Results from Nondestructive Assay Measurement of the 296-P-34 Rotary Mode Core Sampler HEPA Filters
Results from NDA Measurement of the 296-P-34 RMCS HEPA Filters

Prepared for the U.S. Department of Energy

FLUOR DANIEL HANFORD, INC.
Richland, Washington

Hanford Management and Integration Contractor for the U.S. Department of Energy under Contract DE-AC06-96RL13200

Approved for Public Release; Further Dissemination Unlimited
Results from NDA Measurement of the 296-P-34 RMCS HEPA Filters

L. P. Diediker, N. A. Homan
Waste Management Federal Services of Hanford, Inc.

B. M. Markes
Waste Management Federal Services, Inc., Northwest Operations

Date Published
June 1999

Prepared for the U.S. Department of Energy

FLUOR DANIEL HANFORD, INC.
Richland, Washington

Hanford Management and Integration Contractor for the
U.S. Department of Energy under Contract DE-AC06-96RL13200

Approved for Public Release; Further Dissemination Unlimited
RELEASE AUTHORIZATION

<table>
<thead>
<tr>
<th>Document Number:</th>
<th>HNF-4199, Rev. 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Title:</td>
<td>Results from Nondestructive Assay Measurement of the 296-P-34 Rotary Mode Core Sampler HEPA Filter</td>
</tr>
</tbody>
</table>

This document, reviewed in accordance with DOE Order 241.1, "Scientific and Technical Information Management," and DOE G 241.1-1, "Guide to the Management of Scientific and Technical Information," does not contain classified or sensitive unclassified information and is:

APPROVED FOR PUBLIC RELEASE

6/4/99

C. Willingham

Lockheed Martin Services, Inc.

Document Control/Information Clearance

Reviewed for Applied Technology, Business Sensitive, Classified, Copyrighted, Export Controlled, Patent, Personal/Private, Proprietary, Protected CRADA, Trademark, Unclassified Controlled Nuclear Information.

LEGAL DISCLAIMER. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, not any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced from the best available copy. Printed in the United States of America.
CONTENTS

1.0 INTRODUCTION .. 1
2.0 OBJECTIVE .. 1
3.0 SCOPE .. 1
4.0 DESCRIPTION OF TEST ... 1
5.0 EXPECTED RESULTS .. 2
6.0 SET UP AND TEST STEPS ... 2
7.0 RESULTS .. 2
8.0 REFERENCES .. 3

TABLE

Table 1. Results for NDA on 296-P-34 HEPA Filters.. 4
This page intentionally left blank.
1.0 INTRODUCTION

This data acquisition is specific to the rotary mode core sampler (RMCS) 'C' exhauster, or stack 296-P-34, high-efficiency particulate air (HEPA) filters. This data acquisition supports the National Emission Standards for Hazardous Air Pollutants (NESHAP), 40 CFR 61, Subpart H, compliance assessment HNF-1974, Hanford Site Radionuclide National Emission Standards for Hazardous Air Pollutants Stack Source Assessment. Calibration of the data collection instrumentation was conducted as described in Section 6.1, and in-field data collection took place on April 1, 1999.

Sampling was conducted in accordance with general safety rules in Safety Responsibilities (HNF-PRO-074). Industrial hazards were not expected and were not encountered. All radiation control technicians (RPTs) were qualified to operate the survey meters. RPT qualifications are verifiable. Exempt personnel operated the instrumentation for data collection. Waste Management Federal Services of Hanford, Inc. (WMH) and Waste Management Federal Services, Inc., Northwest Operations (WMNW) engineers were current in Radiation Worker II training and any other facility-specific training needed to access the HEPA filter area(s). All test personnel were cognizant of any applicable radiation work permits (RWPs).

Quality assurance is addressed in HNF-0528-3, NESHAP Quality Assurance Project Plan for Radioactive Air Emissions Data.

2.0 OBJECTIVE

The objective of this data acquisition was to measure and identify the gamma emissions from the 296-P-34 exhauster HEPA filters. Data acquisition was accomplished by nondestructive assay (NDA), using a portable gamma spectrometer calibrated to the exhauster HEPA filter geometry. The NDA technique that was used is referenced in 40 CFR 61 Appendix B Method 114 and also addressed in HNF-EP-0528.

