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Abstract

We present a novel technique of sampling the configurations of helical

proteins. Assuming knowledge of native secondary structure, we employ as-

sembly rules gathered from a database of existing structures to enumerate

the geometrically possible 3-D arrangements of the constut uent helices. We

produce a library of possible folds for 25 helical protein cores. In each case ur

method finds significant numbers of conformations close to the native struc-

ture. In addition we assign coordinates to all atoms for 4 of the 25 proteins.

In the context of database driven exaustive enumeration our method performs

extremely well, yielding significant percentages of structures (0.02!Z0- 82?ZO)

within 6A of the native structure. The method’s speed and efficiency make it

a valuable contribution towards the goal of predicting

I. INTRODUCTION

protein structure.

A. Outline of current prediction methodology

Prediction of protein structure from sequence is one of the most enticing goals of scientific

inquiry today. Ctirently the most reliable method of determining a protein’s shape is to

search for a close homolog in the database of solved protein structures. Despite the fact

that the number of solved structures increases daily, it is estimated that in the near future
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at least 4070 cite someone.., of proteins of interest bear no discernible sequence resemblance

to a known macromolecule. Therefore ab initio prediction of structure from sequence remains

an important challenge.

When sequence homology cannot be used to construct a 3-D model, the current modus

operandi for predicting structure is composed of three separate (yet interdependent) steps:

sampling, searching, and ranking. One first picks a formalism to index and sample the

possible shapes, then searches through the shapes, and finally uses some ranking criterion to

pick out a structure as close to native as possible. To clarify this classification let us provide

some examples of each step.

sprinkle some sitations here. very delicate situation, since we basically can site the whole

field in the next three paragraphs.

The first requirement in sampling structures is that of representation, e.g. all-atom,

reduced ‘pseudo’ amino-acid interaction centers, lattice, etc. Once the representation is

chosen, one then picks the degrees of freedom to use. Researchers vary Cartesian coordinates

of all or a subset of the atoms, dihedral angles, relative distances, and so on. The decisions

of which, how many, discretized or continuous, and so on,

of detail one wants to capture, as well as by computational

search. One notable example, similar in spirit to this work,

are motivated by the amount

complexity of the forthcoming

is ref. [6] in which the authors

assemble helical sub-units using consensus distance geometry.

Having picked a representation, one then selects an appropriate search technique, or a

mixture of search techniques to march through the enormous space of possible 3-dimensional

structures. .4s we’ve mentioned above, the three complementary steps of prediction are

highly interdependent. The most important factors in picking a search method are compu-

tational complexity and the nature of the energy function and of the representation. Lattice

models, for instance, lend themselves easily to exhaustive enumeration. All atom cartesian

coordinate representations usually employ a physical potential, and search for a minimum

with either an intelligent minimization routine, or a copy of lNature’s algorithm, molecular
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The remaining tool employed in protein structure prediction is a potential function con-

structed to pick out native or near-native conformations from a vast number of alternatives.

If the search method employed is a guided one (for example, minimization) then the po-

tential function also provides a landscape that will allow the procedure to converge to the

correct answer. Just like sampling and search techniques, potential functions are many and

varied: physical potentials with/without water representation, knowledge based potentials

of various detail, hydrophobic contact potentials, and many others. Frequently more than

one potential is used to evaluate candidate structures.

B. Desirable features of search methods

In this article we present a novel sampling technique for helical proteins. We shall review

the features that make a sampling method effective thus providing a context in which one

can judge the merits and drawbacks of our procedure effectively.

A search method should have several desirable properties to be useful in ab-initio struc-

ture prediction. Our assertion is that the proportion of sampled conformations that are

native-like should be statistically significant. .Admittedly, the definitions of both “statisti-

cally significant” and “native-like” are imprecise - but clearly, the more and the closer, the

better.

Let us first explain the need to get close to the native structure. An energy functions

can only be effective in a slice of confirmational space close to the actual protein . Simply

stated, structures can be ‘wrong’ in a vast number of ways, many of which are low scoring

alternatives to the native fold in a very large space. Only a small subspace close to the

actual structure can be expected to exhibit the properties of an energy funnel; i.e. a region

where the energy decreases uniformly as one approaches the native, and where a majority

1Computational complexity is the quintessential burden of protein structure prediction.
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of conformations are more favorable than all the others in the available space.

