Improvement of Photosynthetic Efficiency Through Reduction of Chlorophyll Antenna Size

PDF Version Also Available for Download.

Description

We have previously presented a graphical illustration of a strategy to improve photosynthetic conversion efficiencies by a reduction of the antenna size in photosynthetic reaction centers. During the current reporting period, we have made progress in demonstrating the conceptual correctness of this idea. Light-saturation studies for CO, in air were performed with an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15). The light-saturated rate for CO(2), assimilation in mutant DS521 was about two times higher (187 Mu-mol.h(-1).mg chl(-1)) than that of the wild type, DES15 (95 Mu-mol.h(-1).mg chl(-1). Significantly, a partial linearization of the light-saturation curve was also ... continued below

Physical Description

10 pages

Creation Information

Blankinship, S.L.; Greenbaum, E.; Lee, J.W. & Mets, L. May 3, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We have previously presented a graphical illustration of a strategy to improve photosynthetic conversion efficiencies by a reduction of the antenna size in photosynthetic reaction centers. During the current reporting period, we have made progress in demonstrating the conceptual correctness of this idea. Light-saturation studies for CO, in air were performed with an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15). The light-saturated rate for CO(2), assimilation in mutant DS521 was about two times higher (187 Mu-mol.h(-1).mg chl(-1)) than that of the wild type, DES15 (95 Mu-mol.h(-1).mg chl(-1). Significantly, a partial linearization of the light-saturation curve was also observed. The light intensities that give half-saturation of the photosynthetic rate were 276 and 152 Mu-E.m(-2).s(-1) in DS521 and DES15, respectively. These results confirmed that DS521 has a smaller chlorophyll antenna size and demonstrated that the reduction of antenna size can indeed improve the overall efficiency of photon utilization. Corresponding experiments were also performed with CO(2), in helium. Under this anaerobic condition, no photoinhibition was observed, even at elevated light intensities. Photoinhibition occurs under aerobic conditions. The antenna-deficient mutant DS521 can also provide significant resistance to photoinhibition, in addition to the improvement in the overall efficiency in CO(2), fixation.

Physical Description

10 pages

Source

  • U.S. DOE Hydrogen Review Meeting, Denver, CO, May 3-6, 1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00007829
  • Report No.: ORNL/CP-103430
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 7829
  • Archival Resource Key: ark:/67531/metadc722481

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 3, 1999

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • Feb. 15, 2016, 12:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Blankinship, S.L.; Greenbaum, E.; Lee, J.W. & Mets, L. Improvement of Photosynthetic Efficiency Through Reduction of Chlorophyll Antenna Size, article, May 3, 1999; Oak Ridge, Tennessee. (digital.library.unt.edu/ark:/67531/metadc722481/: accessed August 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.