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Abstract

N-onlinear harmonic generation in a uniform planar undulator is analyzed using
the three-dimensional Maxvell-Klimontovich equations that include both even and
odd harmonic emissions. After a certain stage of exponential growth, the dominant
nonlinear harmonic interaction is caused by strong bunching at the fundamental. As
a result, gain length, transverse profile, and temporal structure of these harmonic
radiations are eventually determined by those of the fundamental. Transversely
coherent third-harmonic radiation power is found to approach one percent of the
fundamental power level for current high-gain FEL projects, while the power of the
second-harmonic radiation is less but still significant for relatively low-energy FEL
experiments.
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1 Introduction

The submitted manuscript has been createc
by the University of Chicago as Operator of
Argonne National Laboratory (“Argonne”)
under Contract No. W-31 -109-ENG-38 with
the U.S. Department of Energy. The U.S.
Government retains for itself, and others act-
ing on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article
to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform pub-
licly and &splay publicly, by or on behalf of
the Government.

In a high-gain free-electron laser (FEL) employing a planar undulator, a one-

dirnensional (l-D) model [1] and a three-dimensional (3-D) simulation [2] in-

dicate that strong bunching at the fundamental wavelength can drive substan-

tial harmonic bunching and sizable power levels at the harmonic frequencies.
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.4 3-D analysis of harmonic generation in a uniform planar undulator has

been given in Ref. [3], for the process of coherent amplification (CA) and

self-amplified spontaneous emission (S.ASE). In this paper, we extend the for-

malism of Ref. [3] to include the generation of even harmonics and present

analytic formulas for computing the second and the third nonlinear harmonic

powers as well as the bunching parameters. Explicit calculations based on

current high-gain FEL projects show that the power of the t rans~-ersely co-

herent third-harmonic radiation can approach one percent of the fundamental

power level, while the power of the second-harmonic radiation is less but still

significant for relatively low-energy FEL experiments.

2 Nonlinear Harmonic Generation

For an electron in a planar undulator (with the undulator parameter K), the

transverse wiggling motion in the x plane is accompanied by a longitudinal

oscillation (at twice the transverse frequency ckU) about the average longitu-

dinal position et”. This figure-eight motion (in the comoving frame) can give

rise to harmonic emissions. Let us represent the electric field in the form

(1)

where x = (x, y) represents the transverse coordinates, Ckl = ~+K2,227~cku is the

fundamental resonant frequency, and Ii?(v) I is the field amplitude at frequency

~’ = vklc.

It is convenient to treat z, the distance from the undulator entrance, as the

independent variable. and change the clependent coordinate from t to d by

O(z) = (k, +k~)z – cklt’ = (kU +k~)z –cklt+<sin(2kU;). where ~ = 1{2/(4+



,- .

2K2). The hIaxwell equation under

($+2) gE(v, X; Z) = –
‘lo-/fJ

the paraxial approximation becomes

I

x kldQ_e–iv6eiuku z+iv~sin(2k. z)

-m 27i
Cos(kuz)

\
x~b x–

)
m sin(kUz) – z; 6 (g – y;) 6(8 – 6j), (2)

j=l

where J\-~ is the total number of electrons, and x;

verse betatron oscillations. Because the transverse

really smaller than the transverse dimension of the

imate

and g; describe the trans-

wiggling amplitude is nor-

electron beam, we approx-

(6 x–
K

— sin(k.z) – x!
~/okU )= J(4’)-

% sin(k.z)c$’ (x – x$) , (3)

where 6’ = cid/(dx). Since the FEL interaction and the betatron oscillation

occur on a scale much longer than the fast wiggling motion, we average Eq. (2)

over the undulator period AUwith the help of the Bessel function expansion

- E Jp(voei2pk’z.eivf sin(2kuz) _ (4)

p.–(x

Inserting the first term of Eq. (3) into Eq. (2), we find that the wiggling

averaging is nonzero only when v is close to an odd integer h = –(2p + 1) [4]

and obtain the equation for odd harmonics [3]:

