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Human error -- missing or misinterpreting data -- can have significant technical and cost impacts on

the drilling and completion of an oil/gas well. Therefore, intelligent drilling control is needed to

autonomously and intelligently analyze and interpret data from sensing and monitoring units, and

to recommend action to the driller or drilling engineer. Such intelligent drilling control can lower

overall drilling cost, reduce drilling time, and increase rate of success.

In Phase I, we designed an IDMA for intelligent drilling control, and demonstrated its feasibility.

We successfully reached the Phase I goals by demonstrating the feasibility of an intelligent and

autonomous drilling system integrating data fusion, neurofuzzy classification, and hybrid training.

POC also designed in Phase I the overall Phase II IDMA architecture so that Phase II can begin

with building the Phase II prototype.

The proposed IDMA will be useful in many areas of national interest such as exploration for

mineral and energy resources, environmental monitoring, inhstructure development, and

scientific studies of the Earth’s subsurfaces. The IDMA module will increase the speed, success

rate, and overall cost-effectiveness of petroleum drilling. It can also be adapted for use in various

control systems such as traffic control, manufacturing control, and automation.

If Phase II is funded we plan to complete development IDMA, work with a drilling company and

Sandia National Laboratory to demonstrate the Phase II prototype, and introduce an IDMA as a

product to the market with Phase Ill private funding.
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Human error -- missing or misinterpreting data -- can have significant technical and cost impacts on

the driUing and completion of an oil/gas weI1. Therefore, intelligent drilling control is needed to

autonomously and intelligently analyze and interpret data from sensing and monitoring units, and

to recommend action to the driller or drilling engineer. Such intelligent dzilling control can lower

overall drilling cost, reduce drilling time, and increase rate of success.

In Phase I, we designed an IDMA for intelligent drilling control, and demonstrated its feasibility.

We successfully reached the Phase I goals by demonstrating the feasibility of an intelligent and

autonomous drilling system integrating data fusion, neurofuzzy classification, and hybrid training.

POC also designed in Phase I the overall Phase II IDMA architecture so that Phase II can begin

with building the Phase II prototype.

The proposed IDMA will be useful in many areas of national interest such as exploration for

mineral and energy resources, environmental monitoring, infrastructure development, and

scientific studies of the Earth’s subsurfaces. The IDMA module will increase the speed, success

rate, and overall cost-effectiveness of petroleum drilling. It can also be adapted for use in various

control systems such as traffic control, manufacturing control, and automation.

If Phase II is funded we plan to complete development IDMA, work with a drilling company and

Sandia National Laboratory to demonstrate the Phase II prototype, and introduce an IDMA as a

product to the market with Phase III private fl.mding.



flnat Reporl0699.3480DOE-DRILL
ContractNo: DE-FG03-98ER82634

1,0

1.1
1.2

$:;
2.1
2.2

TABLE OF CONTENTS

IDENTIFICATION AND SIGNIFICANCE OF THE PROBLEM OR OPPORTUNITY,
AND TECHNICAL APPROACH .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Identification and Significance of the Problem or Opportunity .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Cment Stite.of.tie.M . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...3
Phase I Investigation . . . . . . . . . . . . . . . . . . ..$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

PHASE I EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Highlights of Phase I Findings and Achievements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Phase I Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

2.2.1 Results of Task 1 (Study Existing Sensing and Monitoring Technology) . . . . . . . . . ...7
2,2.2 Results of Task 2 (Develop Data Association and Formation Methodology) . . . . . . ...7
2.2.3 Results of Task 3 (Design a Neurofuzzy System) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.2.4 Results of Task 4 (Train Neurofuzzy System, and Conduct Computer

Simulation and Demonstration with Neurofuzzy System) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4.2 Rock Classification while Drilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4,3 Fuzzy Control of Dfilling ~. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4.4 Commercialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.0 TECHNICAL DISCUSSION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Multisensor Data Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Data Association with Common-Dimensionality Sensors .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Data Association with Sensors that Differ in Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . 17

3,2 Fuzzy Control Using If-Then Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3,3 Fuzzification and Defuzzification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Neurofuzzy Classifier Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 What are Neurofuzzy Classflers? .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 IDMA Neurofuzzy ClassXler System .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 Multiple ~PClmstier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 The HMM/MLP Hybrid Classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.3 Structure-Adaptive SOM Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Training Methodology .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.0 CONCLUSION AND RECCOMMENDATION
4.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusions . . . . ..o.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..i.

4.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.0 GOVERNMENT AND COMMERCIAL APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.0 WWWNCES .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...32

2



FinalRprl0699.3480DOE-DRILL
ConlractNo; DE-FG03-98ER82634

1.0 IDENTIFICATION AND SIGNIFICANCE OF THE PROBLEM OR
OPPORTUNITY, AND TECHNICAL APPROACH

1.1 Identification and Significance of the Problem or Opportunity
Dflngtecholo~ isakeyto exploration forandextiaction ofoti, gas, geothermal energy, and
other minerzd resources, and also for iniiastructure development, environmental monitoring and

remediation, and for the scientic study of the earth’s subsurface [11. Improvements in drilling
technology that lower overall drilling cost, reduce drilling time, and increase the rate of success in
finding and extracting petroleum and geothermal energy will have great and direct benefits to the
United States in terms of greater energy resources, stable and low energy costs, and improved
economic competitiveness in the drilling and petroleum service industries.

Drilling involves a complex set of mutually interacting components -- mechanical, hydraulic, and
electrical -- that must fi-mctionin unison. Therefore, it is necessary to develop an integrated system
approach to ensure that these components do function at near-peak performance, and to prevent or
minimize discontinuities as the result of kicks, washouts, loss of circulation, mud motor failure,
stuck pipe, and junk in the hole. The way has been prepared for such an intelligent drilling system
by recent dramatic advances in directional drilling and measurement-while-drilling, and by related

diagnosis and detection technologies [1-91.

Through the twentieth century, U.S. drilling technology has dominated the worldwide drilling
industry, much of the excavation industry, and the markets for drilling machinery and equipment.
To maintain the technical superiority of U.S. drilling technologies, and to find better and less
costly ways of penetrating rock in order to harness geothermal energy resources more efficiently,

the Geothermal Division of the U.S. Department of Energy asked [1] the National Research
Council to establish a committee to examine opportunities for advancing drilling technologies that
would have broad industrial and national interest and benefits. DOE also solicited intelligent
drilling system and software technology through its SBIR Program in 1998.

In response to this need, Physical Optics Corporation (POC) in Phase I began developing unique
Intelligent Decision Making Aid (IDMA) technology for intelligent drilling control in energy
exploration and production (oil, coal and geothermal), mining, and drilling for nuclear and
chemical waste storage. IDMA, which builds on POC’S soft computing and sensor fi.rsion
technologies, is a unique integration of neural network, fuzzy logic, and sensor fusion. POC
demonstrated in Phase I that the IDMA concept not only is feasible but has strong advantages over
existing techniques. We demonstrated that all of the basic components of the system can be
fabricated and assembled cost effectively. In particular we demonstrated the IDMA concept. by
integrating a neurofuzzy system with a conventional decision making neural network. In addition,
IDMA was successfully implemented for intelligent drilling and simulation of rock type
classification. POC also demonstrated that the IDMA prototype can monitor drill penetration rate,
drill speed, torque, and thrust.

Based on our successful Phase I demonstration, POC believes that fhrther development of this
IDMA technology and its integration into a full preproduction prototype as a intelligent drilling
system in Phase II will produce a key breakthrough in oil and gas exploration.

1.2 Current State-of-the-Art
Most existing drilling systems have little or no downhole sensing of rock or bit conditions, and
automated guidance systems, if present, are either primitive or laboratory prototypes [l]. Since the
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Committee on Advanced Drilling Technologies formed in 1993, a few attempts have been made to
develop technology for transmitting data from downhole to the surface. These include acoustic
borehole televiewers as a part of measurement-while--g and Iog@g-wMe-Mhg

technologies to overcome the drawbacks of current sensing methodologies, which require
interrupting the drilling process to insert special tools to gather data from the borehoIe. These
efforts have been performed under the direction of the Geothermal Division of DOE and Sandia
National Laboratories.