How close is close enough? To make the definition more quantitative, one can compare

one’s sampling techique to random sampling. Reva et. al. [11] suggest a ‘native-like’ target

value of about 6 .~ CRMS deviation relative to the actual structure. Other authors [10,12]

also propose a similar distance of 4-6 .~. 2

Thus a selection method cannot predict if it is not given a chance, namely at least

one member of the sample is ‘native-like’. The requirement that a ‘st artistically significant’

fraction of the sample is nabive-like comes from a different obstacle. The need to enrich the

sampled structures with near-native conformations arises mainly from the inadequacies of

the energy functions we currently use. A perfect energy function should be able to tell apart

a native structure from all other alternatives - this, in fact, is what nature is able to do with

striking consistency. 3 Today’s best scoring functions need all the help they can get. The

current generation of potentials site many people, ram, others often mis-identifies incorrect

folds as correct predictions. By increasing the number of ‘correct’ answers we increase the

statistical likelyhood of making a successful prediction. In addition some current techniques

use consesus information - selecting a subset and building a consesus model from it [6].

These methods clearly need a sizeable native-like population to work. .And, all the above

non-withstanding, having more, rather than less, native-like structures can’t possibly be

bad!

2Clearly, this number depends on the size of the protein.

3Nature, most likely, does not sample every possible structure, but only those lying within thermal

fluctuations’ reach from the proteins’ preferred folding pathway - still a very large and diverse

ensemble.



II. DESCRIPTION OF THE SAMPLING METHOD

A. Graph-Theoretical representation of secondary structure

We represent alpha-helical proteins as connected graphs. Each helix is represented bya

vertex; an edge is drawn between two vertices if the corresponding helices are in contact.

To reproduce a protein core one builds a connected subgraph, adding one helix at a time,

until the protein is assembled. Figure 1 shows the graph-theoretical representation and the

construction of myoglobin.

We are, in essence, building an off-lattice model for secondary structure segments, but

our degrees of freedom are not in the frequently chosen [10,12,3] (~, @) loop residues (or their

subsets), but in the relative geometric position of the helices themselves. The disadvantage

of this approach is that a significant fraction of visited structures violate loop constraints

- simply put, the ends of helices are too far apart to be joined together by an intervening

loop. There are, however, several advantages. First, the structures we generate have a much

better tendency to be compact. Second, we are able to exploit the correlation between the

sequence patterns of helix-helix contact to significantly enrich our sampling with native-

like structures. (A simple example of this is two helices with small residues in the contact

area are more likely to be close to each other than those with large residues between them.)

Third, we are able to sample possible packing much more finely than when using loop torsion

angles, as is usually done in off-lattice models.

B. Exhaustive enu~lerat ion of helix-helix contacts

In this work our principal aim is to achieve coarse-grained sampling of the helical protein

core. The way we choose to travel through our space is by exhaustive enumeration of a

discrete version of our representation. We can choose to sample helix-helix packing (’link’)
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in several ways. 4 To clarify this we, once again, draw an analogy to dihedral sampling:

there one can cliscretize a particular dihedral angle into a (not necessarily) uniform spectrum

of values suggested by geometric considerations; e.g. sampling a dihedral angle in, say, 30

deg. intervals. .Alternatively, one can extract the local moves from a database of existing

structures, thus sampling the space more efficiently. One could, for example, assign three

possible values - helix, loop, sheet - to a dihedral angle. site someone here Another possi-

bility would be to bias the assigment with sequence matching. [13] or secondary structure

prediction. We choose to derive the preferences for helix-helix packing from the distribution

of such orientations in known proteins. Our hypothesis is that the contact patches on each

helix influence the way the helices pack. If we are incorrect, then our packing strategy will

position helices randomly - no harm done.

C. Definition of helix to helix contact (’link’) and the contacts’ database

We extract the possible relative orientations of two helices from a database of touching

helix-helix pairs obtained from a subset of the SCOP [9] database. The 1305 folds in our

library have a sequence identity to each other no greater than 35%. We then parse our

database to get touching helix-helix pairs. We define two helices X and Y to be in contact

if a) the shortest distance dnin between any two CB’S, C13Z and G’E$, located respectively

on helix X and helix Y, is less than 7.3 ~; and b) each helix has at least 3 CB atoms within

d = d~in + 2.5 .k. 5 G Additionally the CB’S on both helices that are within 2.5 .~ of

4We call a specific realization of an edge a ‘link’.

