Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels

PDF Version Also Available for Download.

Description

Thermodynamic properties and detailed chemical kinetic models have been developed for the combustion of two oxygenates: methyl butanoate, a model compound for biodiesel fuels, and methyl formate, a related simpler molecule. Bond additivity methods and rules for estimating kinetic parameters were adopted from hydrocarbon combustion and extended. The resulting mechanisms have been tested against the limited combustion data available in the literature, which was obtained at low temperature, subatmospheric conditions in closed vessels, using pressure measurements as the main diagnostic. Some qualitative agreement was obtained, but the experimental data consistently indicated lower overall reactivities than the model, differing by factors ... continued below

Physical Description

447 Kilobytes pages

Creation Information

Fisher, E.M.; Pitz, W.J.; Curran, H.J. & Westbrook, C.K. January 11, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Thermodynamic properties and detailed chemical kinetic models have been developed for the combustion of two oxygenates: methyl butanoate, a model compound for biodiesel fuels, and methyl formate, a related simpler molecule. Bond additivity methods and rules for estimating kinetic parameters were adopted from hydrocarbon combustion and extended. The resulting mechanisms have been tested against the limited combustion data available in the literature, which was obtained at low temperature, subatmospheric conditions in closed vessels, using pressure measurements as the main diagnostic. Some qualitative agreement was obtained, but the experimental data consistently indicated lower overall reactivities than the model, differing by factors of 10 to 50. This discrepancy, which occurs for species with well-established kinetic mechanisms as well as for methyl esters, is tentatively ascribed to the presence of wall reactions in the experiments. The model predicts a region of weak or negative dependence of overall reaction rate on temperature for each methyl ester. Examination of the reaction fluxes provides an explanation of this behavior, involving a temperature-dependent competition between chain-propagating unimolecular decomposition processes and chain-branching processes, similar to that accepted for hydrocarbons. There is an urgent need to obtain more complete experimental data under well-characterized conditions for thorough testing of the model.

Physical Description

447 Kilobytes pages

Source

  • Twenty Eighth International Symposium on Combustion, Edinburgh, Scotland (GB), 07/30/2000--08/04/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-137097
  • Grant Number: W-7405-Eng-48
  • Office of Scientific & Technical Information Report Number: 791028
  • Archival Resource Key: ark:/67531/metadc723010

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 11, 2000

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • May 6, 2016, 1:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 16

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Fisher, E.M.; Pitz, W.J.; Curran, H.J. & Westbrook, C.K. Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels, article, January 11, 2000; California. (digital.library.unt.edu/ark:/67531/metadc723010/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.