Molecular Genetics of Metal Detoxification: Prospects for Phytoremediation

PDF Version Also Available for Download.

Description

Unlike compounds that can be broken down, the remediation of most heavy metals and radionuclides requires physical extraction from contaminated sources. Plants can extract inorganics, but effective phytoextraction requires plants that produce high biomass, grow rapidly and possess high capacity-uptake for the inorganic substance. Either hyperaccumulator plants must be bred for increased growth and biomass or hyperaccumulation traits must be engineered into fast growing, high biomass plants. This latter approach requires fundamental knowledge of the molecular mechanisms in the uptake and storage of inorganics. Much has been learned in recent years on how plants and certain fungi chelate and transport ... continued below

Physical Description

Medium: X; Size: vp.

Creation Information

Ow, David W. September 1, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 23 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Unlike compounds that can be broken down, the remediation of most heavy metals and radionuclides requires physical extraction from contaminated sources. Plants can extract inorganics, but effective phytoextraction requires plants that produce high biomass, grow rapidly and possess high capacity-uptake for the inorganic substance. Either hyperaccumulator plants must be bred for increased growth and biomass or hyperaccumulation traits must be engineered into fast growing, high biomass plants. This latter approach requires fundamental knowledge of the molecular mechanisms in the uptake and storage of inorganics. Much has been learned in recent years on how plants and certain fungi chelate and transport selected heavy metals. This progress has been facilitated by the use of Schizosaccharomyces pombe as a model system. The use of a model organism for study permits rapid characterization of the molecular process. As target genes are identified in a model organism, their sequences can be modified for expression in a heterologous host or aid in the search of homologous genes in more complex organisms. Moreover, as plant nutrient uptake is intrinsically linked to the association with rhizospheric fungi, elucidating metal sequestration in this fungus permits additional opportunities for engineering rhizospheric microbes to assist in phytoextraction.

Physical Description

Medium: X; Size: vp.

Notes

United States Department of Agriculture, Albany, CA (US)

Source

  • Other Information: PBD: 1 Sep 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/20254
  • Report No.: Project Number: 55278
  • Grant Number: AI07-96ER20254
  • DOI: 10.2172/781718 | External Link
  • Office of Scientific & Technical Information Report Number: 781718
  • Archival Resource Key: ark:/67531/metadc722773

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2000

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • Nov. 2, 2015, 1:34 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 23

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ow, David W. Molecular Genetics of Metal Detoxification: Prospects for Phytoremediation, report, September 1, 2000; Albany, California. (digital.library.unt.edu/ark:/67531/metadc722773/: accessed August 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.