‘The three CB on each helix are necessary to define a relative rotation from one helix to another.

6The specific values of dmzn = 7.3A and 2.5A worked best in our tests. Lowering the dmi~ param-

eter to below 5A caused some of the proteins in our database to be represented by disconnected

graphs, thus making it impossible to ever reproduce them with our technique. Conversely, making

the dmin cutoff much larger than 7.3A decreases the influence the contact sequence has on the
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dmzn= 7.3 are defined to be in a contact ‘patch’. Our definition picks out the residues in the

contact region by assigning a ‘patch’ of contact residues between helices: Residues on the

far side of each helix, which have very little influence on the relative orientation, are ignored.

The ‘patch’ concept is illustrated in Figure 2 does the job well by showing the patches and

the structure of each link in the database.

D. The Enumeration Procedure

Once again, figure 1 illustrates the method. The build-up of a helical protein proceeds as

follows: Given a protein sequence and native secondary structure assignment we construct

idealized helices on the chain. (In a predictive scenario the native secondary structure

assignment will be replaced by a prediction, or possibly several alternative predictions. ) We

then go to the library of links and perform a sequence alignment between the patches on

each link and all possible pairs of helices on our target sequence. The residues between key

‘patch’ residues serve as spacers to fix the position of the influential patch residues. If the

sequence match is high then this particular link will be used to bring the pair of helices

together. The actual threshold for matching depends on the number of structures we want

to sample. The

The comparison

from 10 to 1000

sequence match is scored using the Blosum62 cite Blosum people matrix.

threshold typically varies from 0.1 to 0.6 and is adjusted to give anywhere

possible links for a given pair of helices in the target protein. The number

chosen depends on how many final structures we wish to generate in the available amount

of computer time. The relative orientations of the helices are then loaded into memory and

the buildup of structures begins.

We use each topological distinct pathway to build the target - (refer to figure 1 b)) - each

specific pathway corresponds to a minimal subgraph spanning the protein graph. (Dashed

and solid lines, respectively, in figure 1.) .4s seen in Fig. 3 for a structure of 4 helices this

relative orientation of the helices.
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would result in 414–21= 16 possible topologies. Note that the graph corresponding to each

final structure might (indeed should) posess other edges not used in construction; however

it’s sufficient to follow a minimally connected subgraph to construct it.

For each topology we construct each possible combination of links (gathered from the

sequence-matching procedure above) that can realize a given edge. To improve performance

we used branch and cut filters for loop and clash constraints. The clash filter eliminates

a conformation if more than 3 residues on one helix are closer than 2 A to residues on
o

another helix. The loop filter eliminates conformations for which the distance for the loops

necessary to connect the helices is longer than the maximum available loop length. The

reason for the branch-cut approach is simple: if in a given six-helix enumeration helix one

clashes with helix three there is no need to cycle through and build helices four, five, and

six. Finally, each geometrically viable structure is tested for compactness. Ml the tests and

filters are extremely fast because whenever possible we use the coarse segment representation

of the structure and thus escape having to visit each amino acid’s coordinates. We have

also incorporated other filtering information, most notably disulfide bond locations, into the

build-up procedure. In it’s current incarnation the method is able to sample roughly 103

conformations per second on a 400 MHz Pentium workstation. The ultimate speed of the

procedure will, in the future, be limited by scoring function evaluations.

III. RESULTS

In this paper we present the results of several applications of the sampling method.

To test the performance of our technique we have used the coordinates of helical cores

for 25 proteins. The molecules’ sizes range from 31 to 172 amino acids, and the number of

helical residues we’ve assigned coordinates to ranged from 23 to 130.

The position of disulfide bonds is easily obtained through chemical methods, and one

can often rely on knowing their location prior to prediction of structure. To this end, for 4 of

the 25 proteins in our set that have disulfide links, we have also evaluated the performance
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of our method with and without a priori knowledge of these bonds.

