TITLE: LEDA BEAM OPERATIONS MILESTONE AND OBSERVED BEAM TRANSMISSION CHARACTERISTICS

AUTHOR(S):
Lawrence J. Rybarcyk LANSCE-1
J. David Schneider APT-TPO
H. Vernon Smith APT-TPO
Lloyd M. Young SNS-PO
Martin E. Schulze General Atomics

SUBMITTED TO: LINAC 2000 Conference
Monterey, California
August 21-25, 2000
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
LEDA BEAM OPERATIONS MILESTONE AND OBSERVED BEAM TRANSMISSION CHARACTERISTICS

L. J. Rybarcyk, J. D. Schneider, H. V. Smith, and L. M. Young, M. E. Schulze,
Los Alamos National Laboratory, Los Alamos, NM 87544, USA.

Abstract

Recently, the Low-Energy Demonstration Accelerator (LEDA) portion of the Accelerator Production of Tritium (APT) project reached its 100-mA, 8-hr CW beam operation milestone. LEDA consists of a 75-keV proton injector, 6.7-MeV, 350-MHz CW radio-frequency quadrupole (RFQ) with associated high-power and low-level rf systems, a short high-energy beam transport (HEBT) and high-power (670-kW CW) beam dump. During the commissioning phase it was discovered that the RFQ field level needs to be approximately 5-10% higher than design in order to accelerate the full 100-mA beam with low losses. Upon further investigation, we have observed that the beam transmission for the 100-mA low-duty-factor beam is unexpectedly low for RFQ field levels between 90 and 105% of design. This paper will describe some aspects of LEDA operations critical to achieving the above milestone. Measurement and simulation results focused on understanding this reduced beam transmission for the RFQ operating at design conditions are also presented.

1 INTRODUCTION

The LEDA RFQ is an 8-m long linac that delivers a 6.7-MeV, 100-mA CW proton beam. The RFQ hardware, shown in Fig. 1, along with various ancillary systems are described in detail elsewhere [1-6]. We recently completed the beam-commissioning phase where we accomplished our goal of 8-hr, 100-mA, CW beam operation. During >70 mA and RFQ field levels between 90 and 105% of design. This paper presents results from the commissioning phase regarding the 100-mA milestone and numerous measurements made and simulations performed in an attempt to understand the aforementioned loss of transmission.

2 LEDA PERFORMANCE

During the beam commissioning phase from mid-Nov '99 through early Apr '00, LEDA was operated with beam currents in excess of 90 mA and duty factors ≥ 99.7%. During this time, while operating at duty factors ≥ 99.7%, LEDA accumulated 9.0 hr of ≥99.7 mA, 20.7 hr of ≥99 mA and 111 hr of ≥90 mA beam. The beam-current monitors were sampled at 30-sec intervals. In the analysis, a run was defined as a contiguous set of samples with the beam current ≥ 15 mA and the duty factor ≥ 99.7%. To aid in monitoring beam delivery through the RFQ, the duty factor was reduced from CW to 99.7% to allow an accurate measure of the beam transmission using the AC current monitors at the entrance and exit of the RFQ. These data are included in the CW analysis. The longest run was 118 min at 99.3 mA. We accumulated a total of 694 runs with an average duration of 9.6 min each. A histogram of run duration statistics is shown in Fig. 2.

During the commissioning phase, it was realised that certain aspects of either LEDA hardware configuration or operations were critical to achieving the 100-mA milestone. They are listed below:

- LEBT beam properly matched to RFQ. Additional leverage in overcoming space-charge effects through addition of electron-trap at RFQ entrance and reduction of final LEBT solenoid to RFQ distance.
- RFQ field quality. Monitored at 64 locations along structure and optimized with adjustable flow on the four 2-m RFQ segments.
- Resonance Control Cooling System performance. PID control parameters adjusted for fast transient response during high-power beam operation.
- Low operating pressure in RFQ. Pressure ~ 1 x 10^-7 Torr for stable operation.
- HEBT tuned for 100-mA beam. Facilitated using "notched" RF in synch with injector pulse to produce short, high-current pulses for tuning.
High (>90%, design=-93%) beam transmission. Below ~90% the losses were too great to sustain stable operation.

RFQ field levels at 5-10% above design.

