spatial components. Their sheer volume can be daunting -- sites with hundreds of monitoring wells and thousands of samples sent for laboratory analyses are not uncommon. Data are derived from a variety of sources including laboratory analyses, non-intrusive geophysical surveys, historical information, bore logs, in-field estimates of key physical parameters such as aquifer transmissivity, soil moisture content, ... continued below

Physical Description

19 p.

Creation Information

Johnson, R. June 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Effective decision support for site characterization is key to determining the nature and extent of contamination and the associated human and environmental risks. Site characterization data, however, present particular problems to technical analysts and decision-makers. Such data are four dimensional, incorporating temporal and spatial components. Their sheer volume can be daunting -- sites with hundreds of monitoring wells and thousands of samples sent for laboratory analyses are not uncommon. Data are derived from a variety of sources including laboratory analyses, non-intrusive geophysical surveys, historical information, bore logs, in-field estimates of key physical parameters such as aquifer transmissivity, soil moisture content, depth-to-water table, etc. Ultimately, decisions have to be made based on data that are always incomplete, often confusing, inaccurate, or inappropriate, and occasionally wrong. In response to this challenge, two approaches to environmental decision support have arisen, Data Quality Objectives (DQOS) and the Observational Approach (OA). DQOs establish criteria for data collection by clearly defining the decisions that need to be made, the uncertainty that can be tolerated, and the type and amount of data that needs to be collected to satisfy the uncertainty requirements. In practice, DQOs are typically based on statistical measures. The OA accepts the fact that the process of characterizing and remediating contaminated sites is always uncertain. Decision-making with the OA is based on what is known about a site, with contingencies developed for potential future deviations from the original assumptions about contamination nature, extent, and risks posed.

Physical Description

19 p.

Notes

INIS; OSTI as DE95012210

Source

  • Other Information: PBD: [1995]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95012210
  • Report No.: ANL/EAIS/PP--78512
  • Grant Number: W-31-109-ENG-38
  • DOI: 10.2172/78721 | External Link
  • Office of Scientific & Technical Information Report Number: 78721
  • Archival Resource Key: ark:/67531/metadc723127

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1995

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • Dec. 15, 2015, 5:55 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Johnson, R. An object-oriented approach to site characterization decision support, report, June 1, 1995; Illinois. (digital.library.unt.edu/ark:/67531/metadc723127/: accessed June 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.