Interactive stereo electron microscopy enhanced with virtual reality

PDF Version Also Available for Download.

Description

An analytical system is presented that is used to take measurements of objects perceived in stereo image pairs obtained from a scanning electron microscope (SEM). Our system operates by presenting a single stereo view that contains stereo image data obtained from the SEM, along with geometric representations of two types of virtual measurement instruments, a ''protractor'' and a ''caliper''. The measurements obtained from this system are an integral part of a medical study evaluating surfactant, a liquid coating the inner surface of the lung which makes possible the process of breathing. Measurements of the curvature and contact angle of submicron ... continued below

Physical Description

vp.

Creation Information

Bethel, E.Wes; Bastacky, S.Jacob & Schwartz, Kenneth S. December 17, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An analytical system is presented that is used to take measurements of objects perceived in stereo image pairs obtained from a scanning electron microscope (SEM). Our system operates by presenting a single stereo view that contains stereo image data obtained from the SEM, along with geometric representations of two types of virtual measurement instruments, a ''protractor'' and a ''caliper''. The measurements obtained from this system are an integral part of a medical study evaluating surfactant, a liquid coating the inner surface of the lung which makes possible the process of breathing. Measurements of the curvature and contact angle of submicron diameter droplets of a fluorocarbon deposited on the surface of airways are performed in order to determine surface tension of the air/liquid interface. This approach has been extended to a microscopic level from the techniques of traditional surface science by measuring submicrometer rather than millimeter diameter droplets, as well as the lengths and curvature of cilia responsible for movement of the surfactant, the airway's protective liquid blanket. An earlier implementation of this approach for taking angle measurements from objects perceived in stereo image pairs using a virtual protractor is extended in this paper to include distance measurements and to use a unified view model. The system is built around a unified view model that is derived from microscope-specific parameters, such as focal length, visible area and magnification. The unified view model ensures that the underlying view models and resultant binocular parallax cues are consistent between synthetic and acquired imagery. When the view models are consistent, it is possible to take measurements of features that are not constrained to lie within the projection plane. The system is first calibrated using non-clinical data of known size and resolution. Using the SEM, stereo image pairs of grids and spheres of known resolution are created to calibrate the measurement system. After calibration, the system is used to take distance and angle measurements of clinical specimens.

Physical Description

vp.

Notes

OSTI as DE00790407

Source

  • IS and T/SPIE Electronic Imaging, The Engineering Reality of Virtual Reality 2002, San Jose, CA (US), 01/20/2002--01/25/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--48336
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 790407
  • Archival Resource Key: ark:/67531/metadc722265

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 17, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • April 4, 2016, 4:18 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 15

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bethel, E.Wes; Bastacky, S.Jacob & Schwartz, Kenneth S. Interactive stereo electron microscopy enhanced with virtual reality, article, December 17, 2001; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc722265/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.