3 RFQ BEAM TRANSMISSION

3.1 Initial Observation

Early on in the commissioning phase, an RFQ transmission curve first revealed a discrepancy between actual and expected beam transmission at high peak currents. Subsequently a series of measurements were made to examine the transmission for various peak current beams from 70-100 mA. The measurement results along with a PARMTEQM [6] prediction for the nominal 100 mA beam are shown in Fig. 3. All transmission measurements were performed with low duty factor beam to limit the total beam loss. A substantial peak-current-dependent reduction in transmission was observed. This reduction in transmission for the 100mA beam ultimately dictated a higher operating level for the RFQ, i.e. field level ~5-10% above design.

3.2 Simulations

In an attempt to understand this loss of transmission, numerous PARMTEQM calculations were performed to investigate the effects of with varying degrees of RFQ field tilt and field irregularity, beam mis-match, position and angle offsets to the beam, and beam current modulation on RFQ beam transmission. None of the above results were able to reproduce the observed loss of transmission. Initially, simulations were performed with low duty factor beam to limit the total beam loss. A substantial peak-current-dependent reduction in transmission was observed. This reduction in transmission for the 100mA beam ultimately dictated a higher operating level for the RFQ, i.e. field level ~5-10% above design.

3.3 Additional Observations

Further measurements revealed several interesting features. Time dependence in the loss of transmission was seen while making measurements using short beam pulses at reduced RFQ field strengths. We observed a step-change reduction in the beam current out of the RFQ as shown in Fig. 4. The leading portion of the pulse exhibits transmission characteristics in agreement with simulation for the nominal RFQ, the trailing edge does not. Simultaneous measurements of the cavity field amplitude sampled along the downstream portion of the RFQ revealed a small but measurable increase in the RFQ field level correlated with the decrease in beam transmission, also shown in Fig. 4. During this transition, the low-level RF system maintained a constant drive signal. The RFQ field amplitude at the end of the pulse was observed to increase exponentially towards the end of the RFQ. This would be consistent with a reduction in beam loading, i.e. increase in beam loss, which would result in net higher fields. The beam loss would also be consistent with observed high radio-activation levels at the high-energy end of the RFQ when operated at or below design field levels. We also observed that the location of the transition depends upon the RFQ field level. As the field is reduced the start of the transition shifts towards the beginning of the pulse. Also, no difference was seen in transmission curves obtained using 90-mA beam under CW and low duty factor (~25%) RF operation.

Changes in the wire scanner profiles were also seen across a beam pulse containing the transition. The
Figure 4: RFQ output current and field level versus time. RFQ nominal field level at ~97% of design.

The centroid and rms width of both the horizontal and vertical profiles were constant during the leading edge of the pulse. However, during the trailing edge as much as a 100% increase in the rms size of the vertical profile was seen as the field level in the RFQ was reduced from 10% above to 10% below design. Over that same field amplitude range a small change was observed for the horizontal rms size while no change was observed in either centroid.

3.4 One possible explanation

The observed reduction in transmission might possibly be due to ions trapped within the RFQ accelerating channel. The potential well established in the RFQ is capable of trapping slow moving ions [8]. These ions would increase the effective space-charge forces seen by the beam and could result in a larger overall beam which could be lost on the RFQ vanes. The source of ions, e.g. protons, might be beam collisions with either residual gas molecules or the RFQ vane tips. PARMTEQM was modified to preload the space-charge mesh with additional charge. Very preliminary results showed a background charge distribution could produce a larger, somewhat hollow beam. Transmission calculations have not yet been performed with this beam. A steady-state, single-bunch code like PARMTEQM might not be appropriate for modelling this time dependent phenomenon. Along this line, work has begun on developing a simple model of the RFQ using time as the independent variable. A code like TOUTATIS [9] might also be more appropriate for this study. More work needs to be done in this area.

4 SUMMARY

The LEDA RFQ has performed well, meeting the 100-mA, 8-hr milestone during the recent beam-commissioning period. An unexpected reduction in high-peak current (>70mA) beam transmission has been observed for the RFQ operating between 90 and 105% of design. Further investigation has revealed a time dependent character to the beam transmission. Effects are also seen in wire scanner profiles and RFQ field levels. Trapped ions are a possible explanation for the effect.

ACKNOWLEDGEMENTS

The authors would like to thank the LEDA operations and support personnel without whom this would not have been possible.

REFERENCES