Analysis of Yucca Mountain Pore-Water Chloride Data

PDF Version Also Available for Download.

Description

Distribution of chemical constituents in the unsaturated zone (UZ) system of Yucca Mountain, Nevada, depends on many factors, such as hydrological and geochemical processes of surface precipitation, evapotranspiration, the water-fracture-matrix interactions, large-scale mixing via lateral flow and transport, and the history of climate changes. This study analyzes pore-water chloride-concentration data and models the transport processes. The model results are then used to calibrate the UZ flow model with the aim of refining the infiltration distribution and percolation fluxes to the potential repository. The major chemical data used in this study were pore-water chloride (Cl) concentrations. The sensitivity of this conservative ... continued below

Physical Description

2 pages

Creation Information

Liu, Jianchun; Sonnenthal, Eric & Bodvarrson, Bo June 1, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Distribution of chemical constituents in the unsaturated zone (UZ) system of Yucca Mountain, Nevada, depends on many factors, such as hydrological and geochemical processes of surface precipitation, evapotranspiration, the water-fracture-matrix interactions, large-scale mixing via lateral flow and transport, and the history of climate changes. This study analyzes pore-water chloride-concentration data and models the transport processes. The model results are then used to calibrate the UZ flow model with the aim of refining the infiltration distribution and percolation fluxes to the potential repository. The major chemical data used in this study were pore-water chloride (Cl) concentrations. The sensitivity of this conservative tracer to the UZ flow system is well known. This constituent was directly incorporated into a three-dimensional dual-permeability flow model. Chemical transport properties were taken into account. The surface flux of chloride was determined by the total amount of precipitation reaching the surface and chemical concentration in the precipitation. The entire flow system was divided into domains based on the distribution of pore-water chemical data, infiltration data, hydrogeological and hydrostructural features. Model calibration proceeded by adjusting the site-scale infiltration map and anisotropy permeabilities to reach a satisfying agreement between the simulated subsurface chloride distribution and measured data.

Physical Description

2 pages

Notes

INIS; OSTI as DE00786549

Source

  • Other Information: PBD: 1 Jun 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: MOL.20010808.0252
  • Grant Number: NONE
  • DOI: 10.2172/786549 | External Link
  • Office of Scientific & Technical Information Report Number: 786549
  • Archival Resource Key: ark:/67531/metadc722625

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 11, 2016, 12:37 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Liu, Jianchun; Sonnenthal, Eric & Bodvarrson, Bo. Analysis of Yucca Mountain Pore-Water Chloride Data, report, June 1, 2001; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc722625/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.