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On Reflexive Data Models 

S. Petrov’ 

Abstract. An information system is reflexive if it 
stores a description of its current structure in the body 
of stored information and is acting on the base of this 
information. A data model is reflexive, if its language 
is meta-closed and can be used to build such a system. 
The need for reflexive data models in new areas of 
information technology applications is argued. An 
attempt to express basic notions related to information 
systems is made in the case when the system supports 
and uses meta-closed representation of the data. 

1 INTRODUCTION 

The information technology (IT) was initially 
developed for relatively simple object areas mainly 
related to business where distinction between 
information and metainformation is clear, structure 
and properties of data are well known. As the result, 
an information system is considered as an 
implementation of a formal theory describing general 
properties of represented data. States of the system 
(its content at a particular moment) or their sets are 
models of the theory.* There is usual trade-off 
between the expressive power of the language and 
computational properties of the expressed theory. A 
theory expressible in a fragment of the first order 
calculus corresponds to a system with queries 
executable in polynomial time (the case of restricted 
relational model). If the theory is based on some 
exotic logic where most algorithmic properties are 
unsolvable (the case of some object-oriented data 
models), in the corresponding system some well- 
expressed queries can be unsolvable. In any case, 
some kind of theoretical knowledge, general 
properties of data, should be available to a developer 
and their logic determines the system capabilities and 
efficiency. 

Attempts to stretch the range of applications to 
object areas where formalization doesn’t exist and/or 
is not possible were not always successful. A simple 

1 Oak Ridge National Laboratory, Life Sciences Division, 
Computational Biology Section, P.O.Box 2008, Bldg. 
106OCOM, Oak Ridge, TN 37831-6480, email: 
petrovs@ornl.gov 
’ For example, when time-related dependencies are supported a 
sequence of states represents the model and the theory is based 
on a temporal logic. 

example is applications of database engines to textual 
data. 

Application of IT to Molecular Biology is a new 
and extremely fascinating case. This is the case where 
the better an information system is designed the more 
it helps to make itself obsolete. Mass-production 
sequencing generates huge amount of data to be 
analyzed and stored. This task is impossible without 
an information system and any such system is based 
upon a representation, conceptual design, and logical 
schema. They utilize known at that particular moment 
system of notions and theoretical considerations. The 
ultimate goal of the system is to help biologists to 
advance the same theoretical knowledge on the 
subject. The better and faster it is done, the faster the 
system becomes obsolete. Resulting “catch 22” in 
Bioinformatics is extensively discussed in the section 
2 below. 

The text below is a first part of an attempt to 
investigate properties of possible reflexive data 
models. It serves two modest goals: to show that such 
data models are needed and to show that a formal 
description of such models is possible. Usage of 
meta-closed languages and its implications are 
considered in the section 3. 

In the section 4 basic notions related to 
information systems (a system, its state, information 
equivalence, integrity, etc.) are formalized in case 
when the system supports and uses meta-closed 
representation of the data, In addition, a few 
properties of such systems are establish&d. 

2. THE CASE OF BIOINFORMATICS 

2.2 The difference between bioinformatics 
and other application fields 

In molecular biology, an information system serves 
as a necessary discovery tool used for further 
development of the “Theoretical Molecular 
Biology” whatever that means. In a contrast, 
information systems in Physics often deal with 
much greater amount of data but this data is well 
defined, complies with highly developed theory, 
and the information system has very little to do 



with farther development of the Theoreti,cal 
Physics. 

Amount of biological data and its nature makes 
manual analysis impossible. This amount results, at 
least partly, from our inability to perceive directly 
objects in question. Sequencing can be compared with 
s,canning books written in unknown language with the 
goal to decipher the language. If the only available 
representation of Egyptian hieroglyphs would be 
scans of their small parts, the language wouldn’t be 
deciphered in XIX century but only now when an 
information system for these scans can be 
constructed. 

Thus, a “Molecular Biology Catch 22” exists: an 
information system is needed for the discovery of 
theoretical knowledge and theoretical knowledge is 
necessary for data representation in an information 
system. Taking dynamics into account, the same can 
be stated more correctly but not less painful: 

An information system is created on the base of 
existing theoretical knowledge with ultimate 
goal to improve and, therefore, to modify it. 
The better the system is designed, the more it 
helps biologists and faster becomes obsolete - 
together with all other systems built at same 
time on the base of the same knowledge. 

2.2 “Something is rotten in the state of 
Denmark.” 

Unhappy relationships between Bioinformatics 
applications and existing IT illustrate if not justify the 
previous statement: 
- The attempt to create a relational equivalent of the 

Genbank, GSDB [I J, led to a database where the 
schema is changing regularly. Sometimes these 
changes create a cycle: one year the object 
“sequence” was represented as a long text, next 
year it was represented as a hierarchy of text 
pieces, the year after it was switched back to the 
original. 

