2. To: (Receiving Organization) Distribution
3. From: (Originating Organization) SNF Project
4. Related EDT No.: N/A
5. Proj./Prog./Dept./Div.: Spent Nuclear Fuel Project
6. Design Authority/Design Agent/CoG Engr.: C. Van Katwijk
7. Purchase Order No.: N/A
8. Originator Remarks: N/A
9. Equip./Component No.: N/A
10. System/Bldg./Facility: Spent Nuclear Facility
12. Major Assm. Dwg. No.: N/A
13. Perim/Permit Application No.: N/A
14. Required Response Date: N/A

15. DATA TRANSMITTED

<table>
<thead>
<tr>
<th>(A) Item No.</th>
<th>(B) Document/Drawing No.</th>
<th>(C) Sheet No.</th>
<th>(D) Rev. No.</th>
<th>(E) Title or Description of Data Transmitted</th>
<th>Approval Designator</th>
<th>Reason for Transmittal</th>
<th>Originator Disposition</th>
<th>Receiver Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SNF-3892</td>
<td>0</td>
<td></td>
<td>MKS Baratron MCO Absolute Pressure Transmitter</td>
<td>Q 2</td>
<td>1</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

16. KEY

<table>
<thead>
<tr>
<th>Approval Designator (F)</th>
<th>Reason for Transmittal (G)</th>
<th>Disposition (H) & (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E, S, Q, D or N/A</td>
<td>1. Approval</td>
<td>1. Approved</td>
</tr>
<tr>
<td>(see WHC-CM-3-5,</td>
<td>2. Release</td>
<td>2. Approved w/comment</td>
</tr>
<tr>
<td>Soc 12.7)</td>
<td>3. Information</td>
<td>3. Disapproved w/comment</td>
</tr>
<tr>
<td></td>
<td>4. Review</td>
<td>4. Reviewed no/comment</td>
</tr>
<tr>
<td></td>
<td>5. Post-Review</td>
<td>5. Reviewed w/comment</td>
</tr>
<tr>
<td></td>
<td>6. Dist. (Receipt Acknow. Required)</td>
<td>6. Receipt acknowledged</td>
</tr>
</tbody>
</table>

17. SIGNATURE/DISTRIBUTION

<table>
<thead>
<tr>
<th>(G) Reason</th>
<th>(H) Disp.</th>
<th>(J) Name</th>
<th>(K) Signature</th>
<th>(L) Date</th>
<th>(M) MSIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>Designated Engineer C. Van Katwijk</td>
<td></td>
<td>2-29-99</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Design Authority R. Whitchurst</td>
<td></td>
<td></td>
<td>2-29-99</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>QA T. D. Hays</td>
<td></td>
<td></td>
<td>3-30-99</td>
</tr>
</tbody>
</table>

18. Signature of EDT Originator: C. Van Katwijk

19. Signature of EDT Author: T. Choko

20. Design Authority/COgnizant Manager: R. Whitehurst

21. DOE APPROVAL (If required)

<table>
<thead>
<tr>
<th>Ctrl. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Approved</td>
</tr>
<tr>
<td>[] Approved w/comments</td>
</tr>
<tr>
<td>[] Disapproved w/comments</td>
</tr>
</tbody>
</table>
MKS Baratron MCO Absolute Pressure Transmitter

Carl Van Katwijk
Numatec Hanford Co, Richland, WA 99352
U.S. Department of Energy Contract DE-AC06-96RL13200

Key Words: Absolute Pressure Transmitter - MCO

Abstract: MKS Baratron MCO Absolute Pressure Transmitter
CGI-SNF-D-13-P4-019

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Printed in the United States of America. To obtain copies of this document, contact: Document Control Services, P.O. Box 950, Mailstop H6-08, Richland WA 99352, Phone (509) 372-2420; Fax (509) 376-4989.

Approved for Public Release

A-6400-073 (01/97) GEF321
Section 1: Part Information

<table>
<thead>
<tr>
<th>Item No.:</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer:</td>
<td></td>
</tr>
<tr>
<td>Supplier:</td>
<td></td>
</tr>
<tr>
<td>Mfg. Part/Model No.:</td>
<td></td>
</tr>
<tr>
<td>Supplier's P/N:</td>
<td></td>
</tr>
</tbody>
</table>

| Part Description: | |
| End Use Description: | |

Section 2a: Component Information

Equipment No.:	He-PT-1*35
Specification No.:	W-441-P4 Rev. 2
Manufacturer:	MKS Instruments
Past P.O. No.:	NA
Equipment Supplier (if different from manufacturer):	TBD
Equip. Supplier's Part No.:	NA

| Manufacturer's Part/Model No.: | MKS Baratron PT 430C A 00100 |

Component Description: MKS Baratron high resolution absolute pressure transmitter designed for MCO vacuum processes (100 TORR) using capacitance manometer. Measure and transmit MCO pressure. Electronic output signal is NON-SAFETY (GS).