The deftition of an intelligent drilling system by the National Research Council is that, “An
intelligent drilling system is a system capable of sensing and adapting to conditions around and
ahead of the drill bit to reach the desired target. This system may be guided fiorn the surface, or it
may be self guided, utilizing a remote guidance system that modifies the trajectory of the drill when
the parameters measured by the sensing system deviate from expectations.” [11 Such a system can
only be built by integrating many of the technological advances made available by the rapid
innovations in microelectronics, computer science, advanced sensor technology, and many other
disciplines.

1.3 Phase I Investigation
InPhase I POC investigated an Intelligent Decision Making Aid (IDMA) integrating our innovative
and advanced soft computing technologies and multisensory data fusion. Specifically, IDMA
combines data fusion, artificial neural networks, and fhzzy logic as illustrated in Figure 1-1.

-.
Figure 1-1

Intelligent drilling using POC’S IDMA.
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The neurofuzzy system consists of three submodules -- input, hidden, and output layers -- for
fuzzi.t3cation,inference processing, and defuzztilcation, respectively:

● I?uzzification is a mapping from the observed input to the fizzy sets defined in
the corresponding universe of discourse.

● Inference processing is a decision making logic that determines fuzzy outputs
corresponding to fuzztiled inputs with respect to the fuzzy rules.

● Defuzzification produces a crisp output by one of three methods: center of
gravity, MAX criterion, or Mean of Maxima.

The main tasks of the neurofuzzy system are preclustering and defuzzification on the basis of
current sensor data from the fuzzy data associator. It interprets current drilling status into a
defuzzified form such as 5% of No, 10% of N1, 2% of NM _ 1. This defuzzified interpretation of
the current situation is fed into the decision making neural network.

A conventional neural network would have to be retrained whenever the drilling system
configuration changed -- sensors, equipment, or any other components of the chilling system
involved in the decision making process. Changing the sensor configuration would then require
retraining the entire neural network, which is time-consuming and not guaranteed to converge to
the global optimum. In contrast, IDMA would only require training the module associated with the
new component.

In summary, POC’S IDMA is an intelligent and autonomous tilcial drilling aid that reduces many
current problems such as stuck pipe and loss of circulation. Loss of circulation costs represent an

average of more than 10% of total drilling costs in mature geothermal areas [21. Applying IDMA to
geothenmd drilling, and thus reducing the costs of loss of circulation, will significantly reduce
overall geothermal costs and help expand the role of geothermal energy. IDMA is characterized by
robust operational performance, extended spatial and temporal coverage, increased confidence,
reduced false alarm rate, reduced ambiguity, improved detection, enhanced spatial resolution, and
increased dimensionality thanks to sensor fusion and embedded drilling expertise in the artificial
neural network, and fhzzy logic control of the neurofuzzy structure. Key advantages of the IDMA
include:

● Reduced overall drilling costs and time by minimizing drilling failures such as loss
of circulation, washouts, kicks, stuck pipe, mud motor failure, and junk in hole-

● Maximized usage of sensing and monitoring systems thanks to computerization of
the IDMA system, and consequent reduced human errors

● Increased decision confidence thanks to the expertise embedded in the neural
networks with continuous and consistent monitoring

● High system adaptability thanks to neural network modularity. Current sensing at
the drill bit area is immature. As it advances, sensing technology will improve and
the proposed system will require retraining only of the channel related to the new
sensor.

The above advantages are due to the following unique technology element implementations:

● Unique neurofuzzy system architecture
9 Highly precise I%zzificationand defuzzification methodologies
● Advanced sensor fusion technology

5
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● Innovative combination of unsupervised and supervised training
● Eftlcient modular retraining.

Basedon asuccessful Phase I feasibility demonstration, POC has great cotildencethat IDMA
methodology, supported by POC’SR&D capabilities in all required areas, will produce a nem-term
product that will have remarkable commercial potential.

Although Phase I demonstrated the feasibility of our approach, significant efforts are still necessary
to prepare IDMA for drilling, and to develop the final software package.

2.0 PHASE I EXPERIMENTAL RESULTS
2.1 Highlights of Phase I Findings and Achievements
The following is a summary of the IDMA Phase I findings and achievements.

1.

2.

3.

4.

5.

6.

7.

8.

Overall current sensing and monitoring technologies were studied and analyzed as a
basis for designing the IDMA neurofuzzy system. In order to use artificial
intelligence for control, it is essential to understand current sensing technology.
POC contracted with two drilling experts to serve as consultants to the IDMA
projecg since the neural network approach is to embed expertise in matrix form, it
is essential to have drilling experts formalize the training sets for the neural
network. POC reached an agreement with Mr. A.J. Mansure of Sandia National
Laboratories under which Sandia shared its field drilling experience and expertise in
sensor data interpretation. In addition, Mr. Bill Anderson of Epoch Well Logging,
Inc. served as a subcontractor for the data acquisition and data analysis that is the
basis of the training sets.
A fuzzy data associator for data association was developed. Defuzzification
normalizes the data streams of the sensor data formats into a single data format
encoding spatial, temporal, and dimensional parameters.
POC designed the overall IDMA structure, including neurofuzzy system and
conventional decision making neural network. The neurofuzzy system classifies
the current drilling status based on the current sensor reading, while the
conventional neural network makes decisions based on the current drilling situation
from the neurofuzzy system. A cascading system architecture was selected after
careful analysis of current drilling technology, including data acquisition systems
and sensors, and discussions with our consultant drilling experts.
We designed innovative training for both the neurofuzzy system and the decision
making neural network. Defuzzi&d unsupervised training (vector quantization)
was selected for neurofnzzy training, while supervised training (perception
learning) was selected for the decision making neural network.
We selected the specific initial IDMA application for intelligent drilling. POC
initiated a specific IDMA design for loss of circulation, with immediate application
and real benefits for the near future.
We demonstrated Phase I IDMA simulation for rock type classification. POC has
designed and built a Phase I IDMA prototype for rock classification and monitoring
of penetration rate, drill speed, torque, and thrust.
We prepared recommendations for Phase II IDMA. POC recommended a Phase II -
IDMA system architecture, functional structure, and other parameters based on the
results of the Phase I work.
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2.2 Phase I Results
The Phase IIDMAproject was asuccess. The successful feasibility demonstrations and
system architecture design not only met all objectives proposed for Phase 15 but
also exceeded them in a number of areas. Most importantly, the modular approach
ensures system adaptability to drilling system advances. The goal of Phase I was to demonstrate
the feasibility of an intelligent and autonomous drilling system by integrating multisensory data
fusion, neurofuzzy decision making, and hybrid training. To meet this goal, POC established
seven tasks, including four technical tasks. The next few subsections present the results of these
technical tasks.

2.2.1 Results of Task 1 (Study Existing Sensing and Monitoring
Technology)

In preparation for designing the IDMA, POC studied existing technologies for sensing and
monitoring the drilling process. POC met with Mr. Anderson of Epoch Well Logging, Inc. and
Mr. Mansure of Sandia. In past years, drilling technology has advanced most in the development
of sensors, especially for downhole sensing. This is called measuring while drilling (MWD). As a
result, state-of-the-art drilling systems are completely networked, and equipped with various kinds
of sensors for continuous real-time monitoring. A good example is Epoch Well Logging’s
IUGWATCH. In RIGWATCH, real-time sensory data are collected and transmitted via multi-
conductor cables to a central data acquisition control unit. These data are processed and transmitted
on PCs at various locations, such as the driller’s workstation, rig floor/dog house, or tool pusher’s
ofilce. The networking carI include remote offices communicating via modem. At any station, log
data are displayed in real time and plotted on hard copy.

In fact, these types of advanced monitoring technologies are beneficial and supportive for the
development of IDMA because the advanced monitoring systems record data and at most produce
summary reports or comparisons. Real-time rig parameter data keep key persomel (e.g., driller,
company man, tool pusher, drilling engineer, and geologist) informed of all critical drilling,
tripping, and circulating operations.

The growing flood of sensor data could soon overwhelm the operator with masses of information,
causing fatigue after long hours of continuous monitoring. The need for an intelligent expert
system is becoming critical. Therefore, the goal of IDMA is an intelligent system that not only
alerts the operator to potential critical situations that are about to occur, but also suggests actions
and explains the situations and the suggestions in real time, in parallel with the logged data. - In
addition, POC surveyed and studied current intelligent drilling methodologies, and determined the
IDMA structure.

