
I

. *

On Reflexive Data Models*

S. Petrov

Computational Biosciences Section
Life Sciences Division

Oak Ridge National Laboratory
Oak Ridge, TN 37831-6480

“The submitted manuscript has been
authorized by a contractor of the U.S.
Government under contract No. DE-

ACO596OR22464. Accordingly, the U.S.
Government retains a nonexclusive,

royalty-free license to publish or reproduce
the published form of this contribution, or
allow others to do so, for U.S. Government

purposes.”

Submitted to 14th European Conference on Artijkial Intelligence, Berlin, Germany, August 20-25,
2000.

*Research was supported by the Office of Health and Environmental Research, U.S.
Department of Energy under contract No. DE-AC05-960R22464 with Lockheed Martin Energy
Research Corporation.

On Reflexive Data Models

S. Petrov’

Abstract. An information system is reflexive if it
stores a description of its current structure in the body
of stored information and is acting on the base of this
information. A data model is reflexive, if its language
is meta-closed and can be used to build such a system.
The need for reflexive data models in new areas of
information technology applications is argued. An
attempt to express basic notions related to information
systems is made in the case when the system supports
and uses meta-closed representation of the data.

1 INTRODUCTION

The information technology (IT) was initially
developed for relatively simple object areas mainly
related to business where distinction between
information and metainformation is clear, structure
and properties of data are well known. As the result,
an information system is considered as an
implementation of a formal theory describing general
properties of represented data. States of the system
(its content at a particular moment) or their sets are
models of the theory.* There is usual trade-off
between the expressive power of the language and
computational properties of the expressed theory. A
theory expressible in a fragment of the first order
calculus corresponds to a system with queries
executable in polynomial time (the case of restricted
relational model). If the theory is based on some
exotic logic where most algorithmic properties are
unsolvable (the case of some object-oriented data
models), in the corresponding system some well-
expressed queries can be unsolvable. In any case,
some kind of theoretical knowledge, general
properties of data, should be available to a developer
and their logic determines the system capabilities and
efficiency.

Attempts to stretch the range of applications to
object areas where formalization doesn’t exist and/or
is not possible were not always successful. A simple

1 Oak Ridge National Laboratory, Life Sciences Division,
Computational Biology Section, P.O.Box 2008, Bldg.
106OCOM, Oak Ridge, TN 37831-6480, email:
petrovs@ornl.gov
’ For example, when time-related dependencies are supported a
sequence of states represents the model and the theory is based
on a temporal logic.

example is applications of database engines to textual
data.

Application of IT to Molecular Biology is a new
and extremely fascinating case. This is the case where
the better an information system is designed the more
it helps to make itself obsolete. Mass-production
sequencing generates huge amount of data to be
analyzed and stored. This task is impossible without
an information system and any such system is based
upon a representation, conceptual design, and logical
schema. They utilize known at that particular moment
system of notions and theoretical considerations. The
ultimate goal of the system is to help biologists to
advance the same theoretical knowledge on the
subject. The better and faster it is done, the faster the
system becomes obsolete. Resulting “catch 22” in
Bioinformatics is extensively discussed in the section
2 below.

The text below is a first part of an attempt to
investigate properties of possible reflexive data
models. It serves two modest goals: to show that such
data models are needed and to show that a formal
description of such models is possible. Usage of
meta-closed languages and its implications are
considered in the section 3.

In the section 4 basic notions related to
information systems (a system, its state, information
equivalence, integrity, etc.) are formalized in case
when the system supports and uses meta-closed
representation of the data, In addition, a few
properties of such systems are establish&d.

2. THE CASE OF BIOINFORMATICS

2.2 The difference between bioinformatics
and other application fields

In molecular biology, an information system serves
as a necessary discovery tool used for further
development of the “Theoretical Molecular
Biology” whatever that means. In a contrast,
information systems in Physics often deal with
much greater amount of data but this data is well
defined, complies with highly developed theory,
and the information system has very little to do

with farther development of the Theoreti,cal
Physics.

