ESTIMATION OF RELATIVISTIC ACCRETION DISK PARAMETERS FROM IRON LINE EMISSION

PDF Version Also Available for Download.

Description

The observed iron K{alpha} fluorescence lines in Seyfert I galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the emission. Here we present an analysis of the geometrical and kinematic properties of the disk based on the extreme frequency shifts of a line profile as determined by measurable flux in both the red and blue wings. The edges of the line are insensitive to the distribution of the X-ray flux over the disk, and hence provide a robust alternative to profile fitting of disk parameters. Our approach yields new, strong bounds on ... continued below

Physical Description

1100 Kilobytes pages

Creation Information

PARIEV, V.; BROMLEY, B. & MILLER, W. March 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The observed iron K{alpha} fluorescence lines in Seyfert I galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the emission. Here we present an analysis of the geometrical and kinematic properties of the disk based on the extreme frequency shifts of a line profile as determined by measurable flux in both the red and blue wings. The edges of the line are insensitive to the distribution of the X-ray flux over the disk, and hence provide a robust alternative to profile fitting of disk parameters. Our approach yields new, strong bounds on the inclination angle of the disk and the location of the emitting region. We apply our method to interpret observational data from MCG-6-30-15 and find that the commonly assumed inclination 30{degree} for the accretion disk in MCG-6-30-15 is inconsistent with the position of the blue edge of the line at a 3{sigma} level. A thick turbulent disk model or the presence of highly ionized iron may reconcile the bounds on inclination from the line edges with the full line profile fits based on simple, geometrically thin disk models. The bounds on the innermost radius of disk emission indicate that the black hole in MCG-6-30-15 is rotating faster than 30% of theoretical maximum. When applied to data from NGC 4151, our method gives bounds on the inclination angle of the X-ray emitting inner disk of 50 {+-} 10{degree}, consistent with the presence of an ionization cone grazing the disk as proposed by Pedlar et al. (1993). The frequency extrema analysis also provides limits to the innermost disk radius in another Seyfert 1 galaxy, NGC 3516, and is suggestive of a thick disk model.

Physical Description

1100 Kilobytes pages

Source

  • Conference title not supplied, Conference location not supplied, Conference dates not supplied

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-1415
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 776173
  • Archival Resource Key: ark:/67531/metadc722394

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 21, 2016, 3:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

PARIEV, V.; BROMLEY, B. & MILLER, W. ESTIMATION OF RELATIVISTIC ACCRETION DISK PARAMETERS FROM IRON LINE EMISSION, article, March 1, 2001; New Mexico. (digital.library.unt.edu/ark:/67531/metadc722394/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.