XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II

PDF Version Also Available for Download.

Description

A key question for the understanding of photosynthetic water oxidation is whether the four oxidizing equivalents necessary to oxidize water to dioxygen are accumulated on the four Mn ions of the oxygen evolving complex (OEC), or whether some ligand-centered oxidations take place before the formation and release of dioxygen during the S{sub 3} {r_arrow} [S{sub 4}] {r_arrow} S{sub 0} transition. Progress in instrumentation and flash sample preparation allowed us to apply Mn K{beta} X-ray emission spectroscopy (Kb XES) to this problem for the first time. The K{beta} XES results, in combination with Mn X-ray absorption near-edge structure (XANES) and electron ... continued below

Physical Description

240 pages; OS: Windows 95

Creation Information

Robblee, John H. December 1, 2000.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

A key question for the understanding of photosynthetic water oxidation is whether the four oxidizing equivalents necessary to oxidize water to dioxygen are accumulated on the four Mn ions of the oxygen evolving complex (OEC), or whether some ligand-centered oxidations take place before the formation and release of dioxygen during the S{sub 3} {r_arrow} [S{sub 4}] {r_arrow} S{sub 0} transition. Progress in instrumentation and flash sample preparation allowed us to apply Mn K{beta} X-ray emission spectroscopy (Kb XES) to this problem for the first time. The K{beta} XES results, in combination with Mn X-ray absorption near-edge structure (XANES) and electron paramagnetic resonance (EPR) data obtained from the same set of samples, show that the S{sub 2} {r_arrow} S{sub 3} transition, in contrast to the S{sub 0} {r_arrow} S{sub 1} and S{sub 1} {r_arrow} S{sub 2} transitions, does not involve a Mn-centered oxidation. This is rationalized by manganese {mu}-oxo bridge radical formation during the S{sub 2} {r_arrow} S{sub 3} transition. Using extended X-ray absorption fine structure (EXAFS) spectroscopy, the local environment of the Mn atoms in the S{sub 0} state has been structurally characterized. These results show that the Mn-Mn distance in one of the di-{mu}-oxo-bridged Mn-Mn moieties increases from 2.7 {angstrom} in the S{sub 1} state to 2.85 {angstrom} in the S{sub 0} state. Furthermore, evidence is presented that shows three di-{mu}-oxo binuclear Mn{sub 2} clusters may be present in the OEC, which is contrary to the widely held theory that two such clusters are present in the OEC. The EPR properties of the S{sub 0} state have been investigated and a characteristic ''multiline'' signal in the S{sub 0} state has been discovered in the presence of methanol. This provides the first direct confirmation that the native S{sub 0} state is paramagnetic. In addition, this signal was simulated using parameters derived from three possible oxidation states of Mn in the S{sub 0} state. The dichroic nature of X-rays from synchrotron radiation and single-crystal Mn complexes have been exploited to selectively probe Mn-ligand bonds using XANES and EXAFS spectroscopy. The results from single-crystal Mn complexes show that dramatic dichroism exists in these complexes, and are suggestive of a promising future for single-crystal studies of PS II.

Physical Description

240 pages; OS: Windows 95

Notes

OSTI as DE00773946

Source

  • Other Information: TH: Thesis (Ph.D.); Submitted to the Univ. of California, Berkeley, CA (US)

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: LBNL--47159
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 773946
  • Archival Resource Key: ark:/67531/metadc722890

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • December 1, 2000

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 5, 2016, 4:54 p.m.

Usage Statistics

When was this document last used?

Yesterday: 1
Past 30 days: 1
Total Uses: 6

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Robblee, John H. XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II, thesis or dissertation, December 1, 2000; California. (digital.library.unt.edu/ark:/67531/metadc722890/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.