Amount of biological data and its nature makes
manual analysis impossible. This amount results, at
least partly, from our inability to perceive directly
objects in question. Sequencing can be compared with
s,canning books written in unknown language with the
goal to decipher the language. If the only available
representation of Egyptian hieroglyphs would be
scans of their small parts, the language wouldn’t be
deciphered in XIX century but only now when an
information system for these scans can be
constructed.

Thus, a “Molecular Biology Catch 22” exists: an
information system is needed for the discovery of
theoretical knowledge and theoretical knowledge is
necessary for data representation in an information
system. Taking dynamics into account, the same can
be stated more correctly but not less painful:

An information system is created on the base of
existing theoretical knowledge with ultimate
goal to improve and, therefore, to modify it.
The better the system is designed, the more it
helps biologists and faster becomes obsolete -
together with all other systems built at same
time on the base of the same knowledge.

2.2 “Something is rotten in the state of
Denmark.”

Unhappy relationships between Bioinformatics
applications and existing IT illustrate if not justify the
previous statement:
- The attempt to create a relational equivalent of the

Genbank, GSDB [I J, led to a database where the
schema is changing regularly. Sometimes these
changes create a cycle: one year the object
“sequence” was represented as a long text, next
year it was represented as a hierarchy of text
pieces, the year after it was switched back to the
original.

- It looks like that at almost any moment of its past
existence GDB [2] had three schemata: the current
one used online, the next one coming, and the one
in the minds of developers. Number of people
involved in the development, including logical
design, was paradoxically increasing. Usage of
OPM 3 didn’t change the situation but harmed the
performance.

- It is easier to avoid commercial products:
GenBank [3] is an example of a Luddite
approach to the technology despite NCBI
background databases. Fields content is not
formalized and a parsing script is required
when a particular information is to be found
among “features”.

. . . or to develop your own:

3 Object Protocol Model - an object-oriented environment
independent of a particular database engine developed at Lorenz
Berkeley National Laboratory.

ACeDB [4,5] is an. example qf a very
successful homemade tool. Despite
authors’ claim, it is rather hierarchical
than object-oriented system. It is very
popular among biologists, in particular
because they can redesign their
application - within rather wide
supported limits - at any time and
almost painlessly.

- Computational tools add their own semantic
diversity:

Objects “gene” = “experimentally found
gene”, “GRAIL gene” = “gene found by
gene predicting program GRAIL”,
“GenScan gene” = “gene found by the gene
predicting program GenScan ” are
conceptually different.

. . . and information systems add more:
Semantics of the object “gene” in
GenBank and GDB are quite different.

An evident problem in Bioinformatics is the
handling of the metainformation, “theoretical
assumptions”, that are very fluid and badly defined in
Molecular Biology. Commercially available DBMSs
are based on the assumption that metainformation is
stable ,within the life span of an information system.
As the result, one can find more “flat file” than “true”
databases in the Bionformatics. GenBank is just one
of the many.

2.3 Does the object-oriented approach
change the picture?

Object-oriented languages bring in three features:
richer tree-like object structures, code encapsulation,
and inheritance. First feature is the least important
just because XML, ACeDB data model, and other not
true object-oriented languages share it. It is still
important because “flat table” is evident Procrustean
bed for biological data. Two last features are related
to expressing metainformation within a system and,
therefore, are more significant. “Officially”, 00
languages are not meta-closed but inheritance and
code encapsulation blurs the border between
abstraction and meta-transition. A method inherited
from a superclass can express (and support) meta-
properties of a class (like database triggers). A choice
between coexisting specializations of an object class
can be considered as an extreme case of self-
referential object modification. Extra levels of
abstraction separate stable components from the
conglomerate of molecular biology knowledge to be
used as “theoretical foundation” of its software
support. Naturally, these components will have little
if any of biological semantics.

CORBA as a system integration environment
creates additional meta-levels. As the result, an
information transfer resembles mountain climbing. A
query formulated in terms of an interface objects goes
through several conversions reaching an airless level
of abstraction and then slides down to, for example,

2

. .

an SQL query(ies) to several databases. Results are
coming back in the same way.

