IN-SITU CHARACTERIZATION OF MATRIX RESPONSE TO FIBER FRACTURES

PDF Version Also Available for Download.

Description

Successful application of metal matrix composites often requires strength and lifetime predictions that account for the deformation of each constituent. However, the deformation of individual phases in composites usually differs significantly from their respective monolithic behaviors. For instance, generally little is known about the in-situ deformation of the metal matrix and fiber/matrix interface region, other than that it likely differs from the bulk material response. This article describes an approach to quantifying the in-situ deformation parameters using neutron diffraction measurements of matrix failure around a fiber fracture in a model composite consisting of an Al matrix and a single Al{sub ... continued below

Physical Description

135 Kilobytes pages

Creation Information

HANAN, J. & AL, ET March 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Successful application of metal matrix composites often requires strength and lifetime predictions that account for the deformation of each constituent. However, the deformation of individual phases in composites usually differs significantly from their respective monolithic behaviors. For instance, generally little is known about the in-situ deformation of the metal matrix and fiber/matrix interface region, other than that it likely differs from the bulk material response. This article describes an approach to quantifying the in-situ deformation parameters using neutron diffraction measurements of matrix failure around a fiber fracture in a model composite consisting of an Al matrix and a single Al{sub 2}O{sub 3} fiber. We also study the shear sliding resistance as it evolves through fiber fracture upon loading and unloading. Matching the stress/strain distributions predicted from micromechanical models to the measured strain distributions determined by neutron diffraction under applied tensile loading results in an estimate of the typically non-linear, stress-strain behavior of the metal matrix.

Physical Description

135 Kilobytes pages

Source

  • Conference title not supplied, Conference location not supplied, Conference dates not supplied

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-1436
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 776143
  • Archival Resource Key: ark:/67531/metadc722270

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • March 25, 2016, 11:45 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

HANAN, J. & AL, ET. IN-SITU CHARACTERIZATION OF MATRIX RESPONSE TO FIBER FRACTURES, article, March 1, 2001; New Mexico. (digital.library.unt.edu/ark:/67531/metadc722270/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.