2.2.2 Results of Task 2 (Develop Data Association and Formation
Methodology)

In this task, we evaluated current sensor fusion technology relevant to IDMA, and designed the
data association mechanism. The definition of sensor fusion is: “A multilevel, multifaceted
process dealing with the detection, association, correlation, estimation, and combination of data
and information from multiple sources to achieve refined state and identi@ estimation, and
complete and timely assessments of situation.” [101

Data fision is performed on multisource data at several levels, each of which represents a level of
data abstraction. For example, in the context of drilling control:
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● Level 1: Fuse drill head position data and estimate credibility of data
● Level 2: Assess normalcy of situation
● Level 3: Recommend response.

The process of data fusion includes detection (level 1), association (level 1), correlation (level 1),
estimation (level 2), combination of data (level 2), and finally decision making (level 3).

Figure 2-1 sketches the top level structure of the Phase I Iizzy data associator. Tentatively, POC
has set the number of output levels at five. A detailed study to set the adequate and necessary
number of levels is planned for Phase II.

‘(

o
1

Sensor 1 2
3
4

-(

o
Fuzzy 1

Sensor 2 2
Logic 3

where level O and 1 indicate low stability

. 2 stable
\4

Data
(

o4

3 and 4 saturated

p~ p{

Figure 2-1
Phase I fuzzy data associator.

Since inflow and outflow volumes are critical to determinimz current drilling status (loss of
circulation), POC selected control of these parameters for the first model fuzzY data associator.
The fizzy data associator was setup as: -

.

1. If 0 ~ FP s 0.1, 10SSof circulation (0)
2. If 0.1< FPs 0.5, possible loss of circulation (1)
3. If 0.5< FT s 0.9, slow circulation (2)
4. If 0.9< FPs 1, good drilling status (3)
5. IfFP >1, hit water or other liquid (4)

outflow
where FP (flow parameter) =

Inflow .

In this case, the outputs of the fuzzy data associator, O, 1, 2, 3, and 4, are passed to the
neurofuzzy classifier.

2.2.3 Results of Task 3 (Design a Neurofuzzy System)
In Phase I, POC designed the neurofuzzy system, which is the key module of IDMA. Initially,
POC selected the IDMA structure shown in Figure 2-2.
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Neurofuzzy system architectures include:

(1) Neural network-embedded fizzy system
(2) Fuzzy system-embedded neural network
(3) Cascading fuzzy logic and neural network
(4) Combination of(2) and (3)

After careful evaluation of drilling technologies and procedures, POC optimized and redesigned
IDMA as a modular neural network. We divided the hybrid training algorithm-based neurofhzzy
system into two separate neurofuzzy classi.flers and the conventional decision making neural
network as shown in Figure 2-3.

wwemperature Data

Sensor
ssociation

G and
Pressure
Sensor Formation

.

. I System

SEt--l_

Poc

Hybrid

~ Training

Algorithm-

Based

Neurofuzzy

System

-rDecision 1

ElDecision 2

●

✎

✎

✎

✎

✎

✎

✎

-EDecision N

Figure 2-2
Initial Phase I IDMA system.

Neurofuzzy System

Input (Fuzzy Logic Conventional
Embedded Neural Network output

Neural Network)

Figure 2-3
The cascading Phase I neurofuzzy structure.

The selected modular approach is (4), the combination of (2) and (3). The first neurofuzzy
classifier is the fuzzy system-embedded neural network, primarily performing preclustering and
defuzzflcation of the current drilling status based on the current data reading. In order to perform
such drilling status classification, it will receive unsupervised training. The output of the
neurofuzzy classiiler system will be fed into the decision making neural networks.

The conventional neural network will be trained by supervised training to make a decision based on
the current drilling status, which will come from the neurofuzzy classifier system.
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One of the important characteristics of this hybrid neurofuzzy modular architecture is the
adaptability of the IDMA. Since current sensing and telemetry techniques are primitive, new
sensing and telemetry methods are being developed; it will be necessary to adapt IDMA to the new
sensors. In general, any neural network has to be retrained entirely. In our hybrid system
architecture, one needs to retrain only the module that has changed.

2.2.4 Results of Task 4 (Train Neurofuzzy System, and Conduct Computer
Simulation and Demonstration with Neurofuzzy System)

2.2.4.1 Simulation Results
In Phase I, we implemented a program to demonstrate the feasibility of applying a neurofkzzy
network to drilling control. The program had two purposes: (1) Demonstrate the application of a
neural network and fhzzy logic to drilling as an intelligent decision making assistant. This is
needed to show the feasibility of the proposed IDMA system. (2) Demonstrate the general concept
of the neural network and fuzzy logic. This serves as a brief introduction to give future JDMA
users an understanding of applying neurofuzzy processing. Drilling involves many processes in a
broad range of environments. For IDMA to perform its fimctions in all drilling situations, it must
adapt dynamically to each specific situation, and the user will need to tune the neurofuzzy network
for optimal performance,

Figure 2-4 shows the initial screen of the IDMA demonstration program implemented under
Matlab. As shown in the figure, the screen is partitioned into windows for topics, briefs, and
subtopics. When the user selects a topic in the left window, a brief description of the topic is
shown at top right. At the same time, the associated subtopics appear at bottom right as shown in
Figure 2-5. The user is prompted to run any subtopic.

Drilling is dangerous, and often takes place in hostile environments. It would be at best difficult to
arrange field tests of any hardware or software without special arrangements with a drilling
commmv. Thus, onlv comwter simulations were Performed in Phase I. Two simulation
pro&u& are shown
control.

hire, o~e for the neural networ~ application and the other for fuzzy logic

K
& EcUWCILW H+
--
,

DRILLING RE Phgsiccd Optics Corporation

;@-&

-oRno
LogDab
Ned Ne!wcA
FUZZYtics

a!cdu$
GrLd Irimne!im I ._.______.-Th&ah&gKmtOkalo-&Ym to$dre LI

. .E1—

!. , S,
—--+ I

Figure 2-4
Initial screen of the demonstration program.
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Fiaure 2-5
The demonstration r.voaram allows the u;er to navigate each subtopic in detail. In the

figure, Demo-> Neural’ N&vorks-> Overview is selected. The button at bottom right prompts
for execution of the selected subtopic.

2.2.4.2 . Rock Classification while Drilling
This simulation identities the types of rocks encountered while drilling. A multi-layered feedw~d
network with learning vector quantization (LVQ) is used for the simulation. LVQ was selected
over a number of other potentially appropriate networks for this simulation, such as unsupervised
competitive learning and radial basis function networks.

It is known that there is a correspondence between the speciiic energy of drilling as a function of
torque, thrust, penetration rate, rotation rate, the area of the hole, and the unconfined compressive

strength of the drilling medium [111.

e=F/A + 2 p NT/Au, (2-1)

where e=specilic energy of drilling, F=thrust, A=area of hole (m2), N=rotation rate (rPm),
T=torque (J), and u=penetration rate (m/min.)

Based on Eq. (2-l), training and testing data are derived, mixed with randomly generated noise.
Table 2-1 shows sample data at five successive times. Figure 2-6 illustrates the architecture of the
LVQ network, with four input neurons and three output neurons. The network is first trained,
associating each data stream with the correct rock classification. Figure 2-7 captures some of
training data samples. Figure 2-8 captures two simulation runs using the trained network. The
figure shows, as time progresses during drilling, the rock classification as the input neurons
receive the corresponding sensory data.
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Table 2-1. Sample Data for Rock Classification Simulation

Time u F N T
o 0.161 1250.40 24.28 3.78
1 0.187 1320.00 23.30 2.86
2 0.158 1123.44 23.39 3.42
3 0.132 1223.23 24.18 2.98
4 0.111 1234.00 24.25 3.27

u (penetration rate)

F (thrust)

N (rotation rate)

T (torque)

sandstone

siltstone

pyrite-mix

Fiaure 2-6
The LVQ network is trained with four inp~t neurons, u, F, N, and T, and output neurons

representing sandstone, siltstone, and pyrite-mix.
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Figure 2-7
The LVQ network is trained on sample training data as shown here. Note that nine sample

training data sets are shown. Since LVQ is a supervised network, each training data set
contains not only input neuron values, but also the correct rock classification.
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Figure 2-8
LVQ network demonstration.