The fact that we assign residues only to the heIical backbone leaves open the possibility

that our results will be degraded by subsequent assignment of coordinates to all remaining

atoms. We investigated this effect by building all atomic coordinates for 5 of our proteins

using the program SegMod [8]. Prior to reconstructing full coordinates we scored the helical

cores with a sIightIy modified Sippl-like function [14] leaving 500 to

structures for each protein. (We left more decoys for larger proteins).

4500 Iowest energy

A. Sampling of helical cores

We used the method to generate conformations for 25 helical proteins, ranging in size

from 31 to 172 residues and containing anywhere from 2 to 6 helices. To check how much the

quality of our sampling will be degraded when all the coordinates are reconstructed from the

helical core, we have included severaI proteins with significant loop content. The assignments

of helices to the structure were made identital to the native structure. The program STRIDE

[4] was used to determine the secondary structure of the native protein.

The results are summarized in table I. Overall the results look very good. For nearly

every protein a sizeable proportion of the sampled structures is within 3.~ of the native. For

9 proteins the best structure produced is closer than l.~ CA RMSD to the actual structure,

and is virtually identical to the protein itself. Our procedure clearly gives a suitable potential

the opportunity to make a successful prediction.

Our method is not only very fast, it is also very efficient, in the sense of being native-like

rich. We can access the efficiency

structures are needed to obtain the

to the number of conformations we

by estimating how many random protein-like compact

RMSD of our best structure, and compare that number

have visited. We use the estimate from [11]

(3.1)

Where, following Reva et al we set a = 2.0 and < R >= 3.333 Nl/3, where N is the number of
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residues in the protein core that we have assigned coordinates to. The proximity of our best

structures to native exposes the weakness in estimating probability of low RNISD’S, namely

that the Gaussian distribution cannot be used to effectively describe sets of conformations

which are very close to native. Having said that, we still feel that equation 3.1 gives a good

estimate of efficiency. The last column in table I shows the ratio of the number of structures

we sample to the number of random structures given by formula 3.1.

As the last column in table I shows, our method is efficient - the sampling is strongly

biased towards the native conformation. The worst performance is shown in protein lres,

where we would have done slighly better if we chose relative helical conformations at random.

However for most cases we are beating the random selection by factors of 10~ to 106, with

efficiency actually increasing with the size of the proteins.

B. Features of the sampled conformations

Figure 4 shows a typical distribution of the sampled conformations. One particularly

interesting feature is the non-gaussian tail extending towards the native structure. This is

most likely the result of using sequence matching to select the possible orientations of the

helix-helix pairs. The use of sequence information enriches the set with native-like structures

and makes the curve decidedly non-gaussiian.

C. Using disulfide

To test how well the sampling is aided by

bond information

supplementary information, we took proteins

with disulfide bonds and subjected the sampling for those, structures to an

7 Our filters rejected conformations in which the CYS CB-CB distance was

7We did not screen 1CC5because although it does have disulfide bonds, they

additional filter.

greater than 8A.

occur in the loop

regions and do not help filter the helical cores.
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This is not a very strict filter; it simply weeds out grossly incorrect topologies. The results

both w'ithand without 8disulfide bond information aredisplayed intable II. Thenumberof

structures was cut by approximately a factor of 8. The filtering did not significantly improve

the average RMSD of the emsemble; however the proportion of ‘good’ structures was raised

approximate ely fivefold.

D. Completing the structure

The structures described in the previous two sections posess only backbone coordinates

for residues in the helical core. It is quite possible that the successes of the sampling can be

washed out when coordinates are assigned to the remaining residues and sidechain atoms.

To check how the quality of the sampling changes during completion we ran our sets of

conformations through the program SegMod. [8] We did not construct full coordinates for

all twenty five proteins because we simply wanted to show that reconstruction does not

significantly degrade the quality of the sampling procedure. To make the test credible, we

selected proteins of varying size, and with long unassigned loops. The results’ are shown in

table III.

Once again, the resulting ensembles of decoys contain a sizeable proportion of near-native

decoys. Even though we did not produce any decoys closer than 6A for 2fha, we feel that the

sampling of such a large (according to ab initio prediction standards) protein - 172 residues

- was successful. The RMSD of the best decoy,

last column of table III. The total ensemble for

7.3A has log-odds of 23234 (computed from

2fha has 0.25% of decoys below 10.Oi~ rmsd.

Both of these results

prediction remains to

are good for decoy ensembles. Whether they are good enough for

be seen.