- It looks like that at almost any moment of its past 
existence GDB [2] had three schemata: the current 
one used online, the next one coming, and the one 
in the minds of developers. Number of people 
involved in the development, including logical 
design, was paradoxically increasing. Usage of 
OPM 3 didn’t change the situation but harmed the 
performance. 

- It is easier to avoid commercial products: 
GenBank [3] is an example of a Luddite 
approach to the technology despite NCBI 
background databases. Fields content is not 
formalized and a parsing script is required 
when a particular information is to be found 
among “features”. 

. . . or to develop your own: 

3 Object Protocol Model - an object-oriented environment 
independent of a particular database engine developed at Lorenz 
Berkeley National Laboratory. 

ACeDB [4,5] is an. example qf a very 
successful homemade tool. Despite 
authors’ claim, it is rather hierarchical 
than object-oriented system. It is very 
popular among biologists, in particular 
because they can redesign their 
application - within rather wide 
supported limits - at any time and 
almost painlessly. 

- Computational tools add their own semantic 
diversity: 

Objects “gene” = “experimentally found 
gene”, “GRAIL gene” = “gene found by 
gene predicting program GRAIL”, 
“GenScan gene” = “gene found by the gene 
predicting program GenScan ” are 
conceptually different. 

. . . and information systems add more: 
Semantics of the object “gene” in 
GenBank and GDB are quite different. 

An evident problem in Bioinformatics is the 
handling of the metainformation, “theoretical 
assumptions”, that are very fluid and badly defined in 
Molecular Biology. Commercially available DBMSs 
are based on the assumption that metainformation is 
stable ,within the life span of an information system. 
As the result, one can find more “flat file” than “true” 
databases in the Bionformatics. GenBank is just one 
of the many. 

2.3 Does the object-oriented approach 
change the picture? 

Object-oriented languages bring in three features: 
richer tree-like object structures, code encapsulation, 
and inheritance. First feature is the least important 
just because XML, ACeDB data model, and other not 
true object-oriented languages share it. It is still 
important because “flat table” is evident Procrustean 
bed for biological data. Two last features are related 
to expressing metainformation within a system and, 
therefore, are more significant. “Officially”, 00 
languages are not meta-closed but inheritance and 
code encapsulation blurs the border between 
abstraction and meta-transition. A method inherited 
from a superclass can express (and support) meta- 
properties of a class (like database triggers). A choice 
between coexisting specializations of an object class 
can be considered as an extreme case of self- 
referential object modification. Extra levels of 
abstraction separate stable components from the 
conglomerate of molecular biology knowledge to be 
used as “theoretical foundation” of its software 
support. Naturally, these components will have little 
if any of biological semantics. 

CORBA as a system integration environment 
creates additional meta-levels. As the result, an 
information transfer resembles mountain climbing. A 
query formulated in terms of an interface objects goes 
through several conversions reaching an airless level 
of abstraction and then slides down to, for example, 
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an SQL query(ies) to several databases. Results are 
coming back in the same way. 

Assuming that extensive representation of highly 
variable meta-information is unavoidable in 
Bioinformatics, it seems that there are only two 
alternatives. Firsts one is to use a hierarchy of 
representations for the hierarchy of data meta-levels 
as it is done in 00 approach. The second one is to use 
a meta-closed, self-referential language representing 
all meta-levels of information uniformly. Just like it is 
done in English and all other human languages. 

3 META-CLOSED LANGUAGES 

Meta-closed representation implies representing and 
storing a description of the system properties in the 
same way as properties and features of an area 
objects. A support of such representation requires, in 
particular, automatic system restructuring according 
to a modification of the data describing the system. 
For information systems considered below these two 
properties are characteristic: a system reflects its 
current structure in the body of stored information and 
it is acting on the base of this information. According 
to Prof. V.A. Lefebvre, who pioneered research of 
formal models of reflexivity [6,7], such a system can 
be called reflexive [S]. 

The ability of an information system to handle 
information depends on a chosen data representation, 
a language. It defines the expressive power including 
the power to express system own properties, and 
therefore defines some kind of a “degree of 
reflexivity”. The choice of the language introduces 
syntactic considerations and restrictions making less 
transparent general properties of reflexive systems 
and underlying data models. To avoid this, no 
particular information representation language is 
specified below and no implementation problem is 
considered. A leftover of this elimination of 
particularities is a simple algebraic construction 
allowing it seems to be, to express some general 
properties of reflexive data models. The construction 
itself serves as a meta-language. 

