High current density negative ion source for beam line transport study

PDF Version Also Available for Download.

Description

The Fermilab Electron Cooling Program requires a 20-m solenoidal region to interact 8-GeV antiprotons with an escorting beam of 4.3-MeV electrons to improve the phase-space quality of the antiproton beam. The solenoidal section with additional transport lines to take and return a 0.5-A electron beam from an electrostatic accelerator, for energy recovery, must be precisely aligned and adjusted. For the initial setup and study, and later testing of this line, a 12.4-keV H{sup {minus}} beam can be used to simulate the 4.3 MeV electron beam. For this purpose a high-brightness H{sup {minus}} ion source has been developed and tested. The ... continued below

Physical Description

502 Kilobytes pages

Creation Information

Dudnikov, Vadim & Wendt, Charles W Schmidt and James July 25, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Fermilab Electron Cooling Program requires a 20-m solenoidal region to interact 8-GeV antiprotons with an escorting beam of 4.3-MeV electrons to improve the phase-space quality of the antiproton beam. The solenoidal section with additional transport lines to take and return a 0.5-A electron beam from an electrostatic accelerator, for energy recovery, must be precisely aligned and adjusted. For the initial setup and study, and later testing of this line, a 12.4-keV H{sup {minus}} beam can be used to simulate the 4.3 MeV electron beam. For this purpose a high-brightness H{sup {minus}} ion source has been developed and tested. The source, a semiplanatron type, with a hollow cathode discharge and spherical cathode focusing of the emitted ions to the emission aperture has given an emission current density up to 0.7 A/cm{sup 2}. Continuous operation of 4 weeks has been demonstrated. Such an optimized source could have many applications for tandem accelerators, ion beam lithography and ion implantation.

Physical Description

502 Kilobytes pages

Source

  • Particle Accelerator Conference 2001, Chicago, IL (US), 06/18/2001--06/22/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-Conf-01/205
  • Grant Number: AC02-76CH03000
  • Office of Scientific & Technical Information Report Number: 783393
  • Archival Resource Key: ark:/67531/metadc722942

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 25, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 1, 2016, 4:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Dudnikov, Vadim & Wendt, Charles W Schmidt and James. High current density negative ion source for beam line transport study, article, July 25, 2001; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc722942/: accessed December 15, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.