A hybrid dielectric and iris loaded periodic accelerating structure.

PDF Version Also Available for Download.

Description

One disadvantage of conventional iris-loaded accelerating structures is the high ratio of the peak surface electric field to the peak axial electric field useful for accelerating a beam. Typically this ratio E{sub s}/E{sub a} {ge} 2. The high surface electric field relative to the accelerating gradient may prove to be a limitation for realizing technologies for very high gradient accelerators. In this paper, we present a scheme that uses a hybrid dielectric and iris loaded periodic structure to reduce E{sub s}/E{sub a} to near unity, while the shunt impedance per unit length r and the quality factor Q compare favorably ... continued below

Physical Description

3 pages

Creation Information

Zou, P.; Xiao, L.; Sun, X. & Gai, W. July 17, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

One disadvantage of conventional iris-loaded accelerating structures is the high ratio of the peak surface electric field to the peak axial electric field useful for accelerating a beam. Typically this ratio E{sub s}/E{sub a} {ge} 2. The high surface electric field relative to the accelerating gradient may prove to be a limitation for realizing technologies for very high gradient accelerators. In this paper, we present a scheme that uses a hybrid dielectric and iris loaded periodic structure to reduce E{sub s}/E{sub a} to near unity, while the shunt impedance per unit length r and the quality factor Q compare favorably with conventional metallic structures. The analysis based on MAFIA simulations of such structures shows that we can lower the peak surface electric field close to the accelerating gradient while maintaining high acceleration efficiency as measured by r/Q. Numerical examples of X-band hybrid accelerating structures are given.

Physical Description

3 pages

Source

  • 2001 Particle Accelerator Conference (PAC2001), Chicago, IL (US), 06/18/2001--06/22/2001

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL-HEP-CP-01-64
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 783658
  • Archival Resource Key: ark:/67531/metadc722520

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 17, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 29, 2016, 7:41 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zou, P.; Xiao, L.; Sun, X. & Gai, W. A hybrid dielectric and iris loaded periodic accelerating structure., article, July 17, 2001; Illinois. (digital.library.unt.edu/ark:/67531/metadc722520/: accessed November 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.