Natural languages allow self-reference in phrases 
like “This phrase consists of six words” and, 
therefore, they are meta-closed. At the same time, a 
computer representation of data is restricted by formal 
computational paradigm. Within this paradigm, an 
information system is always an implementation of a 
formal theory “wired in” its software support. In 
particular, the theory is expressed in the conceptual 
and logical schemata of the database. Though meta- 
data is also represented and stored (for example, as a 
system catalog or data dictionary) it can not be 
modified ad hoc and used to automatically modify the 
database structure. Instead, they are automatically 
updated each time when the structure of the database 
is changed. Thus, a constant meta-data is used to 
interpret a dynamic information stored in the system. 
In a contrast, in human communications part of the 
incoming information is used to interpret the rest of it, 
both parts are not separated and often are barely 
distinct. A meta-closed data representation is 
supposed to treat information in more “linguistic 

way” in some sense diminishing the gap between 
human and computer representation. 

Meta-closed data representation invokes the 
danger of paradoxes that can undermine the system 
integrity. On the other hand, the danger is immanent 
only in case of the classic logic. Limitations of 
computer environment as well as requirements of the 
real world move logic supported by a system in the 
intuitionistic direction. In commercial RDBMS, 
support for at least one null value makes it a third 
truth-value in logical expressions. Limited time and 
computer power makes complete check of consistency 
impossible replacing it by a para-consistency [9,10]. 
More or less exotic logic calculi where the danger of 
paradoxes is smaller are de-facto standard in 
information systems. Therefore, an attempt to 
consider meta-closed data models doesn’t change the 
situation as much as it seems to be. 

There is a definite drift of software engineering 
and lT in from “crystal” classic data models based on 
logical and algebraic constructions (e.g., relational 
model, object-oriented models) to amorphous 
software bundles blurring the distinction between 
object area data and data description as well as 
distinction between denominative and procedural 
semantics. Growing requirements of scale, 
complexity, and generality led to data representation 
comprising information and metainformation (e.g., 
XML) though quite often metainformation (including 
procedural one) is hidden in object class definitions. 
In particular, data warehousing technology based on 
incorporation into one system several databases 
having different conceptual schema requires, 
therefore, definition, representation, and storage of 
these schemata as well as transformations of data 
from one database into another allowing to compare 
it. Transformation of d&a representations is the base 
of online analytical processing (OLAP), in particular, 
in multidimensional data representations. 

These changes actually reflect a general trend in 
programming toward interpreted scripts versus 
compiled code (e.g., PERL). Interpreted languages 
.pose no formal restrictions on self-modification of the 
code during the run time. (The most interesting results 
in this area belong to the Theory of Supercompilation 
based on REFAL [11,12].) 

4 REFLEXIVE DATA MODELS 

A few definitions below are based on a strong version 
of the closed world semantics: everything relevant to 
the stored information is supposed to be represented 
within the system including any procedure, query, or 
a program used to process data by selection, filtering, 
etc. The only linguistic consideration used below is 
the assumption that information is somehow 
partitioned into records. Reasons for partitioning and 
its choice are not considered. Usually, a partition is 
defined by the syntax of a language used to express 
information - semantics is hidden under a syntactic 
cover. The important point is that there is no 
difference between Fecords representing operational 
data (e.g., executable code) and any other data piece. 



Definition 1. A countable set 9 is the set of records 
and special element rp E % is itsfaulty record. 

It is convenient to view records as arbitrary texts in an 
arbitrary language(s). The faulty record plays role of a 
universal null value. 

Next two definitions express the fact that some of 
the records can be applied to a list of (other) records 
serving as arguments and the result of application is a 
record. 

Definition 2. The set of lists on 92 is .@ = {l E ,L/2*: Ill 
> O}, where t/l* is free monoid generated on fi by 
concatenation.4 

A list built from records r’, . . . . r” is denoted [r’,..., 
r”]. If r is a record and [r’,..., r”] is a list, the list [r, 
r’,..., r”] is denoted r o [rr’ ,..., r”] where o is 

concatenation. Similarly, 1’01” is the concatenation of 

lists 1’ and 1”. 

Definition 3. %: & + <X is the universal mapping. 

Universal mapping can be viewed as a universal 
program (that itself doesn’t necessary belongs to 3) 
or an abstract machine that can be used to model or 
implement any data processing described by elements 
of .& 

Definition 4. The image of r on S_c .R is 
.%(r/S) = / %([r] 0 1) : 1 E d }. * 

To avoid paradoxes, the assumption that a record 
is not applicable to itself is used: 

QrrE Sk .Rr/{ r]) = cp & 9(r/{q])= rp. 

For every S_c .‘7, 9 defines is a Galois correspondence 
on S. It is not necessary to assume that ‘Zrepresents a 
virtual machine executing elements of 9 as programs. 
Another valid interpretation is: 9 contains formulae 
and their models and % provides interpretations. In 
any case, we are not concern with the complexity ‘% 
execution. 