2.2.4.3 Fuzzy Control of Drilling
Among the many parameters relevant to drilling control, inflow and outflow rates are critical to
determining current process status. As above, let us denote the flow rate as FP. Assume a drill
pipe is continuously being filled with fluid and continuously drained. The flow rate is measured
and compared to a flow rate setpoint to determine flow rate error. The error is used by a controller
to set the motor voltage to keep the measured flow rate close to the desired flow rate.

This is clearly a nonlinear control problem, because of the nonlinearities of the flow characteristics. “
Therefore, a fuzzy controller is an appropriate control mechanism. The fuzzy controller we
simulated has two input variables to control the motor voltage.
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[FP, d(FP)/dt],

The membership functions were chosen to be:

FP: nb, ns, z, ps, pb
d(l?p)ldt p, ze, n
Control voltage: vh, high, reed, low, VI

where:
nb, ns, z, ps, pb = negative big, negative small, zero, positive small, positive big
p, .ze,n = positive, zero, negative
vh, high, nzed, low, V1= very high, high, medium, low, very low

Fifteen fuzzy rules are used to account for each combination of input variables:

(2-2)

1.
2.
3,
4.
5.
6.
7.
8.
9,
10.
11.
12,
13.
14.
15.

if(FP is nb) AND (del_FP is n) then (control is high) ELSE
if (FP is nb) AND (del_FP is ze) then (control is vh) ELSE
if (FI?is nb) AND (del_FP is p) then (control is vh) ELSE
if (FP is ns) AND (del_FP is n) then (control is high) ELSE
if(FP is ns) AND (del_FP is ze) then (control is high) ELSE
if (FP is ns) AND (del_FP is p) then (control is reed) ELSE
if @P is z) AND (del_FP is n) then (control is reed) ELSE
V (FT is z) AND (del_FP is ze) then (control is reed) ELSE
if (H? is z) AND (del_FP is p) then (control is reed) ELSE
if (FP is ps) AND (del_FP is n) then (control is reed) ELSE
if (IT is ps) AND (del_FP is ze) then (control is low) ELSE
if (IT is ps) AND (del_FP is p) then (control is low) ELSE
if (Fl?is pb) AND (del_FP is n) then (control is low) ELSE
V (I?Pis pb) AND (del_FP is ze) then (control is v1)ELSE
if (H? is pb) AND (del_FP is p) then (control is v1)

The membership functions were manually tuned by trial and error to give good controller
performance. Membership functions could also be tuned automatically by means of neuro-fuzzy
control, The resulting membership functions are as shown in Figure 2-9.

FP MembershipFunctions
1

0,8

0.6

0.4

0,2

0
.40 -20 0 20 40

.—...--———..-.—.———J%__.__---—-----

.. ...”. .. --—----- . ..-. —.-. . . . . . . . ———- . . ..-. . . .

dt(FP)/dtMembershipFunctions ~
1

0.8 -

~ 0.6 - 1
.

g 0.4 -
E

0.2 -

0
-40 al o 20 40

dt(FP)/dt

_—..-. ..-.——.—- .. -. . . .
ControlVoltageMembershipFunctions

CordrnlVoitage
.-.—... .—.. ———. ——--— .. . . -.

Figure 2-9
Membership functions for the input and output variables.
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Figure 2-10 shows the outcome of the simulation program based on an input of (FP)=-8.1 and
d(FP)/dt=O.3: thevoltage control should be-3.4. The five detailed steps of fuzzy control areas
follows:

● I?uzzification: Create membership functions for each variable, and elicit the
fuzzy rules from the experts, as exemplified in Figure 2-9 and the 15 fuzzy rules
above.

● Application of Fuzzy Operator: Gather the input values from sensors. The
degrees of fdfillment of the antecedent membership functions are then calculated
based on the input values. For example: FP=-8.1 is both negative small (ns) and
zero (z), since it has membership in ns by intersecting triangle [-10 2 O] and also
has membership in z by intersecting triangle [-1 O 1]; similarly, d(FP)/dt=O.3 has
membership in ze (triangle [ -10 1]) and n (trapezoid [0240 40]).

● Application of Implication Operator: The fuzzy relation operations defined
in the rules (e.g., the 15 rules) are applied. Continuing the example, rules 4, 5, 7,
and 8 are satisfied, since (FP) is negative small (ns), and zero (z), and d(FT)/dt is
zero (ze) and negative (n).

● Aggregation: The fuzzy output sets are aggregated to forma single fuzzy output
set. Various methods can be applied. A popular approach is to tzikethe maximum
of the curve.

● Defuzzification: The output fhzzy set is defuzzified to find the crisp output
voltage. The most popular method of defuzziiication is based on centroiding.

~----’ -- ‘Con;e&h;of~;z;y Rules
-.. —. ..

‘-’---”-’”–”’-’ ‘--”-” -~<r;g2in”o%Z~R~e Outpuls \

fmEm’
-4-3-2-101 -4-3-2-101]

I
J~nk4Volta e

\ Crisp Output a ue forVolt~ge is at -3.4018
ControlVoltage ~

1 ‘r—r———l

i ‘au FP=8.10 “~
0.6 Del FP=O.30 ;
0.4

,

0.2 Voltage=3.40 ~

o
-4-3-2-101

ConlmlVoltaga-..-.. —_.._...—.— __—. ..--. -. —..-— ——--- —--—----——–i

Figure 2-10
Simulation example of applying the fuzzy control program

2.2.4.4 Commercialization
In Phase I, we completed not only the technical tasks as described and discussed above but also
initial commercialization of IDMA technology, demonstrating that DMA Cm m~e ofl mg more -
efficient at lower cost. Using sensor data from Sandia, we concluded that the IDMA can be
directly applied to drilling field operations. As a result of the initkd IDMA prototype development
and demonstration, we have attracted serious interest from oil companies and oil well drillers. One
of the oil drillers we came in contact with during Phase I is Epoch Well Logging, Inc. which is
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quite interested inworking withusin Phase II. Mobil Exploration &Producing Technical Center
has expressed interest in applying IDMA technology to their drilling operations and in
commercialization of it after Phase II. Realizing the market potential, Panatec Associates, Inc. has
agreed to invest in Phase III commercialization of IDMA technology. We believe that during
Phase II we will see more such commercial interest leading to joint ventures, licensing, or a
strategic partnership. We plan to explore these opportunities in Phase II.

3.0 TECHNICAL DISCUSSION
Since the goal of this project is intelligent drilling control, it is necessary to predict what happens
next based on the current sensor readings. We now describe a method for predicting failure events
such as loss of circulation and stuck pipe once sufficient instrumentation is in place on a rig. It is
easy to tell from current sensor values whether a failure has already taken plac~ the difficulty is in
predicting an incipient failure and taking appropriate steps.

Once the sensors are operational, a record should be written every increment of time At while the
rig is active. The record should contain the current set of sensor readings s(t); the current set of
control settings c(t); and the diagnosis of the current situation d(t), i.e., whether the operation is
successful at present or whether the system is in a particular failure mode. (Note that the diagnosis
can be added in postprocessing and need not be computed and recorded in real time.)

After the rig has collected these data for many operational cycles, presumably including examples
of all failure modes, the information should be sui%cient to train a network for prediction. The ith
training fact consists ofi the sensor readings at time ti; the control settings at time ti; and the
diagnosis at time ti+las output (see Table 3-l).

Table 3-1. Preparation for Training Recorded Values at Each Time Increment.

Time Sensor values Control settings Diagnosis
t s(t) c(t) d(t)

t+At s(t +At) c(t +At) d(t +At)
t +2At s(t +2At) c(t +2At) d(t +2At)

... ... ...
(a) ...

Construction of Training Facts for Failure Prediction Network.

Fact Inputs outputs
1 W C(t,) d(t~ -

2 s(t.J c(t.J d(tJ

I 3 I s(t~ I c(t~ I d(t~ I

I ... 1 . . . I . . . I . . . I
(b)

A back-propagation network trained on this set of facts will make a prediction, based on current
sensor values and control settings, of the diagnosis at a time At in the future. This network will
thus be able to warn the drill operator of incipient failure.
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3.1 Multisensor JData Association
Auydrilling system potentially generates many types of sensor data. As an example, Epoch’s
RIGWATCH Drilling Monitoring System data acquisition system acquires depth, hit depth, block
speed, mud motor rpm, flow in (gal/min.), return flow (%), strokes per fill, weight on bit, and
others. These data streams all differ in their spectral and temporal parameters and even their
dimensionaIity. Therefore, it is necessary to have a way to associate all of these in a single data
format. This section describes two methods, one in which all data have the same dimensionality,
and one in which they differ in dimensionality.