Assuming that extensive representation of highly
variable meta-information is unavoidable in
Bioinformatics, it seems that there are only two
alternatives. Firsts one is to use a hierarchy of
representations for the hierarchy of data meta-levels
as it is done in 00 approach. The second one is to use
a meta-closed, self-referential language representing
all meta-levels of information uniformly. Just like it is
done in English and all other human languages.

3 META-CLOSED LANGUAGES

Meta-closed representation implies representing and
storing a description of the system properties in the
same way as properties and features of an area
objects. A support of such representation requires, in
particular, automatic system restructuring according
to a modification of the data describing the system.
For information systems considered below these two
properties are characteristic: a system reflects its
current structure in the body of stored information and
it is acting on the base of this information. According
to Prof. V.A. Lefebvre, who pioneered research of
formal models of reflexivity [6,7], such a system can
be called reflexive [S].

The ability of an information system to handle
information depends on a chosen data representation,
a language. It defines the expressive power including
the power to express system own properties, and
therefore defines some kind of a “degree of
reflexivity”. The choice of the language introduces
syntactic considerations and restrictions making less
transparent general properties of reflexive systems
and underlying data models. To avoid this, no
particular information representation language is
specified below and no implementation problem is
considered. A leftover of this elimination of
particularities is a simple algebraic construction
allowing it seems to be, to express some general
properties of reflexive data models. The construction
itself serves as a meta-language.

Natural languages allow self-reference in phrases
like “This phrase consists of six words” and,
therefore, they are meta-closed. At the same time, a
computer representation of data is restricted by formal
computational paradigm. Within this paradigm, an
information system is always an implementation of a
formal theory “wired in” its software support. In
particular, the theory is expressed in the conceptual
and logical schemata of the database. Though meta-
data is also represented and stored (for example, as a
system catalog or data dictionary) it can not be
modified ad hoc and used to automatically modify the
database structure. Instead, they are automatically
updated each time when the structure of the database
is changed. Thus, a constant meta-data is used to
interpret a dynamic information stored in the system.
In a contrast, in human communications part of the
incoming information is used to interpret the rest of it,
both parts are not separated and often are barely
distinct. A meta-closed data representation is
supposed to treat information in more “linguistic

way” in some sense diminishing the gap between
human and computer representation.

Meta-closed data representation invokes the
danger of paradoxes that can undermine the system
integrity. On the other hand, the danger is immanent
only in case of the classic logic. Limitations of
computer environment as well as requirements of the
real world move logic supported by a system in the
intuitionistic direction. In commercial RDBMS,
support for at least one null value makes it a third
truth-value in logical expressions. Limited time and
computer power makes complete check of consistency
impossible replacing it by a para-consistency [9,10].
More or less exotic logic calculi where the danger of
paradoxes is smaller are de-facto standard in
information systems. Therefore, an attempt to
consider meta-closed data models doesn’t change the
situation as much as it seems to be.

There is a definite drift of software engineering
and lT in from “crystal” classic data models based on
logical and algebraic constructions (e.g., relational
model, object-oriented models) to amorphous
software bundles blurring the distinction between
object area data and data description as well as
distinction between denominative and procedural
semantics. Growing requirements of scale,
complexity, and generality led to data representation
comprising information and metainformation (e.g.,
XML) though quite often metainformation (including
procedural one) is hidden in object class definitions.
In particular, data warehousing technology based on
incorporation into one system several databases
having different conceptual schema requires,
therefore, definition, representation, and storage of
these schemata as well as transformations of data
from one database into another allowing to compare
it. Transformation of d&a representations is the base
of online analytical processing (OLAP), in particular,
in multidimensional data representations.

These changes actually reflect a general trend in
programming toward interpreted scripts versus
compiled code (e.g., PERL). Interpreted languages
.pose no formal restrictions on self-modification of the
code during the run time. (The most interesting results
in this area belong to the Theory of Supercompilation
based on REFAL [11,12].)