Section 2b: Commercial Availability of the Item

1. Is the item available from a catalogue from a qualified NQA1 supplier or ISO-9000 supplier (coordinate with project CGI interface Engineer or BTR)?
 - [] YES (go to #2 below)
 - [X] NO (go to procedure step 5.3.2, proceed to dedicate Item)

2. List of Candidate qualified suppliers or ISO-9000 suppliers:
 - Company name & type
 - Contact name
 - Phone
 - NA

3. Recommended Procurement Strategy (coordinate with project CGI interface Engineer or BTR):
 - NA

Section 2c: CGI Determination

1. Question #1: Is the item subject to design or specification requirements that are unique to nuclear facilities or activities?
 - [] YES (the item is not commercial grade)
 - [X] NO (continue)

2. Question #2: Is the item used in applications other than nuclear facilities or activities?
 - [] NO (the item is not commercial grade)
 - [X] YES (continue)

12/21/98
Question #3:

Is the Item ordered from manufacturer/supplier on the basis or specifications set forth in the manufacturers catalog?

- [] NO (the Item is not commercial grade)
- [X] YES (continue)

[X] All three criteria have been satisfied. The Item meets the definition of commercial grade.

Section 2d Reason for Dedication

The above described Item is being Dedicated for use in the application cited for the following reasons:

- [X] Item is being purchased from a non ESL manufacturer supplier as commercial grade to be used in a Safety Class application.
- Item is being purchased from a non ESL manufacturer supplier as commercial grade to be used in a Safety Significant application.
- Item was purchased from a non ESL manufacturer supplier as commercial grade to be used in a Safety Class application.
- Item was purchased from a non ESL manufacturer supplier as commercial grade to be used in a Safety Significant application.
- Other ('like-for-like', similar, substitution, replacement evaluation)

Section 3 Failure Effects Evaluation

A. Part/Component Safety Function:

1. **Pressure Boundary**

2. **Maintain Pressure Boundary After Seismic Event**

3. **B. Part/Component Functional Mode:**

 Safety Function #1:

 - [] Active – Mechanical or Electrical change of state is required to occur for the component to perform its safety function
 - [X] Passive – Change of state is not required for the component to perform its safety function

 Safety Function #2:

 - [] Active – Mechanical or Electrical change of state is required to occur for the component to perform its safety function
 - [X] Passive – Change of state is not required for the component to perform its safety function

 Safety Function #3:

 - [] Active – Mechanical or Electrical change of state is required to occur for the component to perform its safety function
 - [] Passive – Change of state is not required for the component to perform its safety function

C. Host Component Safety Function (if applicable):

1. **NA**

2.

3.
D. Failure Mode(s) and the effects on component or system safety function (see Worksheet 1):

1. **PT process connection break/PT body break - inleakage of air.**

2. **Inaccurate pressure signal due to damage from pressure outside instrument indicator range.**

<table>
<thead>
<tr>
<th>Section 4: Environmental & Natural Phenomenon Hazard Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Qualification Required:</td>
</tr>
<tr>
<td>Yes []</td>
</tr>
<tr>
<td>No [X]</td>
</tr>
<tr>
<td>Environmental Condition B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Natural Phenomenon Hazard (NPH) Design Required:</th>
<th>If yes: NPH Design Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes [X]</td>
<td>Performance Category: PC-3</td>
</tr>
<tr>
<td>No []</td>
<td>NPH Design Req'ts.:</td>
</tr>
<tr>
<td></td>
<td>Required Safety Functions:</td>
</tr>
</tbody>
</table>

HNF-PRO-97, Rev. 0
W-441-P4, Rev. 2

Section 5: Component Functional Classification

<table>
<thead>
<tr>
<th>Safety Class (SC)</th>
<th>General Service</th>
<th>Safety Significant (SS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If part/component classification is different from host component/system, document basis.

Section 6 (Reserved)

Section 7 (Reserved)

Section 8 References (for Functional Classification)

<table>
<thead>
<tr>
<th>National Codes/Standards:</th>
<th>Safety Analysis Report (SAR):</th>
<th>Drawings:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 344, ISA-S5.1, S5.4, S18.1, S20</td>
<td>HNF-SD-SNF-SAR-002, Rev. 4A</td>
<td>H-1-82161, Rev. 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HNF-SD-SNF-SEL-002, Rev. 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vendor Manual/Manufacturer/Supplier Information:</th>
<th>MKS Instruments Baratron Absolute Pressure Transmitters 400 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other:</td>
<td></td>
</tr>
</tbody>
</table>
Notes and Legend:

1. The instrument has ceramic electrodes and non-metallic terminal strips. These materials are not subject to Degradation at 40°F and 60% RH or 115°F and 22% RH and are suitable for Condition B application.