A-e

x~d(x– X;)(3(O – Oj), (5)
j=l

where ih+ = v – h << 1 is the frequency detuning and the effective coupling

strength is

]{h = ]+l)(h-1)/2 ][- (~-l))?(hf) – J[~~l)/z(hO] . h = 1,3,5,... (6)

Inserting the seconci term of Eq. (3) into Eq. (2), we find that the f~iggling

averaging is nonzero only when v is close to an even integer h = – (2P* 2) [5]
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and obtain the equation for even harmonics:

.

where the effective coupling strength is

~h = K(–l)(h-2)/2J~,2 (h&), h =2,4, . . . (8)

Hence, in the forward z direction of a perfectly aligned undulator trajectory,

even harmonic emissions are present due to the transverse gradient of the

electron current in the wiggling plane.

The electron distribution in phase space is described by the Klimontovich

distribution function j(O, ~, x, p; z), where q = (-y – :{o)/~o, and p = dx/dz

are the conjugate variables to (3and x. Using the Pierce parameter p [6], we

introduce the following scaled variables:

/
~=+= P=p &

u

— dfh
a~(u~,x;q = z -’*”’~”’E@vh, x, z).

4yomc2kup e
(9)

Equations (5) and (7) can be written as

(10)

The m-olution of the distribution function is gol-ernecl by the Klimontovich
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equation integrated along the unperturbed trajectory [3]:

~(~) = ~(o)+ ~’ d~O~~ ~ d(%)ez”o(o)ah(%, ~(o), .3)-$j(8(0), ij, X(o),p(o); .3)

+1% ~ fd(tih)e’~’’”’ah(fih, x(”), s)%% +c.c. ~ (11)
even h

Here the summation of h is extended to include the interactions with the even

harmonics.

where i3 =

The unperturbed trajectory is described by

O(0)(s) =0+ ~(~ – Z) with # = T – (p2 +

5+0)(s) =Xcos(k~(3 - 2))+ $ sin(~p(~ - 2?)),

p(o)(s) = – ~~isin(i~(~ – 2)) + p COS(ZP(3– Z)), (12)

k3/(2kUp) is the scaled betatron focusing strength. j(0) = ~.+ 6~o

contains the initial fluctuation d~o as well as the initial smooth distribution

~o, which is assumed to be

where Dz = or @ and % = Cn/P are the SCaled beam SiZe and SCaled

energy spread, respectively.

Coherent harmonic radiation

actions. After a certain stage

is generated through nonlinear harmonic inter-

of exponential growth, the dominant nonlinear

term has been shown to be predominantly driven by the fundamental field [3].

Thus, we consider the nonlinear harmonic bunching determined by the fun-

damental field onl}-. In the small signal regime, we keep the al term only in

Eq. (11) and solve it by iteration:

f(’) = .fO + ~.f” + ~ .fh(~)+ Cc. , (14)
all h
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(15)

forh~ lanclso =Z. JJ’enotethat Eq. (14) with Eq. (15) is the approximate

solution of Eq. (11) when the nordinear harmonic generation dominates over

the linear harmonic generation or the spontaneous harmonic emission [3]. It

becomes an increasingly- good approximation as the fundamental field is sig-

nificantly amplified.

The evolution of the fundamental field is obtained by solving Eq. (10) with

h, = 1 and f replaced by 6.fo + fl (z) [3,7]:

where pl is the complex growth rate of the fundamental mode .41(x) with the

largest imaginary part of HI. The first term of Eq. (16) describes the process

of coherent amplification from the initiaI coherent signal al (u, X; 0), and the

second term of Eq. (16) describes the process of self-amplified spontaneous

emission from the initial shot noise d~o. Inserting Eq. (14) into Eq. (10), we find

that ah (h > 1) is determined by ~h with a complex growth rate hpl, and that

the characteristics of the nordinear harmonic generation are all determined by

the fundamental field. lVhile the transverse profile of the odd harmonics is

azimut hally- symmetric just as the fundment al mode, the transverse profile of

the even harmonics possesses the odd symmetry in the wiggling plane (the x

plane) clue to the transverse gradient effect in Eq, (10).
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3 Third-Harmonic Radiation