3.1.1 Data Association with Common-Dimensionality Sensors
The most straightforward static association requirement is between measurements from similar or
dissimilar sensors that have a common dimensiona.lity. The principal approaches include using
one-dimensional measures to quanti~ the sensor measurements for association. These measures
have the following uses:

1. Ranking the sensor measurements to select the sets that are most likely associated,
using a decision rule, in this program fuzzy logic.

2. Establishing a hypothesis testing (or gate) criterion to determine whether the
measurements are associated or not.

Association tests are performed by using spatial measures, statistical measures, and temporal

measures 117~181.

Spatial Measure -- The simplest sensor measure is the maetitude of the one-dimensional
observations.

Statistical Measure -- The measurement error statistics of an individual measurement can be
accounted for given a means of normalizing the spatial observations to the relative variance of the
measurements.

Hypothesis Test -- Instead of computing a difference between measuremen~ a hypothesis test
can be developed to determine if the observations are associated within a specified decision
coflldence level.

Each of these approaches can be applied to the iterative association tests performed in dynamic data
association, described below. In fact, dynamic association processes simply apply these kinds of
association tests for Bating decisions to select “neighboring” observations to predicted target
locations and to quauti~ the “goodness” of each candidate neighboring observation to (predicted)
observation pairing. Scores can then be derived for competing hypotheses that partition the sets of
pairings into mutually exclusive assignments of all observations from one sensor to the
observations from another sensor.

3.1.2 Data Association with Sensors that Differ in Dimensionality
The association process is significantly complicated by attempting to associate measurements ftom
sensors whose measurements differ in their numbers of spatial measurement dimensions. A
common example is associating a two dimensional image with a one dimensional electronic support -
measure (ESM) such as rpm or temperature. The image measures a plane, whereas the ESM
sensor measures a speed, temperature, or volume.
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In these cases, thespatial association must bemadein thecommon dimensions of measurement,
and extension to a dynamic association problem may be required for satisfactory performance. In
the image-ESM example, a static association is generally considered unreliable because the ESM
volume is so large that disassociation probabilities are unacceptable even at low data rates.

Temporal measurement has been explored 1121to achieve acceptable association using a time
sequence of measurements.

3.2 Fuzzy Control Using If-Then Rules
For information processing systems such as classifiers and controllers, two kinds of information
are available. One is numerical information from measuring instruments, and the other is Linguistic
information from human experts. Most of the supervised learning methods for neural networks use
only numerical data. On the other hand, fuzzy control is one of the most useful ways to make use

of expert knowledge. Since fuzzy control research began in Marndani’s work [Is], many fuzzy

control systems based on fuzzy if-then rules have been developed 1147151.In most fuzzy control
systems, fuzzy if-then rules are elicited from human experts. Recently, several methods have been

proposed for deriving fbzzy if-then rules from numerical data 116-181.Many hybrid 119-221tizzy
control systems and neural networks have been proposed for use with numerical data. These
hybrid approaches incorporated the learning ability of neural networks into fuzzy control systems.
That is, fuzzy if-then rules were generated and adjusted by learning using numerical data.

IDMA fuzzy if-then rules for constructing classflcation systems are, for example, as follows:

If XP1is small and XP2is 1arge

‘(xP@P2)

(3-1)
then Xp belongs to class 1.

IfxPl islargeandxp2 is large

~enxP=(xPlxP2)be10ngst0class2

(3-2)

Here “small” and “large” are linguistic values defined by membership functions on a real line.
Here we restrict linguistic values to convex and normal fuzzy sets on a real line in order to sirnpli~
the computation in neural networks. A convex and normal fuzzy set on a real line is referred to as a
fizzy number,

Let us consider two-class classification problems in an n-dimensional pattern space. We assume
thats patterns Xp= (Xpl,.....Xpm).p = 1,2,...,s, are given from two classes (class 1 and class 2),
where: Xpis an m-dimensional real vector. That is, we assume that the foIlowing numerical data
are given:

‘P (= Xpl, )
.....xpm belongs to Gp, p = 1,2,.....s , (3-3)

where Gp is either class 1 or class 2. These numerical data me usually used in convention~ .
supervised learning methods for classification problems.

We also assume that the following (m—s) fizzy if-then rules have been elicited from drilling
experts:
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If XPIis API and ... and xPn is Apn

( )
then XP= XP1,...,Xpn belongs to GP; (3-4)

p=s+l,s+2,...,m,

where APi is a linguistic value such as “large,“ “small,” or “medium.” We assume that Api is a
tizzy number in order to sirnpli@ the computation in neural networks. Fuzzy numbers of
exponential type or triangular type are usually employed in fuzzy control systems.

Since each fuzzy if-then rule in (3-4) requires that the patterns in the fuzzy subspace defined by the
if part belong to GP, (3-4) can be rewritten as the tizzy datzc

AP = (API,..., AP~) belongs to GP,
(3-5)

p=s+l,s+2,...,m,

where AP is a fuzzy vector. The membership function of a fuzzy vector A=(A2,. ..,An) is defined
as

VA(X)= ‘in{~Al(xl),...,~&()},}, (3-6)

where X=(xl,...,xn), and W(O)denotes a membership function. Operations on fuzzy numbers are
defined by the extension principle. The interval activation iimction for the fuzzy data associator is
shown in Figure 3-1. The folIowing addition and multiplication of fuzzy numbers will be used in
Phase II to implement the fuzzy data associator.

KA+B(Z) = max{~A(@~B(y) : z = x + Y} (3-7)

phi(z)=‘m{~A(x): z = kX}, (3-8)

where A and B are fizzy numbers defined by ~A(x) and PB(y), respectively. The activation
function is extended to a fuzzy input-output relation as

~f(N@(z) = max{~Net(x) ‘z = ‘(x)}> (3-9)

where Net and p(Net) are a fuzzy input and a fuzzy output, respectively. We show the fhzzy
activation function defined by (3-9) in Figure 3-2.
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output output

1 --------------------------- .
...........................................

f(Net)
.............................

0 Input
Net

Figure 3-1
Interval activation function of each unit of a
neural network. Net and f(Net) are an interval
input and an interval output, respectively [271.

Net .

Figure 3-2
Fuzzy activation function of each unit of a

neural network. Net and f(Net) are a fuzzy input
and a fuzzy output, respectively [271.

3.3 Fuzzification and Defuzzification
Construct and Apply Fuzzy Expert System -- The steps in a fuzzy expert system process
are fuzzification, inference, composition, and defuztilcation. Fuzzi.fication is the assessment step.
Information about the circumstances is assessed into fuzzy sets, establishing the knowledge base.
Inference is the reasoning step. Composition and defuzzification are the action steps. Composition
produces a single fuzzy conclusion, while defizziiication translates it back to a raw action.
Figure 3-3 illustrates the basic architecture of fuzzy expert system control.

*
Controlled System

I Composition I I
+ I

I

I Defuzzification I I

+

Control Output

Figure 3-3
Basic architecture of fuzzy control system

Fuzzification -- Fuzzification is the process by which fuzzy values are derived from raw data.
Fuzzy logic is not logic that is fuzzy – it is the logic of fuzziness. It extends
conventional Boolean logic to recognize partial truths and uncertainties. In fuzzy logic, everything
is true to a certain extent -- the extent can be zero or one, but it need not be. That is, an attribute,
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such as tallness, is represented as a set of values of truth, rather than a single truth value.
Membership functions or fuzzy sets are used in such representations. Membership functions are
often symmetric, but not always, as seen in Figure 3-4(b). The description of a temperature of
60”F has the following set of values: 60d={0.lc, 0.9n, 0.3w, Oh}, where d is temperature in ‘F, c
is cold, n is nice, w is warm, and h is hot. Similarly, 68d={ Oc, ln, 0.8w, 0.5h} and 70d={ Oc,
0.85n, 0.3w, 0.55h}. Triangular and trapezoidal membership functions are widely used.