‘The results without disulfide bond information are the same as in table I
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IV. DISCUSSION

A. Comparison with other search methods

Our sampling method is one of the main points of this paper. It has both merits and

drawbacks when compared with other search techniques. One alternate approach to sam-

pling is to assemble helices using distance geometry by either embedding distance space in

3-D [1,5], or by minimizing against restraints [6,2,15-18]. In a recent work [6] this method

produced decoy libraries with the log-odds of producing the lowest structure in the -4 to -6

range. 9 Our results, which range from log-odds of -4 to -9, are somewhat better. However

we must emphasize that the comparison is unfair, since we used actual secondary struc-

ture, and Huang et. al. used predicted (albeit well predicted) secondary structure. We

are currently examining how well our method will perform with predicted secondary struc-

ture. Preliminary indications are that both distance geometry and our method both get

sufficiently close to the native fold, with our method having a slight edge due to its speed.

Our method begins to pull away from distance geometry methods in the scaling of CPU

time needed when one moves to larger and larger proteins. Currently distance geometry

methods cannot be extended to proteins of length over 100 residues [6]. In contrast, because

our sampling technique scales with the’ number of secondary structure segments and not

the number of residues, it can easily handle chains of 100 - 200 residues, comparable to

single domains of larger proteins. The library for the largest protein in our work - 2fha, 172

residues long - took approximately 15 hours of CPU time on a 400 MHz Pentium II machine.

The sampling procedure produces approximately 500 structures per second for two-helical

proteins, 100/sec for proteins containing three helices, 10/sec with four, and roughly one

gLog-odds are l/~best, where Nbest is the number of random structures needed to find at least

one structure with RMSD equal to our best structure. NbeStis the first number in the last column

of table I.
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structure/second for proteins with five and six helices.

.Another sampling techique istofix thehelical segments and then tovary the dihedral

angles of the loop regions. This method has been used to produce fold libraries [10], and,

combined with a branch and bound algorithm, in folding studies [19,3]. This method carries

an advantage over ours because every structure generated automatically satisfies loop con-

straints, while many of our potential structures do not. Many of our structures have to be

rejected because the physical distance between ends of helices violates chain connectivity.

Furthermore, we do not have loops at the end of construction; therefore we are currently

working on an algorithm to sample loop regions of our protein

(i.e. fast) match to our helical core sampling.

On the other hand our method outpaces the loop dihedral

cores that would be a good

angle sampling in two cat-

egories: scaling of computational demands with time, and efficient sampling of structures

with plausable contacts. Let us illustrate the first difference with a four-helical protein.

Assuming an average loop length of seven residues varying loop conformation demands

7(residues) *2(4,@) *3 = 42 degrees of freedom. Our procedure needs to position three rigid

bodies (the position of the initial helix is arbitrary), requiring 6(rigid body) *3 = 18 de-

grees ot

method

helices.

“ freedom. The second difference stems from the fact each helix in our construction

is guaranteed to have at least one, and possibly two plausible contacts with other

When one varies dihedral angles, most of the non-clashing structures have large

voids between helices. ,

Yet another method for generating possible reduced-model

structure are lattice and off-lattice models, such as [21,20,22].

conformations for protein

Yet again these methods

outshine ours because they require no knowledge of either actual or predicted secondary

structure. On the other hand it’s difficult to see secondary structure at the resolution of

these lattice models. In computational performance, for small proteins these approaches

compare very favorably with ours - a simplified representation which assigns a lattice point

to every second residue can exhaustively sample shapes of proteins of up to 100 residues

[20]. However, because of an exponential increase in the number of shapes of a self-avoiding
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walk on a lattice, it’s difficult at this point to see a generalization of the lattice methods

that would apply to larger molecules without a significant sacrifice in resolution.

One final method we want to mention is that of assembling structures from fragments of

existing folds [13, 12]. We like this method very much. It uses the information in the sequence

to bias the assembly much the same way we use the ‘patch’ information to bias helix-helix

orientation. It is reported to produce

our set. In addition, this method - as

generalizes trivially to beta and mixed

Because we have not had the opportunity to test this method ourselves, we cannot comment

on how its efficiency compares with ours. Our feeling is that sequence information in ‘contact

patches’ has more correlation on the geometry of the structure than sequence information

located sequentially along the chain. Having said that, we still consider fragment assembly

the current method to beat.

best structures as good as the lowest RMSD’S in

do the lattice models and the loop angle search -

alpha/beta proteins: something we cannot yet do.

