GAS CURTAIN EXPERIMENTAL TECHNIQUE AND ANALYSIS METHODOLOGIES

PDF Version Also Available for Download.

Description

The qualitative and quantitative relationship of numerical simulation to the physical phenomena being modeled is of paramount importance in computational physics. If the phenomena are dominated by irregular (i. e., nonsmooth or disordered) behavior, then pointwise comparisons cannot be made and statistical measures are required. The problem we consider is the gas curtain Richtmyer-Meshkov (RM) instability experiments of Rightley et al. (13), which exhibit complicated, disordered motion. We examine four spectral analysis methods for quantifying the experimental data and computed results: Fourier analysis, structure functions, fractal analysis, and continuous wavelet transforms. We investigate the applicability of these methods for quantifying ... continued below

Creation Information

KAMM, J. R. & AL, ET January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The qualitative and quantitative relationship of numerical simulation to the physical phenomena being modeled is of paramount importance in computational physics. If the phenomena are dominated by irregular (i. e., nonsmooth or disordered) behavior, then pointwise comparisons cannot be made and statistical measures are required. The problem we consider is the gas curtain Richtmyer-Meshkov (RM) instability experiments of Rightley et al. (13), which exhibit complicated, disordered motion. We examine four spectral analysis methods for quantifying the experimental data and computed results: Fourier analysis, structure functions, fractal analysis, and continuous wavelet transforms. We investigate the applicability of these methods for quantifying the details of fluid mixing.

Source

  • 10th International Conference on Computational Methods and Experimental Measurements, 4-6 June 2001, Alicante, Spain

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-497
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 773829
  • Archival Resource Key: ark:/67531/metadc722381

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • Dec. 7, 2016, 2:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

KAMM, J. R. & AL, ET. GAS CURTAIN EXPERIMENTAL TECHNIQUE AND ANALYSIS METHODOLOGIES, article, January 1, 2001; Los Alamos, New Mexico. (digital.library.unt.edu/ark:/67531/metadc722381/: accessed April 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.