2. Maintain pressure boundary after Seismic event. W-441-P4, Rev. 2, Appendix L, page L-12, provides a seismic testing plan for these components at a (TBDI seismic spectra. “Confinement” leakage acceptance criteria is $< 10^{-4}$ scc/sec.

3. Pressure test at 110% of design accident condition pressure of 150 psig (Destructive Test). Vendor sheet states overpressure limit of 35 psig, consequently this test is considered to be a destructive test.

4. Testing (Seismic and pressure boundary) is being performed for PT-1*08 (CGI-SNF-D-07-P4-010). Both instruments are Baratron Series 400 and have identical pressure boundaries. Destructive testing of PT-1*08 will provide verification of the critical characteristics for this component.

Critical Characteristics

<table>
<thead>
<tr>
<th>Critical Characteristics Verification Document: Vendor Specifications: HNF-SD-SNF-SEL-002 Rev. 4</th>
<th>Acceptance Criteria/Tolerances</th>
<th>Acceptance Method</th>
<th>ID</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nameplate Data</td>
<td>Per Vendor Manual</td>
<td>1, IN</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Model/Part Number</td>
<td>430C A00100</td>
<td>1, IN</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>NEMA 4</td>
<td>1, IN</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Process Connection</td>
<td>¾” - 18 NPT</td>
<td>1, IN</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2. Physical Critical Characteristics (for reasonable assurance that the Item delivered is the Item specified)

| Material, Body | Cast Aluminum | 1, T | X |
| Material, Process Connection | Stainless Steel | 1, T | X |

3. Performance Critical Characteristics (for reasonable assurance that the Item will perform its intended safety function(s))

Pressure Boundary	Pressure Test at Pressure of 165 Psig (No Leakage) Notes 3 and 4	1, T	X
Repeatability	NA		
Input/Output Voltage/ Operating Range/ Accuracy	NA		
Insulation Resistance	NA		
Environmental	Note 1		
Seismic Condition B	Notes 2 and 4	1, T	X

Acceptance Method:

1. Special Test and Inspection
2. Commercial Grade Survey
3. Source Verification
4. Vendor/Item History

12/21/98
Commercial Grade Item Upgrade Dedication Form

ECN No. NA CGI No. CGI-SNF-D-13-P4-019

Title: MKS BARATRON MCO ABSOLUTE PRESSURE TRANSMITTER

Section 10 Initial Review and Approval

Approvals:
Designated Engineer: 12/22/98
Design Authority: 12/21/98
QA Engineer: 12/29/98
Worksheet 1
Determination of Failure Mechanisms/Modes

Section 1

<table>
<thead>
<tr>
<th>Typical Failure Mechanisms</th>
<th>Definition</th>
<th>Applicable to Component under Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture</td>
<td>Separation of a solid accompanied by little or no macroscopic plastic deformation.</td>
<td>Yes [] No []; if Yes, indicate failure</td>
</tr>
<tr>
<td>Corrosion</td>
<td>The gradual deterioration of a material due to chemical or electrochemical reactions, such as oxidation, between the material and its environment.</td>
<td>Yes [] No []; if Yes, indicate failure</td>
</tr>
<tr>
<td>Erosion</td>
<td>Destruction of materials by the abrasive action of moving fluids, usually accelerated by the presence of solid particles carried with the fluid.</td>
<td>Yes [] No []; if Yes, indicate failure</td>
</tr>
<tr>
<td>Open Circuit</td>
<td>An electrical circuit that is unintentionally broken so that there is no complete path for current flow.</td>
<td>Yes [] No []; if Yes, indicate failure</td>
</tr>
<tr>
<td>Short Circuit</td>
<td>An abnormal connection by which an electrical current is connected to ground, or to some conducting body, resulting in excessive current flow.</td>
<td>Yes [] No []; if Yes, indicate failure</td>
</tr>
<tr>
<td>Blockage</td>
<td>Clogging of a filtering medium resulting in the inability to perform its purification function or blockage of flow.</td>
<td>Yes [] No []; if Yes, indicate failure</td>
</tr>
<tr>
<td>Seizure</td>
<td>Binding of a normally moving item through excessive pressure, temperature, friction, jamming.</td>
<td>Yes [] No []; if Yes, indicate failure</td>
</tr>
<tr>
<td>Unacceptable Vibration</td>
<td>Mechanical oscillations produced are beyond the defined permissible limits due to unbalancing, poor support, or rotation at critical speeds.</td>
<td>Yes [] No []; if Yes, indicate failure</td>
</tr>
<tr>
<td>Loss of Properties</td>
<td>A loss of mechanical and physical properties of a material due to exposure to high temperatures, radiation exposure.</td>
<td>Yes [] No []; if Yes, indicate failure</td>
</tr>
<tr>
<td>Excess Strain</td>
<td>Under the action of excessive external forces the material of the part has been deformed or distorted.</td>
<td>Yes [] No []; if Yes, indicate failure</td>
</tr>
<tr>
<td>Mechanical Creep</td>
<td>From prolonged exposure to high temperature and stress, the object will show a slow change in its physical (shape and dimension) and mechanical characteristics.</td>
<td>Yes [] No []; if Yes, indicate failure</td>
</tr>
<tr>
<td>Ductile Fracture</td>
<td>Fracture characterized by tearing of metal accompanied by appreciable gross plastic deformation.</td>
<td>Yes [] No []; if Yes, indicate failure</td>
</tr>
</tbody>
</table>