B. Advantages and disadvantages

In the beginning of this paper we introduced two desirable qualities of a sampling method:

speed, and the ability to produce structures close to the native fold. Our technique fills both

of these requirements.

The speed of the method depends on the size of the protein and, more specifically, on the

number of helices that we are trying to arrange. Each entry in table I takes from a fraction

of a second to under an hour to produce. .4 naive count would estimate a factorial growth

in the number of graphs, and an additional geometric growth in the number of structures

sampled in each graph; however the actual increase is much less. For most structures of

4 helices or more, cutting the branches that violate self-avoidance results in a significant

reduction of the number of conformations we need to sample. In our tests each additional

helix increased the time of the runs by approximately a factor of 30. The set of conformations

for our largest structure, lfha, took approximately 4 hours to generate.
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In addition to being fast, our method scales well - the use of branch/cut helps because

larger proteins are very constrained by self-intersection. Because of this our technique is

able to sample molecules comparable in size to small domains.

We chose to re-arrange helices using a ‘patch’ contact database derived from existing

structures. {This approach significantly enriches the sampled ensemble with native-like struc-

tures. In addition, the graph-theoretical enumeration of relative orientations ensures that

we sample all plausible regions of conformation space.

In its current incarnation our method also possesses some drawbacks. The main disad-

vantage of our technique is the requirement of a specified secondary structure. It’s highly

desirable for a search technique to also sample alternate secondary structure assignments.

Currently we can only do this by specifying different assignments at the beginning of the

procedure. .Another significant drawback is the absense of a complimentary loop-building

method. We need a method with the speed of a loop-library lookup methods, cite library-

loop-building yet able to get a 3 ~ or better approximation of the native loop (so that our

near-native cores remain near-native). .4 final deficiency of our approach is the lack of an

obvious generalization to beta and alpha/beta proteins. The definitions of a sub-segment

and the contact patch have to be significantly revised to adapt

V. FUTURE DIRECTIONS

to beta sheets.

The deficiencies of our technique, outlined in the previous paragraph, point the way to

future developments. We are currently working on a fast loop building procedure for short

(3-10 residues) loops. Our next project is to enhance sampling of alpha proteins to include

variations of the boundaries of the helices.

.4 slightly more distant goal is the extension of the presented technique to construct

B-sheet and mixed a/@ proteins. In addition we are working on a fast preliminary dis-

crimination function which would be used prior to the reconstruction of all atoms for each

conformation.
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TABLES

TABLE I. Summary of helical core sampling.