4 REFLEXIVE DATA MODELS

A few definitions below are based on a strong version
of the closed world semantics: everything relevant to
the stored information is supposed to be represented
within the system including any procedure, query, or
a program used to process data by selection, filtering,
etc. The only linguistic consideration used below is
the assumption that information is somehow
partitioned into records. Reasons for partitioning and
its choice are not considered. Usually, a partition is
defined by the syntax of a language used to express
information - semantics is hidden under a syntactic
cover. The important point is that there is no
difference between Fecords representing operational
data (e.g., executable code) and any other data piece.

Definition 1. A countable set 9 is the set of records
and special element rp E % is itsfaulty record.

It is convenient to view records as arbitrary texts in an
arbitrary language(s). The faulty record plays role of a
universal null value.

Next two definitions express the fact that some of
the records can be applied to a list of (other) records
serving as arguments and the result of application is a
record.

Definition 2. The set of lists on 92 is .@ = {l E ,L/2*: Ill
> O}, where t/l* is free monoid generated on fi by
concatenation.4

A list built from records r’, r” is denoted [r’,...,
r”]. If r is a record and [r’,..., r”] is a list, the list [r,
r’,..., r”] is denoted r o [rr’ ,..., r”] where o is

concatenation. Similarly, 1’01” is the concatenation of

lists 1’ and 1”.

Definition 3. %: & + <X is the universal mapping.

Universal mapping can be viewed as a universal
program (that itself doesn’t necessary belongs to 3)
or an abstract machine that can be used to model or
implement any data processing described by elements
of .&

Definition 4. The image of r on S_c .R is
.%(r/S) = / %([r] 0 1) : 1 E d }. *

To avoid paradoxes, the assumption that a record
is not applicable to itself is used:

QrrE Sk .Rr/{ r]) = cp & 9(r/{q])= rp.

For every S_c .‘7, 9 defines is a Galois correspondence
on S. It is not necessary to assume that ‘Zrepresents a
virtual machine executing elements of 9 as programs.
Another valid interpretation is: 9 contains formulae
and their models and % provides interpretations. In
any case, we are not concern with the complexity ‘%
execution.

Note that records are used as models of other ones.
Two records are considered semantically equivalent (r
= r’) iff J(r) = .qr’), and equivalent (r 3 r’) iff Vk
,iil+: r(1) = r’(1). Evidently, equivalence implies
semantic equivalence but not vice versa. Stretching
the scope of database terminology, we are calling Y
schema of .qr).

4 For a finite set S, a free monoid S* generated by Sunder
operation of concatenation is the set of all finite strings (words)
of elements of S including zero length suing A. The set S’= S* \
{a/ contains all strings from S* with length bigger than 0. The
same definition is valid for countable sets. As soon as the set is
ordered, the order implies lexicographic order on the monoid
that is, therefore, also countable. To distinguish between finite
and countable sets and for some other reasons, elements of S’
are called (finite) lists.

In the case of relational model, a relation is viewed
as a model of its predicate. The record corresponding
to the predicate is the schema of the relation. The
same relations can be generated by a query,
constructing it from other relations - therefore, the
query-record is semantically equivalent to the
schema-record.

Interpretations of mappings % and .% are based on
the assumption that outputs of the same procedure are
somehow semantically uniform. It is possible to say,
that r generates its own models that are elements of
JTr).

Definition 5. For R c 9, the set [R] E $4 is the
closure of R iff

1. R_c[R]
2. Q~E [RR], $r/[R]) _c[R]
3. Any set holding properties I and 2 contains [RI.

The set R E 9 is closed iff R = [R]

Definition 6. The set R, R E R’, is the base of R’ iff
[R] = [R’] and for any R” -c R, [R”] c [R’].

If a set of records is the state of an information
system, then its closure consists of all possible
queries and their results. On the other hand, any of its
bases represent a non-reducible subset necessary to
yield the same results.

Evidently, a base represents a non-reducible subset
of R that allows restoring its closure. If a closed set R
represent a state of an information system, the set of
explicitly present “facts” and “procedures” always
contains or coincides with one of its bases.

Taking into account usual trade off between space
and computational time, “stored set” can be a base of
the state or the state itself. In first case, computational
time is spend to find a closure that is, to answer all
queries. In the second case, no derivation is needed
but search time may be big.