As an example, a temperature of 7V’F and a humidity of 40% could translate into fuzzy sets that
tend to indicate that the air is nice and a bit dry. Also, a third fuzzy set could be used to reflect the
need to circulate the air —{minimal, slight, much}. Thus, applying fizzification to drilling control
could involve defting the fuzzy sets for inflow rate, outflow rate, voltage, thrust, penetration rate,
etc.

In addition, the knowledge of the experts is transformed into if-then fuzzy rules based
defined fuzzy sets combined using the logical operators AND, OR, XOR, and NOT.

..—.—...—...—--..———...—.-...—-.........—-—---

on the

(a) (b)

Figure 3-4
Examples of symmetric and asymmetric fuzzy sets, i.e., membership functions.

Inference -- Inference is the reasoning step, chaining through the fuzzy rules. Using the example
of the fbzzy rule, “If the temperature is hot and moist, then the air requires strong circulation,” the
condition has a combined degree of truth based on the logical expression, “The temperature is hot
AND the room is moist.” From the fuzzy definition of AND, we realize that this expression has a
fizzy value of 0.2, which is the truth of, “the room is moist.” Because the truth value of the
condition is greater than zero, this rule fires, and we assert that the atmosphere requires strong
circulation.

There are several ways to determine the fuzzy value of the conclusion. One method is to simply
define the truth of the conclusion to be the same as the truth of the condition, so “the atmosphere
requires strong circulation” is assigned a fuzzy value of 0.2 in our example. This method, while
easy to explain, is rarely used. However, the description of the common methods involves more
mathematics than we wish to delve into here.

Composition -- The composition step takes the results of the rules and combines them into a
single fuzzy result. As you can imagine, the results of these rules can conflict -- some say strong
circulation is needed, others say minimal.

Let us consider that we have nine rules. One might be, “If the room is cool and dry, then the room
needs minimal circulation.” The other eight rules correspond to the other possible pairings of
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fuzzy values: cool and moist, cool and wet, warm and dry, etc. As each of the rules fires, the
conclusions {minimal, slight, strong} are all assigned fuzzy values. The following describes how
we could reconcile these results to produce a single fuzzy value.

A number of composition methods are available. Generally speaking, the composition method used
is based on the inference method. The MAX method is very common and involves the least
mathematics, so we describe it here.

The goal is to create a single final set composed of fuzzy values for each of “minimal,” “slight,”
and “strong.” The MAX method looks at “minimal” f~st, and assigns it the largest fuzzy value
given by the rules that deduced “minimal.” In the above case, this method would assign a fkzzy
value of 0,35 to “minimal.”

Defuzzification -- Defuzzification plays a large role in a fuzzy control system. Defhzzit3cation is
the process that maps from a space defined over an output universe of discourse into a space of
nonfuzzy (crisp) numbers, In other words, defuzzification is essentially the opposite of
fuzzification. Once the final fuzzy set is me~ured, it can be converted to an action, such a “set the
fan speed to a particular rpm.” When the final fan setting is determined, the process starts over and
goes on continuously. Many cycles can be done within a second, so the fan adjustments will
generally be slight in any one cycle.

Defbzziiication, however, is often much more complex than simply reverse fhzzitication because
the resulting fbzzy set does not always translate directly into a crisp value. For example, 450 rpm
might not correspond to 0.35 minimal, 0.7 slight, and 0.6 strong; it might correspond to a similar
ratio of those fuzzy values. In addition, it is impossible to convert a fuzzy set into a numeric value
without losing some information during defuzzification, and it is hard to find the number that best
represents a fuzzy set.

A large number of “defuzzilication” methods are in use, notably COG (center-of-gravity) and,
MOM (mean-of-maxima). The particular method is often selected according to the inference and
composition methods used. No standard rules are accepted as guiding how to select a method that
is suitable to a given problem.

When the output fuzzy set is normalized and convex, most of the popular methods are good
enough, but for a non-convex or umormalized fuzzy set the situation is quite different and
comparing all the defuzzification methods is not easy. In defizzification, the most important &ing
to be considered is the “sequence of control action.” Many researchers have attempted
unsuccessfully to solve problems of non-convex fuzzy sets or worst cases. Some have suggested
methods that can be tailored to specific system parameters. Adaptive fuzzy control is a field that is
being extensively studied. Defuzzification methods such as COG and MOM have been used
without comparison in adaptive fizzy control. One method of adaptive fuzzy control, model-based
adaptive fuzzy control, has a stage that updates fuzzy control rules. We expect that in adaptive
fizzy control each method influences system performance. In Phase H, we will evaluate various
defuzztilcation methods.

Center of Gravity Method -- The center of gravity method is one of the most widely used. -
The defizzified value ZO tends to move smoothly around the output fuzzy region, and is relatively
easy to calculate. COG is rather complex computationally, and results are unsatisfactory if the
output fuzzy set is not unimodal, but this method is the most popular.
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Center of Sums Method -- This method enables a user to consider the distribution of the area
of inference results from each fuzzy rule individually. Inference results overlap, and each area is
counted more than once. This method is similar to COG.

Mean of Maxima Method -- The defuzzified value ZOis an averageof the elements fiat reach
the maximal grade in output fuzzy set C. This method and the center of maxima method are limited
to certain classes of problems because the expected value is very sensitive to a single rule that
dominates the rule set. If the fuzzy region changes, the expected value tends to jump from one
membership function to another.

~Zj
= j=l

Zj is an element giving the maximal grade and ZO ~ is the number of such maximal

Center of Maxima Method -- This method is a simptiled version of the mean of maxima
method. Instead of taking all elements that give the maximal grade, the smallest element z’ and the
largest element z“ among them are found and the midpoint of z’ and z“ is given as the
representative point 20.

Evaluation Indices for Defuzzification -- Driankov’s 1231five criteria mentioned above
indicate that the “ideal” defuzzification method should meet these conditions:

● Continuity
● Unambiguity
● Plausibility
● Computational complexity
● Weight counting.

They only consider the output fuzzy set, not control action. However, the fact that an output fuzzy

set is not only a fuzzy set but also a sequence of control actions [Is] suggests four new criteria that
describe a sequence of control actions from experiments. These indices help to classify the
characteristics of defuzzification methods:

● Confidence level loss
● Trajectory following
● Discrete version availability
● Parameter variation.

3.3.1 Neurofuzzy Classifier Systems
The key benefit of fuzzy logic is that it lets you describe system behavior with simple “if-then”
relations. In many applications, this gets you a simpler solution in less time. You can also use all
available engineering know-how to directly optimize the performance. While this is certainly the
beauty of fuzzy logic, it is also a major limitation. In many applications, the Imowledge that
describes a system’s behavior is contained in data sets. Neural networks are used in applications -
with limited capacity for several reasons. First, a neural net solution remains a ‘%lackbox.” You
cannot interpret what causes a certain behavior, or manually modify a neural net to change a certain
behavior. Second, neural nets require prohibitive computational effort for most mass-market prod-
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ucts. Third, selecting an appropriate net model and setting the parameters of the learning
algorithm is still a “black art” that requires extensive experience. But of all these, the lack of an
easy way to verifj and optimize a neural net solution is probably the greatest limitation. Both
neural nets and fuzzy logic are powerful design techniques with their own strengths and
weaknesses. Neural nets can learn from data sets, while fuzzy logic solutions are easy to verify
and optimize. If you compare these properties, it is apparent that a clever combination of the two
technologies can deliver the best of both worlds, combining the explicit knowledge representation
of fhzzy logic with the learning power of neural nets.

When you start with a neurofuzzy design, the frost step is to obtain the datasets that represent the
desired behavior (intelligent and autonomous drilling control). Each dataset gives sample output

. values for a given combination of input variables. The neurofuzzy training process starts with a
fuzzy logic system, If you have not already setup your fuzzy logic system, the neurofuzzy module
can automatically set up an initial system for you. It analyzes the datasets and proposes a system
structure. You can either accept this structure or modi$ it, before neurofuzzy generates this
system with default membership function deffitions and default rules. The following sections
presents a detailed technical description of the neurofuzzy classfler system.