3.0 SCOPE

This data acquisition applies only to the 296-P-34 stack HEPA filters for the measurement, identification, and quantification of gamma radiation isotopes that could be emitted. Additionally, standard field survey meters were used to assess the gross gamma radiation field.

4.0 DESCRIPTION OF TEST

The portable gamma spectrometer was calibrated, in a low background area, to the 296-P-34 exhauster’s HEPA filter geometry. Background measurements were taken at the exhauster location. Gamma radiation emitted from the 296-P-34 HEPA filters was measured directly using a portable gamma spectrometer [high purity germanium (HPGe) detector, or equivalent]. Measurement locations in the field were specific, duplicating those used to calibrate the spectrometer.
5.0 EXPECTED RESULTS

Several gamma spectra were collected. The data can be used to estimate the potential unabated annual release. The source term challenging the 296-P-34 HEPA filters contains gamma emitting Cs-137, and alpha and beta emitters, conservatively assumed to be Pu-239/240, Am-241, and Sr-90. The Cs-137 is measured directly with the gamma spectrometer. The alpha and beta emitters can be estimated by ratio to the Cs-137 activity.

6.0 SET UP AND TEST STEPS

The HPGe detector and analyzer were calibrated as follows for the 296-P-34 HEPA filters. The 296-P-34 exhauuster has a prefilter followed by two HEPA filters in series before exhausting to the atmosphere.

The detector was cooled with liquid nitrogen at least 1 hour before calibration. At least two peaks are required to complete an energy calibration for the acquisition of a spectrum. Cs-137 and Co-60 were used as the two standards for calibration.

To calibrate the detector to the geometry of the exhauuster filter housing in the field, a duplicate mockup was constructed in a low background area. A National Institute of Standards and Technology traceable source(s) (~ 1 μCi) was placed into the center of the 'clean' HEPA filter. A collimated lead shield was placed around the detector probe, leaving the head end unshielded, and the head end of the detector was placed up against the center of the side of the HEPA filter housing. The calibration source was counted from 1 to 5 minutes. The gamma peaks were identified and the net integral, or activity under the peak, was calculated (accomplished by the detector's analysis software).

Data was collected from the 296-P-34 HEPA and pre filters as follows.

- A background reading was taken with a CP instrument or high-range survey meter or μR meter. The readings were recorded.

- A dose rate measurement was taken (CP) in the center of the side of each HEPA filter and prefilter. The readings were recorded.

- Three, 1 to 5 minute measurements were taken using the HPGe detector, with the same shielding configuration and in the same locations as was used in the mockup calibration. Each analysis file was saved and the data recorded. The count time might vary depending on the background radiation and its effect on the instrument's % dead time. To preclude statistical inaccuracy, the dead time should not exceed 60 %. The dead time was recorded.

- The filter service lifetime was recorded on the data sheet. The activity measured should be annualized to represent the most accurate amount of radioactivity during a year of filter operation.