With all information uniformly represented by
records, there is no “skeleton” defining the system
structure and functions. The only thing that
distinguishes one system from another is its
trajectory: the sequence of states it is in during its life
span. It is rather difficult to agree that an arbitrary
sequence of states should be considered as an
information system. For a system to be modified, the
modification itself should be properly expressed:
there should be a record representing it.

Definition 7. A trajectory is a sequence e51 , P5z ,...,
S,,, where each 4 c ,6X and

1. Sr is finite or ~5~ = S?;
2. For every i > 1, there is ri E 9Zsuch that

$ i+l = ‘!J(ri/ P%) 5

The schema and integrity constraints constitute a
stable part of an information system s, in our case it is
the set of records n,, h r. Note that it can be empty.

Two systems are semantically equivalent when
they coexist at the same time range and at any
moment can answer the same questions. It is easy to
see that two information systems are semantically

4

equivalent iff at any moment closure of their states
are equal. It means, that sets of facts explicitly stored
in them contain bases of the same closed set.

5 CONCLUSION

D.Bjorner, A.P.Ershov and N.D.Jones, 445-463,
North-Holland, (1988).

[13] S. Petrov at al, ‘Genome Information Warehouse:
Information and Databases to Support Comprehensive
Genome Analysis and Annotation’, Human Genome
Program, Co&actor-Grantee Workshop, March (2000).

The work is “to be continued” though some
implications of the above are quite evident. In
particular, sets of,records and their closures possess
usual set of properties associated with the closure
concept. Proof of these properties is very
straightforward. It is also quite clear that a language
for a reflexive data model should comprise all
computational environment for the data. It means, in
particular, that separate representation means for data
and procedures contradict reflexivity.

An attempt to derive syntactic structure of records
implicitly imposed on them by their procedural
properties can be useful. A few interesting results
were derived from the assumption that number of
arguments used by a every procedure is limited.

An attempt to overcome deficiencies of current
information system technology is undergoing now in
Oak Ridge National Laboratory. Genome Information
Warehouse under development there is a
heterogeneous information system comprising several
search engines. It is build around a core subsystem
having some degree of reflexivity and implemented as
a relational database [131.

REFERENCES

[II

PI

r31

t41

r51

L61

[71
PI
PI

r101

t111

[I21

C. Harger at al., ‘The genome sequence DataBase’,
Nucleic Acids Researches, 1,28(l), 31-33, (2000).
A.J. Cuticchia, ‘Future vision of the GDB human
genome database’, Human Mutation, 15 (1). 62-69,
(2000).
K. Hokamp et al, ‘what’s new in the library? What’s
new in GenBank? let PubCrawler tell you’, Trends in
Genetics, 11,471-473, (1999).
R. Durbin, J. Tbierry-Mieg. ‘A C. elegans database’,
1991. Documentation, code and data available from
anonymous ftp servers at lirmm.lirmm.fr, cele.mrc-
lmb.cam.ac.uk and ncbi.nlm.nih.gov.
‘The record of the ACEDB Conference and
Workshop Jul 27 - Aug 9, Cornell University, Ithaca,
New York, USA’, http:Nprobe.nalusda.gov:SOOO/
ace97.html (1997)
V.A. Lefebvre, The structure of awareness, Reidel,
1977.
V.A. Lefebvre, Algebra of Conscience, Reidel, 1982.
V.A. Lefebvre. Personal communication. 1998.
A.I.Arruda, ‘A survey of paraconsistent logic’,
Mathematical Logic in Latin America, North
Holland, New York, I-41, 1980.
L.I.Rozonoer, ‘On interpretation of inconsistent
theories’, Information Sciencies,vol.47,pp.243-266,
(1989)
V.F. Turchin, ‘An algorithm of generalization in the
supercompiler’, Workshop on partial evaluation and
mixed computations, Ott 1987, Denmark, Eds. D.
Bjorner, A.P. Ershov, N.D. Jones, (1987)
S.A. Romanenko, ‘A Compiler Generator Produced
by a Self-Applicable Specializer Can Have a
Surprisingly Natural and Understandable Structure’,
Partial Evaluation and Mixed Computation, Eds.

5

