Seepage into an Underground Opening Constructed in Unsaturated Fractured Rock Under Evaporative Conditions

PDF Version Also Available for Download.

Description

Liquid-release tests, performed in boreholes above an underground opening constructed in unsaturated fractured rock, are used in this study to evaluate seepage into a waste emplacement drift. Evidence for the existence of a capillary barrier at the ceiling of the drift is presented, based on field observations (including spreading of the wetting front across the ceiling and water movement up fractures exposed in the ceiling before seepage begins). The capillary barrier mechanism has the potential to divert water around the opening, resulting in no seepage when the percolation flux is at or below the seepage threshold flux. Liquid-release tests are ... continued below

Physical Description

44 pages

Creation Information

Trautz, R. C. & Wang, Joseph S. Y. June 7, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Liquid-release tests, performed in boreholes above an underground opening constructed in unsaturated fractured rock, are used in this study to evaluate seepage into a waste emplacement drift. Evidence for the existence of a capillary barrier at the ceiling of the drift is presented, based on field observations (including spreading of the wetting front across the ceiling and water movement up fractures exposed in the ceiling before seepage begins). The capillary barrier mechanism has the potential to divert water around the opening, resulting in no seepage when the percolation flux is at or below the seepage threshold flux. Liquid-release tests are used to demonstrate that a seepage threshold exists and to measure the magnitude of the seepage threshold flux for three test zones that seeped. The seepage data are interpreted using analytical techniques to estimate the test-specific strength of the rock capillary forces ({alpha}{sup -1}) that prevent water from seeping into the drift. Evaporation increases the seepage threshold flux making it more difficult for water to seep into the drift and producing artificially inflated {alpha}{sup -1} values. With adjustments for evaporation, the minimum test-specific threshold is 1,600 mm/yr with a corresponding {alpha}{sup -1} of 0.027 m.

Physical Description

44 pages

Notes

INIS; OSTI as DE00787041

Source

  • Other Information: PBD: 7 Jun 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: NONE
  • DOI: 10.2172/787041 | External Link
  • Office of Scientific & Technical Information Report Number: 787041
  • Archival Resource Key: ark:/67531/metadc721774

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 7, 2001

Added to The UNT Digital Library

  • Sept. 29, 2015, 5:31 a.m.

Description Last Updated

  • Feb. 10, 2016, 6:36 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Trautz, R. C. & Wang, Joseph S. Y. Seepage into an Underground Opening Constructed in Unsaturated Fractured Rock Under Evaporative Conditions, report, June 7, 2001; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc721774/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.