3.3.2 What are Neurofuzzy Classifiers?
In the current neurofizzy research, original views are clearly becoming vague, as some of the most
fundamental neural networks such as the one-hidden-layer MLP or RBF networks have been
shown to have very close connections to statistical techniques with fuzzy logic embedded.
Figure 3-5 charts the neural characteristics of some of the classification methods. The horizontal
axis measures the flexibility of a classifier architecture in the sense of the richness of the
discriminant function family encompassed by a particular method. High flexibility of architecture is
a property often associated with neural networks. In some cases (MLP, RBF, CART, MARS) the

flexibility can also include algorithmic model selection during training 1221. In the vertical
dimension, the various classifiers are categorized on the basis of how they are designed from a
training sample. Training is considered non-neural if the training vectors are used as such in
classification (e.g., K-NN, KDA), or if some statistics are fwst estimated in batch mode and the
discriminant functions are computed from them. Neural learning is characterized by simple local
computations in a number of real or virtual processing elements. Neural learning algorithms are
typically of the error correction type; for some such algorithms, not even an explicit cost function
exists. Typically, the training set is used several times (epochs) in an on-line mode. Note,
however, that for some neural networks (MLP, RBF) the current implementations in fact often
employ sophisticated optimization techniques which wo~d jus@ mov~g them downwards in “OUr
map to the lower half plane.

3.4 IDMA Neurofuzzy Classifier System
Candidates for the neurofuzzy classifier system to classify current drilling status based on the
current sensor reading include: the multiple MLP classifier, the hidden Markov model
(HMM)/IvlLP classifier, and the structure-adaptive self-organizing map (SOM) classifier.

3.4.1 Multiple MLP Classifier
The basic idea of the multiple network classtier is to develop n independently trained neural
networks with particular features, and to classify a given input pattern by obtaining a classification -
from each copy of the network and then using a consensus scheme to decide the collective

classification by means of combination methods 1221(see Figure 3-6). Two general approaches,
one based on fusion and the other on voting, form the basis of the methods presented.
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Figure 3-6
In multiple MLP classifier with consensus scheme, n independently trained neural networks

classify a given input pattern by using a consensus to decide the collective
classification [281.

Table 3-2 shows the recognition rates with respect to the three networks and their combinations,
using consensus methods -- majority voting, average, and fuzzy integral. The reliability in the
table is computed with the following equation:

recognition rate
reliability = Xloo,

recognition rate + error rate
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where the error rate is the percentage of patterns classified incorrectly by the method. As can be
seen, every method of combining multiple MLP produces better results than individual networks,
and the overall classification rate for the fuzzy integral is higher than those for other consensus
methods.

Table 3-2. Results of Recognition Rates (%)

Methods Recognized Substituted Rejected Reliability

MLP.i 89.05 7.00 3.95 92.71

MLP; 95.40 3.75 0.85 96.22

MLP3 93.95 4.10 1.95 95.82

Voting 96.70 3.05 0.25 96.94

Average 97.15 2.35 0.50 97.64

Fuzzy 97.35 2.30 0.35 97.69

3.4.2 The HMM/MLP Hybrid Classifier
The HMIWMLP classifier 1) f~st converts a dynamic input sample to a static pattern sequence by
using an HMM-based recognize and 2) then recognizes the sequence by using an MLP-trained
clas~fler (see Figure 3-7).

HIzl--

Figure 3-7
The HMM/MLP recursive hybrid classifier [281.

A standard HMM-based recognize assigns one Mrukov model for each class. Recognition by
HMMs involves accumulating scores for an unknown input across the nodes in each class model,
and selecting the class model with the maximum accumulated score. In contrast, the proposed
classifier replaces the maximum-selection step with an MLP classifier.

The hybrid classifier automatically focuses on those parts of the model that are important for
discriminating among sequentially similar patterns. In the conventional HMM-based approach,
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only the patterns in the specified class are involved in the estimation of parameters; there is no role
for any patterns in the other classes. The hybrid classifier uses more information than the
conventional approach; it uses knowledge of the potential confusions in the particular training data
to be recognized. Since it uses more information, there are certainly reasons to suppose that the
hybrid classifier will prove superior to the conventional approach. In this classifier, tie MLp WU
learn prior probabilities as well as to correct tie assumptions made about the probability density
functions used in the HMMs.

3.4.3 Structure-Adaptive SOM Classifier
Kohonen’s self-organizing map (SOM) is an iterative version of the k-means algorithm, although
SOM also has many of the intrinsic merits of a neural network model 1221. Therefore, it is not
appropriate to use the SOM for classification problems because decision accuracy cannot be fine
tuned with a conventional SOM. Also, it is quite difficult to determine the size and structure of the
network. A SOM can simultaneously determine a suitable number of nodes and the connection
weights between the input and output nodes. The basic idea is simple:

1. Startwith a basic neural network (in our case, a 4 x 4 map in which each node is
fully connected to all nodes in the next layer).

2. Train the current network with Kohonen’s algorithm
3. Calibrate the network using known input-output patterns to determine

a) which node should be replaced with a submap of several nodes (in our
case, a 2 x 2 map) and

b) which node should be deleted.

The structure of the network is similar to Kohonen’s SOM shown in Figure 3-8, except for the
irregular connectivity in the map.

/~/

– – - Output Nodes

I f

4––- Connection Weights

+–– - Input Nodes

xl X2 X“

Figure 3-8
Kohonen’s self-organizing map [281.
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3.5 Training Methodology
We compare two possible architectures for mapping the n processed sensory inputs (typical value:
rz=200)tom control outputs (typical value: nz=lO). The frost (denoted A) is a supervised learning
network such as a back propagation neural network. The second is POC’S proposed hybrid
unsupervised-supervised architecture (denoted B), in which the sensory inputs are diagnosed by
an unsupervised network such as a Kohonen network, yielding p intermediate values (typical
values of p are not yet known but will probably be 10-20). The intermediate values are inputs to a
supervised network, which computes the contiol outputs.

Supervised networks requixe training using a set of known training facts. For scheme A, each
training fact would be a set of processed sensor input values together with the corresponding set of
control output values. This has the following problems:

● Training facts are not available in this form, and
● The number of training facts needed is unacceptably high.

The f~st problem concerns the nature of available information. The knowledge base for control of
drill operations resides in the brains of experienced drilling engineers and operators. These
personnel have not been accustomed to working with the quantity of sensor input now becoming
av@.lable. The needed association of sensor inputs with control outputs does not, therefore, yet
exist.

The second problem concerns the information capacity of a neural network and the quantity of
training data needed to achieve full training. Assume the input values are effectively discretized so
that each can take on Nz values. Logical or binary inputs (on or ofi, true or false) have Nz = 2,

while continuous inputs with a fractional resolution of 0.1 have NI = 10. The number of
distinguishable input vectors is then

(3-11)

where Nz,kis the effective number of values of input k. This is a very large nurnbe~ for example,

if n=200 and binary inputs are used, the number of possible input vectors is 2200, or greater than
1070.

Fortunately, a much smaller set of training facts can be used, provided the set adequately
represents the complete transfer function the network is to model. Two effects me important here:

● The transfer function of a trained neural network interpolates the training data to
produce an approximation of the real transfer function. Therefore, the number and
choice of training facts must be appropriate to the character of the function. In a
region where the fimction is smooth, few facts are needed, while in a region where
nonlinearities or discontinuities occur, many facts are needed.

● Physical problems often exhibit correlation among the inputs, so that the effective
size of the input space (number of distinguishable input vectors) Cm be fm sm~er .
than the large value given above. When this is the case, a change of variables is
generally required as discussed below.
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For the intelligent drilling control network, these considerations are paramount. Sharp
nordinearities are known to exist, for example, near the transition to loss of circulation and near
conditions causing catastrophic bit failure. Moreover, the sensor inputs will certainly exhibit a
high degree of correlation (redundancy), so that only a small subset of the possible set of sensor
vectors make sense as representing actual physical conditions.

The information content of a neural network is proportional to the size of the weight matrix.
Assuming one hidden layer of h hidden neurons, where h is given by the heuristic criterion

h = ceilingG, (3-12)

with n inputs and m outputs, the size of the weight matrix is

NW=(n+l)h+ (h+l)ms&(n+m), (3-13)

where one threshold neuron in each layer is assumed. For the typical numbers assumed above
(n=200 and VZ=1O),the weight matrix consists of 9500 neurons.

Experience with back-propagation networks has shown that the number of training facts should in
general be of the same order as the information content. Thus, the typical numbers for scheme A
call for of order 10,000 training facts.