Section 2: Additional Failure Modes Applicable to the Component Under Evaluation

1. **Process Connection Break**
2. **Transmitter Body Break**
3. **Diaphragm Assembly Loss**
4. **Deformation due to excessive pressure.**
5. **...**

12/21/98
Checklist 1

Acceptance Method 1

Special Test/Inspection Verification

<table>
<thead>
<tr>
<th>Item Description: Baratron Absolute Pressure Transmitter</th>
<th>Equip #: He-PT-1*35</th>
</tr>
</thead>
<tbody>
<tr>
<td>System #: 13</td>
<td>Model #: BARATRON PT 430C A00100</td>
</tr>
</tbody>
</table>

Manufacturer (Address/Phone):

MKS Instruments
Six Shattuck Road
Andover, MA 01810
(800) 227-8766
P.O. #

Supplier (Address/Phone):

Section 2 Critical Characteristics to Be Verified by Method 1.

<table>
<thead>
<tr>
<th>Inspect</th>
<th>Test</th>
<th>Post-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>[]</td>
<td>[X]</td>
<td>[]</td>
</tr>
<tr>
<td>[]</td>
<td>[X]</td>
<td>[]</td>
</tr>
<tr>
<td>[]</td>
<td>[X]</td>
<td>[]</td>
</tr>
<tr>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>[]</td>
<td>[X]</td>
<td>[]</td>
</tr>
</tbody>
</table>

SECTION 3 By Inspection

* See Attachment G of Desk Instruction for Sampling Size

Characteristic: Nameplate Data

Sample Size: All Items

Acceptance Criteria: Per Vendor Manual

Receipt Inspection Plan / Report #:

References (see Section 7): Baratron Absolute Pressure Transmitter 400 Series

12/21/98
Commercial Grade Item Upgrade Dedication Form

ECN No.: NA
CGI No.: CGI-SNF-D-13-P4-019
Title: MKS BARATRON MCO ABSOLUTE PRESSURE TRANSMITTER

Characteristic: Model/Part Number
- **Sample Size:** All Items
- **Acceptance Criteria:** 430C A00100
- **Receipt Inspection Plan / Report #:**
- **References (see Section 7):**

Characteristic: Housing
- **Sample Size:** All Items
- **Acceptance Criteria:** NEMA 4
- **Receipt Inspection Plan / Report #:**
- **References (see Section 7):**

Characteristic: Process Connection
- **Sample Size:** All Items
- **Acceptance Criteria:** 1/4 - 18 NPT
- **Receipt Inspection Plan / Report #:**
- **References (see Section 7):**

SECTION 4 BY SPECIAL TEST

* See Attachment G of Desk Instruction for Sampling Size

<table>
<thead>
<tr>
<th>Test To Be Performed by</th>
<th>Number of Items to be Tested</th>
<th>Test/Inspection Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Purchaser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[] Supplier/Manufacturer**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[] Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristic for Test: Material, Body
- **Acceptance Criteria:** Cast Aluminum
- **Sample Size:** Normal Sampling Size
- **Actual Test Value:**
 - Test Plan and Report #:
- **References (see Section 7):**

Characteristic for Test: Material, Process Connection
- **Acceptance Criteria:** Stainless Steel
- **Sample Size:** Normal Sampling Size
- **Actual Test Value:**
 - Test Plan and Report #:
- **References (see Section 7):**

12/21/98
Characteristic for Test: Pressure Boundary

Acceptance Criteria: **Pressure Test at Pressure of 165 Psig (No Leakage)**

Sample Size*: Destructively Test Only One Item. Pressure boundary testing is being performed for PT-1*08 (CGI-SNF-D-07-P4-010). Both instruments are Baratron Series 400 and have identical pressure boundaries. Destructive testing of PT-1*08 will provide verification of the critical characteristics for this component.

