Towards 0.1 MM Spatial Resolution

PDF Version Also Available for Download.

Description

A design goal for VULCAN, the SNS engineering diffractometer, is to enable spatial mapping with 0.1 mm resolution. Because the targeted applications often involve the use of large samples or special environment, slits cannot be used for this purpose. In this paper, methods to achieve 0.1 mm spatial resolution are outlined. For the incident beam, a new compact focusing device is proposed. The device is made of a stack of bent silicon wafers, each having a reflective multilayer (supermirror) deposited on one side and a neutron-absorbing layer on the other side. The optimal design to minimize the optical spatial aberrations ... continued below

Physical Description

11 pages

Creation Information

Stoica, A.D. July 26, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A design goal for VULCAN, the SNS engineering diffractometer, is to enable spatial mapping with 0.1 mm resolution. Because the targeted applications often involve the use of large samples or special environment, slits cannot be used for this purpose. In this paper, methods to achieve 0.1 mm spatial resolution are outlined. For the incident beam, a new compact focusing device is proposed. The device is made of a stack of bent silicon wafers, each having a reflective multilayer (supermirror) deposited on one side and a neutron-absorbing layer on the other side. The optimal design to minimize the optical spatial aberrations is discussed and Monte-Carlo simulation results are presented. For the diffracted beam, imaging devices made from thick packets of diffracting bent silicon wafers (known as the Bragg Mirrors) could be used. The requirements to achieve a sharp imaging together with a large phase-space acceptance window are discussed and preliminary testing results are presented.

Physical Description

11 pages

Source

  • International Conference on Neutron Scattering (ICANS2001), Conference location not supplied, Conference dates not supplied

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: P01-111389
  • Grant Number: AC05-00OR22725
  • Office of Scientific & Technical Information Report Number: 788634
  • Archival Resource Key: ark:/67531/metadc722684

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 26, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 24, 2016, 3:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Stoica, A.D. Towards 0.1 MM Spatial Resolution, article, July 26, 2001; Tennessee. (digital.library.unt.edu/ark:/67531/metadc722684/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.