Name Helices Assigned / CA RMSD range % below 3A % below 6A Random /

Total residues best - worst : ave Generated

TO065

lfc2 c

lres

lerp

lmbh

luxd

3hdd

ltrl

TO073

1CC5

lr69

llfb

2ezh

lc5a

lhsn

lropa

lpou

lnre

lail

lnkl

laca

lflx

laj3

2

2

3

3

3

3

3

3

2

4

5

3

4

4

4

2

4

3

3

4

4

4

3

23/31

23/43

24/43

26/38

30/52

30/59

40/56

42/62

43/48

43/83

44/63

44/77

48/65

49/65

50/79

51/56

52/71

57/81

60/70

60/78

60/86

67/79

88/98

0.483-7.503:4.988

0.759-7.937:4.813

2.265-9.646: 6.546

0.986-9.052:6.191

0.954-10.412: 7.123

0.880-10.828:6.773

0.240-12.022: 8.001

0.617-12.920: 8.002

0.662-8.348:4.840

3.484-13.237: 9.241

3.127-13.143:9.140

1.584-13.668: 8.973

3.514-15.363: 9.670

3.774-13.731: 9.064

3.321-17.380: 11.211

2.432-13.751: 6.765

4.546-14.318: 10.187

2.240-13.020: 8.215

3.028-15.481: 9.582

3.879-14.122:9.931

0.752-15.059: 10.442

3.306-14.786: 10.869

2.594-16.309: 10.125
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3.1%

10.3%

0.055%

0.26%

0.3%

0.58%

4.0%

0.24%

11.9%
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1.7%

0.28%

40.2%

0.95%

11.3%

2.5%

1.15%

1.9%

0.635%

3.1%

291299/2604

153634/2144

8392/9028

226495/11188

773292/11724

927522/16281

8.3E7/13380

4.0E7/24151

5.5E7/522

47664/46725

128078/56520

5.68E6/41505

5E6/61981

78745/98842

266620/32734

2.9E6/620

25296/29283

1.6E7/21716

3.6E6/15980

439759/15486

2.5E9/6827

6.5E6/37141

1.6E9/8177



1lis 5 91/131 4.345-18.696: 12.430 - 0.07% 2.0E7/32805

2fha 5 130/172 4.855-21.671: 15.912 - 0.023% 1.OEIO/4279

Table I summarizes the sampling of helical cores for 25 proteins. Column 3 shows the

number of residues that are assigned coordinates as well as the total length of the protein.

Column 4 lists the range of CA RMSD of assigned coordinates from native coordinates.

Columns 5 and 6 show the percentage of total structures that are closer than, respectively,

3A and 6A to the native structure. The last column displays the efficiency of our decoy

generation method. It shows the ratio of the number of structures one needs to generate

randomly in order to produce the best CA RMSD (computed using Eqn. 3.1) to the number

of conformations in our ensemble.

TABLE II. Disulficle bond information included

Protein ave without + with %below 3A %below 6A num/numact

lc5a 9.064 + 8.047 1.7% + 7.4% 98842 + 6325

lerp 6.191 + 6.017 0.26% + 1.3% 41.8% + 46.9% 11188 + 761

lnkl 9.931 + 9.254 1.15% + 5.8% 15486 + 889
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Table II displays the results of pruning the decoy ensembles with disulfide bond infor-

mation. The columns show shifts in the average Ca RMSD, proportions with RMSD below

3A and 6A, and the reduction in the number of structures in each set.

TABLE HI. RMSD’S for full structures

Name Size, Helices CA RMSD range % below 4A % below 6A Random/

best - worst : ave Generated

TO073 48, 2 1.435-8.320: 4.840 24.5% 73.7% 2.14E7/522

lropa 56, 2 2.446-15.041:7.074 6.6% 34.0% 7.79E6/712

lail 70, 3 3.200-15.624:9.730 “ 0.26 3.50% 1.45E7/1917

lflx 79, 4 3.282-14.886: 11.329 0.06 0.9% 5.56E7/3342

laj3 98, 3 2.67-16.02: 10.396 1.0% 4.0% 9.17E9/1880

2fha 172, 5 6.644-26.323: 18.668 - 0.25 %< 10~ 7.27E8/4279

Table III summarizes the results for decoy sets with all atoms’ coordinates assigned. The

columns are similar to table I. The number of decoys in each ensemble is smaller than in

table I because of pruning with a statistical pairwise potential. 2fha had no conformations

below 6A. however 0.2570 of structures were closer than 10A to the native.
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FIG. 1. This figure shows the graph representation of the protein Myoglobin, as well as its

construction by our method. a) lmba. This well known globin consists of 6 major and two minor

helices. We sample the 6 major ones. b) The vertices of the graph are helices 1 through 6 of lmba.

(helixl: residues 4-19; h2: 21-35; h3: 59-77; h4: 81-98; h5: 102-119; h6: 126-144.) The vertices

represent the 6 major helices; the solid lines are drawn whenever two helices are, according to our

definition, in contact. The minimal spanning subgraph, outlined in dashed lines, represents one

possible way to reassemble the helices. The dashed lines are numbered in the order the protein is

assembled in one of our conformations. c) The order of assembly of the helical core. Helices are

assembled in the order 1, 6, 4, 5, 2, 3 using the relative orientation from the dashed lines of b).

Figures were made with the aid of MOLSCRIPT [7]. In the process of construction other ‘links’

may form, however they are not neccesary to reproduce the helical core.

Patchl

Patch2

FIG. 2. A diagram of two typical link configurations. The amino-acids in the shaded areas are

involved in sequence matching against the target. The configurateion on the left produces shorter

patches than the configurateion on the right.
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FIG. 4. RMSD from the native for sampled conformations for laca.pdb. The distribution

appears gaussian with an enriched tail of native-like structures
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