Actual Test Value:

<table>
<thead>
<tr>
<th>Test Plan and Report #</th>
<th>References (see Section 7):</th>
</tr>
</thead>
</table>

Characteristic for Test: Seismic Condition B

Acceptance Criteria: **Maintain Pressure Boundary After Seismic Event.** W-441-P4, Rev. 2, Appendix L, page L-12, provides a seismic testing plan for these components at a (TBD) seismic spectra. "Confinement" leakage acceptance criteria is < 10^-4 scc/sec.

Sample Size*: Seismic Testing is being performed for PT-1*08 (CGI-SNF-D-07-P4-010). Both instruments are Baratron Series 400 and have identical pressure boundaries. Destructive testing of PT-1*08 will provide verification of the critical characteristics for this component.

Actual Test Value:

<table>
<thead>
<tr>
<th>Test Plan and Report #</th>
<th>References (see Section 7):</th>
</tr>
</thead>
</table>

Characteristic:

Acceptance Criteria:

<table>
<thead>
<tr>
<th>Sample Size*</th>
</tr>
</thead>
</table>

Actual Test Value:

<table>
<thead>
<tr>
<th>Test Plan and Report #</th>
<th>References (see Section 7):</th>
</tr>
</thead>
</table>

If Supplier/Manufacturer or Other, Refer to CGI Checklist-2 for Support Information

12/21/98
SUMMARY OF VERIFIED CRITICAL CHARACTERISTICS, THEIR VERIFICATION METHODS, AND RESULTS

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Critical Characteristics</th>
<th>Acceptance Criteria/Tolerances</th>
<th>ID</th>
<th>Function</th>
<th>Method T/IN</th>
<th>Procedure or RR#</th>
<th>Check-list ID</th>
<th>Number Tested</th>
<th>Number Failed</th>
<th>Verifying Organization</th>
<th>Printed Name Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nameplate Data</td>
<td>Per Vendor Manual</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Model/Part Number</td>
<td>430C A00100</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>NEMA 4</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Process Connection</td>
<td>¼ - 18 NPT</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Material, Body</td>
<td>Cast Aluminum</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Material, Process</td>
<td>Stainless Steel</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Connection</td>
<td></td>
</tr>
<tr>
<td>Pressure Boundary</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Repeatability</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Input/Output Voltage</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Operating Range/</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
</tr>
<tr>
<td>Insulation Resistance</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Seismic Condition</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
2. DISPOSITION OF UNVERIFIED OR FAILED CRITICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Critical Characteristic</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. SIGNATURE INDICATES ALL CRITICAL CHARACTERISTICS VERIFIED SATISFACTORY OR ACCEPTABLY DISPOSITIONED AND COMMERCIAL GRADE DEDICATION IS SATISFACTORY AND COMPLETE.

<table>
<thead>
<tr>
<th>Testing Agency Approval:</th>
<th>Date</th>
<th>Design Authority:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing Agency QA Engineer:</td>
<td>Date</td>
<td>QA Engineer:</td>
<td>Date</td>
</tr>
</tbody>
</table>
Section 6: Contacts/Phone Numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Authority</td>
<td></td>
</tr>
<tr>
<td>QA</td>
<td></td>
</tr>
<tr>
<td>QC</td>
<td></td>
</tr>
<tr>
<td>Cog - Engineer</td>
<td></td>
</tr>
<tr>
<td>CGI Engineer</td>
<td></td>
</tr>
<tr>
<td>Procurement Engineer</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

Section 7: Supporting Documentation for this Checklist

Initial Procurement Documents

- [] Drawings:
- [] Manuals (specify type & number):
- [] Design Calculations
- [] Installation Instructions
- [] Operation Instructions
- [] Calibration Instructions
- [] Manufacturer’s Recommended Spare Parts List
- [] Other:

Procurement Documents

- [] Certificate of Conformance/Compliance
- [] Seismic Qualification Certificate
- [] Environmental Qualification Certificate
- [] Test Report (s):
- [] Inspection Report (s):
- [] CMTRs for ASME Pressure Retaining Materials
- [] Valve Seat Leakage Report
- [] Weld Records
- [] Material Traceability Record
- [] Other:

12/21/98