Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species

PDF Version Also Available for Download.

Description

Photoassimilates are used by plants for production of energy, as carbon skeletons and in transport of fixed carbon between different plant organs. Many studies have been devoted to characterizing the factors that. regulate photoassimilate concentrations in different plant species. Most studies examining photoassimilate concentrations in C{sub 3} plants have focused on analyzing starch and soluble sugars. However, work presented here demonstrates that a number of C{sub 3} plants, including the popular model organism Arabidopsis thaliana (L.) Heynh., and agriculturally important plants, such as soybean [Glycine ma (L.) Merr.], contain significant quantities of furnaric acid. In fact, furnaric acid can accumulate ... continued below

Physical Description

28 p.

Creation Information

Chia, D.W.; Yoder, T.J.; Reiter, W.D. & Gibson, S.I. October 1, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 31 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Photoassimilates are used by plants for production of energy, as carbon skeletons and in transport of fixed carbon between different plant organs. Many studies have been devoted to characterizing the factors that. regulate photoassimilate concentrations in different plant species. Most studies examining photoassimilate concentrations in C{sub 3} plants have focused on analyzing starch and soluble sugars. However, work presented here demonstrates that a number of C{sub 3} plants, including the popular model organism Arabidopsis thaliana (L.) Heynh., and agriculturally important plants, such as soybean [Glycine ma (L.) Merr.], contain significant quantities of furnaric acid. In fact, furnaric acid can accumulate to levels of several mg per g fresh weight in A-abidopsis leaves, often exceeding starch and soluble sugar levels. Furnaric acid is a component of the tricarboxylic acid cycle and, like starch and soluble sugars, can be metabolized to yield energy and carbon skeletons for production of other compounds. Fumaric acid concentrations increase with plant age and light intensity in Arabidopsis leaves. Arabidopsis phloem exudates contain significant quantities of fumaric acid, raising the possibility that fumaric acid may function in carbon transport.

Physical Description

28 p.

Notes

OSTI as DE00761351

Medium: P; Size: 28 pages

Source

  • Journal Name: Submitted to Planta; Other Information: Preprint information submitted to Planta

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FG03-98ER20300
  • Office of Scientific & Technical Information Report Number: 761351
  • Archival Resource Key: ark:/67531/metadc722987

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 2000

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 10, 2017, 6:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 31

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Chia, D.W.; Yoder, T.J.; Reiter, W.D. & Gibson, S.I. Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species, article, October 1, 2000; United States. (digital.library.unt.edu/ark:/67531/metadc722987/: accessed October 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.