7.0 RESULTS

Results of the data acquisition are included in Table 1.
8.0 REFERENCES

HNF-PRO-074, *Safety Responsibilities*.
Table 1. Results for NDA on 296-P-34 HEPA Filters.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Measurement Date</th>
<th>Count Time</th>
<th>Net Integral of Cs-137 peak (counts per Minute)</th>
<th>Cs-137 Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ST STAGE HEPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(878 hours service life)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration #1</td>
<td>04/01/99</td>
<td>600.00</td>
<td>284.10</td>
<td>0.89</td>
</tr>
<tr>
<td>(Recessed detector)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration #2</td>
<td>04/01/99</td>
<td>60.00</td>
<td>268.00</td>
<td>0.89</td>
</tr>
<tr>
<td>(Recessed detector)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration #3</td>
<td>04/01/99</td>
<td>60.00</td>
<td>286.00</td>
<td>0.89</td>
</tr>
<tr>
<td>(Recessed detector)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration #4</td>
<td>04/01/99</td>
<td>60.00</td>
<td>295.00</td>
<td>0.89</td>
</tr>
<tr>
<td>(Recessed detector)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration #5</td>
<td>04/01/99</td>
<td>60.00</td>
<td>292.00</td>
<td>0.89</td>
</tr>
<tr>
<td>(Recessed detector)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration #6</td>
<td>04/01/99</td>
<td>60.00</td>
<td>287.00</td>
<td>0.89</td>
</tr>
<tr>
<td>(Recessed detector)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration Average</td>
<td></td>
<td></td>
<td>285.35</td>
<td></td>
</tr>
<tr>
<td>Field Reading #1</td>
<td>04/01/99</td>
<td>60</td>
<td>90,965.00</td>
<td>282.76</td>
</tr>
<tr>
<td>Field Reading #2</td>
<td>04/01/99</td>
<td>60</td>
<td>90,044.00</td>
<td>279.90</td>
</tr>
<tr>
<td>Field Average (in uCi)</td>
<td></td>
<td></td>
<td></td>
<td>281.33</td>
</tr>
<tr>
<td>Field Average (in Ci)</td>
<td></td>
<td>281.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREFILTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(878 hours service life)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration #1</td>
<td>04/01/99</td>
<td>600.00</td>
<td>550.90</td>
<td>0.89</td>
</tr>
<tr>
<td>(Thru handle)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration #2</td>
<td>04/01/99</td>
<td>600.00</td>
<td>543.00</td>
<td>0.89</td>
</tr>
<tr>
<td>(Thru handle)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration Average</td>
<td></td>
<td></td>
<td>546.95</td>
<td></td>
</tr>
<tr>
<td>Field Reading #3</td>
<td>04/01/99</td>
<td>60.00</td>
<td>82,929.00</td>
<td>134.49</td>
</tr>
<tr>
<td>Field Reading #4</td>
<td>04/01/99</td>
<td>60.00</td>
<td>82,129.00</td>
<td>133.19</td>
</tr>
<tr>
<td>Field Average (in uCi)</td>
<td>133.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Average (in Ci)</td>
<td>1.34E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2ND STAGE HEPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(878 hours service life)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration #1 (Flush)</td>
<td>04/01/99</td>
<td>600.00</td>
<td>613.50</td>
<td>0.89</td>
</tr>
<tr>
<td>Calibration #2 (Flush)</td>
<td>04/01/99</td>
<td>600.00</td>
<td>631.30</td>
<td>0.89</td>
</tr>
<tr>
<td>Calibration Average</td>
<td></td>
<td></td>
<td>622.40</td>
<td></td>
</tr>
<tr>
<td>Field Reading #5</td>
<td>04/01/99</td>
<td>60</td>
<td>10427</td>
<td>14.860</td>
</tr>
<tr>
<td>Field Average (in Ci)</td>
<td>1.49E-05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL ACTIVITY</td>
<td></td>
<td></td>
<td></td>
<td>4.30E-04</td>
</tr>
<tr>
<td>(all filters)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION

Fluor Daniel Hanford, Inc.
S. M. Price

Lockheed Martin Hanford Corp.
M. J. Brown
D. J. Carrell
G. M. Crummel
D. E. Clark
D. L. Dyekman
B. G. Erlandson
R. E. Falon
P. C. Miller
J. S. Schofield
D. H. Shuford
E. J. Waldo

Waste Management Federal Services Hanford, Inc.
W. E. Davis
L. P. Diediker
E. M. Greager
N. A. Homan
J. S. Hill
L. F. Willis

Lockheed Martin Services, Inc.
Central Files
DPC

Waste Management Federal Services, Northwest Operations
J. J. Dorian
B. M. Markes

MSIN
H6-23
R1-51
R1-51
R1-51
R1-51
S7-03
R1-51
S7-04
R1-51
S7-12
S7-03
S7-12
H6-36
H6-36
H6-36
H6-25
H6-25
H6-30
B1-07
H6-08
H1-13
H1-13
This page intentionally left blank.