The mostsignificant nonlinear harmonic generation occurs at the third har-

monic, given by Eq. (10) for h = 3 and ~ replaced by ~3 of Eq. (15). For

a seeded FEL, we assume that the external signal matches optimal detun-

ing tio for the fundamental field (with a complex growth rate PO that has

the maximum imaginary part). We can set VI = fio and ti~ = 3tio and drop

the frequency dependence of al and a3 in Eq. (10). In view of Eq. (16), we

write al (x; Z) = e–@Jz.41 (x), where Al x Aoe-Wl~2 is the fundamental mode

(R = \X]/Dr = Ix\/aZ), and .40 is the appropriate normalization coefficient.

Thus, we can write the third nonlinear harmonic as (x; Z) = e-3z~0Z.43(x) with

the transverse profile .43 given by [3]:

where ~~ = ~~ —Sm_l for m = 1, 2, 3, and 30 = Z. We have extended the lower

limit of the integral J dr~ to –co due to the exponential growth. Solving

Eq. (17) with the Hankel transformation, we obtain [3]

.43(R) = (’)2A: ~mQK?J_o(Q@~(Q)>
1

(18)

where

[

—, (J2

x exp 1–:(37, + 27, + T:3)~– i//o(3T~+ 27”+ 7-:])– ~ . (19)



and

b-=[?21’in2(wl [2’0s2(’’2’)1

-[21sin(’@)cOs( TT’)12+v2+3v

(20)

Equation (18) can be computed using a discrete Hankel transformation. In

general, the third-harmonic radiation is also transversely coherent with a

Gaussian-like profile and a narrower spot size than the fundamental (see Figs.

1 and 2).

For a SASE FEL, the fundamental radiation starts with a white noise spectrum

and has a finite gain bandwidth. In the time domain, the temporal structure

of the fundamental is chaotic with many random spikes. Due to the nonlinear

generation mechanism, the temporal structure of the third-harmonic radiation

is similar to the fundamental, but with more fluctuation from spike to spike.

It can be shown that [3]

()~ [G1(O; ~)]’A~Hoe-w3R2,A’(O, R; Z) = — (21)

where G1 (/3;Z) is a Gaussian random variable in 6 and a slowly varying function

in z for SASE (Gl = 1 for C-A), If. = (1<3/lY1) J QdQlY3(Q), and W3 char-

acterizes the transverse profile of the third-harmonic radiation. The average

radiation power can be obtained by integrating over the transverse intensity

profile ancl a~-eraging over the temporal fluctuation. Thus, we have [3]



.“ .

Here P~,,~ = 2mo~-/ nzc3n0 is the total electron beam power, and Wl, and W3,

are the real parts of WI and w~. Thus, the third-harmonic radiation for a S.LSE

FEL has a power level roughly 6 times larger than the corresponding steady

state case, but with more shot-to-shot fluctuations compared to the funda-

mental [3]. The third-harmonic bunching parameter is obtained by averaging

(e-3z’f3) over the 6-D phase-space volume and taking the absolute value [3]:

For example. using the design parameters (see Table 1) for the low-energy

undulator test line (LEU-TL) FEL at the Advanced Photon Source [8] and the

proposed Linac Coherent Light Source (LCLS) at Stanford Linear Accelerator

Center [9], n-e compute the transverse profile of the third harmonic and plot

it in comparison with the fundamental profile in Figs. 1 and 2. The third-

harmonic power and the bunching parameter are also calculated according

to Eqs. (22) and (2.3). Table 1 Iists the results when the fundamental power

reaches one half of the saturation power, when the exponential growth process

is supposed to stop. \Ve have compared the evolution of the third-harmonic

power for the LEUTL FEL with the steady-state MEDUSA simulation [2],

and the third-harmonic

GINGER simulation [3]

4 Second-Harmonic

bunching for the LCLS case with the steady-state

Good agreement for both cases hav-e been found.