Note that records are used as models of other ones. 
Two records are considered semantically equivalent (r 
= r’) iff J(r) = .qr’), and equivalent (r 3 r’) iff Vk 
,iil+: r(1) = r’(1). Evidently, equivalence implies 
semantic equivalence but not vice versa. Stretching 
the scope of database terminology, we are calling Y 
schema of .qr). 

4 For a finite set S, a free monoid S* generated by Sunder 
operation of concatenation is the set of all finite strings (words) 
of elements of S including zero length suing A. The set S’= S* \ 
{a/ contains all strings from S* with length bigger than 0. The 
same definition is valid for countable sets. As soon as the set is 
ordered, the order implies lexicographic order on the monoid 
that is, therefore, also countable. To distinguish between finite 
and countable sets and for some other reasons, elements of S’ 
are called (finite) lists. 

In the case of relational model, a relation is viewed 
as a model of its predicate. The record corresponding 
to the predicate is the schema of the relation. The 
same relations can be generated by a query, 
constructing it from other relations - therefore, the 
query-record is semantically equivalent to the 
schema-record. 

Interpretations of mappings % and .% are based on 
the assumption that outputs of the same procedure are 
somehow semantically uniform. It is possible to say, 
that r generates its own models that are elements of 
JTr). 

Definition 5. For R c 9, the set [R] E $4 is the 
closure of R iff 

1. R_c[R] 
2. Q~E [RR], $r/[R]) _c[R] 
3. Any set holding properties I and 2 contains [RI. 

The set R E 9 is closed iff R = [R] 

Definition 6. The set R, R E R’, is the base of R’ iff 
[R] = [R’] and for any R” -c R, [R”] c [R’]. 

If a set of records is the state of an information 
system, then its closure consists of all possible 
queries and their results. On the other hand, any of its 
bases represent a non-reducible subset necessary to 
yield the same results. 

Evidently, a base represents a non-reducible subset 
of R that allows restoring its closure. If a closed set R 
represent a state of an information system, the set of 
explicitly present “facts” and “procedures” always 
contains or coincides with one of its bases. 

Taking into account usual trade off between space 
and computational time, “stored set” can be a base of 
the state or the state itself. In first case, computational 
time is spend to find a closure that is, to answer all 
queries. In the second case, no derivation is needed 
but search time may be big. 

With all information uniformly represented by 
records, there is no “skeleton” defining the system 
structure and functions. The only thing that 
distinguishes one system from another is its 
trajectory: the sequence of states it is in during its life 
span. It is rather difficult to agree that an arbitrary 
sequence of states should be considered as an 
information system. For a system to be modified, the 
modification itself should be properly expressed: 
there should be a record representing it. 

Definition 7. A trajectory is a sequence e51 , P5z ,..., 
S,,, where each 4 c ,6X and 

1. Sr is finite or ~5~ = S?; 
2. For every i > 1, there is ri E 9Zsuch that 

$ i+l = ‘!J(ri/ P% ) 5 

The schema and integrity constraints constitute a 
stable part of an information system s, in our case it is 
the set of records n,, h r. Note that it can be empty. 

Two systems are semantically equivalent when 
they coexist at the same time range and at any 
moment can answer the same questions. It is easy to 
see that two information systems are semantically 
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equivalent iff at any moment closure of their states 
are equal. It means, that sets of facts explicitly stored 
in them contain bases of the same closed set. 

5 CONCLUSION 

D.Bjorner, A.P.Ershov and N.D.Jones, 445-463, 
North-Holland, (1988). 

[13] S. Petrov at al, ‘Genome Information Warehouse: 
Information and Databases to Support Comprehensive 
Genome Analysis and Annotation’, Human Genome 
Program, Co&actor-Grantee Workshop, March (2000). 

The work is “to be continued” though some 
implications of the above are quite evident. In 
particular, sets of,records and their closures possess 
usual set of properties associated with the closure 
concept. Proof of these properties is very 
straightforward. It is also quite clear that a language 
for a reflexive data model should comprise all 
computational environment for the data. It means, in 
particular, that separate representation means for data 
and procedures contradict reflexivity. 

An attempt to derive syntactic structure of records 
implicitly imposed on them by their procedural 
properties can be useful. A few interesting results 
were derived from the assumption that number of 
arguments used by a every procedure is limited. 

An attempt to overcome deficiencies of current 
information system technology is undergoing now in 
Oak Ridge National Laboratory. Genome Information 
Warehouse under development there is a 
heterogeneous information system comprising several 
search engines. It is build around a core subsystem 
having some degree of reflexivity and implemented as 
a relational database [ 131. 
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