It is crucial to realize that the information content of the network does not take into account
correlation of the inputs. The practical result of this is that when the network has a large number of
highly correlated inputs it may train to completion on a representative set of training data but will
fail to generalize; in other words, it will act as a poor interpolant or extrapolant.

A related example illustrates this effect. Our consultant has years of experience assisting industrial
customers with neural network design. In this experience, the question of networks for image
processing and classification often arises. This type of problem is the same as the present one:
whereas the number of possible input vectors is enormous, only a small fraction of these inputs
represent likely drilling conditions. It is invariably found that the problem can be
solved by a neural network only if the inputs can be transformed using feature
extraction. For instance, a medical application required classification of human skeletal images
by age of the skeleton. Only a small fraction of possible images look like skeletons. The problem
became tractable when a program was written to convert an image into a list of bone sizes and
separations. The successful network was then trained using known facts, with the extracted bone
data as inputs and the skeletal age as output.

For the intelligent drilling problem, the set of features to be extracted and the
method of extraction are not known. On the other hand, it is expected that the sets of
sensor inputs will cluster into identifiable groups depending on conditions. This situation is
exactly the appropriate one for classification using unsupervised learning.

In unsupervised learning, only known input vectors are presented to the network during training. -
No known outputs are used in training. The point of the training is to discover the clustering of
inputs, to learn the correlations present among physically likely sensor inputs. Supervised and
unsupervised networks thus are appropriate for problems at opposite ends of a spectrum.
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As described above, tietigh de~eeof conflation present mongsensor tipufih tietiteUgent
drilling problem renders impractical the duect supervised solution via scheme A. However, it is
exactly this situation in which classification by an unsupervised network is s o
attractive.

In the POC hybrid architecture, the f~st part of the operation is classification (diagnosis) of sensor
inputs into categories. Successful training of the unsupervised diagnosis network will lead to
identification of the categories, one of which will be represented by each of the p outputs of the
diagnosis network.

The training data will be assembled in a very straightforward way. As sensors come on line on
existing rigs, drill logs will be compiled that contain the sensor data. Over time the complete range
of events will occur: bit breakage, drill sticking, loss of circulation, unplanned change of direction,
etc., as well as a great deal of successful drilling. The drill logs wilI then contain sensor data that
span the likely set of inputs.

The diagnosis network will train by clustering the logged sensor inputs into categories. After
training is complete, the meaning of each output neuron will be identified in consultation with
drilling experts. For example, certain sets of sensor inputs will be easily identifiable as
representing lost circulation, for instance.

Once the correspondence has been made between each output of the diagnosis network and a
corresponding physical situation, the training facts for the control network are set up. Since it is
not known a priori what the appropriate control actions should be in any given situation,
consultation with experts is again needed.

The three leading learning paradigms are: supervised, unsupervised, and hybrid. Table 3-3
compares learning algorithms. In supervised learning, or learning with a “teacher,” the network is
given a correct answer (output) for every input pattern. Weights are found that allow the network
to produce answers as close as possible to the known correct answers. Reinforcement learning is a
variant of supervised learning in which the network is given only a critique on the correctness of
network outputs, not the correct answers themselves. In contrast, unsupervised learning, or
learning without a teacher, does not supply a correct answer associated with each input pattern in
the training data set. It explores the underlying structure in the data, or correlations between
patterns in the data, and organizes. patterns into categories based on these correlations. Hybrid
learning combines supervised and unsupervised learning.

POC’S innovative hybrid learning, which is totally different from the conventional hybrid
paradigm, combines unsupervised and supervised learning for more accurate, efficient, and
adaptive control. The two methodologies for implementing hybrid learning are: first,
unsupervised learning with fuzzy control Iogic to form approximate clusters of sample data. Then
the supervised learning algorithm together with fuzzy control logic tunes the patterns. Second,
supervised learning is tuned by fhzzy control logic, followed by unsupervised learning to perform
clustering, again tuned by fuzzy control logic.
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Table 3-3 Comparison of Various Learning Algorithms

Paradigm Learning rule Architecture Learning algorithm Task
Supervised Error-correction Single- or Perception learning Pattern classification

multilayer algorithm Function
perception Back-propagation approximation

Adaline and Prediction, control
Madaline

Bo[tzmann Recurrent Boltzmann learning Pattern classification
algorithm

Hebbian Multilayer feed- Linear discriminant Data analysis
forward analysis Pattern classification

Competitive Competitive Learning vector Within-class
quantization categorization

Data compression
ART network ARTMap Pattern classification

Within-class
categorization

Unsupervised Error-correction Multilayer feed- Sammon’s Data analysis
forward projection

Hebbian Feed- fotward or Principal Data analysis
competitive component analysis Data compression
Hopfield Associative memory Associative memory
network learning

Competitive Competitive Vector quantization Categorization
Data compression

Kohonen’s SOM Kohonen’s SOM Categorization
Data analysis

ART networks ARTI , ART2 Categorization
-lybrid Error-correction RBF network RBF learning Pattern classification I

and algorithm Function
competitive approximation

Prediction, control

4.0 CONCLUSION AND RECCOMMENDATION
4.1 Conclusions
In Phase I, POC designed an Intelligent Decision Making Aid (TDMA) for intelligent drilling
control, and demonstrated its flexibility. POC has successfidly reached its Phase I goal by
demonstrating the feasibility of an i.ntelJigent and autonomous drilling system integrating data
fusion, neurofizzy decision making, and hybrid training. Additionally, POC has designed the
overall Phase II IDMA structure so that Phase II can begin with building the Phase II prototype.

4.2 Recommendations
We believe that the IDMA technology is critical for cost effective energy production. Specifically
we recommend addressing the following issues in IDMA Phase II development:

1, Design optimization and development of fuzzy data associator
2. Design optimization of neurofuzzy system

● Selection of fuzzitlcation methodology
● Selection of defuzzification methodology
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● Determination of neural network architecture such as the number of hidden
layers and transfer function

● Determination of training methodology with various training parameters
3. Acquisition of training data sets from drilling experts
4. Research into existing sensing and telemetry technology
5. Development of interface between sensors and IDMA
6. Development of accelerator board for real-time processing
7. Development of clear graphic interface
8. Demonstration of the Phase II IDMA system in field test
9. Establishment of commercialization plans, partners, and marketing.

In Phase I, POC significantly advanced and combined several critical soft computing technologies
to prove the feasibility of producing a key breakthrough in intelligent drilling decision making aid
technology. POC was in a unique position to develop and combine these enabling technologies,
building on extensive research in sensor imaging, neural networks, sensor fusion, and soft
computing. We demonstrated that integrating soft computing, neural networks, fuzzy logic, and
sensor fusion can produce a unique IDMA system that has strong advantages over existing
techniques.

POC believes that IDMA system technology will improve drilling performance and offer totally
new features at low cost. These feature include minimizing drilling failures such as loss of
circulation, washouts, and stuck pipe, reduction in human errors, and increased decision
confidence. Other commercial IDMA system advantages will be its continuous and consistent
monitoring capability and high system adaptability. These advantages give IDMA a strong
competitive edge, and will accelerate Phase III commercialization.

5.0 GOVERNMENT AND COMMERCIAL APPLICATIONS
The national importance of drilling, and especially of intelligent drilling technology, is well stated
in Ref. [1]. Drilling has a number of applications of national importance. These applications
include exploration for and extraction of oil, gas, and geothermal energy, for environmental
monitoring and remediation, for infrastructure development of utilities, transportation, and
communication facilities, and for scientitlc studies of the Earth’s subsurface.

Improved drilling technology will lower overall drilling costs, shorten the drilling period, increase
the rate of drilIing success, and have a direct benefit to the U.S. in terms of higher energy
resources, low and stable energy costs, better environmental protection through geothermal
energy, and improved economic competitive position of the U.S. drilling industry. Horizontal
drilling activity alone in 1997 cost 1.1 billion dollars with 1,111 horizontal wells completed and

overall drilling expenditures exceeding $10 billion per year according to Oil & Gas Journal [lb]. At
that, horizontal drilling is a small part of overall oil drilling, and oil drilling is only one of the many
segments of the vital domestic drilling industry. POC’S IDMA offers the maximum number of
advantages without any disabling disadvantage.
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