Radiation

The second-harmonic raclia,tion can be calculated from Eel. (10) with h = 2

ancl ~ replacecl b~- f? of Eq. (15). One can follow the same procedure as in Sec.
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3 to solve for the second-harmonic field for CA and SASE, except that the

Hankel transformation should be replacecl by the 2-D Fourier transformation

in x and y because the radiation profile has the odd symmetry in x. Since the

wiggling amplitude K/ (-iokU) is usually much smaller than the rms beam size

ox, the power of the second-harmonic radiation is less than that of the third

harmonic. W-e can estimate the power of the second-harmonic radiation by

% (..:%)2(2)22 (24)

Here the second harmonic bunching parameter b2 is obtained by averaging

(e-2zo~2) over the 6-D phase-space volume and taking the absolute value

“=’wr(p:am)L“L’’’:;;T2)T2)
[

-2

1
x exp –~(2T1 + r’)’ – iMo(2Tl + 72) ,

where

(25)

(26)

Using the LEL’TL and LCLS examples, we calculate the second-harmonic

bunching and estimate the second-harmonic power by Eq. (24). From Table

1, we see that a significant amount of second-harmonic radiation can be gen-

erated in the LEUTL FEL because the wiggling amplitude (proportional to

I/-yo) is about one-third of the beam size. However, for x-ray FELs employing

a high-energy electron beam, such as the LCLS, the second-harmonic radiation

is much reducecl.

10



*

5

Ii-e

the

Conclusion

have presented a perturbation scheme to analyze the 3-D evolution of

nonlinear harmonic radiation in coherent amplification and self-amplified

spontaneous emission, with explicit calculation of second-harmonic and third-

harmonic radiation based on current high-gain FEL projects. The transverse

coherence and the substantial power level of the third harmonic could be useful

in extending the short wavelength reach of a high-gain FEL.

11’e thank S. Biedron, Y. Chae, W. Fawley, H. Freund, S. Milton, and C. Pelli-

grini for useful discussions. This work was supported by the U. S. Department

of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-

ENG-38.

References

[1] R. Bonifacio. L. De Salvo, and P. Pierini, Nucl. Instr. Meth. A 293,627 (1990).

[2] H.P. Freund. S.G. Biedron, and S.V. Milton, IEEE J. Quantum Electron. QE-36,
275 (2000); Nucl. Instr. Meth. A 445, 53 (2000).

[3] Z. Huang and K.-J. Kim, submitted to Physical Review E.

[4] W.B. Colson, IEEE J. Quantum Electron. QE-17, 1417 (1981).

[5] M.J. Schmitt and C.J. Elliott, Phys. Rev. A 34,4843 (1986); Phys. Rev. A 41,
3853 (1990): Nucl. Instr. Meth. A 296, 394 (1990).

[6] R. Bonifacio. C. Pellegrini, and L.M. Narducci, Opt. Comm. 50,373 (1984)

[7] Z. Huang and K.-J. Kim, in these proceedings.

[8] S.V. Miltmn et al., Nuc1. Instr. Meth. A 407,210 (1998).

[9] Linac Coherent Light Source Design Study Report, SL.IC-R-521, 1998.

11



●

1.0

0.8

0.6

0.4

0.2

0.0

11
—.—.—.-

Ie
. ---- .-

13

—

-.

! 1 I I I I

0 1 23’4
R

Fig. 1. Transverse profiles of the LEUTL third harmonic (13), the fundamental (11),
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Table 1
Nonlinear Har ic Generation for SASE FELs

beam and Undulator

energy

peak current

normalized emittance

energy spread

average beta function

undulator period

undulator strength

mdamental Radiation

resonant wavelength

power gain length

saturation power (P~at)

irmonics at I’1 = ~~at/2

3’~-harmonic power

3r~-harmonic bunching

2“~-harmonic power

2“~-harmonic bunching

LEUTL

220 MeV

150 A

5 pm

0.1%

1.5 m

3.3 cm

3.1

518 nm

0.67 m

70 Mw

3.6 NIW

0.39

550 kw

0.47

LCLS

14.4 GeV

3400 A

1.5 pm

0.02%

18 m

3 cm

3.71

1.5 A

6.1 m

8 GW

15 Mw

0.018

15 kW

0.056
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